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Preface

This volume contains the papers selected for presentation at the 18th European
Symposium on Research in Computer Security (ESORICS 2013), held during
September 9–13, 2013, in Egham, UK.

In response to the symposium’s call for papers, 242 papers were submitted
to the conference from 38 countries. These papers were evaluated on the basis of
their significance, novelty, technical quality, as well as on their practical impact
and/or their level of advancement of the field’s foundations.

The Program Committee’s work was carried out electronically, yielding in-
tensive discussions over a period of a few weeks. Of the papers submitted, 43
were selected for presentation at the conference (resulting in an acceptance rate
of 18%). We note that many top-quality submissions were not selected for pre-
sentation because of the high technical level of the overall submissions, and we
are certain that many of these submissions will, nevertheless, be published at
other competitive forums in the future.

An event like ESORICS 2013 depends on the volunteering efforts of a host
of individuals and the support of numerous institutes. There is a long list of
people who volunteered their time and energy to put together and organize the
conference, and who deserve special thanks. Thanks to all the members of the
Program Committee and the external reviewers for all their hard work in evalu-
ating the papers. We are also very grateful to all the people whose work ensured
a smooth organization process: the ESORICS Steering Committee, and its Chair
Pierangela Samarati in particular, for their support; Giovanni Livraga, for taking
care of publicity; Sheila Cobourne, for maintaining the website; and the Local
Organizing Committee, for helping with organization and taking care of local ar-
rangements. We would also like to express our appreciation to everyone who or-
ganized the workshops (CATACRYPT, Cryptoforma, DPM, EUROPKI, QASA,
SETOP, STM, Trustworthy Clouds) co-located with ESORICS. A number of
organizations also deserve special thanks, including Royal Holloway University
of London for acting as host, and the ESORICS sponsors: CESG, Transport for
London, ISG Smart Card Centre, Crisp Telecom Limited, and NESSoS.

Last, but certainly not least, our thanks go to all the authors who submitted
papers and all the symposium’s attendees. We hope you find the proceedings of
ESORICS 2013 stimulating and a source of inspiration for your future research
and education programs.

September 2013 Jason Crampton
Sushil Jajodia

Keith Mayes

www.it-ebooks.info

http://www.it-ebooks.info/


Organization

General Chair

Keith Mayes Royal Holloway, University of London, UK

Program Chairs

Jason Crampton Royal Holloway, University of London, UK
Sushil Jajodia George Mason University, USA

ESORICS Steering Committee

Michael Backes Saarland University, Germany
Joachim Biskup University of Dortmund, Germany
Frédéric Cuppens Télécom Bretagne, France
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Kevin Butler University of Oregon, USA
Srdjan Capkun ETH Zurich, Switzerland
Liqun Chen Hewlett-Packard Laboratories, UK
Sherman S.M. Chow Chinese University of Hong Kong, SAR China
Marco Cova University of Birmingham, UK
Jason Crampton Royal Holloway, University of London, UK
Frédéric Cuppens TELECOM Bretagne, France
Sabrina De Capitani
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Édouard Cuvelier, Olivier Pereira, and Thomas Peters

Enforcing Privacy in the Presence of Others: Notions, Formalisations
and Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Naipeng Dong, Hugo Jonker, and Jun Pang

Malware Detection

Mining Malware Specifications through Static Reachability Analysis . . . . 517
Hugo Daniel Macedo and Tayssir Touili

Patrol: Revealing Zero-Day Attack Paths through Network-Wide
System Object Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536

Jun Dai, Xiaoyan Sun, and Peng Liu

www.it-ebooks.info

http://www.it-ebooks.info/


XVI Table of Contents

Measuring and Detecting Malware Downloads in Live Network
Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 556

Phani Vadrevu, Babak Rahbarinia, Roberto Perdisci, Kang Li, and
Manos Antonakakis

Access Control

Automated Certification of Authorisation Policy Resistance . . . . . . . . . . . 574
Andreas Griesmayer and Charles Morisset

Fine-Grained Access Control System Based on Outsourced
Attribute-Based Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 592

Jin Li, Xiaofeng Chen, Jingwei Li, Chunfu Jia, Jianfeng Ma, and
Wenjing Lou

Purpose Restrictions on Information Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . 610
Michael Carl Tschantz, Anupam Datta, and Jeannette M. Wing

Distributed Shuffling for Preserving Access Confidentiality . . . . . . . . . . . . 628
Sabrina De Capitani di Vimercati, Sara Foresti, Stefano Paraboschi,
Gerardo Pelosi, and Pierangela Samarati

Attacks

Range Extension Attacks on Contactless Smart Cards . . . . . . . . . . . . . . . . 646
Yossef Oren, Dvir Schirman, and Avishai Wool

CellFlood: Attacking Tor Onion Routers on the Cheap . . . . . . . . . . . . . . . . 664
Marco Valerio Barbera, Vasileios P. Kemerlis, Vasilis Pappas, and
Angelos D. Keromytis

Nowhere to Hide: Navigating around Privacy in Online Social
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682
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Abstract. SPDZ (pronounced “Speedz”) is the nickname of the MPC protocol
of Damgård et al. from Crypto 2012. In this paper we both resolve a number
of open problems with SPDZ; and present several theoretical and practical im-
provements to the protocol. In detail, we start by designing and implementing a
covertly secure key generation protocol for obtaining a BGV public key and a
shared associated secret key. We then construct both a covertly and actively se-
cure preprocessing phase, both of which compare favourably with previous work
in terms of efficiency and provable security.

We also build a new online phase, which solves a major problem of the SPDZ
protocol: namely prior to this work preprocessed data could be used for only one
function evaluation and then had to be recomputed from scratch for the next eval-
uation, while our online phase can support reactive functionalities. This improve-
ment comes mainly from the fact that our construction does not require players
to reveal the MAC keys to check correctness of MAC’d values.

1 Introduction

For many decades multi-party computation (MPC) had been a predominantly theo-
retic endeavour in cryptography, but in recent years interest has arisen on the practi-
cal side. This has resulted in various implementation improvements and such protocols
are becoming more applicable to practical situations. A key part in this transformation
from theory to practice is in adapting theoretical protocols and applying implementation
techniques so as to significantly improve performance, whilst not sacrificing the level
of security required by real world applications. This paper follows this modern, more
practical, trend.

Early applied work on MPC focused on the case of protocols secure against passive
adversaries, both in the case of two-party protocols based on Yao circuits [18] and that
of many-party protocols, based on secret sharing techniques [5,9,22]. Only in recent
years work has shifted to achieve active security [16,17,21], which appears to come
at vastly increased cost when dealing with more than two players. On the other hand,
in the real applications active security may be more stringent than one would actually
require. In [2,3] Aumann and Lindell introduced the notion of covert security; in this se-
curity model an adversary who deviates from the protocol is detected with high (but not
necessarily overwhelming) probability, say 90%, which still translates into an incentive
on the adversary to behave in an honest manner. In contrast active security achieves the
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2 I. Damgård et al.

same effect, but the adversary can only succeed with cheating with negligible probabil-
ity. There is a strong case to be made, see [2,3], that covert security is a “good enough”
security level for practical application; thus in this work we focus on covert security,
but we also provide solutions with active security.

As our starting point we take the protocol of [13] (dubbed SPDZ, and pronounced
Speedz). In [13] this protocol is secure against active static adversaries in the standard
model, is actively secure, and tolerates corruption of n− 1 of the n parties. The SPDZ
protocol follows the preprocessing model: in an offline phase some shared randomness
is generated, but neither the function to be computed nor the inputs need be known; in
an online phase the actual secure computation is performed. One of the main advan-
tages of the SPDZ protocol is that the performance of the online phase scales linearly
with the number of players, and the basic operations are almost as cheap as those used
in the passively secure protocols based on Shamir secret sharing. Thus, it offers the
possibility of being both more flexible and secure than Shamir based protocols, while
still maintaining low computational cost.

In [11] the authors present an implementation report on an adaption of the SPDZ
protocol in the random oracle model, and show performance figures for both the offline
and online phases for both an actively secure variant and a covertly secure variant. The
implementation is over a finite field of characteristic two, since the focus is on providing
a benchmark for evaluation of the AES circuit (a common benchmark application in
MPC [21,10]).

Our Contributions: In this work we present a number of contributions which extend
even further the ability the SPDZ protocol to deal with the type of application one is
likely to see in practice. All our theorems are proved in the UC model, and in most cases,
the protocols make use of some predefined ideal functionalities. We give protocols im-
plementing most of these functionalities, the only exception being the functionality that
provides access to a random oracle. This is implemented using a hash functions, and
so the actual protocol is only secure in the Random Oracle Model. We back up these
improvements with an implementation which we report on.

Our contributions come in two flavours. In the first flavour we present a number of
improvements and extensions to the basic underlying SPDZ protocol. These protocol
improvements are supported with associated security models and proofs. Our second
flavour of improvements are at the implementation layer, and they bring in standard
techniques from applied cryptography to bear onto MPC.

In more detail our protocol enhancements, in what are the descending order of im-
portance, are as follows:

1. In the online phase of the original SPDZ protocol the parties are required to reveal
their shares of a global MAC key in order to verify that the computation has been
performed correctly. This is a major problem in practical applications since it means
that secret-shared data we did not reveal cannot be re-used in later applications. Our
protocol adopts a method to accomplish the same task, without needing to open the
underlying MAC key. This means we can now go on computing on any secret-
shared data we have, so we can support general reactive computation rather than
just secure function evaluation. A further advantage of this technique is that some
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of the verification we need (the so-called “sacrificing” step) can be moved into the
offline phase, providing additional performance improvements in the online phase.

2. In the original SPDZ protocol [11,13] the authors assume a “magic” key generation
phase for the production of the distributed Somewhat Homomorphic Encryption
(SHE) scheme public/private keys required by the offline phase. The authors claim
this can be accomplished using standard generic MPC techniques, which are of
course expensive. In this work we present a key generation protocol for the BGV
[6] SHE scheme, which is secure against covert adversaries. In addition we generate
a “full” BGV key which supports the modulus switching and key switching used
in [15]. This new sub-protocol may be of independent interest in other applications
which require distributed decryption in an SHE/FHE scheme.

3. In [11] the modification to covert security was essentially ad-hoc, and resulted in
a very weak form of covert security. In addition no security proofs or model were
given to justify the claimed security. In this work we present a completely different
approach to achieving covert security, we provide an extensive security model and
provide full proofs for the modified offline phase (and the key generation protocol
mentioned above).

4. We introduce a new approach to obtain full active security in the offline phase. In
[13] active security was obtained via the use of specially designed ZKPoKs. In this
work we present a different technique, based on a method used in [20]. This method
has running time similar to the ZKPoK approach utilized in [13], but it allows us to
give much stronger guarantees on the ciphertexts produced by corrupt players: the
gap between the size of “noise” honest players put into ciphertexts and what we can
force corrupt players to use was exponential in the security parameter in [13], and
is essentially linear in our solution. This allows us to choose smaller parameters
for the underlying cryptosystem and so makes other parts of the protocol more
efficient.

It is important to understand that by combining these contributions in different ways,
we can obtain two different general MPC protocols: First, since our new online phase
still has full active security, it can be combined with our new approach to active security
in the offline phase. This results in a protocol that is “syntactically similar” to the one
from [13]: it has full active security assuming access to a functionality for key genera-
tion. However, it has enhanced functionality and performance, compared to [13], in that
it can securely compute reactive functionalities. Second, we can combine our covertly
secure protocols for key generation and the offline phase with the online phase to get a
protocol that has covert security throughout and does not assume that key generation is
given for free.

Our covert solutions all make use of the same technique to move from passive to
covert security, while avoiding the computational cost of performing zero-knowledge
proofs. In [11] covert security is obtained by only checking a fraction of the resulting
proofs, which results in a weak notion of covert security (the probability of a cheater
being detected cannot be made too large). In this work we adopt a different approach,
akin to the cut-and-choose paradigm. We require parties to commit to random seeds
for a number of runs of a given sub-protocol, then all the runs are executed in parallel,
finally all bar one of the runs are “opened” by the players revealing their random seeds.
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If all opened runs are shown to have been performed correctly then the players assume
that the single un-opened run is also correctly executed.

A pleasing side-effect of the replacement of zero-knowledge proofs with our custom
mechanism to obtain covert security is that the offline phase can be run in much smaller
“batches”. In [11,13] the need to amortize the cost of the expensive zero-knowledge
proofs meant that the players on each iteration of the offline protocol executed a large
computation, which produced a large number of multiplication triples [4] (in the mil-
lions). With our new technique we no longer need to amortize executions as much, and
so short runs of the offline phase can be executed if so desired; producing only a few
thousand triples per run.

Our second flavour of improvements at the implementation layer are more mundane;
being mainly of an implementation nature. This extended abstract presents the main
ideas behind our improvements and details of our implementation. For a full description
including details of the associated sub-procedures, security models and associated full
security proofs please see the full version of this paper at [12].

2 SPDZ Overview

We now present the main components of the SPDZ protocol; in this section unless
otherwise specified we are simply recapping on prior work. Throughout the paper we
assume the computation to be performed by n players over a fixed finite field Fp of
characteristic p. The high level idea of the online phase is to compute a function repre-
sented as a circuit, where privacy is obtained by additively secret sharing the inputs and
outputs of each gate, and correctness is guaranteed by adding additive secret sharings
of MACs on the inputs and outputs of each gate. In more detail, each player Pi has a
uniform share αi ∈ Fp of a secret value α = α1 + · · ·+αn, thought of as a fixed MAC
key. We say that a data item a ∈ Fp is 〈·〉-shared if Pi holds a tuple (ai, γ(a)i), where
ai is an additive secret sharing of a, i.e. a = a1 + · · · + an, and γ(a)i is an additive
secret sharing of γ(a) := α · a, i.e. γ(a) = γ(a)1 + · · ·+ γ(a)n.

For the readers familiar with [13], this is a simpler MAC definition. In particular we
have dropped δa from the MAC definition; this value was only used to add or subtract
public data to or from shares. In our case δa becomes superfluous, since there is a
straightforward way of computing a MAC of a public value a by defining γ(a)i ← a·αi.

During the protocol various values which are 〈·〉-shared are “partially opened”, i.e.
the associated values ai are revealed, but not the associated shares of the MAC. Note
that linear operations (addition and scalar multiplication) can be performed on the
〈·〉-sharings with no interaction required. Computing multiplications, however, is not
straightforward, as we describe below.

The goal of the offline phase is to produce a set of “multiplication triples”, which
allow players to compute products. These are a list of sets of three 〈·〉-sharings {〈a〉 , 〈b〉,
〈c〉} such that c = a ·b. In this paper we extend the offline phase to also produce “square
pairs” i.e. a list of pairs of 〈·〉-sharings {〈a〉 , 〈b〉} such that b = a2, and “shared bits”
i.e. a list of single shares 〈a〉 such that a ∈ {0, 1}.

In the online phase these lists are consumed as MPC operations are performed.
In particular to multiply two 〈·〉-sharings 〈x〉 and 〈y〉 we take a multiplication triple
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{〈a〉 , 〈b〉 , 〈c〉} and partially open 〈x〉 − 〈a〉 to obtain ε and 〈y〉 − 〈b〉 to obtain δ. The
sharing of z = x · y is computed from 〈z〉 ← 〈c〉+ ε · 〈b〉+ δ · 〈a〉+ ε · δ.

The reason for us introducing square pairs is that squaring a value can then be com-
puted more efficiently as follows: To square the sharing 〈x〉 we take a square pair
{〈a〉 , 〈b〉} and partially open 〈x〉 − 〈a〉 to obtain ε. We then compute the sharing of
z = x2 from 〈z〉 ← 〈b〉+ 2 · ε · 〈x〉 − ε2. Finally, the “shared bits” are useful in com-
puting high level operation such as comparison, bit-decomposition, fixed and floating
point operations as in [1,7,8].

The offline phase produces the triples in the following way. We make use of a Some-
what Homomorphic Encryption (SHE) scheme, which encrypts messages in Fp, sup-
ports distributed decryption, and allows computation of circuits of multiplicative depth
one on encrypted data. To generate a multiplication triple each player Pi generates en-
cryptions of random values ai and bi (their shares of a and b). Using the multiplicative
property of the SHE scheme an encryption of c = (a1 + · · · + an) · (b1 + · · · + bn)
is produced. The players then use the distributed decryption protocol to obtain shar-
ings of c. The shares of the MACs on a, b and c needed to complete the 〈·〉-sharing
are produced in much the same manner. Similar operations are performed to produce
square pairs and shared bits. Clearly the above (vague) outline needs to be fleshed out
to ensure the required covert security level. Moreover, in practice we generate many
triples/pairs/shared-bits at once using the SIMD nature of the BGV SHE scheme.

3 BGV

We now present an overview of the BGV scheme as required by our offline phase.
This is only sketched, the reader is referred to [6,14,15] for more details; our goal is to
present enough detail to explain the key generation protocol later.

3.1 Preliminaries

Underlying Algebra: We fix the ring Rq = (Z/qZ)[X ]/Φm(X) for some cyclotomic
polynomial Φm(X), where m is an parameter which can be thought of as a function
of the underlying security parameter. Note that q may not necessarily be prime. Let
R = Z[X ]/Φm(X), and φ(m) denote the degree of R over Z, i.e. Euler’s φ function.
The message space of our scheme will be Rp for a prime p of approximately 32, 64
or 128-bits in length, whilst ciphertexts will lie in either R2

q0 or R2
q1 , for one of two

moduli q0 and q1. We select R = Z[X ]/(Xm/2 + 1) for m a power of two, and p = 1
(mod m). By picking m and p this way we have that the message space Rp offers

m/2-fold SIMD parallelism, i.e. Rp
∼= F

m/2
p . In addition this also implies that the ring

constant cm from [13,15] is equal to one.
We wish to generate a public key for a leveled BGV scheme for which n players

each hold a share, which is itself a “standard” BGV secret key. As we are working with
circuits of multiplicative depth at most one we only need two levels in the moduli chain
q0 = p0 and q1 = p0 · p1. The modulus p1 will also play the role of P in [15] for the
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SwitchKey operation. The value p1 must be chosen so that p1 ≡ 1 (mod p), with the
value of p0 set to ensure valid distributed decryption.

Random Values: Each player is assumed to have a secure entropy source. In practice
we take this to be /dev/urandom, which is a non-blocking entropy source found on
Unix like operating systems. This is not a “true” entropy source, being non-blocking,
but provides a practical balance between entropy production and performance for our
purposes. In what follows we model this source via a procedure s ← Seed(), which
generates a new seed from this source of entropy. Calling this function sets the players
global variable cnt to zero. Then every time a player generates a new random value in
a protocol this is constructed by calling PRFs(cnt), for some pseudo-random function
PRF, and then incrementing cnt. In practice we use AES under the key s with message
cnt to implement PRF.

The point of this method for generating random values is that the said values can then
be verified to have been generated honestly by revealing s in the future and recomputing
all the randomness used by a player, and verifying his output is consistent with this value
of s.

From the basic PRF we define the following “induced” pseudo-random number gen-
erators, which generate elements according to the following distributions but seeded by
the seed s:

– HWT s(h, n): This generates a vector of length n with elements chosen at random
from {−1, 0, 1} subject to the condition that the number of non-zero elements is
equal to h.

– ZOs(0.5, n): This generates a vector of lengthnwith elements chosen from {−1, 0,
1} such that the probability of coefficient is p−1 = 1/4, p0 = 1/2 and p1 = 1/4.

– DGs(σ
2, n): This generates a vector of length n with elements chosen according to

the discrete Gaussian distribution with variance σ2.
– RCs(0.5, σ2, n): This generates a triple of elements (v, e0, e1) where v is sampled

from ZOs(0.5, n) and e0 and e1 are sampled from DGs(σ
2, n).

– Us(q, n): This generates a vector of length n with elements generated uniformly
modulo q.

If any random values are used which do not depend on a seed then these should be
assumed to be drawn using a secure entropy source (again in practice assumed to be
/dev/urandom). If we pull from one of the above distributions where we do not care
about the specific seed being used then we will drop the subscript s from the notation.

Broadcast: When broadcasting data we assume two different models. In the online phase
during partial opening we utilize the method described in [13]; in that players send their
data to a nominated player who then broadcasts the reconstructed value back to the
remaining players. For other applications of broadcast we assume each party broadcasts
their values to all other parties directly. In all instances players maintain a running
hash of all values sent and received in a broadcast (with a suitable modification for the
variant used for partial opening). At the end of a protocol run these running hashes are
compared in a pair-wise fashion. This final comparison ensures that in the case of at
least two honest parties the adversary must have been consistent in what was sent to the
honest parties.

www.it-ebooks.info

http://www.it-ebooks.info/


Practical Covertly Secure MPC for Dishonest Majority 7

3.2 Key Generation

The key generation algorithm generates a public/private key pair such that the public
key is given by pk = (a, b), where a is generated from U(q1, φ(m)) (i.e. a is uniform in
Rq1 ), and b = a · s + p · ε where ε is a “small” error term, and s is the secret key such
that s = s1 + · · ·+ sn, where player Pi holds the share si. Recall since m is a power of
2 we have φ(m) = m/2.

The public key is also augmented to an extended public key epk by addition of a
“quasi-encryption” of the message −p1 · s2, i.e. epk contains a pair enc = (bs,s2 , as,s2)
such that bs,s2 = as,s2 · s + p · εs,s2 − p1 · s2, where as,s2 ← U(q1, φ(m)) and εs,s2
is a “small” error term. The precise distributions of all these values will be determined
when we discuss the exact key generation protocol we use.

3.3 Encryption and Decryption

Encpk(m): To encrypt an elementm ∈ Rp, using the modulus q1, we choose one “small
polynomial” (with 0,±1 coefficients) and two Gaussian polynomials (with variance
σ2), via (v, e0, e1) ←RCs(0.5, σ2, φ(m)). Then we set c0 = b · v + p · e0 +m, c1 =
a · v + p · e1, and set the initial ciphertext as c′ = (c0, c1, 1).

SwitchModulus((c0, c1), 	): The operation SwitchModulus(c) takes the ciphertext c =

((c0, c1), 	) defined modulo q� and produces a ciphertext c′ = ((c′0, c
′
1), 	 − 1) defined

modulo q�−1, such that [c0 − s · c1]q� ≡ [c′0 − s · c′1]q�−1
(mod p). This is done by

setting c′i = Scale(ci, q�, q�−1) where Scale is the function defined in [15]; note we
need the more complex function of Appendix E of the full version of [15] if working in
dCRT representation as we need to fix the scaling modulo p as opposed to modulo two
which was done in the main body of [15]. As we are only working with two levels this
function can only be called when 	 = 1.

Decs(c): Note, that this operation is never actually performed, since no-one knows the
shared secret key s, but presenting it will be instructive: Decryption of a ciphertext
(c0, c1, 	) at level 	 is performed by setting m′ = [c0 − s · c1]q� , then convertingm′ to
coefficient representation and outputtingm′ mod p.

DistDecsi(c): We actually decrypt using a simplification of the distributed decryption
procedure described in [13], since our final ciphertexts consist of only two elements
as opposed to three in [13]. For input ciphertext (c0, c1, 	), player P1 computes v1 =
c0 − si · c1 and each other player Pi computes vi = −si · c1. Each party Pi then
sets ti = vi + p · ri for some random element ri ∈ R with infinity norm bounded
by 2sec · B/(n · p), for some statistical security parameter sec, and the values ti are
broadcast; the precise valueB being determined in the full version of this abstract [12].
Then the message is recovered as t1 + · · ·+ tn (mod p).

3.4 Operations on Encrypted Data

Homomorphic addition follows trivially from the methods of [6,15]. So the main re-
maining task is to deal with multiplication. We first define a SwitchKey operation.
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SwitchKey(d0, d1, d2): This procedure takes as input an extended ciphertext c = (d0, d1,
d2) defined modulo q1; this is a ciphertext which is decrypted via the equation

[d0 − s · d1 − s2 · d2]q1 .

The SwitchKey operation also takes the key-switching data enc = (bs,s2 , as,s2) above
and produces a standard two element ciphertext which encrypts the same message but
modulo q0.

– c′0 ← p1 · d0 + bs,s2 · d2 (mod q1), c′1 ← p1 · d1 + as,s2 · d2 (mod q1).
– c′′0 ← Scale(c′0, q1, q0), c′′1 ← Scale(c′1, q1, q0).
– Output ((c′′0 , c

′′
1 ), 0).

Notice we have the following equality modulo q1:

c′0 − s · c′1 = (p1 · d0) + d2 · bs,s2 − s ·
(
(p · d1)− d2 · as,s2

)
= p1 · (d0 − s · d1 − s2d2)− p · d2 · εs,s2 ,

The requirement on p1 ≡ 1 (mod p) is from the above equation as we want this to
produce the same value as d0 − s · d1 − s2d2 mod q1 on reduction modulo p.

Mult(c, c′): We only need to execute multiplication on two ciphertexts at level one, thus
c = ((c0, c1), 1) and c′ = ((c′0, c

′
1), 1). The output will be a ciphertext c′′ at level zero,

obtained via the following steps:

– c← SwitchModulus(c), c′ ← SwitchModulus(c′).
– (d0, d1, d2) ← (c0 · c′0, c1 · c′0 + c0 · c′1,−c1 · c′1).
– c′′ ← SwitchKey(d0, d1, d2).

4 Protocols Associated to the SHE Scheme

In this section we present two sub-protocols associated with the SHE scheme; namely
our distributed key generation and a protocol for proving that a committed ciphertext is
well formed.

4.1 Distributed Key Generation Protocol for BGV

The protocol for distributed key generation protocol is given in Figure 1. It makes use
of an abstract functionality FCOMMIT which implements a commitment functionality. In
practice this functionality is implemented in the random oracle model via hash func-
tions, see the full version for details [12]. Here we present a high level overview.

As remarked in the introduction, the authors of [13] assumed a “magic” set up which
produces not only a distributed sharing of the main BGV secret key, but also a dis-
tributed sharing of the square of the secret key. That was assumed to be done via some
other unspecified MPC protocol. The effect of requiring a sharing of the square of the
secret key was that they did not need to perform KeySwitching, but ciphertexts were
50% bigger than one would otherwise expect. Here we take a very different approach:
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The protocol ΠKEYGEN

Initialize:
1. Every player Pi samples a uniform ei ← {1, . . . , c} and asks FCOMMIT to broadcast

the handle τ ei ← Commit(ei) for a commitment to ei.
2. Every player Pi samples a seed si,j and asks FCOMMIT to broadcast τ si,j ←

Commit(si,j).
3. Every player Pi computes and broadcasts ai,j ← Usi,j (q1, φ(m)).

Stage 1:
4. All the players compute aj ← a1,j + · · ·+ an,j .
5. Every player Pi computes si,j ← HWT si,j (h, φ(m)) and εi,j ←
DGsi,j (σ

2, φ(m)),
and broadcasts bi,j ← [aj · si,j + p · εi,j ]q1 .

Stage 2:
6. All the players compute bj ← b1,j + · · ·+ bn,j and set pkj ← (aj , bj)..
7. Every player Pi computes and broadcasts enc′i,j ← Encpkj (−p1 ·

si,j ,RCsi,j (0.5, σ2, φ(m))).
Stage 3:

8. All the players compute enc′j ← enc′1,j + · · ·+ enc′n,j .
9. Every player Pi computes zeroi,j ← Encpkj (0,RCsi,j (0.5, σ

2, φ(m))).
10. Every player Pi computes and broadcasts enci,j ← (si,j · enc′j) + zeroi,j .

Output:
11. All the players compute encj ← enc1,j + · · ·+ encn,j and set epkj ← (pkj , encj).
12. Every player Pi calls FCOMMIT with Open(τ ei ). If any opening failed, the players

output the numbers of the respective players, and the protocol aborts.
13. All players compute the challenge chall← 1 +

((∑n
i=1 ei

)
mod c

)
.

14. Every player Pi calls FCOMMIT with Open(τ si,j) for j �= chall. If any opening failed,
the players output the numbers of the respective players, and the protocol aborts.

15. All players obtain the values committed, compute all the derived values and check
that they are correct.

16. If any of the checks fail, the players output the numbers of the respective players,
and the protocol aborts. Otherwise, every player Pi sets

– si ← si,chall,
– pk← (achall, bchall), epk← (pk, encchall).

Fig. 1. The protocol for key generation.

we augment the public key with the keyswitching data from [15] and provide an explicit
covertly secure key generation protocol.

Our protocol will be covertly secure in the sense that the probability that an adversary
can deviate without being detected will be bounded by 1/c, for a positive integer c. Our
basic idea behind achieving covert security is as follows: Each player runs c instances
of the basic protocol, each with different random seeds, then at the end of the main
protocol all bar a random one basic protocol runs are opened, along with the respective
random seeds. All parties then check that the opened runs were performed honestly and,
if any party finds an inconsistency, the protocol aborts. If no problem is detected, the
parties assume that the single unopened run is correct. Thus intuitively the adversary
can cheat with probability at most 1/c.

www.it-ebooks.info

http://www.it-ebooks.info/


10 I. Damgård et al.

We start by discussing the generation of the main public key pkj in execution j where
j ∈ {1, . . . , c}. To start with the players generate a uniformly random value aj ∈ Rq1 .
They then each execute the standard BGV key generation procedure, except that this is
done with respect to the global element aj . Player i chooses a low-weight secret key and
then generates an LWE instance relative to that secret key. Following [15], we choose

si,j ← HWT s(h, φ(m)) and εi,j ← DGs(σ
2, φ(m)).

Then the player sets the secret key as si,j and their “local” public key as (aj , bi,j) where
bi,j = [aj · si,j + p · εi,j ]q1 .

Note, by a hybrid argument, obtaining n ring-LWE instances for n different secret
keys but the same value of aj is secure assuming obtaining one ring-LWE instance is
secure. In the LWE literature this is called “amortization”. Also note in what follows
that a key modulo q1 can be also treated as a key modulo q0 since q0 divides q1 and si,j
has coefficients in {−1, 0, 1}.

The global public and private key are then set to be pkj = (aj , bj) and sj = s1,j +
· · ·+ sn,j , where bj = [b1,j + · · ·+ bn,j ]q1 . This is essentially another BGV key pair,
since if we set εj = ε1,j + · · ·+ εn,j then we have

bj =

n∑
i=1

(aj · si,j + p · εi,j) = aj · sj + p · εj ,

but generated with different distributions for sj and εj compared to the individual key
pairs above.

We next augment the above basic key generation to enable the construction of the
KeySwitching data. Given a public key pkj and a share of the secret key si,j our method
for producing the extended public key is to produce in turn (see Figure 1 for the details
on how we create these elements in our protocol).

– enc′i,j ← Encpkj (−p1 · si,j)
– enc′j ← enc′1,j + · · ·+ enc′n,j .
– zeroi,j ← Encpkj (0)

– enci,j ← (si,j · enc′j) + zeroi,j ∈ R2
q1 .

– encj ← enc1,j + · · ·+ encn,j .
– epkj ← (pkj , encj).

Note, that enc′i,j is not a valid encryption of −p1 · si,j , since −p1 · si,j does not lie in
the message space of the encryption scheme. However, because of the dependence on
the secret key shares here, we need to assume a form of circular security; the precise
assumption needed is stated in the full version [12]. The encryption of zero, zeroi,j , is
added on by each player to re-randomize the ciphertext, preventing an adversary from
recovering si,j from enci,j/enc

′
j . We call the resulting epkj the extended public key. In

[15] the keyswitching data encj is computed directly from s2j ; however, we need to use
the above round-about way since s2j is not available to the parties.

Finally we open all bar one of the c executions and check they have been executed
correctly. If all checks pass then the final extended public key epk is output and the
players keep hold of their associated secret key share si. See Figure 1 for full details of
the protocol.
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Theorem 1. In the FCOMMIT -hybrid model, the protocol ΠKEYGEN implements FKEYGEN

with computational security against any static adversary corrupting at most n − 1
parties.

FKEYGEN simply generates a key pair with a distribution matching what we sketched
above, and then sends the values ai, bi, enc′i, enci for every i to all parties and shares of
the secret key to the honest players. Like most functionalities in the following, it allows
the adversary to try to cheat and will allow this with a certain probability 1/c. This is
how we model covert security. See the full version for a complete technical discription
of FKEYGEN .

The BGV cryptosystem resulting fromFKEYGEN is proven semantically secure by the
following theorem from the full version of this paper [12].

Theorem 2. If the functionalityFKEYGEN is used to produce a public key epk and secret
keys si for i = 0, . . . , n−1 then the resulting cryptosystem is semantically secure based
on the hardness of RLWEq1,σ2,h and the circular security assumption mentioned earlier.

4.2 EncCommit

We use a sub-protocol ΠENCCOMMIT to replace the ΠZKPoPK protocol from [13]. In this
section we consider a covertly secure variant rather than active security; this means that
players controlled by a malicious adversary succeed in deviating from the protocol with
a probability bounded by 1/c. In our experiments we pick c = 5, 10 and 20. In the full
version of this paper we present an actively secure variant of this protocol.

Our new sub-protocol assumes that players have agreed on the key material for the
encryption scheme, i.e.ΠENCCOMMIT runs in theFKEYGEN -hybrid model. The protocol en-
sures that a party outputs a validly created ciphertext containing an encryption of some
pseudo-random message m, where the message m is drawn from a distribution satisfy-
ing condition cond. This is done by committing to seeds and using the cut-and-choose
technique, similarly to the key generation protocol. The condition cond in our appli-
cation could either be uniformly pseudo-randomly generated from Rp, or uniformly
pseudo-randomly generated from Fp (i.e. a “diagonal” element in the SIMD represen-
tation).

The protocolΠENCCOMMIT is presented in Figure 2. A proof of the following theorem,
and a description of the associated ideal functionality, are given in the full version of
this paper [12].

Theorem 3. In the (FCOMMIT ,FKEYGEN )-hybrid model, the protocolΠENCCOMMIT imple-
ments FSHE with computational security against any static adversary corrupting at
most n− 1 parties.

FSHE offers the same functionality as FKEYGEN but can in addition generate correctly
formed ciphertexts where the plaintext satisfies a condition cond as explained above,
and where the plaintext is known to a particular player (even if he is corrupt). Of course,
if we use the actively secure version ofΠENCCOMMIT from the full version, we would get
a version of FSHE where the adversary is not allowed to attempt cheating.
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Protocol ΠENCCOMMIT

Usage: The specific distribution of the message is defined by the input parameter cond. The
output is a single message mi private to each player, and a public ciphertext ci from
player i. The protocol runs in two phases; a commitment phase and an opening phase.

KeyGen: The players executeΠKEYGEN to obtain si, pk, and epk.
Commitment Phase:

1. Every player Pi samples a uniform ei ← {1, . . . , c}, and queries Commit(ei) to
FCOMMIT , which broadcasts a handle τ ei .

2. For j = 1, . . . , c
(a) Every player Pi samples a seed si,j and queries Commit(si,j) to FCOMMIT ,

which broadcasts a handle τ si,j .
(b) Every player Pi generates mi,j according to cond using PRFsi,j .
(c) Every player Pi computes and broadcasts ci,j ← Encpk(mi,j) using PRFsi,j

to generate the randomness.
3. Every player Pi calls FCOMMIT with Open(τ ei ). All players get ei. If any opening

failed, the players output the numbers of the respective players, and the protocol
aborts.

4. All players compute chall← 1 +
((∑n

i=1 ei
)
mod c

)
.

Opening Phase:
5. Every player Pi calls FCOMMIT with Open(τ si,j) for all j �= chall so that all players

obtain the value si,j for j �= chall. If any opening fails, the players output the
numbers of the respective players, and the protocol aborts.

6. For all j �= chall and all i′ ≤ n, the players check whether ci′,j was generated
correctly using si′,j . If not, they output the numbers of the respective players i′, and
the protocol aborts.

7. Otherwise, every player Pi stores {ci′,chall}i′≤n andmi,chall.

Fig. 2. Protocol that allows ciphertext to be used as commitments for plaintexts

5 The Offline Phase

The offline phase produces pre-processed data for the online phase (where the secure
computation is performed). To ensure security against active adversaries the MAC val-
ues of any partially opened value need to be verified. We suggest a new method for this
that overcomes some limitations of the corresponding method from [13]. Since it will
be used both in the offline and the online phase, we explain it here, before discussing
the offline phase.

5.1 MAC Checking

We assume some value a has been 〈·〉-shared and partially opened, which means that
players have revealed shares of the a but not of the associated MAC value γ, this is still
additively shared. Since there is no guarantee that the a are correct, we need to check
it holds that γ = αa where α is the global MAC key that is also additively shared.
In [13], this was done by having players commit to the shares of the MAC. then open
α and check everything in the clear. But this means that other shared values become
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useless because the MAC key is now public, and the adversary could manipulate them
as he desires.

So we want to avoid opening α, and observe that since a is public, the value γ − αa
is a linear function of shared values γ, α, so players can compute shares in this value
locally and we can then check if it is 0 without revealing information on α. As in
[13], we can optimize the cost of this by checking many MACs in one go: we take a
random linear combination of a and γ-values and check only the results of this. The
full protocol is given in Figure 3; it is not intended to implement any functionality – it
is just a procedure that can be called in both the offline and online phases.

Protocol MACCheck

Usage: Each player has input αi and (γ(aj)i) for j = 1, . . . , t. All players have a public
set of opened values {a1, . . . , at}; the protocol either succeeds or outputs failure if an
inconsistent MAC value is found.

MACCheck({a1, . . . , at}):
1. Every player Pi samples a seed si and asks FCOMMIT to broadcast τ si ←

Commit(si).
2. Every player Pi calls FCOMMIT with Open(τ si ) and all players obtain sj for all j.
3. Set s← s1 ⊕ · · · ⊕ sn.
4. Players sample a random vector r = Us(p, t); note all players obtain the same

vector as they have agreed on the seed s.
5. Each player computes the public value a←

∑t
j=1 rj · aj .

6. Player i computes γi ←
∑t

j=1 rj · γ(aj)i, and σi ← γi − αi · a.
7. Player i asks FCOMMIT to broadcast τσi ← Commit(σi).
8. Every player calls FCOMMIT with Open(τσi ), and all players obtain σj for all j.
9. If σ1 + · · ·+ σn �= 0, the players output ∅ and abort.

Fig. 3. Method to Check MACs on Partially Opened Values

MACCheck has the following important properties.

Lemma 1. The protocol MACCheck is correct, i.e. it accepts if all the values aj and the
corresponding MACs are correctly computed. Moreover, it is sound, i.e. it rejects except
with probability 2/p in case at least one value or MAC is not correctly computed.

The proof of Lemma 1 is given in the full version of this paper.

5.2 Offline Protocol

The offline phase itself runs two distinct sub-phases, each of which we now describe. To
start with we assume a BGV key has been distributed according to the key generation
procedure described earlier, as well as the shares of a secret MAC key and an encryption
cα of the MAC key as above. We assume that the output of the offline phase will be a
total of at least nI input tuples, nm multiplication triples, ns squaring tuples and nb
shared bits.
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In the first sub-phase, which we call the tuple-production sub-phase, we over-produce
the various multiplication and squaring tuples, plus the shared bits. These are then “sac-
rificed” in the tuple-checking phase so as to create at least nm multiplication triples, ns
squaring tuples and nb shared bits. In particular in the tuple-production phase we pro-
duce (at least) 2 · nm multiplication tuples, 2 · ns + nb squaring tuples, and nb shared
bits. Tuple-production is performed by a variant of the method from [13] (precise details
are in the full version of this paper). The two key differences between our protocol and
that of [13], is that

1. The expensive ZKPoKs, used to verify that ciphertexts encrypting random values
are correctly produced, are replaced with our protocolΠENCCOMMIT .

2. We generate squaring tuples and shared bits, as well as multiplication triples.

The tuple production protocol can be run repeatedly, alongside the tuple-checking sub-
phase and the online phase.

The second sub-phase of the offline phase is to check whether the resulting material
from the prior phase has been produced correctly. This check is needed, because the
distributed decryption procedure needed to produce the tuples and the MACs could
allow the adversary to induce errors. We solve this problem via a sacrificing technique,
as in [13], however, we also need to adapt it to the case of squaring tuples and bit-
sharings. Moreover, this sacrificing is performed in the offline phase as opposed to
the online phase (as in [13]); and the resulting partially opened values are checked in
the offline phase (again as opposed to the online phase). This is made possible by our
protocol MACCheck which allows to verify the MACs are correct without revealing the
MAC key α. The tuple-checking protocol is presented in the full version of this paper
[12].

We show that the resulting protocol ΠPREP , securely implements the functionality
FPREP , which models the offline phase. The functionality FPREP outputs some desired
number of multiplication triples, squaring tuples and shared bits. Full details of FPREP

and ΠPREP are given in the full version, along with a proof of the following theorem.

Theorem 4. In the (FSHE ,FCOMMIT )-hybrid model, the protocol ΠPREP implements
FPREP with computational security against any static adversary corrupting at most n−1
parties if p is exponential in the security parameter.

The security flavour of ΠPREP follows the security of EncCommit, i.e. if one uses the
covert (resp. active) version of EncCommit, one gets covert (resp. active) security for
ΠPREP .

6 Online Phase

We design a protocol ΠONLINE which performs the secure computation of the desired
function, decomposed as a circuit over Fp. Our online protocol makes use of the pre-
processed data coming fromFPREP in order to input, add, multiply or square values. Our
protocol is similar to the one described in [13]; however, it brings a series of improve-
ments, in the sense that we could push the “sacrificing” to the preprocessing phase,
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we have specialised procedure for squaring etc, and we make use of a different MAC-
checking method in the output phase. Our method for checking the MACs is simply
the MACCheck protocol on all partially opened values; note that such a method has a
lower soundness error than the method proposed in [13], since the linear combination
of partially opened values is truly random in our case, while it has lower entropy in
[13].

In the full version of the paper we present the protocol ΠONLINE , which is the ob-
vious adaption of the equivalent protocol from [13]. In addition we present an ideal
functionality FONLINE and prove the following theorem.

Theorem 5. In the FPREP -hybrid model, the protocolΠONLINE implementsFONLINE with
computational security against any static adversary corrupting at most n− 1 parties if
p is exponential in the security parameter.

7 Experimental Results

7.1 KeyGen and Offline Protocols

To present performance numbers for our key generation and new variant of the offline
phase for SPDZ we first need to define secure parameter sizes for the underlying BGV
scheme (and in particular how it is used in our protocols). This is done in the full version
for various choices of n (the number of players) and p (the field size).

We then implemented the preceding protocols in C++ on top of the MPIR library for
multi-precision arithmetic. Modular arithmetic was implemented with bespoke code us-
ing Montgomery arithmetic [19] and calls to the underlying mpn_ functions in MPIR.
The offline phase was implemented in a multi-threaded manner, with four cores produc-
ing initial multiplication triples, square pairs, shared bits and input preparation mask
values. Then two cores performed the sacrificing for the multiplication triples, square
pairs and shared bits.

In Table 1 we present execution times (in wall time measured in seconds) for key
generation and for an offline phase which produces 100000 each of the multiplication
tuples, square pairs, shared bits and 1000 input sharings. We also present the average
time to produce a multiplication triple for an offline phase running on one core and
producing 100000 multiplication triples only. The run-times are given for various values
of n, p and c, and all timings were obtained on 2.80 GHz Intel Core i7 machines with 4
GB RAM, with machines running on a local network.

We compare the results to that obtained in [11], since no other protocol can provide
malicious/covert security for t < n corrupted parties. In the case of covert security the
authors of [11] report figures of 0.002 seconds per (un-checked) 64-bit multiplication
triple for both two and three players; however the probability of cheating being detected
was lower bounded by 1/2 for two players, and 1/4 for three players; as opposed to our
probabilities of 4/5, 9/10 and 19/20. Since the triples in [11] were unchecked we need
to scale their run-times by a factor of two; to obtain 0.004 seconds per multiplication
triple. Thus for covert security we see that our protocol for checked tuples are superior
both in terms error probabilities, for a comparable run-time.

When using our active security variant we aimed for a cheating probability of 2−40;
so as to be able to compare with prior run times obtained in [11], which used the method
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Table 1. Execution Times For Key Gen and Offline Phase (Covert Security)

Run Times Time per
n p ≈ c KeyGen Offline Triple (sec)
2 232 5 2.4 156 0.00140
2 232 10 5.1 277 0.00256
2 232 20 10.4 512 0.00483
2 264 5 5.9 202 0.00194
2 264 10 12.5 377 0.00333
2 264 20 25.6 682 0.00634
2 2128 5 16.2 307 0.00271
2 2128 10 33.6 561 0.00489
2 2128 20 74.5 1114 0.00937

Run Times Time per
n p ≈ c KeyGen Offline Triple(sec)
3 232 5 3.0 292 0.00204
3 232 10 6.4 413 0.00380
3 232 20 13.3 790 0.00731
3 264 5 7.7 292 0.00267
3 264 10 16.3 568 0.00497
3 264 20 33.7 1108 0.01004
3 2128 5 21.0 462 0.00402
3 2128 10 44.4 889 0.00759
3 2128 20 99.4 2030 0.01487

from [13]. Again we performed two experiments one where four cores produced 100000
multiplication triples, squaring pairs and shared bits, plus 1000 input sharings; and one
experiment where one core produced just 100000 multiplication triples (so as to produce
the average cost for a triple). The results are in Table 2.

Table 2. Execution Times for Offline Phase (Active Security)

n = 2 n = 3
p ≈ Offline Time per Triple Offline Time per Triple
232 2366 0.01955 3668 0.02868
264 3751 0.02749 5495 0.04107
2128 6302 0.04252 10063 0.06317

By way of comparison for a prime of 64 bits the authors of [11] report on an imple-
mentation which takes 0.006 seconds to produce an (un-checked) multiplication triple
for the case of two parties and equivalent active security; and 0.008 per second for the
case of three parties and active security. As we produce checked triples, the cost per
triple for the results in [11] need to be (at least) doubled; to produce a total of 0.012 and
0.016 seconds respectively.

Thus, in this test, our new active protocol has running time about twice that of the
previous active protocol from [13] based on ZKPoKs. From the analysis of the proto-
cols, we do expect that the new method will be faster, but only if we produce the output
in large enough batches. Due to memory constraints we were so far unable to do this,
but we can extrapolate from these results: In the test we generated 12 ciphertexts in
one go, and if we were able to increase this by a factor of about 10, then we would get
results better than those of [13,11], all other things being equal. More information can
be found in the full version [12].

7.2 Online

For the new online phase we have developed a purpose-built bytecode interpreter, which
reads and executes pre-generated sequences of instructions in a multi-threaded manner.
Our runtime supports parallelism on two different levels: independent rounds of com-
munication can be merged together to reduce network overhead, and multiple threads
can be executed at once to allow for optimal usage of modern multi-core processors.
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In Table 3 we present timings (again in elapsed wall time for a player) for multiply-
ing two secret shared values. Results are given for three different varieties of multipli-
cation, reflecting the possibilities available: purely sequential multiplications; parallel
multiplications with communication merged into one round (50 per round); and parallel
multiplications running in 4 independent threads (50 per round, per thread). The exper-
iments were carried out on the same machines as the offline phase, running over a local
network with a ping of around 0.27ms. For comparison, the original implementation of
the online phase in [13] gave an amortized time of 20000 multiplications per second
over a 64-bit prime field, with three players.

Table 3. Online Times

Multiplications/sec
Sequential 50 in Parallel

n p ≈ Single Thread Single Thread Four Threads
2 232 7500 134000 398000
2 264 7500 130000 395000
2 2128 7500 120000 358000
3 232 4700 100000 292000
3 264 4700 98000 287000
3 2128 4600 90000 260000
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18 I. Damgård et al.

5. Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-preserving
computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp.
192–206. Springer, Heidelberg (2008)

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption with-
out bootstrapping. In: ITCS, pp. 309–325. ACM (2012)

7. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Sion, R. (ed.) FC
2010. LNCS, vol. 6052, pp. 35–50. Springer, Heidelberg (2010)

8. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-
rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)
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Abstract. We present a set of new, efficient, universally composable two-party
protocols for evaluating reactive arithmetic circuits modulo n, where n is a safe
RSA modulus of unknown factorization. Our protocols are based on a homomor-
phic encryption scheme with message space Zn, zero-knowledge proofs of ex-
istence, and a novel “mixed” trapdoor commitment scheme. Our protocols are
proven secure against adaptive corruptions (assuming secure erasures) under
standard assumptions in the CRS model (without random oracles). Our proto-
cols appear to be the most efficient ones that satisfy these security requirements.
In contrast to prior protocols, we provide facilities that allow for the use of our
protocols as building blocks of higher-level protocols.

Keywords: Two-party computation, Practical Protocols, UC-Security.

1 Introduction

Designing and proving secure large and complex cryptographic protocols is very chal-
lenging. Today, the security proofs of most practical protocols consider only a single
instance of the protocol and therefore all security guarantees are lost if such a pro-
tocol is run concurrently with other protocols or with itself, in other words, when
used in practice. Better security guarantees can be obtained when using composabil-
ity frameworks—Canetti’s Universal Composability (UC) [8], the similar GNUC [22]
by Hofheinz and Shoup, or other frameworks [36,28,31]—which ensure that protocols
proved secure in the framework remain secure under arbitrary composition. This also
simplifies the design of protocols: high-level protocols can be composed from building
block protocols and the security proofs of the high-level protocols can be based on the
security of the building blocks and so become modular and easier.

Unfortunately, protocols proven secure in such composability frameworks are
typically an order of magnitude less efficient than their traditional counterparts with
“single-instance” security. Moreover, most UC-secure schemes and protocols found in
the literature can not be used as building blocks for higher-level protocols because they
do not offer the proper interfaces. That is, unless one considers only multi-party proto-
cols with honest majority, it is typically not possible to ensure that a party’s output of
one building block is used as the party’s input to another building block. We note that
the situation for two-party protocols is different from UC-secure multi-party protocols
with an honest majority where it is possible to secret-share all input and output values
and then, by the virtue of the majority’s honesty, it is ensured that the right outputs are
used as inputs to the next building block.

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 19–37, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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In this paper we are therefore interested in practically useful UC-secure building
block protocols that provide interfaces so that parties in higher-level protocols can
prove to each other that their inputs to one building block protocol correspond to the
outputs of another building block protocol. More precisely, we provide a set of two-
party protocols for evaluating an arithmetic circuit with reactive inputs and outputs.
The protocols accept as (additional) inputs and provide as (additional) outputs tailored
commitment values which, in conjunction with UC zero-knowledge proofs, make them
a useful building block for higher-level protocols. In Section 8 of the full version of this
paper [4], we we demonstrate the usefulness of our protocols by providing as example
application an oblivious pseudorandom function evaluation. Additionally, we point out
that our protocols can be used to implement the subprotocols required by Camenisch et
al.’s credential authenticated identification and key-exchange protocols [3] (see Section
6.3 of their paper).

Apart from being the only protocols that allow for their use as building blocks, ours
are also more efficient than existing UC-secure two-party reactive circuit evaluation
protocols [18,24,19,2] which were designed to be used as standalone protocols.

Our contribution. Our main contribution is twofold: 1) we provide a mechanism for
protocol designers to easily integrate our arithmetic circuit functionality in their higher-
level protocol in a practical yet secure manner; and 2) we provide a concrete construc-
tion of the circuit evaluation protocol that is in itself more efficient than prior work.
We achieve the latter by using cryptographic primitives that work very well together.
Additionally, the tools we use in our construction—especially our novel mixed trapdoor
commitment scheme—may be of independant interest.

Our protocols evaluate an arithmetic circuit modulo a composite number n, where n
is a product of two large safe primes that is assumed to be generated by a trusted third
party, and whose factorization remains otherwise unknown. We believe that in many
practical cases, this is a natural assumption.

Our protocols are universally composable and proven secure under standard assump-
tions in a setting where parties can be corrupted at any time. It additionally assumes
that secure erasures are possible and that parties can agree on a common reference
string (CRS). We do not require random oracles. We strongly believe that achieving
security against adaptive corruptions is crucial in order to achieve any meaningful
sense of security in the “real world”, where computers are compromised on a regu-
lar basis. The assumption of secure erasures is a pragmatic compromise: without it,
obtaining a practical protocol seems unlikely; moreover, this assumption does not seem
that unrealistic. Likewise, as it is impossible to achieve universal composability with-
out some kind of setup assumption [11], a CRS seems like a reasonable, pragmatic
compromise.

Our ideal functionality. We denote our basic ideal functionality for verifiably eval-
uating arithmetic circuits modulo n by FABB (our functionality is similar to Nielsen’s
arithmetic black box [32], hence the name). Parties compute the circuit step-by-step in a
reactive manner by sending identical instructions with identical common input to FABB.
(For some instructions, one party must additionally provide private input to FABB.) We
assume that a higher-level protocol orchestrates the steps the parties take.
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FABB processes instructions from the two parties of the following types: Input: a
party inserts a value in Zn into the circuit; Linear Combination: a linear combination
of values in the circuit is computed; Multiplication: the product of two values in the
circuit is computed; Output: a value in the circuit is output to a party; Proof: a party
can prove an arbitrary statement to the other party in zero-knowledge involving values
that she input in the circuit, values she got as an output, and values external to the
circuit.

A party can use the Proof instruction to prove that the value inside a commitment
used in the higher-level protocol is the same as a value in the circuit. This instruction
thus makes it easy and practical to composeFABB with a higher-level protocol. To input
a committed value from a higher-level protocol into the circuit, P would first use the
Input instruction to set the value in the circuit, and then use the Proof instruction to
convince Q that the new value corresponds to what was in the commitment. Similarly
to transfer a value from the circuit to the higher-level protocol, P would first get the
value with the Output instruction, generate a commitment in the higher-level protocol,
and then use the Proof instruction to convince Q that the commitment contains the
value that was output by the circuit.

All of our results are presented in the GNUC framework [22]. This has two advan-
tages. First, the GNUC framework is mathematically consistent, and so our results have
a clear mathematical meaning. Second, the GNUC framework supports the notion of a
system parameter, which is how we wish to model the modulus n (a system parame-
ter is formally modeled as an “ideal functionality”, to which all parties—including the
environment—have direct access).

Additional features. In Section 5 of the full version [4], we extend our framework
with some features, such as generating random values and computing multiplicative
inverses modulo n, using standard techniques. Other features require an extension of our
ideal functionality. In particular we extend our ideal functionality with an Exponentiated
Output instruction, which allows us to directly implement Jarecki and Liu’s two-party
protocol for computing an oblivious pseudorandom function (OPRF) [25].

Efficiency. Our protocols are quite practical; in particular, they do not require any ex-
pensive “cut and choose” techniques. The complexity of our protocols can be summa-
rized as follows: if the circuits involved have t gates, the communication complexity is
O(t) elements of Zn2 (and groups of similar or smaller order) and the computational
complexity is O(t) exponentiations in Zn2 (and groups of similar or smaller order). We
report on an experimental comparison of our protocols with relevant prior work in Sec-
tion 6.1. We show that our protocols are practical, and that small circuits can be run in
a few seconds—for example our implementation of Jarecki and Liu’s OPRF (see [4])
would run in 0.84 seconds (for a 1248-bit modulus) on the authors’ laptop computers.

Roadmap. In Section 2 we introduce the notation used in this paper, recapitulate some
fundamental theory, and present our new mixed trapdoor commitment scheme. We de-
scribe our ideal functionality FABB for circuit evaluation in Section 3, and construct
a concrete protocol in Section 4. We discuss the main ideas of our security proof in
Section 5. In Section 6 we disucuss related work, and compare the efficiency of our
protocol with relevant related work.
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2 Preliminaries

In this section we will introduce the notation used throughout this paper and provide
some background on the UC model, zero-knowledge proofs of existence, and homo-
morphic encryption. Finally we provide a new construction of a commitment scheme,
which might be of independant interest.

2.1 Notation

By Ni we denote the set of all natural numbers between 0 and (i− 1), by Zi we denote
the ring of integers modulo i. We use N∗i and Z∗i to denote Ni \ {0} and Zi \ {0},
respectively. If A is a set, then a

$← A means we set a to a random element of that set.
If A is a Probabilistic Polynomial-Time (PPT) algorithm, then y

$← A(x) means we
assign y to the output of A(x) when run with fresh random coins on input x.

Let Σ denote a fixed, finite alphabet of symbols (for example Unicode codepoints).
Throughout this text we will use monospace fonts to denote characters in Σ, e.g.: P or
Q. By Σ� we denote the set of strings overΣ. We use the list-encoding function 〈·〉 like
in the GNUC paper [22]: If a1, . . . , an ∈ Σ�, then 〈a1,..., an〉 is a string overΣ that
encodes the list (a1, . . . , an) in some canonical way.

If AP is a set, AP ← k is a shorthand notation for inserting k into it: AP ← AP ∪k.
If V is an associative array, then V [k] ← v denotes the insertion of the value v into

the array under the identifier k. By v′ ← V [k], we denote the retrieval of the value
associated with identifier k, and storing that retieved value in the variable v′. In this
paper, we will never insert the same identifier twice in any array, and we will always
use identifiers that were previously input into the array when retrieving a value.
P andQ denote the two parties in an interactive protocol, and A the adversary.

2.2 UC and GNUC Models

Protocols constructed for and proven secure in a composability framework can be se-
curely composed in arbitrary ways. To date, there are five such frameworks: Universal
Composability (UC) by Canetti [8], the similar GNUC framework by Hofheinz and
Shoup [22], Reactive Simulatability by Pfitzmann and Waidner [36], IITMs by Küsters
[28], and Abstract Cryptography by Maurer and Renner [31]. Even though the UC and
GNUC frameworks differ in their mathematical formalism, they are essentially the same
[22]. To understand this paper, it is sufficient to be familiar with either.

In the UC/GNUC framework, an abstract specification—often called the ideal fun-
ctionality—describing the input and output behaviour of the protocol is given. A crypto-
graphic protocol is then said to securely implement this ideal functionality, if an external
adversary cannot distinguish between a run of the actual protocol and a run where the
ideal functionality is performed by a trusted third party receiving the inputs and gen-
erating the ouputs for all parties. The protocol can now be used instead of the ideal
functionality in any arbitrary complex system.

In this paper we make use of standard ideal functionalities: authenticated channels
(Fach), secure channels (Fsch), and zero-knowledge proofs (FZK) as described in Section
12.1 of the GNUC paper [22]. The first two functionalities are essentially the same as
Canetti’s [8]. The FZK functionality of GNUC differs from Canetti’s definition in that
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the instance of the predicate to be proven is a private input of the prover, and is delivered
to the verifier only in the last message of the protocol: this enables the prover to securely
erase her witnesses before revealing the statement to be proven.

We follow the formalism of GNUC to model common reference strings and system
parameters—see Section 10 of the GNUC paper [22].

2.3 Zero-Knowledge Proofs of Existence

In the UC model, all proofs are necessarily proofs of knowledge. By embracing the
extension to the UC model proposed by Camenisch, Krenn, and Shoup [5], it becomes
possible to perform proofs of existence in addition to proofs of knowledge. The former
are computationally significantly less expensive. To that effect, the paper introduced the
gullible zero-knowledge functionality FgZK. Roughly speaking, FgZK is similar to the
well-known zero-knowledge proof functionality FZK, except that not all the witnesses
can be extracted.FgZK is not an ideal functionality in the UC/GNUC sense, but abstracts
a concrete zero-knowledge proof protocol using secure channels Fsch and a CRS.

When specifying the predicate to be proven, we will use the notation introduced
by Camenisch, Krenn, and Shoup [5] (which is very similar to the Camenisch-Stadler
notation [7]); for example:

K

α ∃β : y = gβ ∧ z = gαhβ is used for proving
the existance of the discrete logarithm of y to the base g, and of a representation of z
to the bases g and h such that the h-part of this representation is equal to the discrete
logarithm of y to the base g. Furthermore, knowledge of the g-part of the representation
(discrete logarithm of the Elgamal plaintext) is proven. Variables quantified by

K

can be
extracted by the simulator in the security proof, while variables quantified by ∃ cannot.

In this paper, we will be proving statements involving encryptions and commitments,
all of which can be easily translated into predicates of the form considered in Camenisch
et al.’s paper [5]. For predicates of this type,FgZK can be efficiently realized in the CRS
model.

Ideal functionality FgZK. In Camenisch et al’s paper, the FgZK ideal functionality was
formally defined for the UC model, but one can easily port it to the GNUC model. We
provide here only an informal description of FgZK, and refer their paper for details.

In the following we let R be a binary predicate that maps a triple (x,wk, we) to 0 or
1, where x is called the instance and the pair (wk, we) the witness.FgZK is parametrized
by R and a leakage function 	 (which for example reports the length of its input). The
functionality also expects an arbitrary label to distinguish different proof instances.

The common input to FgZK is an arbitrary label. The prover’s input is (x,wk, we)
where R(x,wk, we) = 1. Next, FgZK leaks the length of the instance and witness
	(x,wk) to the adversary A. After an acknowledgement by A, FgZK delivers the in-
stance x to the verifier, while simultaneously erasing the witness (wk, we). In the se-
curity proof, the simulator can extract wk, but not we. Per convention, FgZK rejects
malformed messages and messages with duplicate labels.

2.4 Homomorphic Semantically Secure Encryption

Definition. We define the key generation function (pk, sk)
$← KeyGen(n), where n

is a safe RSA modulus of unknown factorization. We define the encryption function
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E ← Enc(v, pk, r) that takes as input a plaintext v, a public key pk and some random-

ness r, and outputs a ciphertext E. We will also use the shorthand notation (E, r)
$←

Enc(v, pk) in which the randomness r is chosen inside the Enc function. The corre-
sponding decryption function v′ ← Dec(E, sk) takes as input the ciphertext and se-
cret key, and outputs the plaintext. We assume that the encryption is homomorphic
with respect to addition over Zn: ∀v1, v2 ∈ Zn, r1, r2 : (pk, sk) ∈ KeyGen(n) =⇒
Dec(Enc(v1, pk, r1) ∗ Enc(v2, pk, r2), sk) = v1 + v2.

We require that correctness of encryption and decryption be efficiently provable
with FgZK, and that it is possible to efficiently prove knowledge of sk given pk with
FgZK. We will use a shorthand notation to denote such proofs, e.g.:

K

sk, v : (pk, sk) ∈
KeyGen(n) ∧ v = Dec(E, sk).

Camenisch-Shoup encryption. An example of such an encryption scheme is the simpli-
fied version of Camenisch-Shoup encryption [6,14] with a short private key and short
randomness, described by Jarecki and Shmatikov [26]. The key generation function is:
x

$← Z�
√
n�, g

′ $← Z∗n2 , g← g′
2n, y← gx; the secret key sk is x, and the public key pk is

(g, y). To encrypt the message v ∈ Zn: r
$← Z�

√
n�, u← gr, e← yr(n + 1)v (mod n2);

the ciphertext E is (u, e). To decrypt: v′′′ ← (e/ux)2, v′′ ← v′′′−1
n (over the integers),

v′ ← v′′ · 2−1 (mod n); output v′. This scheme is semantically secure if Paillier’s
Decision Composite Residuosity Assumption [35] holds.

2.5 Mixed Trapdoor Commitment Scheme

We now construct a commitment scheme which we will use instead of traditional UC
commitment schemes [9] in our circuit evaluation protocol. Our commitment scheme
works well with proofs of existence using FgZK, resulting in an efficiency gain in the
overall protocol.1 To the best of our knowledge, this is a novel scheme.

We define a mixed trapdoor commitment scheme to be a commitment scheme that is
either: perfectly hiding and equivocable; or statistically binding, depending on the dis-
tribution of the CRS. Mixed trapdoor commitments are similar to UC commitments [9]
in that 1) the simulator can equivocate commitments in the security proof without being
caught, even if he has to provide all randomness used to generate the commitment to
the adversary; and 2) the simulator can use an adversary who equivocates commitments
to solve a hard cryptographic problem. However unlike UC commitments, in mixed
trapdoor commitments 3) the simulator does not need to extract the openings or the
committed values from FgZK.

Definition. Let cpi
$← ComGeni(n) for i ∈ {0, 1} be functions that generate param-

eters for a commitment scheme. If i = 0, the commitment scheme is perfectly hid-
ing (computationally binding), and if i = 1, the commitment scheme is statistically
binding (computationally hiding). For the perfect-hiding setting, we define the function
(cp′0, t)

$← ComGen′0(n) that additionally outputs a trapdoor t. We further require that
cp0, cp′0, and cp1 are pairwise computationally indistinguishable.

1 The efficiency gain due to using proofs of existence instead of proofs of knowledge outweighs
the efficiency loss due to the more complex commitment scheme.
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We define the function (C, x)
$← Comcpi

(v) that takes as input a value v ∈ Zn to
be committed, and outputs a commitment C and an opening x to the commitment. We
will also use the notation C← Comcpi

(v, x), where the opening is chosen outside of the
function. Conversely, we define the verification functionComVfycpi

(C, x, v) that checks
whether the tuple (C, x) is one of the possible values generated by Comcpi

(v). The com-
mitments are homomorphic with respect to addition over Zn: ComVfycpi

(C1, x1, v1) ∧
ComVfycpi

(C2, x2, v2) =⇒ ComVfycpi
(C1∗C2, x1+x2, v1+v2). With a trapdoor t it is

possible to efficiently equivocate commitments in the perfect-hiding setting: ∀v′ ∈ Zn;
x′ ← Trapdoorcp′

0
(t,C, x, v, v′): ComVfycp′

0
(C, x, v) =⇒ ComVfycp′

0
(C, x′, v′).

We require that verifying a commitment be efficient with FgZK.
In the sequel, we drop the subscript cpi if it clear which parameters need to be used.

Construction based on Elgamal. We now provide the construction of a mixed trapdoor
commitment scheme based on Elgamal encryption. We construct ComGen1 as follows:
1) find the first prime p such that p = k·n+1 for some k ∈ N— according to a heuristic2

by Wagstaff [38]: p < n·(log n)2; 2) find a generator g of a subgroup of Zp of order n; 3)
select a, t,m at random from Zn; 4) compute h← ga, y← gmht, u← gt, i.e., (y, u) is
the Elgamal encryption of gm with the public key (g, h); 5) output cp1 ← (p, g, h, y, u).
In practice, where we want to select a random common reference string cp1, it is also
possible to randomly sample h, y, and u from the subgroup generated by g. With high
probability, we have that gcd(a, n) = gcd(m, n) = gcd(t, n) = 1, which means that
h, y, u are all of order n. We construct ComGen0 similarly, except that in step 3, we set
m← 0. The function ComGen′0 additionally outputs t.

To commit to v ∈ Zn, one sets x
$← Zn; C1 ← yvhx; C2 ← uvgx; and C← (C1,C2).

The latter is a re-randomized encryption of gm·v. Verification is trivial. Finally, if m = 0
and one knows the trapdoor information t, one can open the commitmentC to a different
value v′ ∈ Zn by setting x′ ← (v − v′) · t + x.

3 Our Ideal Functionality FABB

In this section, we will give a short informal definition of the ideal functionality FABB

(arithmetic black box) for doing computation over Zn. We give the formal definition in
the full version [4].

The functionality FABB reacts to a set of instructions. Per convention, both parties
must agree on the instruction and the shared input before FABB executes it. An instruc-
tion may require P and Q to send multiple messages to FABB in a specific order, how-
ever FABB may run other instructions concurrently while waiting for the next message.
More precisely P and Q can: provide inputs to FABB; ask it do to a linear combination
or multiplication of previous inputs or intermediate results; ask it to output a value to
one of them; and do an arbitrary zero-knowledge proof involving inputs/outputs to/from
the circuit and external witnesses. These instructions can be arbitrarily interleaved, in-
termediate results output and new inputs be provided. The input values provided by P
and Q may depend on output values obtained. Following the GNUC formalism, each
message sent to FABB is prefixed with a label which contains, among others, the name

2 We confirmed this experimentally for 250 randomly generated 1248-bit safe RSA moduli.
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of the instruction to execute, the current step in the instruction this message refers to,
and the shared input ϕ; the private inputs are always part of the message body.

State. The ideal functionality FABB is stateful. It maintains an associative array V,
mapping identifiers (in Σ�) to integer values (in Zn).

Instructions. These are the instructions supported by FABB:

• Input from P: P’s private input is the value v. FABB parses the shared input ϕ as
〈k〉, where k will be the identifier associated to the value v, and sets V [k] ← v.

• Input from Q: Q’s private input is v. FABB parses ϕ as 〈k〉, and sets V [k] ← v.
• Linear combination: FABB parses ϕ as 〈m, k0, v0, 〈k1, v1〉, . . ., 〈km−1, vm−1〉〉 and

sets: V [k0] ← v0 +
∑m−1

i=1 V [ki] · vi.
• Multiplication: FABB parses ϕ as 〈k0, k1, k2〉 and sets: V [k0] ← V [k1] · V [k2].
• Output to P: FABB parses ϕ as 〈k〉, and sends V [k] (as a delayed output) to P .
• Output to Q: FABB parses ϕ as 〈k〉, and sends V [k] (as a delayed output) to Q.
• Proof by P: This instruction can be used to prove a statement about values that

were input/output to/from from the circuit (FABB) and witnesses from a higher-level
protocol. P’s private input is 〈x,wk〉. FABB parses ϕ as 〈m, 〈k0,..., km−1〉, R〉,
where is R is a binary predicate that is compatible with FgZK and which can involve
1) values that were input by P to FABB, 2) values that were output to P from FABB,
and 3) witnesses external to FABB; x is an instance for R; wk is a list of witnesses
that are external to the circuit whose knowledge are proven; and k0, . . . , km−1 are
identifiers of values in the circuit that were input by P or output to P . FABB checks
if the predicate holds, i.e., ifR

(
x, wk ∪ (V [k0], . . . ,V [km−1])

)
= 1; and sends 〈x〉

(as a delayed output) to Q. In the full version [4], we define an extention of FABB

denoted FgABB which also allows for proofs of existence inside this functionality.
• Proof byQ: Similar to Proof by P , with the roles of P and Q reversed.
• Dynamic corruption: FABB accepts a special corrupt message from P or Q. From

then on, all input and output of the corrupted party is redirected to the adversaryA,
and A may recover all of the corrupted party’s input (by asking FABB for it).

Treatment of invalid input. In case FABB receives a message it does not expect, a mes-
sage that it cannot parse, or a message with a label it has seen previously from the same
party, it simply ignores the message.

Comments. The value of n is not an input toFABB, nor is it modeled as a CRS. Rather, it
is modeled in the GNUC framework as a system parameter. Roughly speaking, this is a
special type of ideal functionality to which all parties, including the environment, have
common access. The value of n is generated by a trusted party, and no other party learns
its factorization. Furthermore, the modulus n can be re-used across different protocol
instances. In the setting of credential-authenticated identification [3] this is completely
natural, as one can use a modulus generated by the credential issuer. In a different con-
text, we can also imagine using the modulus n of a well-known and respected certificate
authority (e.g., the modulus in Verisign’s root certificate).

Our ideal functionality FABB shares some similarity with Nielsen’s arithmetic black
box (ABB) [32], and Damgård and Orlandi’s FAMPC [19]. The major difference is that
our FABB includes the Proof instruction, allowing values from higher-level protocols
to be input and output securely. This instruction is crucial as it allows meaningful
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composition with other protocols (see Introduction). Unlike FAMPC, we do not support
random number generation in the vanilla FABB for simplicity; see Section 5 of the full
version [4] for an algorithm generating these that uses only our core set of instructions.

4 Construction

We now show how to construct a protocol ΠABB for circuit evaluation modulo n. Our
protocol uses two ideal functionalities: Fach (authenticated channels) and FgZK (zero-
knowledge proofs). Additionally, we make use of a system parameter, the modulus n of
unknown factorization; and a CRS, consisting of the output of ComGen1 (statistically-
binding commitment).

High-level idea. The high-level idea of our construction is that P and Q generate ad-
ditive shares of all the values (inputs and intermediate results) in the circuit. Identifiers
are used to keep track of the values and the cryptographic objects associated with them.
Like for FABB, parties agree on the instruction to be performed by sending a message
containing an identical instruction name and identical common input to the protocol
ΠABB. The instructions of ΠABB are implemented as follows: Input is achieved by one
party setting her share to the input, and generating a commitment to that share; the
other party sets his share to zero. Output is achieved by one party sending her share to
the other party. For the Linear combination instruction, each party does a linear com-
bination of their shares locally. For the Multiplication instruction, we make use of two
instances of a 2-party subroutineΠmul: on P’s input a, and Q’s input b, Πmul outputs u
to P and v toQ such that u+v = a · b. The Proof instruction can be done with the help
of a zero-knowledge proof functionalityFgZK. To ensure security against malicious ad-
versaries, both parties update the commitments to the shares in each instruction, and
prove in zero-knowledge that all their computations were done honestly.

The Πmul subroutine makes use of a homomorphic (modulo n), semantically secure,
public-key encryption scheme, along with our mixed trapdoor commitment scheme. To
achieve security against adaptive corruptions, new encryption/decryption keys need to
be generated for every multiplication. To do this in a practical way, we use the semanti-
cally secure version of Camenisch-Shoup encryption [6,14,26] with a short private key
and short randomness, as described in Section 2.4. One key feature of this scheme is
that key generation is fast: just a single exponentiation modulo n2. Another key feature
is that many encryption/decryption keys can be used in conjunction with the same n,
which is crucial. Our commitment scheme is also used extensively in the overall prot-
col. We use the construction presented in Section 2.5 and work in the group of integers
modulo a prime of the form k · n + 1. The homomorphic properties of the commitment
scheme makes this choice of prime particularly useful and practical. Another tool we
make heavy use of is UC zero-knowledge. Because of the proposed implementations
of encryption and commitment schemes, these proof systems can all be implemented
using the approach proposed by Camenisch et al. [5]. Because the encryption and com-
mitment schemes are both homomorphic modulo n, all of our cryptographic tools work
very well together, and yield quite practical protocols. We also stress that our protocols
are designed in a modular way: they only make use of these abstract primitives, and not
of ad hoc algebraic constructions.
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P proceeds as follows:
P’s input is 〈ϕ, v〉 with v ∈ Zn.

Q proceeds as follows:
Q’s input is 〈ϕ〉.

Parse ϕ as 〈k〉 with k ∈ Σ�. Abort if k ∈ AP.
Mark the identifier as assigned: AP ← k.
Set shares: SP [k]← v and SQ [k]← 0.

Commit to share: (CP [k],XP [k])
$← Com(v).

Parse ϕ as 〈k〉 with k ∈ Σ�. Abort if k ∈ AQ.
Mark the identifier as assigned: AQ ← k.
Set own share: SQ [k]← 0.
Commit: CQ [k]← Com(0, 0);XQ [k]← 0.

P proves the following toQ using FgZK with label 〈ip,ϕ〉:

K

v ∃XP [k] : ComVfy(CP [k],XP [k], v) .
The value CP [k] is delivered toQ via FgZK.

Set other’s commitment: CQ [k]← Com(0, 0).
Mark value as ready: RP ← k.
Mark it as known: KP ← k.

Mark value as ready: RQ ← k.
Mark it as known by P : KP ← k.

Fig. 1. Input from P

4.1 Realizing ΠABB

P and Q each maintain the following global state: several associative arrays mapping
the identifier of a value in the circuit (in Σ�) to a variety of cryptographic objects: SP
and SQ map to the shares of P and Q of the values in the circuit (in Zn), respectively;
CP and CQ map to the commitment of the corresponding shares; XP (maintained by P
only) and XQ (Q only) map to the opening of the commitments. For the Proof function-
ality, both parties maintain lists of identifiers corresponding to values that are known to
P and Q: KP and KQ, respectively. Additionally, to ensure “thread-safety”, they also
maintain: lists of assigned identifiers AP (P only) and AQ (Q only) to avoid assigning
the same identifier to several variables; and lists of identifiers RP (P only) and RQ (Q
only) corresponding to values that are ready to be used in other instructions. The array
that one would obtain by summing the entries of SP and SQ corresponding to values
that are ready (i.e., {(k, v)|k ∈ RP ∩ RQ ∧ v = SP [k] + SQ [k]}), corresponds to the
array V of the ideal functionality, that maps identifiers to values in the circuit.

All other variables that we will introduce are local to one instance of a instruction
or an instance of the Πmul subroutine. Several instructions may be active at the same
time, however we assume (following the GNUC model) that all operations performed
during an activation (the time interval between starting to process a new input message
and sending a message to another functionality) happen atomically.

Input from P . In this instruction, P inputs a value v into the circuit and associates it
with the identifier k: P sets her own share to v, and Q sets his share to 0. Then P
generates a commitment to her share, which she sends (along with proof) to Q. See
Figure 1 for the construction.

Input from Q. Similar to the previous instruction, with the roles of P andQ reversed.

Output to Q. In this instruction, Q retrieves the value identified by k from the circuit:
P sends her share to Q together with a proof of correctness. See Figure 2.

Output to P . Similar to the previous instruction, with the roles of P and Q reversed.

Linear combination. In this instruction, a linear combination of values in the circuit (plus
an optional constant) is computed: V [k0] ← v0 +

∑m−1
i=1 V [ki] · vi. Concretely, both
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P proceeds as follows: Q proceeds as follows:
Both parties’ input is 〈ϕ〉. It is parsed as ϕ = 〈k〉 with k ∈ Σ�.

Wait until k ∈ RP. Wait until k ∈ RQ.

P proves the following toQ using FgZK with label 〈oq,ϕ〉:
∃XP [k] : ComVfy(CP [k],XP [k], SP [k]) .
The value SP [k] is delivered toQ via FgZK.

Mark value as known toQ: KQ ← k. Save SP [k], and mark as known: KQ ← k.
Q returns (SP [k] + SQ [k]).

Fig. 2. Output toQ

P proceeds as follows: Q proceeds as follows:

Both parties’ input is 〈ϕ〉. It is parsed as ϕ = 〈m, k0, v0, 〈k1, v1〉, . . ., 〈km−1, vm−1〉〉 with
m ∈ N∗, ∀i ∈ Nm : ki ∈ Σ� and ∀i ∈ Nm : vi ∈ Zn.

Abort if k0 ∈ AP. Mark identifier: AP ← k0.
Wait until ∀i ∈ Nm : ki ∈ RP. Update
own share: SP [k0]← v0 +

∑m−1
i=1 SP [ki] · vi;

com.: CP [k0]←Com(v0, 0)∗
∏m−1

i=1 CP [ki]vi ;
opening: XP [k0]←

∑m−1
i=1 XP [ki] · vi;

Q’s commitment: CQ [k0]←
∏m−1

i=1 CQ [ki]
vi .

Abort if k0∈AQ. Mark identifier: AQ←k0.
Wait until ∀i ∈ Nm : ki ∈ RQ. Update
own share: SQ [k0]←

∑m−1
i=1 SQ [ki] · vi;

commitment: CQ [k0]←
∏m−1

i=1 CQ [ki]
vi ;

opening: XQ [k0]←
∑m−1

i=1 XQ [ki] · vi;
P’s c.: CP [k0]←Com(v0, 0)∗

∏m−1
i=1 CP [ki]vi .

P sends the empty string toQ using Fach with label 〈l,ϕ〉 to ensure that they agree on ϕ.
Mark value as ready: RP ← k0. Mark value as ready: RQ ← k0.

Fig. 3. Linear combination

parties perform local operations on their shares. Additionally,P sends an empty message
toQ to ensure that both parties agree on the shared input ϕ. See Figure 3.

Multiplication. In this instruction, the product of two values in the circuit is computed:
V [k0] ← V [k1] · V [k2]. We can rewrite this as:
SP [k0] + SQ [k0] ← SP [k1]·SP [k2]︸ ︷︷ ︸

p̂

+ SP [k1]·SQ [k2]︸ ︷︷ ︸
(ũ+ṽ)

+ SQ [k1]·SP [k2]︸ ︷︷ ︸
(u+v)

+ SQ [k1]·SQ [k2]︸ ︷︷ ︸
q̂

where we introduce p̂, q̂, ũ, ṽ, u, v to simplify the discussion. The idea of this protocol
is for P and Q to compute p̂ and q̂, respectively, using their private shares. They then
jointly compute ũ and ṽ using the Πmul subroutine, which we introduce for clarity and
which we describe in Section 4.2. Afterwards, u and v are computed using a second
instantiation ofΠmul. Finally,P sets SP [k0] ← p̂+ũ+u andQ sets SQ [k0] ← q̂+ṽ+v.
See Figure 4 for the construction.

One can optimize the protocol in Figure 4 by using the same homomorphic encryp-
tion key for both instances of Πmul and merging the proofs inside and outside of Πmul

whenever possible.3 We can thus save one proof of correctess for the encryption key,
and save on some overhead in FgZK.

3 Concretely, one would merge the proofs with the following labels: 1) 〈m5,ϕ〉, 〈cm1,〈m7,ϕ〉〉
and 〈cm1,〈m8,ϕ〉〉; 2) 〈m6,ϕ〉, 〈cm2,〈m7,ϕ〉〉, and 〈cm2,〈m8,ϕ〉〉; 3) 〈cm3,〈m7,ϕ〉〉 and
〈cm3,〈m8,ϕ〉〉; 4) 〈cm4,〈m7,ϕ〉〉 and 〈cm4,〈m8,ϕ〉〉.
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P proceeds as follows: Q proceeds as follows:

Both parties’ input is 〈ϕ〉. It is parsed as ϕ = 〈k0, k1, k2〉 with k0, k1, k2 ∈ Σ�.
Abort if k0 ∈ AP. Mark identifier as assigned:
AP ← k0. Wait until k1, k2 ∈ RP.

p̂← SP [k1] · SP [k2]; (Cp̂, xp̂)
$← Com(p̂).

Abort if k0 ∈ AQ. Mark identifier as assigned:
AQ←k0. Wait until k1, k2 ∈ RQ.

q̂ ← SQ [k1] · SQ [k2]; (Cq̂, xq̂)
$← Com(q̂).

The instructions in the next four rows can be run in parallel in multiple threads.

P proves the following toQ using FgZK with label 〈m5,ϕ〉:
∃xp̂, SP [k1], SP [k2],XP [k1],XP [k2] : ComVfy(Cp̂, xp̂, SP [k1] · SP [k2]) ∧
ComVfy(CP [k1],XP [k1], SP [k1]) ∧ ComVfy(CP [k2],XP [k2], SP [k2]) .

The value Cp̂ is delivered toQ via FgZK.

Q proves the following to P using FgZK with label 〈m6,ϕ〉:
∃xq̂, SQ [k1], SQ [k2],XQ [k1],XQ [k2] : ComVfy(Cq̂, xq̂, SQ [k1] · SQ [k2]) ∧
ComVfy(CQ [k1],XQ [k1], SQ [k1]) ∧ ComVfy(CQ [k2],XQ [k2], SQ [k2]) .

The value Cq̂ is delivered to P via FgZK.
RunΠmul withQ with input
(P, SP [k1],CP [k1],XP [k1],CQ [k2], 〈m7,ϕ〉)
and get (ũ,Cũ, xũ,Cṽ) as output.

RunΠmul with P with input
(Q, SQ [k2],CQ [k2],XQ [k2],CP [k1], 〈m7,ϕ〉)
and get (ṽ,Cṽ, xṽ ,Cũ) as output.

RunΠmul withQ with input
(P, SP [k2],CP [k2],XP [k2],CQ [k1], 〈m8,ϕ〉)
and get (u,Cu, xu,Cv) as output.

RunΠmul withQ with input
(Q, SQ [k1],CQ [k1],XQ [k1],CP [k2], 〈m8,ϕ〉)
and get (v,Cv, xv ,Cu) as output.

Wait until all four threads are done before proceeding.
Compute own share: SP [k0]← p̂+ ũ+ u;
commitment: CP [k0]← Cp̂ ∗ Cũ ∗ Cu;
opening: XP [k0]← xp̂ + xũ + xu .
Q’s commitment: CQ [k0]← Cq̂ ∗ Cṽ ∗ Cv .
Mark value as ready: RP ← k0.

Compute own share: SQ [k0]← q̂ + ṽ + v;
commitment: CQ [k0]← Cq̂ ∗ Cṽ ∗ Cv;
opening: XQ [k0]← xq̂ + xṽ + xv .
P’s commitment: CP [k0]← Cp̂ ∗ Cũ ∗ Cu .
Mark value as ready: RQ ← k0.

Fig. 4. Multiplication. The subroutine Πmul is defined in Section 4.2 and Figure 6

P proceeds as follows: Q proceeds as follows:
P’s input is 〈ϕ, x, m̃, wk〉.
She parses ϕ like Q; x is an instance for R;
m̃ ∈ N; wk = 〈wk,0, . . ., wk,m̃−1〉 is a list of
witnesses.

Q’s input is 〈ϕ〉, where
ϕ = 〈m, 〈k0, . . ., km−1〉, R〉;
R is a predicate that is compatible with FgZK;
m ∈ N; and ∀i ∈ Nm : ki ∈ Σ�.

Wait until ∀i ∈ Nm : ki ∈ KP. Wait until ∀i ∈ Nm : ki ∈ KP.

P proves the following toQ using FgZK parametrized with R and with label 〈pp,ϕ〉:K

wk,0, . . . , wk,m̃−1 ∃V [k0], . . . ,V [km−1],XP [k0], . . . ,XP [km−1] :∧m−1
i=0 ComVfy(CP [ki],XP [ki],V [ki]− SQ [ki]) ∧

R
(
x, (wk,0, . . . , wk,m̃−1) ∪ (V [ki], . . . ,V [km−1])

)
= 1 .

The instance of the statement to be proven, x, is delivered toQ via FgZK.
Q returns x.

Fig. 5. Proof by P

Proof by P . In this instruction, P proves to Q in zero-knowledge some statement in-
volving 1) witnesses outside of the circuit, 2) values that P input into the circuit, and 3)
values that P got as an output from the circuit. See Figure 5 for the construction.

Proof byQ. Similar to the previous instruction, with the roles of P and Q reversed.
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P proceeds as follows:
P’s input is (P, a,Ca, xa,Cb, λ).

Q proceeds as follows:
Q’s input is (Q, b,Cb, xb,Ca, λ).

(pk, sk)
$← KeyGen(n); w

$← Zn;

(Ew, rw)
$← Enc(w, pk) .

s
$← Zn; t

$← Zn;
(Cs, xs)

$← Com(s); (Ct, xt)
$← Com(t) .

P proves the following toQ using FgZK with label 〈cm1,λ〉:

K

w ∃sk : (pk, sk) ∈ KeyGen(n) ∧ w = Dec(Ew, sk) .

The values Ew, pk are delivered toQ via FgZK after P securely erases rw .

σ ← a−w . (Et, rt)
$← Enc(t, pk); Ey ← (Ew)

s ∗ Et .

Q proves the following to P using FgZK with label 〈cm2,λ〉:

K

s ∃t, xs, xt, rt : ComVfy(Cs, xs, s) ∧ ComVfy(Ct, xt, t) ∧ Ey = (Ew)
s ∗ Enc(t, pk, rt) .

The values Cs, Ct and Ey are delivered to P via FgZK afterQ securely erases rt.

y ← Dec(Ey , sk); (Cy, xy)
$← Com(y) . δ ← b− s; xδ ← xb − xs .

P proves the following toQ using FgZK with label 〈cm3,λ〉:
∃y,w, xy , xa, sk : ComVfy(Cy, xy, y) ∧ y = Dec(Ey, sk) ∧ w = Dec(Ew, sk)∧

(pk, sk) ∈ KeyGen(n) ∧ ComVfy(Ca, xa, w + σ) .
The values Cy, σ are delivered toQ via FgZK after P securely erases sk.

Q proves the following to P using FgZK with label 〈cm4,λ〉:
∃xδ : ComVfy(Cb ∗ (Cs)

−1, xδ, δ) .

The value δ is delivered to P via FgZK.
Compute own share: u← δ · a+ y;
opening: xu ← xa · δ + xy ;
and commitment: Cu ← (Ca)

δ ∗ Cy .
ComputeQ’s commitment: Cv←(Cs)

σ∗(Ct)
−1.

Compute own share: v ← σ · s− t;
opening: xv ← xs · σ − xt;
and commitment: Cv ← (Cs)

σ ∗ (Ct)
−1.

Compute P’s commitment: Cu← (Ca)
δ ∗ Cy .

P returns (u,Cu, xu,Cv). Q returns (v,Cv, xv,Cu).

Fig. 6. TheΠmul protocol

4.2 The Πmul Subroutine for Multiplication of Committed Inputs

We now give the construction of the 2-party FgZK-hybrid protocolΠmul for multiplica-
tion of committed inputs, which we use as a subroutine in ΠABB in the multiplication
instruction. In a nutshell: on P’s private input a and Q’s private input b, Πmul outputs
shares to the product: u to P and v to Q, such that u+ v = a · b.

The protocol draws on ideas from Ishai et al’s π̃OT protocol—defined in Appendix
A.2 of the full version of their paper [23]—and uses a similar approach as many two-
party computation protocols (e.g., Damgård and Orlandi’s πmul protocol [20]). We
fleshed out the details of Ishai et al.’s protocol to make it secure against active ad-
versaries, improve its efficiency, and integrate it into our overall protocol.

The basic idea of the protocol is for P andQ to first obtain shares y and (−t) on the
product of two random values w and s, respectively: y − t = w · s; second to erase all
intermediate state used in the previous step; third to exchange the values σ = (a − w)
and δ = (b − s); and finally to obtain shares on the product of the actual input values
a and b by outputting u = δ · a+ y and v = σ · b − t, respectively. Commitments and
relevant proofs are used during all steps. We refer to Figure 6 for the construction.

The erasure in Step 2 is needed to ensure security against adaptive adversaries:
since the encryption scheme used in our protocol is not receiver–non-committing [10],
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the simulator cannot produce a convincing view of the first step for any other value of
w. In fact, there are no known practical receiver–non-committing schemes that satisfy
our requirements. By erasing state in Step 2, the simulator is dispensed with producing
that view in Step 3.

4.3 Efficiency Considerations for the Zero-Knowledge Proofs in ΠABB

Careful design enables us to achieve a very efficient and practical construction. In par-
ticular, we minimize the amount of computation required inside the realization π of
the zero-knowledge proof functionality FgZK, which accounts for the majority of the
runtime of our protocol, as follows.

1) Instead of using the Paillier encryption scheme as in Camenisch et al. [5] to ver-
ifiably encrypt the witnesses whose knowledge is proven in π, we use the Camenisch-
Shoup encryption scheme with short keys, short randomness, and with modulus n2.
Paillier encryption implies the use of a different modulus, since the simulator needs to
know its factorization to extract the witnesses.

2) We use homomorphic commitment and encryption schemes that work with groups
of the same order n. Most of the witnesses used in FgZK therefore live in a group of
known order n, and most operations inside π stay inside groups of order n. We there-
fore do not need to encrypt values larger than n in π, and can avoid expensive integer
commitments in π [5].

3) We use the cheaper proofs of existence [5] instead of proofs of knowledge wher-
ever possible. This reduces the number of verifiable encryptions needed inside π.

4) Finally, we use an encryption scheme in Πmul where the proof of correctness of
key generation is cheap. (For Camenisch-Shoup encryption with full key length and
Paillier encryption, this proof is very expensive.)

5 Security Proof (Main Ideas)

For reasons of space, we provide the security proof in the full version [4] and explain
only the main ideas here.

We use the standard approach for proving the security of protocols in the UC or
GNUC models: we construct a straight-line simulator S such that for all polynomial-
time–bounded environments Z and all polynomial-time–bounded adversaries A, the
environmentZ cannot distinguish a protocol execution with A and ΠABB in the (Fach,
FgZK)-hybrid “real” world from a protocol execution with S and FABB in the “ideal”
world. We prove that Z cannot distinguish these two worlds by defining a sequence
of intermediate “hybrid” worlds (the first one being the real world and the last one the
ideal world) and showing thatZ cannot distinguish between any two consecutive hybrid
worlds in that sequence. We follow the formalism of the GNUC framework to deal with
CRS’s and system parameters (see Section 10 of the GNUC paper [22]).

The main difficulties in constructing the simulator S are as follows: 1) S has to
extract the inputs of all corrupted parties; 2) S has to compute and send commitments
and ciphertexts on behalf of the honest parties without knowing their inputs, i.e., S
cannot commit and encrypt the right values; 3) when an honest party gets corrupted
mid-protocol, S has to provide to A the full non-erased intermediate state of the party,
in particular the opening of the commitments and the randomness of the encryptions.
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To address the first difficulty, recall that the parties are required to perform a proof
of knowledge of all new inputs to the circuit. The simulator S can therefore recover the
input of all corrupted parties with the help of FgZK. In the first few hybrid worlds, the
statistically binding commitments ensure that the values in the circuit stay consistent
with the inputs. In the subsequent hybrid worlds, the computational indistinguishability
of the two types of CRS ensure that the adversary cannot equivocate commitments even
when S uses the perfectly-hiding CRS with trapdoor.

We now address the second and third difficulty. Upon corruption of a party, S is
allowed to recover the original input of that party from FABB. By using the perfectly-
hiding CRS with trapdoor, S can equivocate all commitments it made so far to ensure
that the committed values are consistent with the view of the adversary. By construction,
S never needs to reveal the randomness used for an encryption for which it does not
know the plaintext. Recall that in Πmul, the parties first encrypt a random offset, then
erase the decryption key and the randomness used to encrypt, and only then deliver the
encryption of the offset plus party’s input to the adversary (recall that FgZK allows the
erasure of witnesses before delivering the statement to be proven to the other party).
The simulator S can adjust the offset so that the view delivered to the adversary is
consistent. See also Appendix A.2 of Ishai et al.’s paper [23].

The rest of the security proof is now straightforward.

6 Related Work and Comparison

There is an extensive literature on the subject of multi-party computation (MPC); how-
ever, most of these settings consider only the case of an honest majority, which is not
helpful for the two-party case.

Canetti et al. [12] present the first MPC protocols for general functionalities that
are secure with dishonest majority in the UC framework; however, these protocols are
rather a proof of concept, i.e., they are not at all practical, as they rely on generic zero-
knowledge proofs.

More efficient MPC protocols for evaluating boolean circuits, secure with dishon-
est majority, have been designed [29,30,34,37]. Impressive results have been obtained
in particular for the evaluation of the AES block cipher [37,15,16,27,33]. While such
protocols could be used to evaluate arithmetic circuits modulo n, a heavy price would
have to be paid: each gate in the arithmetic circuit would “blow up” into many boolean
gates, resulting in an impractical protocol.

The first practical protocols for evaluating arithmetic circuits modulo n were pre-
sented by Cramer et al. [13] (CDN-protocol) and Damgård and Nielsen [18] (DN-
protocol). While both protocols assume an honest majority, they can be shown to be
secure in the two-party case (as noted by Ishai et al. [24,23]) if one relaxes the require-
ment for fair delivery of messages (fair delivery is impossible in the two-party case).
Both protocols have stronger set-up assumptions than ours: they assume the existence
of a trusted third party that distributes shares of the secret key to all parties. The CDN-
protocol is only statically secure and is not UC-secure, and we therefore exclude it from
our comparison. The DN-protocol is adaptively secure (with erasures) in the UC model
(secure without erasures only in the honest majority case), and is slightly (about 30%)
slower than ours.
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Ishai et al. [23,24] present protocols for evaluating arithmetic circuits in several al-
gebraic rings, including one for the ring Zn for a composite n. These protocols achieve
security with a dishonest majority, and are secure with respect to adaptive corruptions
(assuming erasures), but only against honest-but-curious adversaries. They note that
standard techniques can be used to make their protocols secure also for malicious ad-
versaries, however it is not clear if the resulting construction will be practical. Our
protocol draws on ideas from their construction, however we are able to achieve a sig-
nificant speed-up compared to a naive implementation using “standard techniques” by
ensuring that all commitments live in Zn and by using the short-key variant of the ho-
momorphic encryption scheme.

Damgård and Orlandi [19] (DO-protocol), as well as Bendlin et al. [2] (BDOZ-
protocol), give protocols for evaluating arithmetic circuits modulo a prime p. Damgård
et al. [21] (SPDZ-protocol) later improved upon the BDOZ-protocol. These protocols
divide the workload into a computationally intensive pre-processing phase and a much
lighter on-line phase. The pre-processing phase is statically secure, however the on-line
phase can be made adaptively secure (in the UC-model) [19,2,21]. These papers opti-
mize the runtime of the on-line phase (the BDOZ- and SPDZ-protocols make use of
local additions and multiplications only). In the pre-processing phase of these proto-
cols, it is necessary to prepare for many multiplications gates (about 80 in the BDOZ-,
several hundred in the DO-, and tens of thousands in the SPDZ-protocol) making these
protocols impractical for small circuits. This pre-processing phase takes several minutes
even for reasonable security parameters. Our protocol is better suited for small circuits.

Even for large circuits, the computational complexity of our protocol is about 3.3
times lower than that of the BDOZ- and DO-protocols. It must be noted that the BDOZ-
and DO-protocols have slightly weaker setup assumptions than ours: they only require a
random string as the CRS, while we also need an RSA modulus with unknown factoriza-
tion as a system parameter. (This is not a huge drawback of our protocol, see Section 3.)

The SPDZ-protocol is about an order of magnitude faster than our protocol, however,
unlike the BDOZ-, DO-, and our protocols, it cannot evaluate reactive circuits, severely
limiting its applicability in the real world. It also requires a trusted key setup, which is
a stronger setup assumption than ours. (Concurrently to our work, Damgård et al. [17]
lifted the restriction on reactive circuits, but only in the random oracle model. They also
lifted the restriction on the trusted key setup but only for covert security.)

None of the UC-secure protocols discussed have an equivalent to the Proof instruc-
tion in their ideal functionality. This makes it hard to compose them with other protocols
because of the issue with non-committed inputs in a 2-party setting, as dicussed in the
introduction, thus negating some of the advantages of working in the UC model.

6.1 Efficiency Comparison

Table 1 summarizes the amortized runtimes per multiplication gate of our protocol, the
DN- (when run as a 2-party protocol), the DO-, and the BDOZ-protocols. We assume
that the runtime of an exponentiation with a fixed modulus length scales linearly with
the size of the exponent. Let exp.n denote the runtime per bit in the exponent of an ex-
ponentiation modulo n or modulo p,4 and similarily exp.n2 for exponentiations modulo

4 In practice, exponentiations modulo p are only a few percent slower than modulo n.
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Table 1. Estimated amortized runtime per multiplication in various protocols. The numbers in
the last column are for s = 80, lb n = 1248, exp.n = 1.3 µs, and exp.n2 = 4.8 µs. Results for
our work use the optimized variant of our Multiplication instruction. Results for the DO-protocol
and the BDOZ-protocol are for circuits having a multiple of 4.8 · s and s multiplication gates,
respectively; the performance of these protocols degrades dramatically for smaller circuits. For
the DO-protocol we used parameters λ = 0.25 and B = 3.6 · s.

Amortized runtime per multiplication gate with s=80

This work (90 · s+ 200 · lb n) exp.n+ ( 66 · s+ 40.5 · lb n) exp.n2 602 ms
2-party DN [18] (216 · s+ 130 · lb n) exp.n2 862 ms
DO-protocol [19] (2004 · s+ 151 · s2) exp.n+ ( 84 · s+ 88 · lb n) exp.n2 2025 ms
BDOZ-protocol [2] (256 · s+ 368 · lb n) exp.n2 2303 ms

n2. Let lb n be equal to log2(n). Let s be the security parameter. For each protocol, we
counted the number of exponentiations with an exponent of at least s bits. Faster opera-
tions, in particular multiplications and divisions, are ignored. We also ignored the time
needed for secure channel setup, did not consider multi-exponentiations, and ignored
network delay. We provide an estimate of the runtime when run with the “smallest gen-
eral purpose” security level of the Ecrypt-II recommendations [1] (s = 80, lb n = 1248)
on a standard laptop with a 64-bit operating system.5

For a fair comparison, we replace all Paillier encryptions [35] in the protocols we
compare with by Paillier encryptions with short randomness. The encryption function
is thus changed as follows: r

$← Z�
√
n�, c ← (1 + n)mgr (mod n2); output c. (Where

g = (g′)n is pre-computed and part of the public key.)
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Abstract. Accountability of distributed systems aims to ensure that
whenever a malicious behavior is observed, it can be irrefutably linked
to a malicious node and that every honest node can disprove false ac-
cusations. Recent work, such as PeerReview and its extensions, shows
how to achieve accountability in both deterministic and randomized sys-
tems. The basic idea is to generate tamper-evident logs of the performed
computations such that an external auditor can check the system’s ac-
tions by mere recomputation. For randomized computations it is more
challenging: revealing the seed of the pseudo-random generator in the
logs would break the unpredictability of future values. This problem
has been addressed in a previous work, CSAR, which formalizes a no-
tion of accountable randomness and presents a realization. Although all
these techniques have been proven practical, they dramatically (and in-
evitably) expose a party’s private data, e.g., secret keys. In many scenar-
ios, such a privacy leak would clearly be unaccepable and thus prevent
a successful deployment of accountability systems.

In this work, we study a notion of privacy-preserving account-
ability for randomized systems. While for deterministic computations
zero-knowledge proofs offer a solution (which is even efficient for some
computations), for randomized computations we argue that efficient so-
lutions are less trivial. In particular, we show that zero-knowledge proofs
are incompatible with the notion of accountable randomness considered
in CSAR if we aim at efficient solutions. Therefore, we propose an alter-
native definition of accountable randomness, and we use it as a building
block to develop the new notion of privacy-preserving accountable ran-
domized computation. We present efficient instantiations for interesting
classes of computations, in particular for digital signature schemes as the
arguably most important cryptographic primitive.

1 Introduction

In distributed systems, checking whether a node’s operation is correct or faulty
is a major concern. Indeed, faulty actions can occur for many reasons: a node
can be affected by a hardware or software failure, a node can be compromised
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by an attacker, or a node’s operator can deliberately tamper with its software.
Detecting such faulty nodes is often very difficult, in particular for large-scale
systems.

Recent work proposed accountability as a paradigm to ensure that whenever
an incorrect behavior is observed, it can be linked to a malicious node. At the
same time, honest nodes gain the ability to disprove any false accusations. Ex-
amples of these accountability systems include PeerReview [15] and its extension
[2]. The basic idea of PeerReview is that every user generates a tamper-evident
log which contains a complete trace of the performed computations. Later, an
auditor (in PeerReview any other node in the distributed system) can check
the correctness of the user’s operations by inspecting the logs, replaying the
execution of the user using a reference implementation, and finally comparing
its result. The above approach is however restricted to deterministic systems.
Indeed, in order to enable the replay of a randomized computation one should
publish the seed of the pseudo-random generator in the logs. Clearly, this would
completely destroy the unpredictability of future pseudo-random values. This
issue was addressed by CSAR, an extension of PeerReview [2]. More specifically,
the main contribution in [2] is to formalize a notion of accountable random-
ness, called strong accountable randomness, and to present the construction of
a pseudo-random generator satisfying this property. Informally, strong account-
able randomness consists of the following requirements: (i) the pseudo-random
generator generates values that look random, even to the party who computes
them; (ii) it is possible to verify that the values were computed correctly; (iii)
the unpredictability of future values (i.e., those for which a proof was not yet
issued) does not get compromised; and (iv) the above properties are fulfilled
even if a malicious party is involved in the seed generation.

While the approach of PeerReview and CSAR is very general and has been
proven practical, these techniques have an inherent drawback: they inevitably
expose a party’s private data. In many scenarios such a privacy leak is unac-
ceptable and might thus discourage the adoption of accountability systems. For
instance, consider a company that runs its business using a specific software.
There are many cases in which companies’ tasks have to comply with legal regu-
lations, and having a system which allows an auditor to check this compliance in
a reliable way would be highly desirable. On the other hand, companies have a
lot of data that they want to keep secret. This data might include, for instance,
business secrets such as internal financial information, or secret keys for digital
signatures or encryption schemes.1

In spite of its utter importance, the idea of providing accountability while
preserving the privacy of the party’s data has not been yet properly explored in
previous work.

1 While in principle such a problem can be solved by using generic secure multi-
party computation techniques (SMPC) [10], all known SMPC protocols require the
verifier to participate in the computation, which is infeasible in practice, whereas in
our setting the verifier only participates in the verification by checking the tamper-
resistant log, which is much better suited for practice.
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1.1 Our Contribution

We address this important open problem in the area of accountability providing
three main contributions:

– We formalize a notion of privacy-preserving accountability for randomized
systems. At a high level, our notion requires that a user is able to produce
a log that convinces an auditor of the correctness of (1) the outcome of
a computation (e.g., that y = P (x)), and (2) the generated randomness.
At the same time, the contents of the log neither compromise the secrecy of
specific inputs of the computation nor the unpredictability of the randomness
generated in the future. Our notion is defined in the UC framework, and thus
allows for arbitrary composability.2

– We focus on efficient realizations of privacy-preserving accountability for ran-
domized systems. We show that a construction can be obtained by using the
non-interactive proof system by Groth and Sahai [13] which supports state-
ments in the language of pairing-product equations, and a pseudorandom
function, due to Dodis and Yampolskiy [9], which works in bilinear groups
and is thus compatible with this language. With the above proof system we
can characterize a variety of computations: efficient solutions exist for the
case of algebraic computations with equations of degree up to 2, but also
arbitrary circuits can be supported [12].

– We show interesting applications of privacy-preserving accountability for
randomized systems to digital signatures. We present a signature scheme
in which the signer can show that the secret key and the signatures are gen-
erated “correctly”, i.e., by using accountable randomness. This essentially
ensures that a signature has been created using a specific algorithm.

Our Contribution in Detail. In this section we give a high level explanation
of the technical ideas and the approaches used in this paper.

Our notion and its relation with strong randomness. In the case of de-
terministic computations the notion of privacy-preserving accountability would
essentially fall into the well-known application area of zero-knowledge proofs
[11]. However, we model randomized computations: consequently we want that
even the randomness is accountable, i.e., correctly generated. While such a no-
tion, called strong accountable randomness, has already been introduced in [2],
we show that it is not realizable without random oracles (see Section 3.1).

Recall that strong accountable randomness requires that the pseudo-
randomness of the generated values must hold even against the party who knows
the seed. Clearly, this is a very strong property. A random oracle helps its realiza-
tion as it essentially destroys any algebraic properties or relations that one may
recognize in such values. But without the help of this “magic” tool, it is clear
that the party computing the values knows at least how they were computed.

2 We are aware that the UC framework has flaws. Our results, however, can be straight-
forwardly migrated to other simulation-based composability frameworks [23,18,16].
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Our impossibility result left us with two opportunities: (1) either define
privacy-preserving accountability for randomized computations in the strongest
possible way (i.e., so as to imply strong randomness) but be aware that it would
be realizable only using random oracles, or (2) define a slightly weaker version
of accountable randomness. Although the first option would be preferable, a
careful analysis revealed that its efficient realization is very unlikely. Indeed, any
meaningful notion of privacy-preserving accountable computation fulfilling the
properties we have in mind will need zero-knowledge proofs in order to be re-
alized. At the same time, these proofs would have to involve a pseudo-random
generator that satisfies strong randomness by using a hash function modeled
as a random oracle. We are not aware of any hash function that allows for
efficient zero-knowledge proofs and whose actual implementation maintains un-
predictability properties close to the ideal ones of a random oracle (i.e., its use in
a scheme does not fall prey to trivial attacks). This is why we decided to follow
the second approach.

On realizing accountable signatures. While focusing on more specific ap-
plications of our accountability system, we asked how to efficiently prove state-
ments that involve the randomness generated by our system. For instance, many
cryptographic protocols rely on correctly distributed randomness, but such ran-
domness usually cannot be revealed (thus CSAR is not a solution). In particular,
this property is very interesting for digital signatures as it would allow for the
accountability of this primitive, namely the signer could show that the secret
key and the signatures are generated correctly (i.e., by using accountable ran-
domness) and at the same time the signer does not leak such confidential data
to the auditor.

Towards this goal, the technical challenge is that for the combination of Groth-
Sahai proofs and our specific pseudo-random generator random values that need
to be hidden can only be group elements.3 We are not aware of any signature
scheme, from the literature, in which all random values (e.g., the secret key and
the randomness) can be computed using our pseudo-random generator. In this
work we propose the construction of such a signature scheme which thus satisfies
our notion of accountability.

2 Preliminary: The UC Framework

In this work, we formulate and prove our results in a composable, simulation-
based model, in which the security of a protocol is obtained by comparison
with an idealized setting where a trusted machine is available. More specifically,
we use the UC framework [6]. Our results also apply to other simulation-based
composability frameworks, such as IITM [18], RSIM [23], or GNUC [16].

We consider attackers that are global, static and active, i.e., an attacker that
controls some parties and that controls the entire network. Such attackers are
typically modelled in the UC framework by only considering protocols parties
that have a designated communication tape for directly passing messages to

3 In particular, every known pseudo-random function compatible with Groth-Sahai
outputs group elements.
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the attacker. Since the attacker controls the network, it can decide whether,
in which order, and to whom network message are passed. Additionally every
protocol party has a communication tape for directly passing messages to the
so-called environment, a PPT machine that represents any user of the protocol,
such as the web-browser or an operating system.

The security of a protocol is defined by comparing the execution of the proto-
col, i.e., of all protocol parties, with an idealized setting, called ideal world. The
ideal world is defined just as the real world except for the existence of designated,
incorruptible machines, called ideal functionalities. These ideal functionalities
represent a scenario in which the same functionality is executed using a trusted
machine to whom all parties have direct access. Formally, an ideal functional-
ity directly communicates with the environment via so-called dummy parties,
which forward all messages as instructed. This ideal functionality characterizes
the leakage of the protocol and the possibilities of the attacker to influence the
outcome of the protocol.

The security of a protocol π is defined by comparison with its corresponding
ideal functionality F as follows: a protocol π UC-realizes an ideal functionality F
if for all probabilistic polynomial-time (PPT) attackers A (against the protocol)
there is a PPT attacker S (against the ideal functionality) such that no PPT
machine (the environment E) can distinguish an interaction with π and A from
an interaction with F and S. A protocol π is considered UC-secure if it UC-
realizes the corresponding ideal functionality.

For modeling setups, such as a PKI or a CRS, often ideal functionalities,
such as FCRS, are used in description of the protocol. A setting in which both
ideal functionalities and protocols occur is called a hybrid world. These ideal
functionalities directly communicate with the protocol parties, since (formally)
the protocol parties are part of the environment from the perspective of these
ideal functionalities. These hybrid world can also be used to abstract away from
cryptographic subprotocols, such as authenticated channels.

3 Defining Accountable Computation

In this section, we introduce a rigorous definition of accountable computation.
As discussed in the introduction, this notion has to work for randomized systems,
and thus have to guarantee accountable randomness. Towards this goal, we will
first show that the previous notion of accountable randomness considered in [2]
cannot be realized in the standard model. Then we will introduce our relaxed
definition, for which we discuss efficient realizations in Section 4.

We consider a setting with a party Ve, called the auditor, that performs
the audit and a computation party that performs the computation and, upon
request, produces proofs that the computation has been correctly performed.
Assuming an evaluation function Eval for computing results, an accountable
computation scheme is a collection of three algorithms: Setup is run to generate
the system’s parameters that are distributed to every party and to the verifier;
Prov is run by the party to prove statements about a computation and it
produces a log; V is run by the verifier on input the log to check its correctness.
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On (init) from E
for honest P

draw random values
r1, . . . , rn ← {0, 1}η

store (rand1, . . . , randn) :=
(r1, . . . , rn)

send (init) to A
output (initd) to E

On (getrand, i) from A
send randi to A

On (comp, i, sid) from E
for honest P

set re := (randi)
store proofs(sid , i) := (re, 1)
send (re, i, sid) to A and E

On (comp, i, sid) from E for malicious
P

send (comp, i, sid) to A
wait for a response (output , re, b, sid ′)
from A
store proofs(sid ′, i) := (re, b)
output (output) to E

On (vr, i, sid) from E for honest Ve

let (re, b) := proofs(sid , i)
if b = 1
then output (randi, i, 1) to E
else output (re, i, 0) to E

On (vr, i, sid) from E for malicious Ve

send (vr, i, sid) to A
wait for a response m from A
output m to E

Fig. 1. The ideal functionality Fsr for strong randomness generation

For deterministic computations and for proofs that should not hide any secrets
(e.g., decryption keys) previous work offers efficient solutions [15,14]. In the case
of randomized computations, however, the computing party additionally needs
to prove that the randomness has been honestly generated, e.g., in order to
prove that signature key does not intentionally leave a trapdoor for malicious
third parties. Therefore, randomized accountable computation needs a fourth
algorithm Init, that is run in a trusted set-up phase and in which the computing
party gets a secret seed and the auditor a corresponding public seed.

Backes, Druschel, Haeberlen, and Unruh studied the problem of accountable
randomness and introduced the notion of strong randomness [2]. The authors
even presented an efficient construction that satisfies this property; however,
their realization guarantees strong randomness only in the random oracle model.
In the next section, we show that realizing their notion in the standard model
is impossible.

Notation. In the description of the ideal functionalities and the protocol tem-
plate, we use for persistently stored variables the font variable and for values the
font value.

3.1 Strong Randomness Is Not Realizable

Backes, Druschel, Haeberlen, and Unruh define strong randomness by means of
an ideal functionality Fsr. This ideal functionality (formally explained in Figure
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1) basically offers an interface for a computing party P to send commands to
compute a pseudo-random generator, and Fsr offers an interface for auditors
Ve to verify that these (pseudo-)random values are correctly distributed and
unpredictably for the party that computes them. In addition, Fsr has an ini-
tialization phase, in which random values randi are drawn uniformly at random,
and Fsr offers the attacker A a randomness oracle: upon a query (getrand, i),
Fsr responds with randi.

The Ideal Functionality Fsr. Beside an initialization phase (via the command
init), Fsr offers two commands comp and vr. If a party is malicious, Fsr allows
the attacker to determine the behavior for these commands. For honest parties,
upon (comp, i, sid) the pseudo-random element with the index i is generated (and
internally stored in proofs(sid , i)). For honest parties, the flag b in proofs(sid , i)
is set to 1 and for malicious parties, the flag is set to 0. Upon (vr, i, sid), Fsr

reads proofs(sid , i) and if b = 1 then it outputs the real random element and
otherwise the stored element re.

For any (reasonable) two-party protocol Π , we show how the environment E
can, in the standard model, easily distinguish whether it is communicating with
Π and the real attacker A or Fsr and a simulator. Assume that the computing
party P is compromised. Recall that E knows all secrets of P, in particular, any
secret information used to compute the pseudorandom generator. We assume
A to be the dummy attacker that simply forwards everything. E performs the
following steps:

1. Send the command (comp, i, sid) to P.
2. Since P is compromised, A has to answer for P. Since A is the dummy

attacker, A forwards this duty to E .
3. E computes the honest output (re, i) of that party P on its own, typically

the output of a pseudo-random function on some seed and input i.
4. E sends the honestly computed output (re, i) as a response to A.
5. A dutifully forwards the output (re, i) to the compromised P.
6. P sends the honestly computed output (re, i) over the network, i.e., to A.
7. A simply delivers the message to Ve.
8. E sends (vr, i, sid) to Ve and waits for a response ((re ′, i′), b)
9. E outputs 1 if (re, i) = (re ′, i′) and b = 1; otherwise output 0

In the ideal setting, the attacker A will actually be the simulator. Now, if
the simulator behaves differently from the attacker in steps 2, 5 or 7 (i.e., it
does not let E compute the answer for P, does not forward the output (re, i)
to the compromised P, or it does not deliver the message in step 7), then E
can use this unexpected behavior to distinguish the two settings. Thus, the
simulator has to act towards E as the dummy attacker (see step 5). At this point
we have two possible cases for the answer of Fsr to the environment upon the
command (vr, i, sid): (i) either b = 0, or (ii) b = 1. In the case when b = 0,
the environment will output 0 regardless of the value re ′. If b = 1, recall that
Fsr outputs (re ′, i′) = (randi, i), where randi is uniformly chosen. Namely, Fsr

replaces the value re sent by the simulator. Since randi is uniformly chosen, with
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overwhelming probability we have that randi �= re. Hence, in the ideal setting E
will output 0 with overwhelming probability. In contrast, in the real setting the
environment always outputs 1 if b = 1 and 0 if b = 0.

We stress that in the random oracle model, this argument does not go through.
Indeed, to compute re in step 3, E might have to query the RO. At that point
the simulator could program the output of the RO such that it coincides with
the uniformly chosen randi

4. The main problem with this notion of strong ran-
domness is realizing it against such a strong distinguisher (i.e., the environment)
in UC. Since the seed of a pseudo-random function cannot be hidden from the
environment, the latter can easily distinguish random values from the output of
the pseudorandom function. We remark that the ideal functionality given in [2] is
presented in a simplified setting where prover and verifier are the same machine.
This can be done by assuming that the verifier is always honest (as verification
is a public procedure). It is not hard to see that our counter-example works for
this simplified setting as well. Indeed, we are not making any assumption on the
honesty of the verifier.

3.2 Our Notion of Accountable Computation

In the standard model, it is not possible to realize strong randomness (see Sec-
tion 3.1). The main problem is that the output of the pseudo-random generator
has to be unpredictable even to the party that performs the computation. Unsur-
prisingly, such a result cannot hold in the standard model. Therefore, we weaken
the definition of strong randomness in order to adapt it and make it realizable
in the standard model. To do so, intuitively we require that the outputs of the
pseudo-random generator be indistinguishable from random as long as the seed
remains hidden. However, since our main goal is to provide accountability for
the computations performed by the system, we directly integrate this (weaker)
definition of strong randomness into a fully-fledged definition of accountable
randomized computation.

Protocol Template for Real Accountable Computation. The core of an
accountable computation scheme are four algorithms (Setup, Init,Prov,V)
that will be used by the parties P and Ve in a canonical protocol.

This protocol template assumes authenticated channels between party P

and auditor Ve. This assumption corresponds to the common assumption that
accountable systems have to maintain a tamper-evident record that provides
non-repudiable evidence of all the actions that are sent via these authenticated
channels. This authenticated channel is abstracted as an ideal functionality Fauth

that guarantees that the network attacker cannot send messages on behalf of P.
Typically, such an authenticated channel is realized using a PKI and by attaching
a digital signature to every message5. Moreover, we introduce two set-up func-
tionalities. The first set-up is a standard CRS functionality Fcrs that is needed

4 Roughly speaking, this is the approach taken by the proof in [2].
5 The functionality Fauth is standard, we do not present its definition here. We refer
the interested reader to previous work [6].
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for creating non-interactive zero-knowledge proofs. Technically, Fcrs runs the
Setup algorithm and distributes its output to all parties. The second set-up
assumption models the initial trusted phase in which P receives a seed, for gen-
erating pseudorandom values, and Ve receives a corresponding public informa-
tion, which will enable Ve to later check whether the pseudorandom values are
generated correctly. This set-up assumption is modeled as a functionality Fpkif

that internally runs the Init algorithm and accordingly distributes the result,
i.e., the seed to P and the public information to Ve. The goal of having Fpkif is
to ensure that the seed is generated truly randomly, even at a malicious party
P. In practice this assumption can be realized in several ways, e.g., P and Ve

run a parallel coin tossing protocol, Init is executed in a trusted hardware or
in a phase of the protocol where P is guaranteed to behave honestly, or Init is
externally executed by a trusted entity who securely distributes the output. We
stress that, even if not very efficient, this phase has to be run only once.

The computing party P is initialized before its first run (via init), and then
it can be invoked (via comp) as a subroutine for computing programs (storing
proofs about the execution) and publicly announcing the results. Moreover, P
reacts to network requests (via vr) to prove statement about its announced
results. The auditor Ve is invoked by Fpkif for the initialization of P (via init),
and then can be invoked (via vr) as a subroutine to verify publicly announced
results. Last, Ve reacts to network announcements of P (via cp) that a result
has been computed. The computing party P, upon init, queries both set-up
functionalities Fcrs and Fpkif in order to receive the public parameters and the
seed for the pseudo-random generator. Upon an invocation (comp, p, s , sid) with
a program p and secret inputs s , P computes the program, adds a proof to the
log and publicly announces the result. Upon a network message (vr, re, p, sid)
from the authenticated channel with Ve, P outputs the corresponding proof, or
an error message if such a proof does not exist.

The auditor Ve, upon being called by an initialization message (init) from
the seed generation, queries in turn Fcrs for the CRS and then stores all values.
Upon a network message (prf, re, p, cnt , sid) over the authenticated channel
Fauth with P, Ve stores the message and notifies the environement. Upon an
invocation (vr, re, p, cnt , sid), the auditor first asks via Fauth the computing
party P for a proof, and then verifies this proof and outputs the result to the
environment.

Ideal Functionality for Accountable Computation. The desired security
properties for accountable randomized computation are captured by the ideal
functionality described in Figure 2. The functionality offers the same interface to
the environment as the protocol template and represents the “ideal” behavior of
the protocol. In addition, however, the functionality explicitly allows the attacker
to intercept messages, and it internally maintains a randomness function Rase

for modeling pseudorandomness.
The ideal functionality has interfaces to both the channel from the environ-

ment to P and the channel from the environment to Ve. Therefore, we distinguish
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On (init) from E
for honest P

se
$← {0, 1}η

se := se; cnt := 0
send (init) to A
output (initd, cnt)
to E from P

On (comp, p, s , sid)
from E for honest P

if p ∈ LR then
store tc := cnt
run re := Eval

Rase(p, cnt, s)
sta(sid) := (re, p, cnt)
wit(re, p, cnt , sid) := s
pe(sid) := (prf, re, p, tc, sid)
cnt := cnt + 1
send (prf, re, p, tc, sid) to A
P outputs (re, p, tc, sid) to E

On (deli, sid) from A
let (prf, re, p, cnt , sid) := pe(sid)
store sta(sid) := (re, p, cnt)
Ve outputs (cp, re, p, cnt , sid) to E

Rase: When called on (cnt)

if P is honest then
r

$← Rg(F); output r
else
r := Eval(F, cnt , se); output r

On (vr, re, p, cnt , sid) from E for hon-
est Ve

if (re, p, cnt) = sta(sid) then
send (vr, re, p, cnt , sid) to A
wait for a response (deli, s ′, sid)
if P is honest
then secr := wit(re, p, cnt , sid)
else secr := s ′

if (re, pg) = (re, p) ∧ re =
Eval

Rase(p, tc, secr, se)
then output (re, p, 1) to E
else output (re, pg, 0) to E

Fig. 2. The ideal functionality for accountable computation

from which of these channels an environment message comes and to which we
output messages. Moreover, the functionality maintains internal (shared) data-
structures, such as sta and wit which are used for verification, and se which is used
for pseudo-random values.

Upon (init) for P, the functionality honestly draws a random seed and no-
tifies the attacker that it has been initialized. Upon (comp, p, s , sid), the ideal
functionality computes the program on the inputs, stores the secret inputs for
later verification, and publicly announces the result. Upon a message (deli, sid)
by the attacker, the statement is registered in pg and the environment is notified.
Upon (vr, re, p, cnt , sid), the functionality recomputes the result with the stored
witness. We stress that for malicious parties the attacker is allowed to give the
witnesses for the statement in the deli message. Otherwise, the simulator does
not work, because the real protocol does not reveal the proof earlier.

In contrast to the real protocol, for honest P the functionality returns truly
random values as a result of Rase, instead of the result of the pseudorandom
function. This basically models that the pseudo-random generation should satisfy
the usual notion of pseudorandomness, in which the challenger is always honest.
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We stress that for dishonest parties P (and honest Ve) our ideal functionality
still guarantees that the PRF has been honestly computed. Malicious parties in
the ideal model are canonically modeled by merely forwarding the input to the
attacker and storing its results in the internal data-structures, such as sta.

4 Instantiations of Accountable Computation Schemes

Now that we have a clear definition of accountable randomized computation, we
will show how it can be realized by means of suitable cryptographic tools. First,
we describe below a generic paradigm to achieve this notion. However, since
in the most generic case this generic construction may lead to rather inefficient
instantiations, we will then show how to realize efficient accountable randomized
computation for a significant class of computations.
A generic construction. The basic idea is to use UC-secure protocols for
non-interactive zero-knowledge proofs, a perfectly binding commitment, and a
pseudorandom function. Moreover, we assume the availability of ideal function-
alities for the generation of the common reference string, the random sampling of
a seed for the PRF, and for implementing authenticated channels (e.g., using sig-
natures). At a high level, the generic scheme works as follows. In the setup phase,
the parties ask for the common reference string for the NIZK proof system. Next,
to initialize the system, every user invokes the ideal functionality in order to ob-
tain a random seed se of a pseudorandom function Fse . It also samples random
coins opense , and computes a commitment C = Com(se; opense), which is pub-
lished in the authenticated log. The pair se, opense is instead maintained by the
party. Later, whenever a party is asked to compute a function p on inputs s , it
will compute re = p(s) and will create a proof π using the NIZK proof system for
the NP statement “∃s : output = p(s)”. To prove correctness of randomness gen-
eration, i.e., that r = Fse(cnt), the user can use the same approach and generate
a proof for the statement “∃(se, opense) : r = Fse(cnt)∧C = Com(se; opense)”.
The proof Π = (p, re, π, cnt) is published in the log. Finally, the auditor can
verify proofs by running the verification procedure of the NIZK proof system.

4.1 Useful Tools and Definitions

Before describing our efficient instantiation, here we introduce the algebraic tools
and the cryptographic primitives that will be useful in our construction.

Bilinear groups. Let G(1k) be an algorithm that on input the security pa-
rameter 1k outputs a tuple ppBM = (p,G1,G2,GT , e) such that: p is a prime of
at least k bits, G1,G2,GT are groups of order p, and e : G1 × G2 → GT is an
efficiently computable and non-degenerate bilinear map.

The q-Decisional Diffie-Hellman Inversion (q-DDHI, for short) problem in G1

(same definition would hold in G2) is defined as follows.

Definition 1 (q-DDHI). Let (p,G1,G2,GT , e)
$← G(1k), g1 ∈ G1 be a genera-

tor, and x
$← Zp be chosen at random. Let T be the tuple (g1, g

x
1 , g

x2

1 , . . . , g
xq

1 ),
and Z be a randomly chosen element of G1. We define the advantage of an
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adversary A in solving the q-Decisional Diffie-Hellman Inversion problem as
AdvqDDHI

A (k) =
∣∣Pr[A(p, T, g1/x) = 1]− Pr[A(p, T, Z) = 1]

∣∣, where the proba-
bility is taken over the random choices of G, x, Z and the random coins of A.
We say that the q-DDHI Assumption holds in G1 if for every PPT algorithm A,
and for any q polynomial in k, the advantage AdvqDDHI

A (k) is negligible.

Groth-Sahai proof system. Groth and Sahai [13] describes a way to generate
efficient, non-interactive, witness-indistinguishable proofs for statements in the
language LGS of so-called “pairing product equations”. If {Xi}mi=1 ∈ G1 and
{Yi}ni=1 ∈ G2 are variables, and {Ai}ni=1 ∈ G1, {Bi}mi=1 ∈ G2, ai,j ∈ Zp and
tT ∈ GT are constants, LGS is the language of equations of the following form:

n∏
i=1

e(Ai,Yi)

m∏
i=i

e(Xi,Bi)

m∏
i=1

n∏
j=1

e(Xi,Yj) = tT

The Groth-Sahai proof system can be instantiated in prime order groups by
assuming its security based on either the SXDH or Decision Linear assumptions.

The main technique behind Groth-Sahai proofs is the use of specific commit-
ment schemes that allow to commit to elements in G1 or G2. In particular, the
proof system generates a common reference string which can be of two different
and indistinguishable forms. When the CRS is instantiated for perfect soundness,
the commitment is perfectly binding, whereas in the witness-indistinguishability
setting the CRS leads to a perfectly hiding commitment. More importantly, the
two modes of generation are computationally indistinguishable under the SXDH
(resp. DLin) assumption, and both modes allow trapdoors that work as fol-
lows. In the perfectly binding setting, commitments have the form of ElGamal
(resp. Boneh-Boyen-Shacham) ciphertexts, and the trapdoor is the decryption
key, which thus allows to make the commitments extractable. In the perfectly
hiding setting, instead, the trapdoor allows to equivocate the commitments, i.e.,
to create a commitment to some (random) value gr1, and to later open it to a
different value gx1 . These trapdoors are usually referred to as the extraction and
simulation trapdoor respectively.

For lack of space, we refer the interested reader to [13] for a detailed
and formal description of the Groth-Sahai proof system. Here we recall that
such a scheme is defined by three algorithms (GS.Setup,GS.Prove,GS.Ver)
that allow to, respectively, generate the parameters, create proofs and ver-
ify proofs. Moreover, for security, the system is also equipped with “ex-
traction” and “simulation” algorithms (GS.ExtractSetup,GS.Extract,
GS.SimSetup,GS.SimProve). In its basic instantiation, the Groth-Sahai
scheme provides witness-indistinguishable proofs. However, Groth and Sahai in-
terestingly show that for certain cases these techniques can be used to achieve
zero-knowledge [13]. A significant case is the one in which all the equations being
simultaneously satisfied have the constant value tT = 1, the identity element in
GT . Other statements have been shown to be modifiable in order to obtain zero-
knowledge-friendly statements. We refer the interested reader to [13] for more
details. For the sake of our work, we denote this subset of LGS that allows for
zero-knowledge proofs as LGS−ZK.

www.it-ebooks.info

http://www.it-ebooks.info/


50 M. Backes, D. Fiore, and E. Mohammadi

The pseudorandom number generation. As a tool for generating the ran-
domness in our accountable computation we use the following pseudorandom

function Fs(c) = g
1

s+c

1 , which is also known as Boneh-Boyen weak signature [5],
and Dodis-Yampolskiy PRF [9]. The function is proven pseudo-random under
the q-DDHI assumption in G1, and for a domain D of size q where q is polyno-
mial in the security parameter. We observe that the restriction on the domain’s
size is not a severe limitation in our setting as we will use the function in a
stateful way to generate a sequence of values Fs(1), Fs(2), . . .. The number of
values is bounded by the the system’s running time which is polynomial in the
security parameter. More importantly for our application, the function is known
to allow for efficient Groth-Sahai proofs. The idea of using zero-knowledge proofs
to show the correctness of the outputs of a pseudorandom function is somewhat
similar to the notion of simulatable verifiable random functions [7], with the only
exception that in the latter case proofs do not need to be fully zero-knowledge.
Belenkiy, Chase, Kohlweiss, and Lysyanskaya point this out [3] and propose a
construction based on Groth-Sahai proofs.

4.2 An Efficient Instantiation of Accountable Computation

In this section we show how to realize accountable randomized computation for
the language LGS−ZK of pairing product equations with zero-knowledge state-
ments. It is worth noting that using LGS−ZK one can prove the simultaneous
satisfiability of multiple algebraic equations whose degree is up to 2. In the de-
scription of our scheme we give an explicit description of the algorithms F and
F.Prove for the generation and the verification of the generated pseudorandom
values. These algorithms are however a specific case of computations and proofs.

– Setup(1k): generate the description of bilinear groups ppBM =

(p,G1,G2,GT , g1, g2, e) and the parameters ppGS
$← GS.Setup(ppBM ) of

the Groth-Sahai proof system. Return pp = (ppBM , ppGS).

– Init(pp): as a seed, sample a random value s
$← Zp and random opening

opens. The party keeps a secret key fsk = (s, opens) while a public verifica-
tion key is fpk = Com(gs2; opens) is published to the log.

– Prov(pp, fsk , p, s): compute re = p(s), run π
$← GS.Prove(ppGS, St ,w)

where the statement St is created from the program p and the result re,
whereas the witness is the secret input s . Output Π = (p, re, π, cnt).

– F(pp, fsk , cnt): increment the counter cnt ← cnt + 1, and output y = g
1

s+cnt

1 .
– F.Prove(pp, fsk , cnt): proving the correctness of a pseudorandom value y =

F(pp, fsk , cnt) basically consists in creating a composable NIZK proof π for
the language LPRF = {fpk , cnt , y : ∃s, opens : fpk = Com(gs2; opens) ∧ y =

g
1

s+cnt

1 }6. Output Π = (F, y, π, cnt).
– V(pp, fpk , Π): parse Π as (p, re, π, cnt). Use the verification algorithm

of Groth-Sahai to verify the proof π with respect to (public) values
fpk , p, re, cnt .

6 Belenkiy et al. show in [3] how to create such a proof using Groth-Sahai.
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In terms of performances, the efficiency of the above instantiation heavily
depends on the efficiency of the Groth-Sahai scheme. It is worth noting that
although at the end our solution is not as efficient as CSAR, it is though the
first providing such a strong privacy guarantee.

To prove the security of our accountable computation we will show that it
realizes the ideal functionality of accountable randomized computation. In using
the above instantiation in our protocol template we require the generation of
different GS parameters ppGS for every prover party. Generating different GS
parameters, i.e., a different CRS, for every party avoids the need of being able
to extract and simulate with the same CRS, which in turn allows us to use more
efficient GS constructions. We stress that it is possible to use a strengthened GS
proof system that allows for simultaneous simulation and extraction with the
same CRS, and then to use only one CRS for all parties. However, since in our
scenario we anyway assume the distribution of a public key for every prover, our
restriction of using many CRS would not significantly weaken the set-up model.

Theorem 1. Let Π be our protocol’s template instantiated with the algorithms
from Section 4.2, and let F be the ideal functionality from Figure 2. If the q-
DDHI assumption holds in G1 and Groth-Sahai is secure, then Π securely UC-
realizes F .
For lack of space, the proof of this theorem appears in the full version.

5 Using Verifiable Randomness Privately: Signatures

The previous section describes an accountable randomized computation for the
language LGS−ZK of pairing product equations (of a certain form), and for a
specific pseudorandom function Fs(x). It is worth noting that the generated
(pseudo)randomness have a specific structure: the values are elements of the
group G1. While in general one can use a suitable hash function in order to
generate, e.g., binary strings out of group elements, such an arbitrary use of
the randomness does not always allow for efficient zero-knowledge proofs. To be
more concrete, if one wants to prove the correctness of a certain computation
in which a value R generated using Fs(cnt) is one of the secret inputs, then R
must be a variable in the language LGS−ZK, i.e., R must be in G1.

Such a situation leaves us with an open question about the uses of the ac-
countable randomness generated by our protocol. In this section, we address this
problem and we propose an application to an important cryptographic primitive:
digital signatures. In digital signatures, randomness is usually used to: (1) gen-
erate the secret signing key, (2) create the signature. If the randomness source is
bad, the signature might be forgeable. Our scheme assumes a good randomness
seed and given that seed proves that all signatures use “good” randomness.

5.1 An Accountable Signature Scheme

In this section, we tackle this problem and we propose a signature scheme that
fits the setting of our accountable randomized computation, i.e., that of bilin-
ear pairings. To achieve this goal, the faced technical challenge is that virtually
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all existing constructions use either secret keys or random values that are “in
the exponent”. We solved this problem by proposing a new scheme which has
the desired property, namely both the secret key and the randomness used in the
signing algorithm are group elements. The proposed construction works within
the accountable computation system. In particular, it uses the same pseudoran-
dom generator and shares the same state.

The Security Model. Our signature scheme is stateful, in the sense that
every message is signed with respect to a counter which gets incremented every
time (in particular, the same counter is never re-used), and the signature is
verified against the counter. For security, we consider the standard notion of
unforgeability under chosen message attack in the stateful setting. This model
considers an adversary that has access to a signing oracle and whose goal is to
produce a forgery that either verifies against a “new” counter (i.e., a counter
greater than the one in the system after the last query), or it verifies for an
“old” counter (i.e., one for which a signature was obtained from the oracle) but
for a message that is different from the one asked to the oracle.

Since our signature scheme is part of the accountability system (i.e., it shares
the same parameters) we have to model the fact that an adversary may ob-
tain additional information. For instance, it might ask for proofs about arbi-
trary statements. For this reason, we consider an extension of the unforgeability
game, in which the adversary is granted access to an additional oracle O(·)
which can be either one of the algorithms Prov(pp, fsk , ·, s), F(pp, fsk , cnt),
F.Prove(pp, fsk , cnt). We assume that F and F.Prove are computed on the
next counter, whereas Prov is evaluated on a program p chosen by the adver-
sary. For lack of space, a formal definition of our unforgeability experiment will
appear only in the full version.

Our Construction. Before describing our construction, we give a high level
description of our techniques. Our starting point is an idea, earlier proposed
by Bellare and Goldwasser, for building signature schemes from zero-knowledge
proofs [4]. Roughly speaking, Bellare-Goldwasser’s scheme works as follows. The
key generation consists of generating the seed s of a PRF and publishing its
commitment C as the public verification key. Next, to sign a message m one
computes the PRF on the message, y = fs(m), and proves in zero-knowledge
that y = fs(m) and s is the same value in the commitment C.

In our case, the pseudorandom function is computed on a state, the counter,
and thus we cannot apply it to an arbitrary message m. To solve this issue
we create a signature on m by using the randomness R = Fs(cnt) ∈ G1 and
computing a value σ = hm · R, where h is also random value that is kept as
the secret key. The actual signature is σ together with a zero-knowledge proof
that σ is indeed created as hm · Fs(cnt). The security relies on the soundness
and zero-knowledge properties of the proof system, and the observation is that
such value σ is essentially an information theoretic one-time MAC on m (if one
assumes that h is random and so is every R).
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More in detail, our construction works as follows. Let pp be the public pa-
rameters of the system consisting of a tuple pp = (p,G1,G2,GT , g1, g2, e, ppGS)
where ppGS are the parameters of a NIZK Groth-Sahai proof system.

– SigKeyGen(pp): use the pseudorandom function to generate h ←
F(pp, fsk , cnt) ∈ G1. Next, commit to h using random coins openh, set
vk = Com(h, openh) and sk = (h, openh).

– Sign(pp, fsk , sk ,m). Let m ∈ Zp \ {0} be the message, and let cnt be the
system’s counter for randomness generation. A signature on m is generated
as follows. First, use the pseudorandom function to generate randomness
R← F(pp, fsk , cnt). Next, compute σ ← hm ·R, C′h = Com(h; open ′h) CR =
Com(R; openR), C′R = Com(R, open′R), a composable NIZK proof π1 for the
statement ∃(h, open ′h, R, open

′
R) : σ = hm ·R∧C′h = Com(h, open ′h)∧C′R =

Com(R; open ′R), a composable NIZK proof π2 that ∃(gs2, opens, R, open
′
r) :

CR = Com(R; openR) ∧R = Fs(cnt), and composable NIZK proofs πR and
πh proving that CR and C′R, and vk and C′h commit to the same values.
Output Σ = (σ,CR, C

′
R, C

′
h, π1, π2, πh, πR).

– SigVer(pp, vk ,m, cnt, Σ): use the verification algorithm of Groth-Sahai to
verify proofs π1, π2, πR, πh.

Theorem 2. If the Groth-Sahai proof system is secure, and the function Fs(x)
is pseudorandom, then the signature scheme is unforgeable.

For lack of space, the proof appears only in the full version.

6 Related Work

Previous work proposed the use of accountability for several goals, such as to
achieve real-world security [19], to incentivize cooperative behavior [8], to foster
innovation and competition in the Internet [20,1], and to design dependable
networked systems [24]. Systems have been built to provide accountability for
both deterministic and randomized systems. In the previous section we already
mentioned PeerReview [15] and its extension, CSAR [2]. Another example is
CATS [25], a network storage service with strong accountability properties. The
basic idea of CATS is to use a trusted publishing medium for publishing the
logs and to ensure their integrity. The logs are then checked against a set of
rules that describe the expected behavior of a node. Another system, repeat and
compare [22], uses the accountability approach to guarantee content integrity in
a peer-to-peer content distribution network built over untrusted nodes. Its basic
idea is to use a set of trusted nodes that locally reproduce a random sample
of the generated content and compare it to the one published by the untrusted
nodes. Recently, another system, NetReview [14], successfully built upon the idea
of PeerReview to enable the detection of faults caused by ISPs in the Border
Gateway Protocol (BGP).

www.it-ebooks.info

http://www.it-ebooks.info/


54 M. Backes, D. Fiore, and E. Mohammadi

On the definitional side, Küsters, Truderung, and Vogt introduced a definition
of accountability and compared it to the notion of verifiability [17]. They show
that verifiability is weaker than accountability as the former does not require that
a malicious party is always detectable. We notice that our definition implicitly
assumes authenticated channels. Hence, it does not only capture verifiable com-
putation, but also accountable computation.

The idea of generating accountable randomness is closely related to the notion
of verifiable random functions (VRFs) [21], and simulatable VRFs [7]. In a nut-
shell, VRFs are pseudo-random functions that allow for publicly verifiable proofs
about the correctness of the function’s outputs. Moreover, all values for which
a proof has not been issued are guaranteed to remain pseudorandom. Although
this is intuitively the same requirement as in our case, there are a couple of dif-
ferences due to some technical details. The difference mainly deals with the fact
that our notion is simulation-based in a composability framework, and should
not reveal any information about the seed, a property which is not necessarily
captured by (simulatable) VRFs. To this extent, our techniques are related to
the extension of simulatable VRFs proposed by Belenkiy, Chase, Kohlweiss, and
Lysyanskaya [3], from which we borrow some of the technical ideas.

7 Conclusion and Future Work

In this paper we have investigated the notion of accountability for systems that
execute randomized computations and want to keep the inputs of these compu-
tations private. We formalized a rigorous definition that models all the essen-
tial security properties, and we showed an efficient instantiation for interesting
classes of computations based on techniques of the Groth-Sahai proof system.
Furthermore, we proposed a digital signature scheme that enjoys the accountabil-
ity properties of our system: the signer can convince an auditor that the secret
signing key and the signatures are correctly generated (i.e., by using good ran-
domness), and the auditor neither learns the signature key nor the randomness
used for the signatures. For future work, it would be interesting to explore exten-
sions of our scheme to provide accountability for other important cryptographic
primitives, such as encryption, as well as to investigate efficient instantiations
for richer classes of computations.
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Abstract. Modern web browsers implement a private browsing mode
that is intended to leave behind no traces of a user’s browsing activity
on their computer. This feature is in direct tension with support for
extensions, which can silently void this guarantee.

We create a static type system to analyze JavaScript extensions for
observation of private browsing mode. Using this type system, extension
authors and app stores can convince themselves of an extension’s safety
for private browsing mode. In addition, some extensions intentionally
violate the private browsing guarantee; our type system accommodates
this with a small annotation overhead, proportional to the degree of
violation. These annotations let code auditors narrow their focus to a
small fraction of the extension’s codebase.

We have retrofitted type annotations to Firefox’s apis and to a sample
of actively used Firefox extensions. We used the type system to verify
several extensions as safe, find actual bugs in several others (most of
which have been confirmed by their authors), and find dubious behavior
in the rest. Firefox 20, released April 2, 2013, implements a finer-grained
private browsing mode; we sketch both the new challenges in this imple-
mentation and how our approach can handle them.

1 Introduction

Modern web browsers are feature-rich systems, providing a highly customizable
environment for browsing, running web apps, and downloading content. People
use browsers for a wide variety of reasons, and now routinely conduct sensitive
transactions with them. Accordingly, recent browsers have added support for
so-called private browsing mode, in which the browser effectively keeps no record
of the user’s activities: no history or cache is preserved, no cookies are retained,
etc. The precise guarantee provided by private browsing mode is, however, rather
more subtle, since a strict policy of retaining absolutely no record would preclude
standard browsing activities such as downloading any files.

Ensuring the correctness of private browsing mode is therefore challenging on
its own, but the situation is trickier still. Most browsers support extensions,1
written in JavaScript (JS), that allow users to customize the browser with third-
party code—which run with the browser’s full privileges and can hence also save
∗ This work is partially supported by the US National Science Foundation.
1 These are distinct from plugins such as Flash or Java; we exclude plugins here.

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 57–74, 2013.
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files or other traces of the user’s activity. In short, the presence of extensions
can completely undermine the browser’s privacy efforts.

The extension community is vibrant, with over 60 million daily extension
users, and billions of total installations [16]. The potential privacy harm from
faulty extensions is correspondingly huge. Unfortunately, all three involved
parties—browser authors, extension authors, and end-users—have difficulty prop-
erly protecting end-users from these problems. For browser authors, there is no
universally safe default: running extensions automatically is clearly unsafe, but
disabling them by default would also disable extensions such as AdBlock, which
serve to enhance the overall privacy of the browser! Moreover, users currently
have no way to make an informed decision about which extensions to re-enable.
And worse still, even extension authors do not fully understand what private
browsing mode entails: in the course of this work, for instance, one extension
author we contacted replied, “when I wrote [the extension], the private browsing
stuff didn’t exist (to be honest, I’m only peripherally aware of it now).”

To date, browser vendors—primarily Mozilla and Google, whose browsers fea-
ture the most sophisticated extension support—provide extension authors with
only rather vague guidelines on proper behavior when in private browsing mode.
Mozilla enforces its guidelines via manual code audits on all the extensions up-
loaded to their site. Unfortunately, these audits are a bottleneck in the otherwise-
automated process of publishing an extension [34, 35]. It is also possible for
violations—sometimes flagrant ones [23]—to slip through, and our work finds
more violations, even in extensions that have passed review and been given a se-
curity check. Moreover, if policies ever changed, Mozilla would face the daunting
task of re-auditing thousands of extensions.

Contributions

We propose a new mechanism for verifying that extensions behave properly
in private browsing mode. Our approach uses a lightweight type system for JS
that exposes all potentially privacy-violating actions as type errors: the lack of
type errors proves the extension is privacy-preserving. Authors can tell the type-
checker precisely which errors to ignore, and only these annotations must then
be audited in a security review. This paper makes the following contributions:

– We design a type system that segregates “potentially unsafe” code from
“provably safe” code. Our system is lightweight—we typecheck only the code
that may run in private browsing mode, and extension authors must only
annotate code that is not provably safe. Most utility code is easily safe and
requires no annotation. (Section 4)

– We implement our approach for the extension apis found in Mozilla Firefox.
Ascribing types to Firefox’s apis is non-trivial; the types must match their
quirky idioms with high fidelity in order to be useful. (Section 5)

– We evaluate our system by retrofitting type annotations onto 12 real-world
extensions. Relatively few annotations are needed. We verify six extensions
as safe, finding private-browsing (but not necessarily privacy) violations in
the rest; three were confirmed by their authors as bugs. (Section 6)
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Due to page limits, we necessarily elide detailed examples of our approach;
full details can be found in the companion technical report [20].

2 Background: Extensions and Privacy

Browser extensions define both ui and behavior, the former written in markup
that varies between browsers and the latter written in JavaScript. Though inter-
esting in its own right [18], the ui code is essentially inert markup and therefore
largely irrelevant for our security concerns here. We present a brief overview of
how extensions are written in Firefox and Chrome.

2.1 Classic Firefox Extension Model

Firefox extensions define their functionality in JS, and trigger it via event han-
dlers in the markup of their ui. These event handlers can use the same dom meth-
ods as typical web pages, but in addition, they are given a suite of apis providing
low-level platform features such as file-system access and process management,
as well as access to history and preferences, and many other functions. These
apis are obtained via a factory; for example, the following constructs a file object:
var file = Components

.classes["@mozilla.org/file/local;1"]

.createInstance(Components.interfaces.nsILocalFile);

The Components.classes array contains “contract IDs” naming various avail-
able object types, mapped to factories for constructing instances. As of ver-
sion 13, Firefox defines 847 contract IDs and 1465 interfaces: a huge api surface.

One of these apis, Components.interfaces.nsIPrivateBrowsingService, al-
lows code to check if it is running in private-browsing mode, and to cause the
browser to enter or exit private-browsing mode. The former check is essential
for writing privacy-aware code; the latter methods are particularly troublesome
(see Section 5).

2.2 Chrome and Jetpack Extension Model

The traditional security response to such a situation is to lock down and nar-
row the api surface area. Chrome’s architecture has done so. The back-end of
a Chrome extension is written against a much smaller api: a mere 26 objects
to access bookmarks, cookies, tabs, etc [11]. Though there are no apis to access
the filesystem directly, there are experimental apis for local storage, and exten-
sions have unrestricted access to cross-origin XHR: extensions can still persist
state. This relatively spartan api means Chrome extensions are inherently less
capable than Firefox ones, and despite that they can still violate incognito-mode
guarantees. In particular, an extension can create an implicit channel that leaks
sensitive data from an incognito tab to a concurrent public one; from there the
data can easily be saved to disk. See Section 3.2 for further discussion.
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In a similar vein, Firefox has been working on a new extension model, known as
“jetpacks” or “SDK addons”. These extensions are a hybrid: they have access to a
small api similar to Chrome’s, but if necessary can get access to the Components
object and access the rest of the platform. Such access is discouraged, in favor
of enhancing the SDK apis to obviate the need.

3 Subtleties of Private Browsing Mode

The intuitive goals of the various private browsing mode implementations are
easy to state, but their precise guarantees are subtly different. In particular,
the security versus usability trade-offs of private browsing mode are particularly
important, and impact the design.

3.1 Usability Trade-Offs in Specifying Private Browsing Mode

Private browsing mode is often described as the browser “not remembering any-
thing” about the current session. One implementation approach might be to pro-
hibit all disk writes altogether. Indeed, the initial planning for Firefox’s private
browsing mode [22] states, “The bullet-proof solution is to not write anything
to disk. This will give users maximum confidence and will remove any possible
criticism of the feature from security experts.”2

However, the high-level intent of private-browsing mode is a statement about
the state of users’ computers after their sessions have terminated; it says nothing
about what happens during their sessions. In particular, a user might reasonably
expect the browser to “work like normal” while browsing, and “forget” everything
about the session afterward. Such a private-browsing implementation might well
handle many forms of persistent state during the session on behalf of the user,
such as history, cookies, or cache. Additionally, a user can ask the browser ex-
plicitly to take certain stateful actions, such as downloading a file or updating
bookmarks. Therefore, simply turning off persistence apis is not an option.

3.2 Mode Concurrency and Switching

How isolated is private browsing? Chrome (and now Firefox; see Section 8) allows
users to have both “normal” and “incognito” windows open concurrently; can
this concurrency be exploited to leak data from private browsing? Similarly, can
an extension hoard data in private browsing mode, and then release it when the
window switches to normal mode?

The mitigation for this attack differs in its details between the two browsers,
but amounts to isolating extensions’ state to within a single window, which is
then the unit of normal or private modes. In particular, all the scripts that imple-
ment the behavior of Firefox windows run in the context of each window.3 When
2 Even these precautions may not suffice: virtual memory might swap private browsing

mode information to persistent storage [3].
3 The Firefox expert might know about “backstage pass” contexts, which can persist.

Such contexts are internal to Gecko and to our knowledge cannot be intentionally
accessed by script. Even if they could, we can reflect this in our typed apis.
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earlier versions of Firefox transition between modes, they close all currently-open
private windows and re-open the public ones from the prior session. Crucially,
this means extensions’ state is effectively destroyed and re-initialized as these
windows are opened, so extensions cannot passively hoard data and have it auto-
matically leak into public mode. Instead, they must actively use apis to persist
their data, and we detect and flag such uses.

In Chrome, extensions are partitioned into two pieces: a background task
running in a standalone context, and content scripts running in the context of
individual pages. The background task can execute privileged operations, but
cannot obtain data about the user’s open pages directly. Instead, the content
script must send such data to the background task over a well-specified api, and
again we can detect and flag such uses.

In short, browsers are engineered such that there is no implicit communica-
tions channel between private-mode windows and public ones. Persisting any
data from one to the other requires explicitly using an api to do so, and our
system is specifically designed to raise warnings about just those apis. Accord-
ingly, for the remainder of this paper, we can safely assume that the presence
or absence of private mode is effectively constant while analyzing an extension,
because it is constant for the duration of any given JS context. (We describe how
our approach may adapt to Firefox’s new design in Section 8.)

4 Our Approach: Type-Based Extension Verification

We assume that the browser vendor has correctly implemented private-browsing
mode and focus on whether extensions violate it. We perform this analysis
through a type system for JS. In particular, any accesses to potentially harm-
ful apis must be syntactically marked in the code, making the reviewers’ job a
simple search, rather than a reading of the entire extension. Furthermore, we
define an affirmative privacy burden: rather than require all developers to an-
notate all code, we require annotations only where code might violate private
browsing expectations. Our type system is based on TeJaS, a type system for
JS [14], with several variations.

4.1 Informal Description

Type systems are program analyses that determine whether a semantic property
holds of a given program, based on that program’s syntactic structure. A type
system is comprised of three parts: a type language for describing the types of
expressions in the program, a type environment assigning types to the predefined
apis, and a type checker that takes as input a program to be checked and the
type environment, and then attempts to validate the program against a set of
rules; programs that pass the typechecker possess the desired semantic property.

Our particular type language defines a type, @Unsafe, which our environment
assigns to the potentially-unsafe apis (e.g., file.create) to prevent them from
being called, and to the potentially-unsafe objects (e.g., localStorage) to pre-
vent their properties from being accessed. This can be quite refined: objects may
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contain a mix of safe and unsafe methods. For example, in our system, it is per-
fectly fine to open and read from existing files, but it is unsafe to create them;
therefore, only the first line below causes an error:
file.create(NORMAL_FILE_TYPE, 0x644);
var w = file.isWritable();

The type checker will complain:
Cannot dereference an @Unsafe value at 1:0-11 (i.e., file.create).

In response, the programmer can: 1) rewrite the code to eliminate the call to
file.create, or 2) prove to the type checker that the code is never called in
private browsing mode, or 3) “cheat” and insert a typecast, which will eliminate
the error report but effectively flag the use for audit. Often, very simple changes
will suffice as proof:
if (WeAreNotInPrivateBrowsingMode()) {

file.create(NORMAL_FILE_TYPE, 0x644);
}
var w = file.isWritable();

(We show in Section 4.4 how to implement WeAreNotInPrivateBrowsingMode().)

4.2 The Type System Guarantee

Extensions that have been annotated with types and pass the typechecker enjoy
a crucial safety guarantee. This guarantee is a direct consequence of TeJaS’s
own type-safety theorem [14], the soundness of Progressive Types [29], and the
correctness of our type environment:

If an extension typechecks successfully, using arbitrary type annota-
tions (including @Unsafe), and if an auditor confirms that any “cheat-
ing” is in fact safe, then it does not violate the private-browsing
mode invariants. Moreover, the auditor must check only the “cheat-
ing” code; all other code is statically safe.

In the following subsections, we explain how the typechecker recognizes the
example above as safe, and make precise what “cheating” is and why it is some-
times necessary.

4.3 Type System Ergonomics

A well-engineered type system should be capable of proving the desired proper-
ties about source code and be flexible enough to prove others, with a minimum
of invasive changes to the code. Typically, these properties are phrased as preser-
vation and progress guarantees: respectively, well-typed programs preserve their
types at each step of execution, and can make progress without runtime error.
Our goal here is a relatively weak progress guarantee: we only prevent extensions
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from calling @Unsafe apis; other runtime errors may still occur, but such errors
cannot cause private-browsing violations.

As a strawman, one inadequate approach to proving privacy-safety might
be to maintain a list of “banned words”—the names of the unsafe apis—and
ensure that the program does not mention them or include any expressions that
might evaluate to them. Such an approach inflexiblly prohibits developers from
naming their functions with these banned words. It also proscribes much of JS’s
expressiveness, such as using objects as dictionaries (lest some subexpression
evaluate to a banned word which is then used as a field name).

Another approach might graft checks for @Unsafe calls onto a more tradi-
tional, stronger progress guarantee. This is costly: for example, consider the
information needed to ensure the (safe) expression 1+o.m("x") makes progress.
The type system must know that o is an object with a field m that is a safe func-
tion that accepts string arguments and returns something that can be added to
1. Conveying such detailed information to the type system often requires sub-
stantial annotation4. But this is overkill in our setting: if any of the facts about
the expression above were false, it would likely cause a runtime error, but still
would not call anything @Unsafe .

Instead, we design a type system that can support such precise types, but that
does not force them upon the developer. We provide a default type in our system
that can type everything except the unsafe apis: code that never calls anything
unsafe does not need any annotation. Using such a type relaxes the progress
guarantee to the weaker one above: nonsensical expressions may now typecheck,
but still will never call @Unsafe apis. Developers that want the stronger progress
guarantee can add precise type annotations gradually to their code. The next
subsection explains how our type system achieves this flexibility.

4.4 The Private-Browsing Type System
Preliminaries. Our type system contains primitive types for numeric, null and
undefined values, variadic function types with distinguished receiver parame-
ters (the type of this within the function), regular expressions, and immutable
records with presence annotations on fields. It also contains type-level functions,
equi-recursive types, and reference cells. On top of this, we add support for (un-
ordered) union and (ordered) intersection types. In particular, the type Bool is
the union of singleton types (True + False).

Safe Types. We define a (slightly-simplified) extension type that includes all
possible JS values [31]:

type Ext = rec e . Num + Bool + Undef + Str + Null + Ref {
__proto__ :! Src { },
__code__ :? [e] e ... => e,

* :? e
}

4 Type inference for objects is of little help, as it is often undecidable [25].
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In words, values of type Ext may be null, boolean, or other base types, or muta-
ble objects whose fields, if present, are also of this type. The __proto__ field is
a read-only object (about whose fields we know nothing), while __code__ (when
present) models JS functions, which are objects with an internal code pointer.

Ext is the default type for all expressions, and any Ext-typed code need not be
annotated, justifying our “lightweight” claims. As Section 4.3 mentioned, devel-
opers are free to add more precise types to their code gradually. Any such types
will be subtypes of Ext, meaning that richly-typed code will successfully interop-
erate with Ext-typed code without having to modify the Ext-typed code further.

Marking APIs with the @Unsafe Type. We define a new primitive type
@Unsafe that is ascribed in our initial type environment to all potentially-harmful
apis. This type is unrelated by subtyping to any other types besides Top, Bot
or intersections or unions that already contain it. Accordingly, any attempts to
use values of this type will cause type errors: because it is distinct from function
types it cannot be applied; because it is distinct from object types it cannot be
dereferenced, etc. @Unsafe values can be assigned to variables or fields, provided
they have also been annotated as @Unsafe.

Checking for Private-Browsing Mode. Our efforts to segregate @Unsafe
values from safe Ext code are overzealous: we do not need to prevent all usages
of @Unsafe values. Recall the revised example from Section 4.1: code that has
checked that it is not in private-browsing mode may use @Unsafe values.

To capture this intuition, we define the typechecking rules for if statements
as follows:

If-True
Γ � c : True

Γ � t : τ

Γ � if c t f : τ

If-False
Γ � c : False

Γ � f : τ

Γ � if c t f : τ

If-Other
Γ � c : Bool

Γ � t : τ Γ � f : τ

Γ � if c t f : τ

For conditionals where we statically know whether the condition is True or
False, we only typecheck the relevant branch: the other branch is statically
known to be dead code. Otherwise, we must typecheck both branches. Under
these rules the dead code could be arbitrarily broken; nevertheless it will never
run. Note that here, “dead code” really means “not live in private-browsing
mode”.

This leads to our key encoding of the nsIPrivateBrowsingService api’s
privateBrowsingEnabled flag. Normally, this flag would have type Bool. But
we only care when it is true; when it is false, it is fine to use @Unsafe values. We
therefore give it the type True. If-True then permits the example in Section 4.1
to typecheck without error.

“Cheating”. As pointed out in Section 3.1, we may want to allow extensions
to use @Unsafe apis even in private-browsing mode, to preserve “normal oper-
ations”. This may be because they do not store “sensitive” information, or be-
cause they are run only in response to explicit user action. Statically determining
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whether information is sensitive is an information-flow problem, a thorny (and
orthogonal) one we deliberately avoid. Moreover, the control flow of browsers is
quite complex [19], making it challenging to link code to the event that triggered
it. We are not aware of any successful efforts to apply static information flow to
real-world JS, and certainly none that also apply to the browser’s control flow.
Instead, we require extension authors to annotate all those uses of @Unsafe val-
ues that cannot statically be shown to be dead code. To do this, we introduce
one last type annotation: cheat τ . When applied to an expression, it asserts the
expression has type τ and does not actually check its type.

Obviously, cheating will let even unsafe extensions typecheck. Therefore all
cheat typecasts must either be manually audited by a human to confirm their
safety, or verified by more sophisticated (perhaps expensive) runtime systems.
For now we assume a human auditor; by having these annotations we let future
researchers focus on the remaining problems of fully-automated audit.

5 Theory to Practice in Firefox

We have laid out our technique that developers would ideally use from the out-
set as they develop new extensions, and the theorem in Section 4.1 ensures that
their efforts would be worthwhile. In this section, we explain the details of in-
stantiating our system for Firefox’s apis. The companion technical report [20]
contains additional details and worked examples.

5.1 Translating Typed Interfaces

Most of Mozilla’s apis are defined in typed interface files (written in a variant
of WebIDL5), which we parse into our type language. The translation begins
smoothly: each interface is translated as a read-only reference to an object type;
this ensures that extensions cannot attempt to delete or redefine built-in meth-
ods. Functions and attributes on interfaces are then translated as fields of the
appropriate type on the translated object types.

However, these IDL files have three problems: they can be overspecific, un-
derspecific, or incomplete. For example, a function declared to expect a string
argument can in fact be given any JS value, as the glue code that marshals JS
values into C++ will implicitly call toString on the value. By contrast, func-
tions such as getElementsByClassName return an nsIDOMNodeList, whereas the
semantics of the method ensure that all the nodes in that list are in fact of
the more specific type nsIDOMElement. Finally, the contents of the Components
object are not specified in any interface, but rather dynamically constructed in
C++ code; similarly, some XUL elements are defined entirely dynamically by XBL
code. We need a mechanism to address each of these difficulties.

Rather than hard-code a list of corrections, we can exploit two existing IDL
features for a flexible resolution. First, IDL permits “partial” interfaces, which

5 http://www.w3.org/TR/WebIDL/
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are simply inlined into the primary definition at compilation time. Second, IDL
syntax includes “extended attributes” on interface members, functions and their
parameters, which may affect the translation to types: for instance, [noscript]
members are not included in the JS environment, and [array] parameters are of
type Array<τ> rather than τ . For missing types, we create a “type-overrides” file
and add new type definitions there. For over- and under-specific types, we define
a new extended attribute [UseType(τ)] to replace the type specified by the
IDL, and in the type-overrides file define partial interfaces whose sole purpose
is to revise the shortcomings of the input IDL. For example, we define a “DOM-
ElementList” type, and override getElementsByClassName to return it instead.

5.2 Encoding @Unsafe Values and the Flag for Private
Browsing Mode

We define two more IDL attributes, [Unsafe] and [PrivateBrowsingCheck],
and use them to annotate the relevant properties in the Mozilla environment.
Per Section 4, these are translated to the types @Unsafe and True, respectively.

As mentioned in Section 2.1, the nsIPrivateBrowsingService object also
allows extensions to switch Firefox into and out of private browsing mode. Even
though Firefox does not wholly restart, it does effectively recreate all JS contexts.
Nevertheless, we consider exiting private-browsing mode to be poor behavior for
extensions, so we mark these apis as @Unsafe as well. Any benign uses of this
api must now be cheated, and their use justified in a security review.

5.3 Encoding the Components Object

All of Mozilla’s apis are accessed via roughly this idiom:
Components.classes[cID].createInstance(Components.interfaces.interfaceName)

An accurate but imprecise type for this function would simply be nsIJSIID ->
nsISupports: the argument type is an “interface ID”, and the result is the root
type of all the Mozilla interfaces. But this function can return over 1400 differ-
ent types of objects, some (but not all) of which are relevant to private-browsing
mode. We therefore need a more precise return type, and since this function is
used ubiquitously by extension code, we must avoid requiring developer anno-
tations. The key observation is that the set of possible return types is known
a priori, and the specific return type is selected by the provided interface ID
argument. This is known as “finitary overloading” [26], and is encoded in our
system with intersection types.6

6 Case Study: Verifying Firefox Extensions

To evaluate the utility and flexibility of our type system, two of the authors (both
undergraduates with no experience with engineering type systems) retrofitted
6 Firefox 3’s new api, Component.utils.import("script.js", [obj]), is not

amenable to similar static encoding and consequently requires manual audits.
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Extension Size Violates Confirmed Violates
PBM? by author? privacy?

The Middle Mouse Button v1.0 51 No
Print v0.3.4 59 No
Rapidfire v0.5 119 No
Commandrun v0.10.0 147 Yes Yes Yes
Open As Webfolder v0.28 153 Yes No No
CheckFox v0.9.2 188 No
The Tracktor Amazon Price Tracker v1.0.7 232 No
Fireclam v0.6.7 437 Yes No No
Cert Viewer Plus v1.7 974 Yes No Yes
Textarea Cache v0.8.5 1103 No
ProCon Latte Content Filter v3.3 2015 Yes Yes Yes
It’s All Text v1.6.3 2623 Yes Yes Yes
Total 8101 6 3 4

Fig. 1. Extensions analyzed for private-browsing violations: note that not all private-
browsing violations are actual privacy violations. The technical report [20] has more
details on the extensions and annotations, and provides more excerpts.

type annotations onto 12 existing Firefox extensions, chosen from a snapshot of
Firefox extensions as of November 2011. Some were selected because we expected
them to have non-trivial correctness guarantees; the rest based on their brevity
and whether they mentioned unsafe apis. All extensions had passed Mozilla’s
security review: ostensibly they should all comply with private-browsing mode.
We had no prior knowledge of the behavior or complexity of the extensions
chosen beyond their description.

The results are summarized in Fig. 1. We analyzed 6.8K non-comment lines
of code (8.1KLOC including comments and our type definitions), and found
private-browsing violations in 6 of the 12 extensions—of which only 4 truly vi-
olate privacy. Below, we highlight interesting excerpts from some of these ex-
tensions.

6.1 Accommodating Real-World Extension Code

Our type system is designed to be used during the development process rather
than after, but existing extensions were not written with our type system in
mind. We therefore permitted ourselves some local, minimal code refactorings
to make the code more amenable to the type checker. These changes let us avoid
many typecasts, and (arguably) make the code clearer as well; we recommend
them as best practices for writing new code with our type system.

First, we ensured that all variables were declared and that functions were
defined before subsequent uses. Additionally, developers frequently used place-
holder values of the wrong type—null instead of -1, or undefined instead of
null—that we corrected where obvious.

Second, our type system infers the type of variables from the type of their
initializer, for which it infers the strictest type it can. For instance, initializers of
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false, "foo" and null yield types False, /foo/ (the regular expression match-
ing the literal string), and Null respectively—rather than Bool, String, and
whichever particular object type is eventually used. This can be useful: distin-
guishing True from False values lets us elide dead branches of code and thereby
check for private browsing mode, and similarly, distinguishing string literals from
each other enables support for JS objects’ first-class field names [28]. Sometimes,
however, this is overly-specific. For instance, a truly boolean-valued variable
might be initialized to true and later modified to false; if its type was inferred
as True, the subsequent assignment would result in a type error! In such cases,
we therefore manually annotate the initializers with their more general types.

Third, we replaced the idiomatic field-existence check if (!foo.bar) with if
(!("bar" in foo)), as the typechecker will complain when the field does not
exist in the former, whereas the latter has the same dynamic effect but does
not impose any type constraints. (When the field name is known to exist, this
idiom also checks whether the field’s value is not null, zero or false; we did not
rewrite such usages.)

Additionally, we permitted ourselves two other refactorings to accommodate
weaknesses in our current prototype system. First, our system does not model
the marshaling layer of Mozilla’s api bindings; for instance, passing a non-string
value where a string parameter is expected will yield a type error. We therefore
added (""+) to expressions to ensure that they had type Str.

Second, Mozilla apis include QueryInterface methods that convert the pro-
vided value from one interface to another. Code using these functions effectively
changes the type of a variable during the course of execution. Our type system
cannot support that; we refactored such code to use auxiliary variables that
each are of a single type.

6.2 Example Extensions

In the process of making these extensions pass the type checker, we were forced
to cheat 38 call-sites to @Unsafe functions as innocuous. Those 38 call sites are
potential privacy violations appearing in five extensions, of which we think four
truly violate private browsing mode (the other uses @Unsafe functions to setup
initial preferences to constant—and therefore not privacy-sensitive—values). We
have contacted the authors of these extensions, and two have responded, both
confirming our assessment. A sixth extension uses cheats slightly differently, and
the process of typechecking it revealed a large security hole that we reported: it
was confirmed by its author and by Mozilla, and was promptly fixed. We high-
light three of these extensions—one (almost) safe and two not—to highlight how
subtle detecting privacy violations can be. The companion technical report [20,
section VI] contains full details of the necessary annotations.

Almost Safe: Textarea Cache [32]. This extension maintains backups of
the text entered by users into textareas on web pages, to prevent inadvertently
losing the data. Such behavior falls squarely afoul of Mozilla’s prohibition against
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recording data “relating to” web pages in private browsing mode. The developer
was aware of this, and included a check for private-browsing mode in one of
the extension’s core functions:

textareaCache.inPrivateBrowsing = function () {
if (this._PBS) return this._PBS.privateBrowsingEnabled;
else return true; // N.B.: used to be false

};
textareaCache.beforeWrite = function(node) {
if (this.inPrivateBrowsing()) return;
...
this.writeToPref(node);

};

Our system recognizes that inPrivateBrowsing has type () -> True, and there-
fore determines the @Unsafe call on line 9 is dead code. (Note that this is strictly
more expressive than checking for the literal presence of the private-browsing
flag at the call-site of the @Unsafe function: the flag has been wrapped in a
helper function that is defined arbitrarily far from the beforeWrite function,
yet beforeWrite is itself correctly typechecked as safe.) Several other unguarded
code paths, however, result in writing data to disk, and these are all flagged as
type errors by our system. Tracing carefully through these calls reveals that
they are all writing only pre-existing data, and not recording anything from
the private session.

An interesting subtlety arises in this code due to backward-compatibility:
This extension is intended to be compatible with old versions of Firefox that
predate private browsing mode, and in such versions, clearly inPrivateBrowsing
is false. Accordingly, the default on line 4 used to be false, which prevents
the function from having the desired return type. Annotating and typechecking
this code directly revealed this mismatch; once changed to true, the modified
code validates as safe.

A cleaner, alternate solution exists if we allow ourselves to refactor the ex-
tension slightly. As written, the _PBS field is initialized lazily, and so must have
type nsIPrivateBrowsingService + Undef. That Undef prevents the type sys-
tem from realizing the return false is dead code. If we rewrite the initializer
to be eager, then _PBS has type nsIPrivateBrowsingService, which is never
undefined, and again the function typechecks with the desired return type.

Unsafe: ProCon Latte Content Filter [24]. This “featured” (i.e., nomi-
nated as top-quality7) extension maintains keyword-based white- and black-lists
of sites. A user can add URLs to these lists that persist into subsequent brows-
ing sessions; this persistence is achieved by apis that store preferences in the
user’s profile. These apis all are flagged by the typechecker as @Unsafe—and
as we annotated this extension, we determined that these apis were reachable
from within private browsing mode. In other words, the type checker helped
7 https://addons.mozilla.org/en-us/developers/docs/policies/recommended

www.it-ebooks.info

https://addons.mozilla.org/en-us/developers/docs/policies/recommended
http://www.it-ebooks.info/


70 B.S. Lerner et al.

determine that URLs could be added to these lists even while in private brows-
ing mode, a clear (or possibly deliberate) policy violation. The extension author
confirmed that this behavior is a bug: URLs were not intended to persist past
private browsing mode.

Unsafe: Commandrun [1]. It is obvious that the Commandrun extension
must be unsafe for private browsing. In fact, it is egregiously unsafe, as it allows
an arbitrary website to spawn a process (from a whitelist configured by the user)
and pass it arbitrary data. (Even worse, the version of this extension we analyzed
had a further flaw that would allow websites to bypass the whitelist checking.)
Yet counterintuitively, this extension produces no errors about calling @Unsafe
functions: no such calls are present in the source of the extension! Instead, the
extension creates an object that will launch the process, and then injects that
object into untrusted web content (edited for brevity):

CommandRunHandler = function() {
this.run = /*:cheat @Unsafe*/ function(command, args){ ... };
this.isCommandAllowed = function(command, args){ ... };

};
CommandRun = {
onPageLoad: function(event) {

var win = event.originalTarget.defaultView.wrappedJSObject ;
win.CommandRun = new CommandRunHandler();

} };

The CommandRunHandler.run function (line 2) is annotated as @Unsafe, but it
is never directly called from within this extension, so it does not directly cause
any further type errors.

The true flaw in this extension occurs where the object is leaked to web content
on lines 7 and 8, and our type system does raise an error here. Gecko, by default,
surrounds all web-content objects in security wrappers to prevent inadvertent
tampering with them, but exposes the actual objects via a wrappedJSObject
field on the wrappers. Our type environment asserts that such wrapped objects
must only contain fields of type Ext, but the CommandRunHandler object has
an @Unsafe field, and therefore the assignment on line 8 causes a type error.
The only way to make this code type-check is to cheat either the reference to
wrappedJSObject or to the CommandRunHandler, thereby exposing this flaw to
any auditor. We contacted the author of this extension, who promptly confirmed
and fixed the bugs.

7 Related Work

Our work clearly builds upon a rich area of security research and a growing
body of work analyzing JS. We consider each in turn.
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7.1 Security-Related Efforts

Many recent projects relate to extension security, authoring, or analysis. Several
entail pervasive changes within the browser [5, 8–10]; we focus on techniques that
do not need such support, and briefly describe the most relevant such projects.
None of them handle our present use cases.

ADsafety. The closest relative of our work is ADsafety [27], which uses Te-
JaS [14] to verify the correctness of ADsafe [2]. That work focused primarily
on verifying the ADsafe sandbox itself, and then used a type similar to our
Ext to typecheck “widgets” running within that sandbox. Unlike extensions
here, the environment available to widgets is entirely Ext-typed; indeed, the
whole purpose of a sandbox is to eliminate all references to unsafe values! The
extension-safety problem here is more refined, and permits such unsafe values
in non-private execution.

IBEX. Guha et al. [13] develop Fine, a secure-by-construction language for
writing extensions. Fine is pure, dependently-typed, and bears no resemblance
to idiomatic JS. Extensions must be (re-)written entirely in it in order to be
verified. Accordingly, the barrier to entry in their system is quite high, and they
explicitly do not attempt to model the browser apis available besides the dom.

VEX. Bandhakavi et al. [4] design a system that statically attempts to discover
unsafe information flows in extension code, for instance from unsanitized strings
to calls to eval. By their own admission, their system is neither sound nor
complete: they explicitly check only for five flow patterns in extensions and so
miss any other potential errors, and any errors they raise may still be false
positives. This provides no reliable guarantee for browser vendors. Additionally,
they do not address the conditional safety of api usage which is the hallmark
of the private-browsing mode problem.

Beacon. Karim et al. [17] design an analysis for Mozilla Jetpack extensions
(see Section 2.2) to detect capability leaks, where privileged objects (such as
unmediated filesystem objects) are exposed to arbitrary extension code. While
laudable, this approach does not work for detecting private-browsing violations:
filesystem capabilities are entirely permitted in public mode. Additionally, their
tool is unsound, as it does not model reflective property accesses.

7.2 Language-Level Analyses

Progressive Types. As mentioned, our type system is based on that of Guha
et al. [14], with enhancements that simplify reasoning about our relaxed progress
guarantees. These enhancements are a form of progressive typing [29], in which
the programmers using a type system can choose whether to defer some static
type checks until runtime, in exchange for a easier-to-satisfy type checker.
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Type Systems for JS. TeJaS is one of a handful of type disciplines for JS. The
two most fully-featured are the Closure compiler [12] and Dependent JS [7]. The
former is informally defined, and makes no claims that its type system entails
a soundness guarantee. Further, the type language it uses is too coarse to help
with the problem examined here. Dependent JS, by contrast, uses dependent
types to capture challenging idioms in JS, such as the punning between arrays
and dictionaries, and strong updates that change variables’ types. However, the
largest example the authors checked using Dependent JS is barely larger than
the third-smallest extension we examine. Moreover, their language imposes huge
annotation overheads: the type annotations are comparable in length to the
original program! In short, while powerful, such a system is impractical and
overkill for our purposes, and we can achieve our desired guarantee without the
proof obligations entailed by dependent type systems.

Language-Based Security. Schneider et al. [30] survey the broad area of
language-based security mechanisms. Cappos et al. [6] build a language-based
sandbox for Python, such that even privileged scripts cannot access resources
they should not. And other sandboxes exist for JS along the lines of ADsafe [2, 21,
33] to try to corral web programs. But none of these approaches explicitly address
the modal nature of enforcement that we need for private-browsing guarantees.

Certified Browsers. Jang et al. [15] present an implementation of a browser
kernel implemented in Coq, which allows them to formalize desirable security
properties of the browser kernel such as non-interference between separate tabs,
and the absence of cookie leakages between sites. Their current development
is for a fixed-function browser; enhancing it to support extensions and private-
browsing mode are intriguing avenues of future work.

8 Breaking News: It Gets Worse!

Firefox 20—released on April 2, 2013—has adopted per-window private browsing
granularity (à la Chrome). Unfortunately, existing Firefox apis enable extensions
to access all windows, which now include both public and private ones; we have
confirmed that this allows sensitive data to leak. Moreover, one such api is used
over 6,400 times in our corpus: we expect that extensions using this api—even
those using it safely in earlier Firefox versions—may now inadvertently violate
privacy. We have contacted Mozilla, who indicate that closing this leak (and
others) may not be technically feasible.

However, we believe our approach still works. Instead of ignoring non-private-
browing code, we must analyze it. We can define another type environment in
which inPrivateBrowsing is now False and a different set of apis (e.g., window
enumeration) are marked either as @Unsafe or as returning potentially-@Unsafe
data. Running the type checker in this environment will then flag potential
leakage of private data to public scope.
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Abstract. Privilege separation is a fundamental security concept that has been
used in designing many secure systems. A number of recent works propose re-
designing web browsers with greater privilege separation for better security. In
practice, however, privilege-separated designs require a fine balance between
security benefits and other competing concerns, such as performance. In fact,
performance overhead has been a main cause that prevents many privilege sepa-
ration proposals from being adopted in real systems. In this paper, we develop a
new measurement-driven methodology that quantifies security benefits and per-
formance costs for a given privilege-separated browser design. Our measurements
on a large corpus of web sites provide key insights on the security and per-
formance implications of partitioning dimensions proposed in 9 recent browser
designs. Our results also provide empirical guidelines to resolve several design
decisions being debated in recent browser re-design efforts.

Keywords: Privilege separation, browser design, measurement.

1 Introduction

Privilege separation is a fundamental concept for designing secure systems. It was first
proposed by Saltzer et al. [31] and has been widely used in re-designing a large number
of security-critical applications [9, 12, 28]. In contrast to a monolithic design, where
a single flaw can expose all critical resources of a privileged authority, a privilege-
separated design groups the components of a system into partitions isolated from each
other. According to the principle of least privilege, each partition is assigned the mini-
mum privileges it needs for its operation at run-time. Intuitively, this reduces the risk of
compromising the whole system, because the attacker only gains a small subset of priv-
ileges afforded by the compromised component. Common intuition suggests that the
more we isolate components, the better. We question this intuition from a pragmatic
standpoint, and systematically measure the security benefits and costs of privilege-
separating large-scale systems (such as a web browser) retroactively. Our empirical
data suggests that “the more the better” premise is not categorically true. Instead, we
advocate that practical designs may need to balance several trade-offs in retrofitting
least privilege to web browsers.

Web browsers are the underlying execution platform shared between web applica-
tions. Given their importance in defeating threats from the web, web browsers have
been a prime area where privilege separation is being applied. For instance, numerous
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clean-slate browser proposals [9,18,20,21,23,24,33,35] and commercial browsers like
Bromium [2] and Invincea [3] are customizing privilege separation boundaries in web
browsers. However, excessive isolation between code components also incurs perfor-
mance cost. Ideally, a practical browser design should balance security gains and the
additional performance costs incurred by a new design. In browser design proposals,
many important design dimensions are actively being debated. Should browsers put
each web origin in its own partition? Should browsers host sub-resources (such as im-
ages, SVG, PDF, iframes) of a web page in separate partitions? Should sub-resources
belonging to one origin be clubbed into the same partition? Should two code units (say,
the JavaScript engine and the Document Object Model (DOM)) be assigned to different
partitions? A systematic methodology to understand the empirical benefits and costs
achieved by a partitioning strategy is important, but has not been investigated in depth.

Our Study. In this work, we study security and performance implications of choosing
one or more of these partitioning dimensions in browser designs. To do this, we first
extract a conceptual “blueprint” of the web browser that captures the logical compo-
nents of a typical web browser. Then, we empirically measure a variety of parameters
that measure security gains and performance costs of separating these logical compo-
nents. This measurement is performed on a real web browser (Mozilla Firefox) using
a large-scale test harness of the Alexa Top 100 web sites. Our measurements enable us
to estimate the security benefits gained against the performance costs that arise when
choosing a partitioning strategy.

Based on empirical data, we draw several inferences about the benefits and costs of
design dimensions proposed in 9 recent browser design proposals. Our measurements
lend pragmatic insights into some of the crucial design questions on how to partition
web browsers. For example, we find that using separate OS processes to load cross-
origin sub-resources requires 51 OS processes per web site, while giving marginal im-
provement in security for the increased performance cost. As another example, we find
that isolating the JavaScript engine and the DOM creates a performance bottleneck,
but also affords significant security gains. Many such empirical results are quantified
in Section 5. Our measurements identify key performance bottlenecks in the browser
designs we study, and we find that several of the bottlenecks identified correlate well
with browser implementation efforts for design proposals that have public implementa-
tions. We hope our results and methodology serve as a baseline for further research on
the problem, and are instructive in identifying early bottlenecks in upcoming browser
designs.

Methodology. Browsers are examples of large-scale systems, with millions of lines-
of-code. For example, the browser we choose as the blueprint in this work (Firefox)
has a development history of 8 years and comprises of over 3 million lines of code. If
a security architect is tasked with privilege-separating an existing browser (like
Firefox), how does she estimate security gains and performance bottlenecks of any
particular privilege-partitioning configuration? In this paper, we take a step towards
quantitatively studying this question with empirical data measurements. In previous
research on privilege-separated browsers, performance measurements have been “after-
the-fact”, i.e., after a chosen partitioning configuration has been implemented. In this
work, we develop and report on a more rigorous measurement-based methodology
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that estimates the security benefits and performance costs, without requiring a time-
intensive implementation. Our methodology precisely formulates back-of-the-envelope
calculations that security architects often use, and thereby systematizes a typical se-
curity argument with empirical rigor. Most prior works on browser re-design report
performance on a small scale (typically on 5-10 sites). Our data-driven methodology
leads to design decisions that are backed by a large-scale dataset.

Our methodology only aims to estimate weak upper bounds on the performance in-
curred by a proposed browser partitioning scheme. We recognize that these estimates
can, of course, be reduced in actual implementations with careful optimizations and
engineering tricks. However, our methodology lets us identify the likely bottlenecks
where significant engineering effort needs to be invested. The metrics we evaluate in
this work are not new and, in fact, we only systematize the measurement of quantities
that prior works base their security arguments on. For instance, most prior works (some-
what informally) argue security based on two artifacts: (a) the reduction in size of the
trusted computing base (TCB), and (b) the reduction in number of known vulnerabil-
ities affecting the TCB after the re-design. To unify the security arguments previously
proposed, we systematically measure these quantities using real-world data — 3 million
lines of Firefox code and its corresponding bug database (comprising 8 years of Firefox
development history).

Contributions. Our goal in this paper is not to suggest new browser designs, or to
undermine the importance of clean-slate designs and measurement methodologies pro-
posed in prior work. On the contrary, without extensive prior work in applying privilege
separation of real systems, the questions we ask in the paper would not be relevant.
However, we argue to “quantify” the trade-offs of a privilege-separated design and en-
able a more systematic foundation for comparing designs.

In summary, we make the following contributions in this paper:

– We propose a systematic methodology to quantify security and performance pa-
rameters in privilege-separated designs, without requiring an implementation of
the design.

– We perform a large-scale study on Firefox (>3 million LOC) on the Alexa Top 100
web sites.

– We draw inferences on the likely benefits and costs incurred by various partition-
ing choices proposed in 9 recent browser designs proposals, giving empirical data-
driven insights on these actively debated questions.

2 Overview

In this section, we introduce the concept of privilege separation, and then discuss
privilege-separated designs in web browsers, including their goals and various design
dimensions.

2.1 Privilege Separation in Concept

Privilege separation aims to determine how to minimize the attacker’s chances of ob-
taining unintended access to other part of the program. We consider each running
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instruction of a software program belongs to a code unit and a run-time authority. A
code unit is a logical unit of program code, such as a software component, a function
or a group of statements. The run-time authority can be a user ID or a web session, etc.
Specifically, let pi be the probability for any code unit or authority other than i to get
unintended access to resources ri belonging to i. From a purely security perspective, the
goal is to minimize the attacker’s advantage. We can model this advantage using a va-
riety of mathematical functions. For instance, an attacker’s worst-case advantage from
compromising a single vulnerability may be defined as max(pi); a privilege-separated
design is good if it yields a large value of (1 −max(pi))

1. However, as we argue in
this paper, a practical privilege-separated design often departs significantly from this
conceptual formulation. We argue that this purely security-focused viewpoint ignores
the implicit performance costs associated with partitioning. Rather than focusing on
mathematical modeling, we focus on the key methodology to quantify the benefits of a
privilege partitioning scheme in this work.

2.2 Privilege Separation in Browsers

Blueprint. To discuss trade-offs in partitioning, we use a conceptual blueprint that
shows the various code units in a typical browser. We have manually extracted this
from Mozilla Firefox, a popular web browser, and we show it in Figure 12. We have
confirmed that this conceptual blueprint is also consistent with WebKit-based browsers
and models sufficient details for comparing prior works on browser re-design. This
blueprint intuitively explains the processing of web pages by various browser compo-
nents. A web page is first received by the Network module that prepares content to be
parsed by the HTML parser. The HTML parser creates a DOM, which can then invoke
other execution engines such as the JavaScript engine, CSS, and so on. The legitimate
flow of processed content between components is illustrated by arrows in Figure 1; for
brevity, we skip explaining the details. In a single-process browser, all these compo-
nents execute in the same partition. Web browser designs utilize privilege separation to
isolate the resources owned by different authorities, which are defined next.

Isolating Authorities. Web browsers abstractly manage resources owned by one of the
following authorities: web origins, the system authority, and the user authority. Web
origins correspond to origins [4] of HTML pages, sourced scripts, CSS and so on. The
system authority denotes the privilege of the browser core, also referred to as the chrome
privilege. It has access to sensitive OS resources, such as the file system, network,
display, etc. We associate the user authority to UI elements of the browser, which convey
necessary security indicators to allow them to make sensible security decisions, such as
security prompts, certificate warnings, access to preferences and settings [30].

1 Alternative definitions of attacker’s advantage are easy to consider—for example, considering
the average case with avg rather thanmax. We can assign additional weights to the resources
ri via a severity function S(j, ri) if failure protect ri from j has more severity than other
resources, etc.

2 Security analysts can pick different blueprints in their design; our methodology is largely ag-
nostic to the blueprint used.
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Fig. 1. Browser Blueprint. It shows typical interactions between browser components in process-
ing a web page.

Security Threats. Security vulnerabilities can result in one authority gaining unin-
tended access to resources of another. In web browsers, we can classify threats based
on which authority gains privileges of which other authority.

– CROSS-ORIGIN: Cross-Origin Data & Privilege Leakage, due to vulnerabilities
such as missing security checks for access to JavaScript objects or XMLHttpRe-
quest status, and capability leaks [11].

– WEB-TO-SYS: Web-to-System Privilege Escalation, via vulnerable JavaScript APIs
exposed by the browser components or plugins.

– WEB-TO-COMP: Web-to-Component Privilege Escalation, allowing attackers to
run arbitrary code in vulnerable browser components, consisting of different mem-
ory corruption errors in the browser code.

There are also other categories of browser vulnerabilities. For completeness, we list
them below. However, these are beyond the scope of the same-origin policy and we do
not measure the security benefits of applying privilege separation to mitigate them.

– USER: Confusion of User Authority. These vulnerabilities may allow attackers to
manipulate user interfaces to confuse, annoy, or trick users, hijacking their abilities
in making reasonable security decisions. Recent incidents of mistakenly accepting
bogus or compromised certificates [36] also belong to this category.

www.it-ebooks.info

http://www.it-ebooks.info/


80 X. Dong et al.

Table 1. Privilege Separation in Browsers The table explains different partitioning dimensions in
browser designs. For the right part of the table, same symbols denote the corresponding compo-
nents are in the same partition.

Browser
Isolation
Primitive Partitioning Dimension Plugins JS

HTML
Parser DOM Layout NetworkStorage

Firefox Process Nil Separate ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Chrome Process By Origin, By Component

With Hosting Page
or Separate

⊕ ⊕ ⊕ ⊕ ◦ ◦
Tahoma VMs By Origin With Hosting Page ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Gazelle Process

By Origin, By Sub-resource,
By Component

Separate Per Origin ⊕ ⊕ ⊕ ⊕ ◦ ◦

OP Process By Origin, By Component
Separate Per Origin
& Plugin

⊕ ◦ ◦ ◦� � 


OP2 Process
By Origin, By Sub-resource,
By Component

Separate Per Origin ⊕ ⊕ ⊕ ⊕ � 


IE8/9 Process Per Tab
With Hosting Page
(ActiveX)

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

IBOS Process
By Origin, By Sub-resource,
By Component

Separate ⊕ ⊕ ⊕ ⊕ ◦ �
WebShield Host Nil With Hosting Page ⊕ ⊕ ◦ ◦ ⊕◦ ⊕

– INTRA-ORIGIN: Intra-Web-Origin Data & Privilege Leakage. This category of
browser vulnerabilities results in running code within the authority of a web ori-
gin. These include bugs in parsing malformed HTML content, identifying charsets,
providing HTTP semantics and so on. They can introduce popular forms of web
attacks, such as XSS, CSRF and so on.

Partitioning Dimensions. 9 recent browser designs propose several ways of partition-
ing to mitigate the aforementioned threats. In this paper, we apply systematic method-
ology to study the security and performance trade-offs in these partitioning dimensions.
Table 1 summarizes the design dimensions considered in each browser design, and we
explain these dimensions below.

– By origin: Each origin has a separate partition. This mitigates CROSS-ORIGIN
vulnerabilities between web pages. For example, IBOS [33], Gazelle [35], Google
Chrome [9], OP [20] and OP2 [21] all isolate primarily on origins 3. In Chrome’s
default setting, web pages from different origins but belonging to the same “site
instance”4 are exceptions to this isolation rule.

– By sub-resource: When an origin is loaded as a sub-resource in another origin, say as
an iframe or as an image, web browsers can isolate the sub-resources. This provides
additional isolation between cross-origin resources, especially in mashups that inte-
grate contents from various origins, and prevents CROSS-ORIGIN vulnerabilities
from sub-sources explicitly included by an origin. For example, Gazelle [35] allo-
cates a separate process for each destination origin of the resource and IBOS [33]
uses a separate process for each unique pair of requester-destination origins; Chrome
does not isolate sub-resources.

3 OP and OP2 propose isolating web pages within the same origin, but the same-origin policy
does not recognize such intra-origin boundaries and permits arbitrary access between web
pages of the same origin. From a security analysis perspective, we treat them as the same.

4 Connected web pages from the domains and subdomains with the same scheme. [17].
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– By component: Different components are isolated in different partitions. Web
browsers have proposed isolating individual components that are inadvertently ex-
posed across origins, but do not need the full privileges of the system authority. For
example, the OP browser [20] isolates the HTML parser and the JavaScript engine
in different partitions. This prevents exploits of a WEB-TO-COMP vulnerabilities.
Browsers also isolate components that need heavy access to resources of the system
authority (such as the file system, network) from components that need only access
to web origin resources. For example, Google Chrome [9] and Gazelle [35] separate
components into web components (renderers) and system components (browser
kernels). Partitioning along this dimension prevents WEB-TO-SYS vulnerabilities
in the codebase of renderer partitions.

3 Quantifying Trade-Offs with Empirical Measurements

How do we systematically evaluate the security and performance trade-offs of a given
partitioning configuration? To answer this question, we measure several security and
performance parameters. Our methodology places arguments made previously on a
more systematic foundation backed by empirical data.

3.1 Security Parameters

The goal of measuring security improvements is to estimate the reduction in the like-
lihood of an attacker obtaining access to certain privileged resources, which we in-
troduced as probabilities pi in Section 2.1. Estimating the resilience of software to
unforeseen future has been an open problem [22,25,29]. In this work, our goal is not to
investigate new metrics or compare with existing ones; instead, we aim to systematize
measurements of metrics that have already been proposed in works on privilege separa-
tion. Security analysts argue improvements in security using two metrics: (a) reduction
in TCB, i.e., the size of code that needs to be trusted to protect resource ri, and (b)
reduction in impact of previously known security vulnerabilities 5. Next we explain the
intuitive rationale behind the parameters we adopt in our evaluation. We leave details
on how we measure them to Section 5.

S1: Known Vulnerabilities in Code Units. One intuitive argument is that if a com-
ponent A has more vulnerabilities historically than B, then A is less secure than B.
Therefore, for a given partitioning scheme, we can compute the total number of vul-
nerabilities for code units in one partition as the vulnerability count for that partition.
The smaller the count, the less is the remaining possibility of exploiting that partition
to gain unintended access to its resources.

S2: Severity Weightage. It is important to characterize the impact or severity of vul-
nerabilities. As we discuss in Section 2.2, different vulnerabilities give access to differ-
ent resources. For instance, WEB-TO-SYS vulnerabilities give web attackers full access
to system resources (including all other origins), so they are strictly more severe than

5 Note that these metrics are instances of reactive security measurement, which have been de-
bated to have both advantages [10] and disadvantages [29].
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CROSS-ORIGIN vulnerability. To measure this, we categorize security vulnerabilities
according to their severity.

S3: TCB Reduction. An intuitive argument is that if the code size of a trusted partition
is small, it is more amenable to rigorous formal analysis or security analysis by human
experts. If a resource ri, such as the raw network access, is granted legitimate access
to one component, then the size of the partition containing that component is the attack
surface for accessing ri. In security arguments, this partition is called the trusted com-
puting base (TCB). By measuring the total code size of each partition, we can measure
the relative complexity of various partitions and compute the size of TCB for different
resources6.

3.2 Performance Parameters

The precise performance costs of a privilege-separated design configuration can be
precisely determined only after it has been implemented, because various engineer-
ing tricks can be used to eliminate or mitigate performance bottlenecks. However, im-
plementing large re-designs has a substantial financial cost in practice. We propose a
systematic methodology to calculate upper bounds on the performance costs of imple-
menting a given partitioning configuration. These bounds are weak because they are
calculated assuming a straightforward implementation strategy of isolating code units
in separate containers (OS processes or VMs), tunneling all communications over inter-
process calls as proposed in numerous previous works on browser re-design. This strat-
egy does not discuss any engineering trick that can be used in the final implementation.
We argue that such a baseline is still useful and worthy of systematic investigation.
For instance, it lets the security analyst identify parts of the complex system that are
going to be obvious performance bottlenecks. Our methodology is fairly intuitive and,
in fact, often utilized by security architects in back-of-the-envelope calculations to es-
timate bottlenecks. We explain the performance cost parameters C1-C7 we are able
to quantitatively measure below. Mechanisms for measuring these parameters and the
inference from combining them are discussed in Section 5.

C1: Number of Calls between Code Units. If two code units are placed in separate
partitions, calls between them need to be tunneled over inter-partition communication
channels such as UNIX domain sockets, pipes, or network sockets. Depending on the
number of such calls, the cost of communication at runtime can be prohibitive in a
naive design. If a partitioning configuration places tightly coupled components in sep-
arate partitions, the performance penalty can be high. To estimate such bottlenecks, we
measure the number of calls between all code units and between authorities when the
web browser executes the full test harness.

C2: Size of Data Exchanged between Code Units. If two code units are placed in
separate partitions, read/write operations to data shared between them need to be mir-
rored into each partition. If the size of such data read or written is high, it may create

6 We do not argue whether code size is the right metric as compared to its alternatives [15,26]; of
course, these alternatives can be considered in the future. We merely point out that it has been
widely used in previous systems design practice and in prior research on privilege separation.
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a performance bottleneck. Two common engineering tricks can be used to reduce these
bottlenecks: (a) using shared memory or (b) by re-designing the logic to minimize data
sharing. Shared memory does not incur performance overhead, but has trades-off secu-
rity to an extent. First, as multiple parties may write to the shared memory regions, it is
subject to the time-of-check-to-time-of-use (TOCTTOU) attack [37]; second, complex
data structures with deep levels of pointers are easily (sometimes carelessly) shared
across partitions that makes sanitization of shared data error-prone and difficult to im-
plement correctly. To estimate the size of inter-partition data exchange, we measure the
size of data that are exchanged between different code units. This measurement identi-
fies partition boundaries with light data exchange, where Unix domain sockets or pipes
are applicable, as well as boundaries with heavy data exchange where performance bot-
tlenecks need to be resolved with careful engineering.

C3: Number of Cross-Origin Calls. Client-side web applications can make cross-
origin calls, such as postMessage, and via cross-window object properties, such as
window.location, window.top, and functions location.replace,
window.close(), and so on. We measure such calls to estimate the inter-partition
calls if different origins are separated into different partitions.

C4: Size of Data Exchanged in Cross-Origin Calls. Similar to C2, we also measure
the size of data exchanged between origins to estimate the size of memory that may
need to be mirrored in origin-based isolation.

C5: Number & Size of Cross-Origin Network Sub-resources. One web origin can
load sub-resources from other origins via network interfaces. If the requester is sep-
arated in a different partition than the resource loader, inter-partition calls will occur.
We measure these number and size of sub-resources loading to evaluate the number of
partitions and size of memory required for cross-origin sub-resource isolation.

C6: Cost of an Inter-partition Call under Different Isolation Primitives. Partition-
ing the web browser into more than one container requires using different
isolation primitives, such as processes and VMs. These mechanisms have different per-
formance implications when they are applied to privilege separation. We measure the
inter-partition communication costs of 3 isolation primitives in this work: Linux OS
processes, LAN-connected hosts, and VMs; other primitives such as software-based
isolation (heap isolation [8], SFI [34]) and hardware-based methods (using segmenta-
tion) can be calculated similarly.

C7: Size of Memory Consumption for a Partition under Different Isolation Prim-
itives With different isolation primitives, memory overhead differs when we create
additional partitions in privilege separation. This is also an important aspect of per-
formance costs dependent on design choices.

4 Measurement Methodology

To measure the outlined parameters above, we take the following as inputs: 1) an exe-
cutable binary of a web browser with debug information, 2) a blueprint of the browser,
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including a set of code units and authorities for partitioning, and 3) a large test harness
under which the web browser is subject to dynamic analysis.

We focus our measurements on the main browser components and we presently ex-
clude measurements on browser add-ons and plugins. Our measurements are computed
from data measured during the execution of the test harness dynamically, since com-
puting these counts precisely using static analysis is difficult and does not account for
runtime frequencies. Based on measurement data, we compare with partitioning choices
in recent browser design proposals, and evaluate the security benefits and performance
costs in those design dimensions.

In this work, we perform the measurement on a debug build of Firefox, a blueprint
manually abstracted from Firefox and WebKit designs, historical Firefox vulnerabilities
retrieved from Mozilla Security Advisories [27], and Alexa Top 100 web sites.

Since the engineering effort required to conduct such a large-scale study is nontrivial,
we develop an assistance tool to automate our measurement and analysis to a large ex-
tent. Especially for the measurement of inter-partition function calls and data exchange
sizes, we develop an Intel Pin tool. It applies dynamic instrumentation on the Firefox
browser to intercept function calls and memory access. By maintaining a simulated call
stack structure, we capture the caller-callee relationships during browser execution over
test harness web pages. Before our experiments, we register accounts for the Alexa Top
100 web sites, when applicable, and log into these web sites using a vanilla Firefox
browser under a test Firefox profile. Then we manually run Firefox instrumented by the
Pin tool to browse the front pages of the web sites under the same test profile, so that
contents requiring authentication are also rendered. As Firefox is slowed down by the
Pin tool, it took one of the authors around 10 days to finish the browsing of the 100 web
sites.

5 Experimental Evaluation

We conduct empirical measurements to obtain the data for evaluating browser designs.
Our measurements are mainly conducted on a Dell

TM
server running Ubuntu 10.04

64bit, with 2 Xeon R© 4-core E5640 2.67GHz CPUs and 48GB RAM. For the mea-
surement of inter-partition communication overhead, we connected two Dell

TM
desktop

machines with a dual-core i5-650 3.2GHz CPU and 4GB RAM via a 100 Mbps link.

5.1 Measurement Goals

Our measurements aim to measure the following:
Goal 1. Security benefits of isolating a browser component with regard to the number

of historical security vulnerabilities that can be mitigated by privilege separation.
Goal 2. Worst-case estimation of additional inter-partition calls and data exchange

that would be incurred by isolating a component, and by isolating an authority (web
origin).

Goal 3. Memory and communication overhead incurred by different isolation
primitives.
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Table 2. Kilo-lines of Source Code in Firefox Components. In our experiments, we consider the
following components: 0. NETWORK, 1. JS, 2. PARSER, 3. DOM, 4. BROWSER, 5. CHROME,
6. DB, 7. DOCSHELL, 8. EDITOR, 9. LAYOUT, 10. MEMORY, 11. MODULES, 12. SECURITY,
13. STORAGE, 14. TOOLKIT, 15. URILOADER, 16. WIDGET, 17. GFX, 18. SPELLCHECKER,
19. NSPR, 20. XPCONNECT, and 21. OTHERS.

Comp# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LOC 136 367 74 155 32 3 131 21 77 366 10 269 763 17 223 24 137 478 24 188 53
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(a) Number of Historical Security Vulnerabilities in
Firefox, Categorized by Severity and Firefox Compo-
nents

(b) Gray-scaled Chart of Call Counts
across Code Units. Components are num-
bered as with Table 2. Each cell at (i, j)
denote the number of calls from Compo-
nent i to Component j.

Fig. 2. Summary of Vulnerability Study and Performance Measurement

5.2 Measurement over Alexa Top 100 Web Sites

Next, we explain how we measure these metrics and present their results.

For Goal 1: Security Benefits. We measure the number of historical security vulnerabil-
ities in each Firefox component according to each severity category (Security Parameters
S1, S2) and the size of source code in Firefox components (Security Parameter S3).

We implement a Perl utility with 95 lines of code to crawl and fetch Firefox bug
reports online [27]. According to the blueprint of browser components, and our classi-
fication of vulnerability severity, we count the 362 vulnerabilities7 we have access to,
by 1) browser component, and 2) severity category. Figure 2(a) depicts the number of
Firefox vulnerabilities with our categorization outlined in Section 2.2. We can see that
76.5% of the security vulnerabilities are WEB-TO-COMP vulnerabilities (277), which
can lead to code execution. There is also a large amount of CROSS-ORIGIN vulnera-
bilities (38), whereas the number of other categories is much smaller. Among browser
components, the JavaScript engine has the largest number of vulnerabilities (88). The
Layout module (43) and DOM (59) also have large amount of vulnerabilities. These are

7 2 of them are uncategorized due to insufficient information.
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all major components consisting of complex browser logic. On the other hand, more
peripheral components have less vulnerabilities. For example, the Editor has only 3
WEB-TO-COMP vulnerabilities. Such results are in line with our intuition that more
complex and critical components tend to have more vulnerabilities discovered.

We use the wc utility to measure the lines of source code for all .h, .c and .cpp
files in Firefox components. Table 2 lists the lines of source code we measure for dif-
ferent components in Firefox. Components such as JavaScript, Layout and Security,
etc. have large size code size. These data reflect the (relative) complexity of different
browser components (See S3).

For Goal 2: Performance Costs. We dynamically measure performance costs corre-
sponding to Performance Parameters C1-C5, respectively.

Inter-code-unit Call Overhead. For Performance Parameters C1 and C2, we apply
our Pin tool on Firefox to browse Alexa Top 100 web sites, counting the number of
function calls whose caller and callee belong to two different components, and the size
of data exchanged during the function calls. We briefly discuss the results below, and
the detailed measurement data can be found online at [1].

The numbers of inter-code-unit function calls (in 1000s) between different browser
components are illustrated in Figure 2(b). These calls may become inter-partition calls
after privilege separation. Thus, the larger the number is between the two components,
the higher is the communication cost if they are isolated into different partitions. We
find that there are 4,270,599,380 times of calls between the Layout engine and the
DOM during our measurements, 369,305,460 times between the GFX rendering engine
and the Layout engine, and 133,374,520 times between the JavaScript engine and the
DOM. Heavy calls between these components correspond to tight interactions during
run time, such as DOM scripting and sending layout data for rendering.

We also measure data exchange sizes between components. For example, the DOM
and the Layout engine have larger data exchange than other components: 172,206.36
Kilobytes over the 100 web sites.

Cross-Origin Call Overhead. Similarly, for calls and data exchange between different
web origins (Performance Parameters C3 and C4), we intercept the calls to client-side
communication channels in Firefox, retrieve the caller and callee origins, and record
the size of data passed in postMessage calls. For Performance Parameter C5, we
intercept all network responses to Firefox, and identify whose requester and destination
origins are different. We record such cases with the size of data passed in the HTTP re-
sponse body. Table 3 summarizes the number of client-side calls to access other origins
and the size of data exchanged in such calls.

More Results on Sub-resource Loading To evaluate in more detail the performance
implications in using separate partitions for sub-resource loading, we measure the num-
ber of cross-origin sub-resources for each of the Alexa Top 100 web sites. Figure 3(a)
illustrates the significant differences in the number of different origins of network sub-
resource requests for each web page we measured. In our measurement, the largest
number is 51, with www.sina.com.cn. Figure 3(b) shows that the reoccurrence rate
of unique pairs of different requester and destination origins is very small. More than
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Table 3. Cross-Origin Calls & Sub-Resource Loading

Cross-Origin Access Number of Calls Data Size Exchanged in Calls (KB)

Browser Side

postMessage 4,031 587
location 9 -

window.parent 24 -
window.frames 3,330 -

Network sub-resource Images, CSS, etc. 10,745 131,920
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(a) Number of Different Destination Ori-
gins of Cross-Origin Resource Requests
The largest number of different destination
origins from one site is 51, while the small-
est number is 1.
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(b) Occurrence Frequencies of Unique Pairs of Dif-
ferent Requestor-Destination Origins 746 unique
pairs only occur once, while only 164 unique pairs
occur more than 15 times.

Fig. 3. Sub-resource Loading Measurements

746 pairs occur only once. In fact, there are in total 1,515 such unique pairs, averaged
to 1,515 / 100 = 15 pairs for each page.

For Goal 3: Isolation Primitive Overhead. We measure the performance overhead
under different isolation primitives, in communication cost for Performance Parameter
C6, and in memory consumption for Performance Parameter C7.

We use a simple client-server communication program to measure the inter-partition
call costs between Unix domain sockets, between hosts connected via LAN, and be-
tween virtual machines on the same VM host. We average over 10,000 rounds of each
primitive with message lengths varying from 50 to 8K bytes. Table 4 summarizes our
measurements on round trip times for inter-partition communications with the three
isolation primitives. Unix domain sockets are 6-10 times more efficient than cross-VM
communications.

Table 4. Round-Trip Time (RTT) of Unix Domain Socket, Network and Cross-VM Communica-
tions, in nanoseconds, Averaged over 10,000 Runs Each

Size of MSG (in bytes)
Average RTT for Unix
Domain Socket

Average RTT for
Network Comm

Average RTT for
Cross-VM Comm

50 4673 87642 252008
500 5045 176160 288276
1000 5145 276841 252107
2K 5821 367356 251605
4K 6838 449262 269845
8K 9986 638598 336999
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By checking the size of an empty process on different hosts, we estimate that the
memory used by an almost-empty process is about 120k-140K. As this number stays
very stable across different runs, we take this as the memory consumption of creating
processes. For the Ubuntu guest OS we create, the writeable/private memory used by
VirtualBox is about 25M bytes and the memory used by guest OS running in VirtualBox
is about 90M bytes. We take 90M as the size of memory cost with a VM partition or a
single host, and 25M as the memory overhead from a VM daemon in our quantification.
Therefore, a Linux process incurs 90M / 130K = 709 times lower memory overhead than
a VM.

5.3 Inference from Measurement Data

In this section, we summarize the high-level findings from our detailed measurements.
Specifically, we revisit the partitioning dimensions outlined earlier and evaluate their
security-performance trade-offs. We also summarize the performance bottlenecks that
our measurements highlight.

Table 5. Security Benefits and Performance Costs of Partitioning Dimensions Performance costs
are per page, averaged over Alexa Top 100 web sites

Partitioning Dimension
#Vulnerabilities
Migitated

Lines of Code Partitioned
Comm
Cost

Data Exchanges
Cost

Memory
Cost

Single Process 0 N.A. 0 0 0.13K
One Process per Origin (w/o Cross-
Origin Sub-Resource Isolation)

0 N.A. 0 0 130K

One Process per Origin (with Cross-
Origin Sub-Resource Isolation)

38 N.A. 0.37ms 5.87MB 1.4MB

One Process per Pair of Requester-
Destination of Sub-Resource

38 N.A. 0.91ms 7.19MB 2.1MB

Renderer/Browser Division 81 1,863K 2.59min 3.54MB 130KB
JS/DOM Separation (Process) 147 JS:367K DOM:155K 6.67s 572.6KB 130KB
JS/DOM Separation (Network) 147 JS:367K DOM:155K 3.78min 572.6KB 90MB
Layout/Window Manager
(GFX+Widget) Separation

69
Layout:367K
GFX+Widget:615K

19.15s 739.3KB 130KB

DOM/Layout Separation 102 DOM:155K Layout:367K 3.56min 1.68MB 130KB

Table 5 summarizes the estimated security benefits and performance costs for each
design point along the dimensions being debated in present designs. The values in the
table for performance costs are per web page, if applicable, averaged over the Top 100
Alexa pages.

Origin-Based isolation. One process per origin without separating cross-origin sub-
resources have no security benefits. If contents from another origin hosted as sub-
resources (such as PDF) can be processed in the same partition, security vulnerabilities
can still permit unintended escalation of privileges. This is consistent with the observa-
tions made by several browser designs that propose hosting sub-resources in separate
containers. Doing so, mitigates the CROSS-ORIGIN vulnerabilities (38 out of 362).

Sub-resource Isolation. Several browsers propose isolating each pair of requester-
destination of sub-resources to be further isolated in separate partitions. Our data sug-
gests that (a) this has no further security benefit in our model, and (b) it has a large
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performance cost. For instance, the memory cost of creating several partitions (using
processes) is large and will be a performance bottleneck. In our measurement, one
web page can include up to 51 third-party sub-resources. If all these cross-origin sub-
resources are to be isolated by different processes, and consider a typical browser pro-
cess need 20 Megabytes [5], then around 1 Gigabyte memory overhead will be incurred
just for loading third-party resources for this single web page. Therefore, although sub-
resource isolation can mitigate 38 CROSS-ORIGIN vulnerabilities, browsers may need
to optimize memory usage for processes that load sub-resources before they can practi-
cally adopt this proposal.

It is interesting to compare our identified bottlenecks to choices made by today’s
web browsers. For instance, Google Chrome does not suffer from this performance bot-
tleneck by making a security-performance trade-off. It adopts a different strategy by
grouping resources according to a site-instance of the hosting page, which significantly
reduces the number of processes created [17]. We leave the detailed definition and dis-
cussion of this strategy out of scope; however, we believe that our methodology does
identify realistic practical constraints.

Component-Based Isolation. Isolation by components mitigates WEB-TO-COMP vul-
nerabilities. For example, the JavaScript engine and the DOM have 147 such vulnera-
bilities. At the same time, the 367K of source code (TCB) in the JavaScript engine
can be isolated, which is 10% of the entire browser. Nevertheless, since they have fre-
quent interactions, such isolation costs prohibitively high communication and memory
overhead. Hence, although beneficial for security, such a partitioning dimension is less
practical for adoption. For instance, designers of OP redacted the decision to isolate
JavaScript engine and the HTML parser within one web page instance in OP2; our
measurement identifies this high overhead as a bottleneck.

Renderer/Browser Kernel Isolation. We also take a popular architecture of render-
er/browser kernel division for evaluation. We evaluate our methodology on the Google
Chrome design model to measure the security benefits and performance costs. Such a
partitioning dimension would prevent WEB-TO-COMP vulnerabilities in the renderer
process, and WEB-TO-SYS vulnerabilities. If we apply the Firefox code size to this
design, the size of TCB in the kernel process would be around 1,863K, i.e., 53.5% of
the browser codebase. Note that this is just a rough estimation based on our blueprint
of coarse-grained components. Further dividing components can reduce the necessary
code size that needs to be put into the browser kernel process.

Our measurements identify potential performance bottlenecks that correlate with ac-
tual browser implementations. Specifically, we find that isolation between components
in the renderer processes and the browser kernel process, as in Chrome, would incur
very high performance overhead, such as between the GFX and the Layout engine.
However, such performance bottlenecks do not appear in Chrome. Over the past few
years, a substantial amount of efforts [7] have been spent on improving and securing
the inter-partition communications in the Chrome browser. Besides, Chrome also uses
GPU command buffers and other engineering tricks to improve performance of render-
ing and communication [16]. This verifies our observation that potential performance
bottlenecks need to be re-engineered to reduce their overhead.
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Component Partitioning with High Security Benefits. We identify a few browser
components that have high security benefits to be isolated from other components.
For example, the JavaScript engine is a fairly complex component with 367K lines of
source code, has 88, i.e., 31.8% of, WEB-TO-COMP vulnerabilities. Isolating it from
other browser components will mitigate a large faction of vulnerabilities. Other typ-
ical example components include the Layout engine with 367K lines of source code
and 43 (15.5%) WEB-TO-COMP vulnerabilities, as well as GFX, the rendering com-
ponent for Firefox, with 478K lines of source code and 22 (7.9%) WEB-TO-COMP
vulnerabilities.

Component Partitioning with High Performance Costs. We identify the main
browser components that have tight interactions with other browser components. Thus,
isolating them from others would incur high performance costs. For example, our mea-
surements find 133,374,520 function calls between the JavaScript engine and the DOM,
and 369,305,460 calls between the GFX rendering engine and the Layout engine. To
show why they can become performance bottlenecks, here is a simple calculation. Sup-
pose they are separated by processes, a single RTT with Unix domain sockets would
cost a delay of around 5000 nanoseconds. If there is no additional optimization is in
place, these numbers correspond to 133,374,520 * 5000 nanoseconds / 100 pages =
6.67 seconds/page and 18.47 seconds/page, respectively. Such performance overhead
is prohibitively high. Security architects should either avoid such partitioning, or take
further measures to optimize these performance bottlenecks.

6 Related Work

Privilege Separation. The concept of privilege separation in computer systems was
proposed by Saltzer et al. [31]. Since then it has been used in the re-design of sev-
eral legacy OS applications [12, 28] (including web browsers) and even web applica-
tions [5, 8, 19]. Similar to our goals in this work, several automated techniques have
been developed to aid analysts to partition existing applications, such as PrivTrans [14],
Jif/Split [38], and Wedge [13]. Most of these works have focused on the problem of
privilege minimization, i.e., inferring partitions where maximum code executes in par-
titions with minimum or no privileges, while performance is measured “after-the-fact”.
Our work, in contrast, aims to quantify performance overhead with privilege-separated
designs with only a blueprint without the actual implementations. Our work also differs
with them by performing measurements on binary code, rather than source code.

Privilege Separation in Browsers. Our work is closely related to the re-design of
web browsers, which has been an active area of research [9, 18, 20, 21, 23, 24, 33, 35].
Our work is motivated by the design decisions that arise in partitioning web browsers,
which performs a complex task of isolating users, origins and the system. Among them,
IE uses tab-based isolation, Google Chrome [9] isolates web origins into different ren-
derer processes, while Gazelle [35] further isolates sub-resources and plugins. Our mea-
surements have shown that some web pages may include 51 sub-resources of different
destination origins. Our data quantifies the number of partitions that may be created in
such designs as well as in further partitioned browsers, such as OP [20] and OP2 [21]. In
addition, our measurements also evaluate the performance costs in VM-based isolation,
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such as Tahoma [18], and memory consumption from separate network processes for
sub-resources in IBOS [33] design. Our work advocates privilege-separated browsers
for better security, and identifies potential performance bottlenecks that need to be op-
timized to trim their performance costs.

Evaluation Metrics. Estimation of security benefits using bug counts is one way of
quantifying security. Riscorla et al. discuss potential drawbacks of such reactive mea-
surement [29]. Other methods have been proposed, but are more heavy-weight and re-
quire detailed analysis of source code [22, 25, 32]. Performance measurement metrics
such as inter-partition calls and data exchange have been identified in the design of iso-
lation primitives such as SFI [34]. We provide an in-depth empirical analysis of these
metrics in a widely used web browser (Mozilla Firefox).

7 Conclusion

In this paper, we propose a measurement-based methodology to quantify security bene-
fits and performance costs of privilege-partitioned browser designs. With an assistance
tool, we perform a large-scale study of 9 browser designs over Alexa Top 100 web sites.
Our results provide empirical data on security and performance implications of various
partitioning dimensions adopted by recent browser designs. Our methodology will help
evaluate performance overhead in designing future security mechanisms in browsers.
We hope this will enable more privilege-separated browser designs to be adopted in
practice.
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Abstract. We introduce algorithms to automatically score and rank information
technology (IT) assets in an enterprise, such as computer systems or data files,
by their business value and criticality to the organization. Typically, information
assets are manually assigned classification labels with respect to the confidential-
ity, integrity and availability. In this paper, we propose semi-automatic machine
learning algorithms to automatically estimate the sensitivity of assets by profil-
ing the users. Our methods do not require direct access to the target assets or
privileged knowledge about the assets, resulting in a more efficient, scalable and
privacy-preserving approach compared with existing data security solutions rely-
ing on data content classification. Instead, we rely on external information such as
the attributes of the users, their access patterns and other published data content
by the users. Validation with a set of 8,500 computers collected from a large com-
pany show that all our algorithms perform significantly better than two baseline
methods.

Keywords: Asset Sensitivity, Criticality, Data Security, Information Security.

1 Introduction

Recently, a growing number of advanced persistent threats (APTs) [7] and insider
threats [18] have demonstrated the capability of attacking specific highly sensitive en-
tities in a government or company. The computer security community has recognized
that not all IT assets have the same value or importance to the company, and, therefore,
they require different levels of protection corresponding to their sensitivity and value.
By prioritizing the security efforts and budget to better protect highly sensitive assets,
organizations can reduce the security risk. Further, quantitative measurement of the sen-
sitivity of IT assets enables other important applications such as intelligent file backup
and business continuity planning.

To achieve this vision, all assets in an organization need to be assigned a sensitiv-
ity value that properly indicates the business value and criticality to the organisation.
Currently, the asset classification is primarily done manually by the system administra-
tors with respect to the confidentiality, integrity and availability of the assets. However,
there are critical limitations in the manual approach. First, it is very hard for a large or-
ganization to assign appropriate labels to all the assets in the organization. The number
of assets in a large organization can grow huge, and, often, the assets are created and
managed independently in different departments, so it is extremely hard to catalog and
centrally manage all the assets. Second, most of the guidelines are descriptive and can

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 94–110, 2013.
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be interpreted subjectively. Therefore, the classification of assets can differ significantly
by different human judges. Third, they typically measure the sensitivity using a coarse-
grained (3 to 5-scale) rating as in the Bell-LaPadula model [5] ranging from the most
sensitive (e.g., Top Secret) to the least sensitive (e.g, Un-classified).

In this paper, we explore methods for semi-automatically scoring various assets
within an enterprise using information about the users. To our knowledge, there has
been little effort to automatically quantify the sensitivity of IT assets. Previous studies
mostly focus on a specific type of assets, e.g., data files [4,12,13] or network assets [3],
or propose a ranking method using a small number of manually generated features [10].
We propose a new method for determining asset values using automatically extracted
features that are generic to various asset types including data and network assets. We
use only information about the users of the target asset including attributes of the users,
their access patterns and externally published data by the users such as personal and
project webpages and files shared by the users. Note that this information can be easily
extracted and does not require direct access to the target asset or detailed knowledge
about the asset, such as the owner of the asset and the sensitivity of the data in the asset.

Further, we note that there are many different aspects for an asset being considered
sensitive, and the criterion can change over time. For instance, a computer is considered
very sensitive because it stores sensitive data (i.e., confidentiality), or it hosts important
applications for the business (i.e., availability). Based on these observations, we ap-
ply instance-based learning approaches, making the system domain independent and
easy to adapt to new sensitive asset types. Given a small set of known sensitive assets,
we learn their characteristics and score other sensitive assets using the models. In this
work, we explore a kNN (Nearest Neighbor)-based method, a clustering-based method
and the kNN-based method with distance metric learning techniques. We validate the
algorithms using a real-world data set comprising about 8,500 computers. Our experi-
ments show that all our algorithms perform significantly better than the baseline cases,
and the kNN-based method with distance metric learning techniques outperform the
other algorithms. The main contributions of this paper are as follows.

– Previous studies presented solutions for a specific IT asset type such as data, servers
or computer networks, forcing companies to manage multiple heterogenous ap-
proaches. Our methods rely on meta-level information that can be extracted from
most IT assets in the same way. This domain-independent set of features makes our
methods applicable to many different IT asset types.

– Further, extraction of the meta-level features does not require direct access to the
target assets or privileged knowledge about the assets, and, thus, our method is very
efficient and can be easily scalable to a large set of heterogeneous assets.

– Our system assigns a quantitative value to each asset rather than a coarse-grained
set of labels, allowing companies to adopt more fine-grained security measures.

– A major obstacle in applying machine learning methods to computer security prob-
lems is the lack of labeled data. In this work, we propose new semi-supervised
machine learning methods that learn the characteristics of sensitive assets from a
small number of examples.

– We validate our approaches with a large set of real data. Experimental results con-
firm that the proposed algorithms can retrieve sensitive assets with high ranks pro-
ducing higher precision and recall than baseline methods.
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2 Meta-level Features of Assets

As discussed in the introduction, a main goal of this study is to identify a set of features
that can be uniformly used for different asset types and be extracted without having
to access the target asset or privileged knowledge about the asset. This set of features
may not be as accurate as a small set of features carefully produced by domain experts,
but it makes the system very efficient and scalable and can provide a good estimate for
potentially sensitive assets.

In this study, we investigate 72 features from three kinds of knowledge — who ac-
cesses the asset (user features), how they access the asset (usage features) and what
kinds of tasks or projects the users work on (external content features). Table 1 de-
scribes the high-level feature categories used in this study.

Table 1. Features for estimating the sensitivity of IT assets

Feature Categories Feature Definition

User Features

Manager vs. NonManager Is the user a manager or a non-manager employee

Job Roles Job roles in the organization such as S/W Developer and Finance

Rank in the organizational
hierarchy

The distance from the highest-ranked employee to the user in the
organization hierarchy

Usage Features

Access Frequency the total number of accesses by a user (heavy or light)

Access Pattern the patterns of the accesses (e.g., regular, semi-regular, irregular)

External Content Features

External Data Content Topics discovered from the externally published data content
such as papers, patent and webpages of the users

2.1 User Features

User attributes such as job roles and the rank in the organization may affect the sen-
sitivity of the asset. For instance, an asset used primarily by executives would elevate
the sensitivity of the asset. In this work, we leverage these types of user attributes for
sensitivity estimation.

To extract the attributes of the users, we first need to identify the users of the asset
in the access logs. Some access logs, such as logs for a file repository or a system log-
on, typically contain the user accounts, thus, identifying the users is straightforward for
these assets. For computer network assets, user accounts are generally not available in
the logs (e.g., DNS logs). Instead, the logs contain the IP address from which the lookup
was requested. The process of determining which user is performing a DNS lookup is
not a trivial task. In most situations, we first need to find the most likely candidate user
who is assigned to a specific IP address during a specific time period. The resolution
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of an IP address to a user, while easy in a simple system, becomes more challenging in
a dynamic system with many different ways to access the network and with a large set
of users. Users can log into the network over WiFi or using an ethernet cable, or from
remote locations via VPN (virtual private network).

For computers in a network, we perform the IP to user mapping using various sources
including media access control (MAC) addresses, application (e.g., internal web por-
tals) logs, and WiFi logs. If the MAC address is present, then, during a DHCP session
setup, we can correlate the MAC address used for that session to the IP address that
is assigned, which, in turn, can give us an IP to user mapping. However, the MAC
addresses are not reliable for users using OS X and are often unavailable when new
devices are introduced. To alleviate the limitations, we also use application and WiFi
logs for the user mapping. The application level logs can correlate the act of a user
logging into an application (such as an internal web portal) to an IP address. The WiFi
logs can correlate a user establishing a connection to the WiFi with the authentication
credentials that are used to log in to the system. Since the user to IP mapping is not
perfect, we discard all DNS lookups for which we are unable to identify the user and
all logs that are resolved to more than one user (i.e., ambiguous logs) for our study.

After obtaining the set of users of an asset, we extract various user attributes that
can indicate the users’ job roles and the sensitivity of the data they generate. The high-
level categories of the user attributes used in this work are shown in Table 1. We extract
26 user attributes in total including Manager, NonManager, Rank-High, Rank-Middle,
Rank-Low, and 21 different job roles defined in the company such as IT Specialist,
Human Resources and Finance. Note that these attributes can be extracted from most
companies’ employee directory. The feature value of each feature is the number of users
who possess the attribute. For instance, if 100 managers, 500 non-manager employees
and 1 high-rank employee accessed the asset, the asset is represented Manager=100,
NonManager=500 and Rank-High=1.

2.2 Usage Features

The access patterns of the users add additional insights on the sensitivity of an asset. For
instance, a user who occasionally uses the asset will have less impact than a user who
uses the asset frequently. On the other hand, if a user’s access pattern is very regular
(e.g., every day at 5am), that may indicate that the user is running an automated job
(e.g., file backup), so the accesses should not affect much on the asset’s sensitivity.
Figure 1 shows typical daily DNS lookup activities.

In this work, we analyze access logs with the timestamps to discover the frequency
of a user’s access and the patterns of the accesses. We first group the logs by each pair of
a user and an asset, and record the number of log entries as the access frequency of the
user to the asset. We categorize the access frequency into Heavy or Light using a pre-
defined threshold. Further, we determine if a connection to the asset is done through an
automated access or a manual access (i.e., access pattern). We observe that automated
accesses tend to be regular, for instance, once a day at 4am or once every hour, while
human accesses are more sporadic. In other words, automated accesses are more pre-
dictable while human accesses are more uncertain. Based on this observation, we apply
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Fig. 1. Number of unique domains accessed per user in a single day. The data show that most
users access 20 to 30 different domains in a day, while a few users connect to over 200 different
domains.

the Shannon entropy,H(X), which measures the uncertainty in a random variable [16]
to determine the access patterns.

H(X) = −
∑
i

p(xi) log(p(xi))

Now, we explain in detail how we measure the entropy of user accesses. First, for
each user and asset pair, we split all the accesses over each hour of the day (i.e., grouping
accesses into 24 time slots). For instance, we count how many accesses a user initiated
at the 9am–9:59am period in the logs collected over a long period time. Figure 2 shows
two sets of access patterns over the 24 time slots. Figure 2(a) illustrates cases where
the accesses were made at the same time periods repeatedly, while Figure 2(b) shows
cases where the accesses spread across many different time slots. After obtaining a

(a) Regular Access Pattern (b) Irregular Access Pattern

Fig. 2. Access Patterns

24-dimensional count vector for a user-asset pair, we then normalize the counts into
probability distributions and compute the entropy. If an access distribution produces
a low entropy, then the accesses are regarded as automated accesses. We divide access
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patterns into three categories–Regular, SemiRegular and Irregular–based on the entropy
values (i.e., high, medium and low respectively).

By combining the access frequency and the access pattern features, we generate 6
usage features: RegularHeavy, RegularLight, Semi-regularHeavy, Semi-regularLight,
IrregularHeavy and IrregularLight. If the accesses by a user to an asset exhibit a regular
pattern (i.e., low entropy), and the user has a large number of accesses, it is considered
as RegularHeavy. On the other hand, if the access pattern is irregular (i.e., high entropy)
and the access count is low, then it is considered as IrregularLight. Similarly to the user
features, the number of users that exhibit a certain access pattern is the feature value
for the asset, i.e., how many users access the asset using RegularHeavy or RegularLight
pattern.

2.3 External Content Features

The sensitivity of an asset is dependent largely on how sensitive the data in the asset are,
and, thus, the topics of data in the assets can be good indicators of the asset sensitivity.
When content inspection can be performed, the sensitivity can be measured by the tech-
niques presented in [12,13]. When direct content inspection is not feasible, we propose
to use external data contents generated by the users as a substitute. External contents of
a user can include any documents or data sources the user produced outside the target
asset, such as papers, patents, and project webpages. These external contents are used
to conjure the user’s job responsibilities and the tasks the user is working on. Note that
we only extract the contents that can be accessed without an access permission to the
host system. Some examples of external data content include:

– Published documents such as patents and papers
– Titles of files the user has shared in a file-sharing site
– Wiki or project websites where the user is a member of
– Personal webpages
– Blogs created by the user
– Tags the users added on webpages

Document of a User: We combine all the external data published by a user and gen-
erate a document for the user using the bag-of-word representation. We then remove
stop words 1 and count the occurrences of each word in the user document. The ba-
sic assumption is that more frequently used words indicate the topics of the user more
strongly than less frequently used words.

Document of an Asset: We then generate a hypothetical document for an asset by
combining the documents of its users. Furthermore, we assume that the users who ac-
cess the asset more frequently influence the content of the asset more than the users
who uses it occasionally. We scale the frequency of words in the user documents based
on the frequency of the user’s access, which is defined as the number of days the user
accessed the asset. Figure 3 depicts the high level process of generating documents for
assets, and Definition 1 provides a formal description.

1 Stop words are very commonly used words in most documents such as prepositions (e.g., “to”,
“in”) and pronouns (e.g., “I”, “this”).
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Fig. 3. High level description of content generation for assets using external user contents and
the users’s access counts to the assets. The words in an asset document come from external
contents generated by the asset users, and the counts of the word occurrences in the document are
determined based on both the word counts in the user documents and the users’ access counts for
the asset.

Definition 1. Let asset A have n users, U = {u1, · · · , un}, and the document of
a user ui be D(ui). Then, the document of asset A, D(A), is defined as D(A) =
∪ui∈U ∪wj∈D(ui) wj . Further, the count of a word in D(A), c(wj) , is computed as

c(wj) =
n∑

i=1

δi · c(wji)

c(wji) is the count of word wj in D(ui), and δi is the weight of user ui for the asset A
and defined as log(#days(ui,A)).

Topic Discovery: Once we generate a document representation of an asset, a set of
assets can be considered as a collection of documents. The document collection for
all assets in an organization typically contain a large number of words. Treating indi-
vidual words as features will result in a very high dimensional feature space and data
sparseness issues. Instead, we can group the words into topics and use the topics as the
content features. Each asset can then be represented as the probability distributions over
the discovered topics.

In this work, we apply Latent Dirichlet Allocation (LDA) [6], a generative topic
modeling technique, to discover the topics from a collection of documents. LDA is a
probabilistic generative model for collections of discrete data such as text collections.
Each document in a corpus is modeled as a finite mixture over underlying set of topics,
and each topic is, in turn, modeled as a distribution over words. LDA allows for multiple
topic assignments to a document (i.e., probabilistic clustering) and, thus, better explains
the underlying topic distributions in the given corpus.
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LDA assumes the following generative process for creating a document d in a col-
lection of documentD:

1. For each document d ∈ D, a distribution over topics is sampled from a Dirichlet
distribution, θ ∼ Dir(α).

2. For each word w in a document, select a topic, z, according to the distribution,
Multinomial(θ).

3. Finally, a word is chosen from a multinomial probability conditioned on the topic,
p(w|z, β). β is a matrix of word probabilities over topics which is to be estimated
from the training data.

LDA requires the number of topics to be discovered as an input parameter. In this
work, we run LDA with 40 topics, and, therefore, each asset is represented as a proba-
bility distribution over the 40 topics. Table 2 shows three sample topics discovered from
our data set.

Table 2. Sample topics discovered from document representations of computer servers. Topic5
indicates Speech Recognition, Topic28 is related to related to Analytics and Business Intelligence.
BAMS stands for business analytics and management. Topic37 is related to Computer Security.

Topics Most Relevant Words

Topic5 speech, recognition, system, using, models, language, translation, based, detec-
tion, arabic, transcription, model, speaker

Topic28 business, community, management, analytics, method, system, supply, project,
BAMS, data, performance, applications, research

Topic37 system, computing, virtual, security, community, secure, method, research, data,
trusted, applications, operating

2.4 Feature Normalization

The selection of features is critical for machine learning methods, as the data are repre-
sented as points in a multi-dimensional feature space, where a feature corresponds to an
axes. Another important consideration is the range of feature values. Most data mining
and machine learning algorithms rely on a metric or a distance function to evaluate how
similar two data points are in the feature space. When there is a large difference in the
range of the feature values along different axes, these metrics implicitly assign higher
weights to features with larger ranges. To mitigate the effect, a feature normalization
technique is often applied and converts all features into an equal range.

In this study, the values of the user and usage features are the counts of the features
in the target asset, while the content topic features are the probabilities in range of [0,
1]. The raw count values, especially for the usage features, can grow very large when
the data set is collected over a long time period. We normalize the user and usage fea-
tures using the cumulative distribution function (CDF) following the findings by Aksoy
and Haralick [1] 2. CDF-based feature normalization is performed as follows. Given a

2 We experimented with other feature normalization techniques such as linear scaling, unit range
normalization and rank normalization, and the CDF normalization performed best for our data.
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random variable x ∈ R with cumulative distribution function Fx(x), the normalized
feature value, x̃, of x is defined as x̃ = Fx(x) which is uniformly distributed in [0, 1].

3 Sensitivity Estimation Algorithms

In this section, we present our algorithms for estimating the sensitivity of assets. As
noted earlier, there are many different aspects that make an asset sensitive to the or-
ganization. For instance, an asset is considered sensitive because it contains sensitive
business data, or it hosts important applications. Based on these observations, we apply
instance-based learning approaches, in which we learn the characteristics of sensitive
assets from a small number of known sensitive assets. Therefore, our methods do not
require any prior knowledge about the domain or the target assets, making the algo-
rithms very flexible and easy to adapt to new domains. In this work, we explore three
semi-supervised machine learning approaches: a kNN-based method, a clustering-based
method, and the kNN method with distance metric learning techniques.

3.1 kNN-Based Method

The k-nearest neighbor classification is a type of instance-based learning which assigns
a new data point to the majority class among its k nearest neighbors from the training
data set [8]. The kNN approach is extremely flexible and non-parametric, and no as-
sumption is made about the probability distribution of the features. The similarity is
computed based on the distances between feature vectors in the feature space.

More formally, letX = {x1, . . . , xn} be the training data set, and Y = {y1, . . . , yC}
be the set of classes. In the basic kNN classification, the class for a new data point x is
defined as arg max1≤i≤C

∑k
j=1 1(yi, yj) , where yj is the class of the j-th neighbor,

and 1(yi, yj) is an indicator function that returns 1 if yi = yj and 0 otherwise. In many
applications, the vote is weighted by the distance between the new point and a neighbor,
and the decision is influenced more by closer neighbors.

arg max
1≤i≤C

k∑
j=1

ω(d(x, xj)) · 1(yi, yj)

where ω(d(x, xj)) is a weight function that is inversely related to the distance d(x, xj).
In this work, we extend the weighted kNN approach and compute the sensitivity of a

new asset based on the distance to its kNN assets in the training data and the sensitivity
scores of the kNN assets. When the sensitivity scores are not provided for the training
data, we can assign the same value to all the training data. The sensitivity of a new asset
A, V(A), is then defined as a weighted average score of its k-nearest neighbors among
the known sensitive assets, {S1, . . . ,Sk}.

V(A) =

k∑
i=1

e−d(A,Si) · V(Si) (1)

V(Si) is the sensitivity value of Si, and e−d(A,Si) is the weight function where d(A,Si)
is the Euclidean distance of the two assets. The kNN-based sensitivity estimation is
described in Algorithm 1.
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Algorithm 1. Sensitivity Estimation based on k-Nearest Neighbors

1: Input: Unlabeled assets A = {A1, . . . ,An}, a set of known sensitive assets S =
{S1, . . . ,Sm}, and, optionally, the sensitivity scores of S , V = {V(S1), . . . ,V(Sm)}

2: Output: Ordered list of assets A′ = {A′
1, . . . ,A′

n}, where V(A′
i) ≥ V(A′

i+1)
3: for Ai ∈ A do
4: kNN(Ai)← {Si, . . . ,Sk}, k assets from S that are closest to Ai

5: Compute the sensitivity of Ai,V(Ai) using Equation (1)

6: SortA in descending order of V(Ai)

3.2 Clustering-Based Method

The clustering-based method considers that the assets are from many different business
units such as product development groups, HR or Finance department, and, therefore,
they will naturally form distinct groups. Suppose only one sensitive asset from the HR
department is included in the training data. With the kNN method with k > 1, the
sensitivity of assets from the HR department will be measured with assets from other
departments. By taking into account the subgroups in the dataset, we can determine the
sensitivity level of an asset using the sensitive assets from the same subgroup.

First, a clustering technique is used to discover these underlying subgroups in the
data set. We then generate the centroid of the sensitive assets in each cluster, which is
the the mean of the sensitive assets in the cluster. Similarly to the kNN-based method,
we measure the sensitivity of an asset A as the weighted average score of the k-nearest
centroids as described in Algorithm 2. The difference of the kNN-based approach and
the clustering-based approach is illustrated in Figure 4.

(a) kNN-based method where k=2 (b) Nearest centroid-based method

Fig. 4. Illustrations of the kNN and Clustering-based methods for sensitivity estimation. The
circle symbols denote known sensitive assets and the square symbols denote unlabeled assets.
The diamond symbols in 4(b) represent the centroid of the sensitive assets in each cluster. Note
that the sensitivity of the light-colored (yellow) square is measured with a sensitive asset from a
different cluster in Figure 4(a).
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Algorithm 2. Sensitivity Estimation based on k-Nearest Centroids

1: Input: Unlabeled assets A = {A1, . . . ,An}, a set of known sensitive assets S =
{S1, . . . ,Sm}, and, optionally, the sensitivity scores of S , V = {V(S1), . . . ,V(Sm)}

2: Output: Ordered list of assets A′ = {A′
1, . . . ,A′

n}, where V (A′
i) ≥ V (A′

i+1)
3: Cluster all assets, A ∪ S, intoK subgroups, C = {C1, . . . , CK}.
4: for Ci ∈ C do
5: Si ← Ci ∩ S // the set of sensitive assets in Ci
6: C̄i ← the centroid of Si

7: V(C̄i)← the mean sensitivity value of Si

8: for Ai ∈ A do
9: Let C̄ = {C̄1, . . . , C̄k} be the k nearest centroids from Ai

10: V(Ai)←
∑k

i=1 e
−d(A,C̄i) · V(C̄i)

11: SortA in descending order of V(Ai)

3.3 kNN Method with Distance Metric Learning

The accuracy of many machine learning algorithms including both kNN classification
and clustering is heavily dependant on the distance (or similarity) metric used for the
input data. However, when the data are in a high-dimensional space, the selection of an
optimal distance metric is not intuitive. Distance metric learning is a machine learning
technique that aims to automatically learn a distance metric for the input data from a
given set of labeled data points. The basic idea is to learn a distance metric that puts
instances from a same class closer to each other and instances from different classes
far apart. Recently, many studies have demonstrated that an automatically learned dis-
tance metric significantly improves the accuracy of classification, clustering and re-
trieval tasks [17,14,20].

Distance metric learning algorithms are further divided into global distance metric
learning and local distance metric learning. Global distance metric learning algorithms
learn a distance metric that satisfy all the pairwise constraints, i.e., keep all the data
points within the same classes close, while separating all the data points from different
classes. Local distance metric learning algorithms, on the other hand, learn a distance
metric satisfying local constraints, and has been shown to be more effective than global
distance learning for multi-modal data.

In this study, we apply a global distance learning algorithm and a local distance
metric learning algorithm to transform the feature space. For global learning, we ap-
ply Relevant Component Analysis (RCA) [17] to learn a distance metric as proposed
in [2]. The RCA-based distant metric learning algorithm learns a Mahalanobis distance
metric using only equivalence constraints (i.e., instances in the same class) and finds a
new feature space with the most relevant features from the constraints. It maximizes the
similarity between the original data set X and the new representation Y constrained by
the mutual information I(X,Y ). By projecting X into the new space through feature
transformation, two data objects from the same class have a smaller distance in Y than
in X . For local distance metric learning, we apply the Large Margin Nearest Neighbor
(LMNN) distance learning algorithm [14]. The LMNN algorithm also learns a Maha-
lanobis distance metric, but it identifies k-nearest neighbors, determined by Euclidean
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distance, that share the same label and enforces the k-nearest neighbors belong to the
same class while instances from different classes are separated by a large margin.

After the feature space projection using the distance metric learning algorithms, we
apply the kNN-based sensitivity estimation method described in section 3.1.

4 Experimental Results and Evaluation

To validate the algorithms, we conducted experiments with a real life data set com-
prising about 8,500 computers. In this section, we describe in detail the experimental
settings and evaluation results. Henceforth, we denote the kNN-based method using
the original feature space as kNN , the centroid-based method as Centroid , the kNN
method with the LMNN distance metric learning as LMNN , and the kNN method with
the RCA distance metric learning as RCA.

4.1 Data

The computers used in the experiments were extracted from DNS logs collected in
the authors’ organization over 3.5 months from April, 1, 2012 to July, 15, 2012. We
extracted 12,521 unique computers for which we were able to identify the user but dis-
carded the computers with only one user or fewer than three look-up requests, resulting
in 8,472 computers. We use the 8,472 computers for training and evaluation of our
models–80% of the computers for training and 20% for evaluation respectively. Using
the mapping of IP address to user described in section 2.1, we identified 2,804 unique
users for the 8,472 computers.

In a separate effort, the company had attempted to manually compile a list of servers,
for the purpose of disaster recovery and business continuity, that host important appli-
cations of the company. The list provides the server names and their business criticality
value (BCV) assigned manually by domain experts. Each computer is assigned with a
BCV from five BCV categories–BCV1 to BCV5–and each BCV category is associated
with a numeric value from 10 (BCV1) to 50 (BCV5). We found 253 servers from this
list in our collected data set, and, thus, use the 253 servers as the labeled (i.e., ground
truth) data for this study. The ground truth data account for about 3% of the experi-
mental data, and we use the data set for both training and evaluation of the algorithms.
Table 5 and Figure 6 show the size of the experimental data, the size of the ground truth
set, and the distribution of the ground truth data over the five BCV categories.

4.2 Evaluation Metrics

We observe that the problem of identifying sensitive assets can be cast as an informa-
tion retrieval (IR) problem — finding relevant (sensitive) assets in a large collection of
assets and ranking them according to their relevance. This allows us to apply the evalu-
ation metrics developed for IR such as recall, precision and discounted cumulative gain
(DCG) [19,11,9] to validate the performance of our algorithms.
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No. of computers 8,472
No. of unique users 2,804
No. of known sensitive computers 253

Fig. 5. Experimental data set

Fig. 6. Distribution of the ground truth data
across the business criticality values

Precision and Recall: Precision and recall are widely used metrics for binary decision
problems including information retrieval and pattern recognition. In a binary decision
problem, a system labels data samples either positive or negative. Precision measures
the fraction of samples classified as positive that are truly positive, and recall measures
the fraction of positive samples that are correctly classified.

Precision =
|{true positives in the result}|
|{all samples in the result}| Recall =

|{true positives in the result}|
|{all positive samples}|

In a ranked retrieval context as in our study and in most web search engines, pre-
cision and recall are typically measured at the top n results. Further, when the class
distribution is skewed, Precision-Recall (PR) curves are often used. A PR curve is gen-
erated by plotting the precision at different levels of recall rates, and provides a more
comprehensive view on the system’s performance.

Discounted Cumulative Gain (DCG): In addition to ranking the results, when the
relevance of an instance is measured using a multi-scale rating (e.g., from completely
relevant to completely irrelevant), the quality of the results can be more precisely mea-
sured using a graded relevance scale of the results. For instance, two search engines can
produce the same precision and recall, but the search engine that retrieves documents
with a higher relevance scale at the top of the results is more useful.

DCG measures the usefulness (or gain) of a search result based on its position in a
search result list. The gain of each result is discounted logarithmically proportional to
its position in the ranked list, and the DCG of a system is defined as the accumulated
gain from the top of the result list to the bottom [9].

DCG = REL1 +

n∑
r=2

RELr

log2(r)

where RELr is the relevance score of the result at rank r, and n is the number of
instances in the result.

For IR systems, the relevance of a search result is typically judged using a 5-scale
rating from 0 (completely irrelevant) to 4 (completely relevant). For our study, we use
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the five BCVs as the relevance scores of computer assets by mapping the BCVs of [10,
50] into [1, 5], and by assigning 0 to all other computer assets.

4.3 Baseline Methods

We designed two hypothetical baseline methods to compare our algorithms with. The
first baseline produces a random ordering of the assets (hereafter denoted as Random).
The second baseline is based on the assumption that assets used by high-rank employees
are more sensitive than those used by low-rank employees. This method (denoted as
OrgRank) produces a ranking of the assets by sorting the assets in descending order by
Rank-High, Rank-Middle, and Rank-Low (the Rank features described in Table 1).

4.4 Experimental Results

In the experiments, each algorithm produces a ranked list of the computer assets, and
we compare the six algorithms based on precision, recall and DCG. We set k to 3 for all
kNN-based methods, and, for the clustering-based method, we generated 150 clusters
for the data and k = 1 for similarity estimation. The evaluation is conducted using 5-fold
cross validation methods. In a 5-fold cross validation, the ground truth data is randomly
divided into 5 equally sized subgroups, and each of the subgroups is used for evaluation.
At i-th validation (1 ≤ i ≤ 5), the i-th subgroup (i.e., 20% of the data) is withheld to
evaluate the model’s performance, and the remaining four subgroups (i.e., 80% of the
data) are used to train the model. Since cross validation does random splitting of the
ground truth data, we conducted 5-fold cross validation 10 times, and all the results
reported here are the average performance of the 10 runs. The results of the Random
baseline system is also the average performance from 10 random orderings.

Precision and Recall: First, we show the precision-recall curves of the algorithms.
The precisions are measured at 20 different recall rates ranging from 0.05 to 1 as shown
in Figure 7(a). All four algorithms yield significantly higher precision up to recall=0.2
than the baseline systems, with LMNN outperforming the others. We notice that the
precision drops rapidly as the recall increases. This is mainly due to the high skew in
the class distribution in our data set (only 0.6% of samples are positive).

Next, we examine recall in more detail, as high recall is more desirable for the ap-
plications with highly imbalanced data. Figure 7(b) shows the recall levels measured at
the top n% (5% ≤ n ≤ 30%) of the most sensitive assets in the ranked lists. As we
can see, our algorithms produce much higher recall than the baseline systems, and the
distance metric learning methods outperform the other algorithms across all levels of n.
For instance, RCA achieves about 300% and 57% higher recall than Random at top 5%
and top 30% respectively. Interestingly, OrgRank performs very poorly and produces
much lower precision and recall than Random.

Discounted Cumulative Gain: Figure 8 shows the DCG values at each rank in the
ranked list of the data. As noted, DCG is a better metric for applications where the
relevance is judged in multi-scales. The comparison of DCG clearly show that our
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(a) Precision-Recall Curve (b) Recall

Fig. 7. Comparison of the precision and recall. Figure 7(a) shows the precision at different recall
levels. Figure 7(b) shows the recall measured at top n% of the ranked data.

Fig. 8. The discounted cumulative gains of different algorithms. The x-axis represents the ranks
of the data in descending order, i.e., x=1 represents the most sensitive computer ranked by each
algorithm.

algorithms perform significantly better than the baseline methods, and LMNN performs
slightly better than the other algorithms. Further, our algorithms converge much more
quickly achieving high DCGs early in the ranked list. This shows that our algorithms
are able to assign high ranks to highly sensitive assets. We also notice that the OrgRank
method performs better than Random when measured by DCG.

5 Related Work

There have been little work on automatically measuring the sensitivity (or criticality) of
IT assets. A related body of work has been studied by [3,10,12,13,15]. Park et al. [12,13]
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and Beaver et al. [4] proposed methods for scoring the value of the information stored in
host computers using text processing and classification. While these methods are very
useful for data security, they can not be applied to other types of IT assets. Further, these
methods require direct access to the assets to crawl the data, thus, they are harder to ap-
ply to a large scale heterogenous environment. Beaudoin and Eng presented a method
for computing the values of network assets based on the network topology, systemic de-
pendencies among the network assets and the interfaces between the network [3]. They
manually assign the initial values to some of the sources called “user services”, and
percolate the values from the user services back to the supporting assets using a graph
mining algorithm. Sawilla and Ou presented AssetRank, a generalization of the PageR-
ank algorithm, which calculates the importance of an asset to an attacker [15]. Their
approach uses the dependency relationships in the attack graph and the vulnerability
attributes to compute the relative importance of attacker assets rather than the impor-
tance of the asset itself. Kim and Kang [10] described a method for scoring and ranking
cyber assets using a small number of hand-crafted features. They utilize three types of
features – static factors (e.g., the criticality of application on the asset and value of data
on the asset), static value-sensitive factors (e.g., who owns the machine) and dynamic
value-sensitive factors (e.g., who is currently logged onto the machine). Crucially, their
features are hard to extract automatically, and, thus, they extract the feature values in
five-point scale from domain experts using a user survey.

6 Discussion and Conclusions

In this paper, we proposed algorithms for automatically scoring IT assets with a mini-
mum of human intervention. Our algorithms provide several technical advantages that
make our system more efficient, scalable, and privacy preserving than other existing
methods. First, our methods do not require access to the assets or any detailed knowl-
edge about the targets. Second, the features are very domain-independent and can be
mostly extracted from access logs. Third, we apply semi-supervised machine learning
approaches to minimize human efforts.

We confirmed through experiments that our algorithms perform much better than a
random ordering or a simple hypothesis-based approach. Further, the performance im-
provement was larger when the multi-scale sensitivity values were taken into account.
This indicates that our algorithms were able to retrieve assets with higher scores at
higher ranks. The experiments also demonstrated that distance metric learning tech-
niques improves the accuracy of the algorithms.

The system envisions to provide fine-grained security on high-value enterprise as-
sets and help large enterprises manage the security risks associated with these assets.
Firstly, the fine grained estimation of sensitivity values can be used to define access
control policies based on the sensitivity levels. For instance, we can define access con-
trol policies granting access to assets with sensitivity levels up to a defined threshold.
Another application of the dynamic computation of sensitivity values is in risk-based
security methods. These methods typically rely on bounding the worst case damage
caused by incorrect access control decisions. The ability to dynamically estimate the
sensitivity values would make risk based methods effective and applicable in practice.
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Abstract. In computer forensics, log files are indispensable resources
that support auditors in identifying and understanding system threats
and security breaches. If such logs are recorded locally, i.e., stored on the
monitored machine itself, the problem of log authentication arises: if a
system intrusion takes place, the intruder might be able to manipulate
the log entries and cover her traces. Mechanisms that cryptographically
protect collected log messages from manipulation should ideally have
two properties: they should be forward-secure (the adversary gets no
advantage from learning current keys when aiming at forging past log
entries), and they should be seekable (the auditor can verify the integrity
of log entries in any order, at virtually no computational cost).

We propose a new cryptographic primitive, a seekable sequential key
generator (SSKG), that combines these two properties and has direct
application in secure logging. We rigorously formalize the required se-
curity properties and give a provably-secure construction based on the
integer factorization problem. We further optimize the scheme in various
ways, preparing it for real-world deployment. As a byproduct, we develop
the notion of a shortcut one-way permutation (SCP), which might be of
independent interest.

Our work is highly relevant in practice. Indeed, our SSKG implemen-
tation has become part of the logging service of the systemd system
manager, a core component of many modern commercial Linux-based
operating systems.

1 Introduction

Pseudorandom generators. A pseudorandom generator (PRG) is an unkeyed
cryptographic primitive that deterministically expands a fixed-length random
seed to a longer random-looking string [18]. Most often, PRGs find application
in environments where truly random bits are a scarce resource; for instance, once
a system managed to harvest an initial seed of, say, 128 uniformly distributed bits
from a suitable (possibly physical) entropy source, a PRG can securely stretch
this seed to a much larger number of bits. While such mechanisms are indis-
pensable for constrained devices like smartcards, (variants of) PRGs are also
long-serving components of modern PC operating systems. A well-known exam-
ple is the /dev/urandom device available in virtually all current Linux/UNIX
derivates.

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 111–128, 2013.
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Other applications exploit the feature that the output of PRGs can be re-
generated : as PRGs are deterministic primitives, the entire output sequence can
be reconstructed from the initial seed, whenever needed. This directly allows
employment of PRGs for symmetric encryption (formally, one could view stream
ciphers like RC41 or AES-CTR as PRGs with practically infinite output length),
but also in distributed systems, where locally separate agents can synchronously
generate identical sequences of (pseudo-)random bits.

For PRGs with very large output length (e.g., stream ciphers) we introduce
the notion of seekability; a PRG is seekable if, for a fixed seed, ‘random access’
to the output sequence is possible. For example, the PRG obtained by operating
a block cipher in counter mode is seekable: one can quickly jump to any part of
the output string by setting the counter value to the right ‘address’. In contrast,
RC4 is not known to be seekable: presumably, in order to jump to position k in
the output string, one has to iterate the cipher k times.

Forward security. The concept of forward security (FS), best-known from the
context of cryptographic key establishment (KE), expresses the inability of an
adversary to gain advantage from the ‘corruption’ of entities. For example, con-
sider an instance of a two-party public key-authenticated KE protocol. We say
that the established session key enjoys forward security2 if an adversary can-
not obtain any useful information about that key, even if participants, after
completing the protocol instance, surrender their respective secret keys. In key
exchange, forward security is recognized as one of the most fundamental security
goals [30,8].

Although less commonly seen, the notion of forward security extends to other
cryptographic settings and primitives. For instance, in forward-secure public key
encryption (FS-PKE, [7]), time is subdivided into a discrete number of epochs
t0, t1, . . ., and messages are encrypted in respect to a combination (pk, tk) of
public key and time epoch. Recipients, starting in epoch t0 with an initial key sk0,
use an update procedure ski+1 ← f(ski) to evolve the decryption key from epoch
to epoch. An FS-PKE is correct if a recipient holding key skk can decrypt all
ciphertexts addressed to corresponding epoch tk; it is forward-secure if secrecy
of all messages addressed to ‘past’ epochs tj, j < k, is preserved even if the
adversary obtains a copy of skk. Clearly, FS-PKE only offers a security advantage
over plain public key encryption if users securely erase ‘expired’ decryption keys.

Similarly to FS-PKE, also forward-secure signature schemes [2] work with
time epochs and evolving keys; briefly speaking, their security properties ensure
that an adversary holding an epoch’s signing key skk cannot forge signatures for
prior epochs tj , j < k (i.e., ‘old’ signatures remain secure).

Secure logging. Computer log files, whether manually or mechanically evaluated,
are among the most essential resources that support system administrators in

1 In fact, practical distinguishing attacks against RC4 are known [11]; RC4 is hence a
PRG only ‘syntax-wise’.

2 in the context of key establishment also known as ‘forward secrecy’
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their day-to-day business. Such files are generated on hosts and communication
systems, and record a large variety of system events, including users logging on or
off, network requests, memory resources reaching their capacity, malfunctioning
of disk drives, and crashing software.

While regular analysis of system logs allows administrators to maintain sys-
tems’ health and long uptimes, log files are also indispensable in computer foren-
sics, for the identification and comprehension of system intrusions and other
security breaches. However, if logs are recorded locally (i.e., on the monitored
machine itself) the problem of log authentication arises: if a system intrusion
takes place, the intruder might be able to manipulate the log entries and cover
her traces. So-called ‘log sanitizers’ aim at frustrating computer forensics and
are known to be a standard tool in hackers’ arsenal.

Two approaches to avert the threat of adversarial modification of audit logs
seem promising. One such option is the deployment of online logging. Here,
log messages are transferred over a network connection to a remote log sink
immediately after their creation, in the expectancy that entries caused by system
intrusions have reached their destination before they can be tampered with. As
a side effect, online logging might also ease security auditing by the fact that
log entries are concentrated at a single point. However, as every local buffering
of log records increases the risk of their suppression by the intruder, full-time
availability of the log sink is an absolute security requirement in this setting.
But observe that the intruder might be able provoke downtimes at the sink (e.g.,
by running a DOS attack against it) or might disrupt the network connection
to it (e.g., by injecting reset packets into TCP connections, jamming wireless
connections, etc.). An independent problem comes from the difficulty to select
an appropriate level of granularity for the events to be logged. For instance, log
files created for forensic analysis might ideally contain verbose information like
an individual entry for every file opened, every subprocess started, and so on.
Network connections and log sinks might quickly reach their capacities if events
are routinely reported in such a high resolution. This holds in particular if log
sinks serve multiple monitored hosts simultaneously.

Storing high volume log data is less an issue in secured local logging where
a networked log sink is not assumed. In such a setting, log messages are pro-
tected from adversarial tampering by cryptographic means. It cannot be ex-
pected that standard integrity-protecting primitives like message authentication
codes (MAC) or signature schemes on their own will suffice to solve the problem
of log authentication: a skilled intruder will likely manage to extract correspond-
ing secret keys from corrupted system’s memory. Instead, forward-secure signa-
tures and forward-secure message authentication schemes have been proposed for
secure logging [29,24,34]. Clearly, local logging can never prevent the intruder
from deleting stored entries. However, cryptographic components might ensure
that such manipulations are guaranteed to be indicated to the log auditor.
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1.1 Contributions, Organization, Applications

The key contribution of this paper is the development of a new cryptographic
primitive: a seekable sequential key generator (SSKG). Briefly, a sequential key
generator (SKG) is a stateful PRG that outputs a sequence of fixed-length strings
— one per invocation. The essential security property is indistinguishability of
these strings from uniformly random. For SSKG, we additionally require seek-
ability, i.e., the existence of an efficient algorithm that allows to jump to any
position in the output sequence. For both, SKG and SSKG, we demand that
indistinguishability hold with forward security.

This paper is organized as follows. We start in Sections 2 and 3 by formaliz-
ing the functionality and security properties of SKG and SSKG. We show that
a related primitive by Bellare and Yee securely instantiates an SKG; however, it
is not seekable. Aiming at constructing an SSKG, we introduce in Section 4 an
auxiliary primitive, a shortcut one-way permutation (SCP), that we instantiate
in the factoring-based setting. In Section 5 we expose our SSKG; it is particularly
efficient, taking only one modular squaring operation per invocation. We con-
clude in Section 6 by proposing further optimizations that substantially increase
efficiency of our SSKG, making it ready for deployment in practice.

We argue that a (seekable) SKG is the ideal primitive to implement a secured
local logging system, as described above. The construction is immediate: the
strings output by the SKG are used as keys for a MAC which is applied to all
log messages. After each authentication tag has been computed and appended
to the particular log message, the SKG is evolved to the next state, making the
described authentication forward-secure. The log auditor, starting with a copy
of the SKG’s original seed, can recover all MAC keys and verify authenticity of
all log entries. Typically, log auditors will require random access to these MAC
keys — SSKGs provide exactly this functionality.

Further applications for SKGs and SSKGs. Potential applications of SKG and
SSKG are given not only by secure logging, but also by digital cameras, voice
recorders and backup systems [29]. In more detail, digital cameras could be
equipped with an authentication mechanism that individually authenticates ev-
ery photo taken. Such cameras could support modern journalism that, when
reporting from armed conflict zones, is more and more reliant on amateurs for
the documentation of events; in such settings, where post-incidental (digital) ma-
nipulation inherently has to be anticipated, cryptographic SKG-like techniques
could support the verification of authenticity of reported images.

1.2 Related Work

Secured local logging. An early proposal to use forward-secure cryptography to
protect locally-stored audit logs is by Kelsey and Schneier [20,21,29]. The core
of their scheme is an (evolving) ‘authentication key’: for each time epoch ti
there is a corresponding authentication key Ai. This key is used for multiple
purposes: as a MAC key to authenticate all log messages occurring in epoch ti,
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for deriving an epoch-specific encryption key Ki by computing Ki ← H0(Ai),
and for computing next epoch’s authentication key via iteration Ai+1 ← H1(Ai)
(whereH0, H1 are hash functions). An implementation of [29] in tamper-resistant
hardware is reported by Chong, Peng and Hartel [9]. Unfortunately, the scheme
by Kelsey and Schneier lacks a formal security analysis.3

The first rigorous analysis of forward-secure secret key cryptography was given
by Bellare and Yee [3]. They propose constructions of forward-secure variants of
PRGs, symmetric encryption schemes, and message authentication codes, and
analyze them in respect to formal security models. We anticipate here that our
security definitions are strictly stronger than those from [3], capturing a larger
class of application scenarios.

The work of Holt [14] can be seen as an extension of [29]. With logcrypt, the
author proposes a symmetric scheme and an asymmetric scheme for secure log-
ging. While the former is similar to [29] (but apparently offers provable security),
the latter bases on the forward-secure signature scheme by Bellare and Miner [2].
Holt also discusses the efficiency penalties experienced in the asymmetric vari-
ant. We finally note that [14] suggests to store regular metronome entries in
log files in order to thwart truncation attacks where adversary cuts off the most
recent set of log entries.

Ma and Tsudik propose deployment of forward-secure sequential aggregate sig-
natures for integrity-protected logging [23,24]. Their provably-secure construc-
tion builds on compact constant-size authenticators with all-or-nothing security
(i.e., if any single log message is suppressed by the adversary, this will be no-
ticed). Such aggregate signatures naturally defend against truncation attacks,
making Holt’s metronome entries disposable.

Waters et al. [32] identify searchable audit logs as an application of identity-
based encryption. Here, in order to increase users’ privacy, log entries are not
only authenticated but also encrypted. This encryption is done in respect to a
set of keywords; records encrypted towards such keywords are identifiable and
decryptable by agents who hold keyword-dependent private keys.

Another interesting approach towards forward-secure logging was proposed by
Yavuz and Ning [33], and Yavuz, Ning, and Reiter [34]. In their scheme, the key
evolving procedure and the computation of (aggregatable) authentication tags
take not more than a few hash function evaluations and finite field multiplications
each; these steps are hence implementable on sensors and other devices with
constrained computing power. However, the required workload on verifier’s side
is much higher: one exponentiation per log entry.

An IETF-standardized secure logging scheme is signed syslog messages by
Kelsey, Callas, and Clemm [19]. The authors describe an extension to the stan-
dard UNIX syslog facility that authenticates log entries via a regular signature
scheme (e.g., DSA). The scheme, however, does not provide forward security.

We conclude by recommending Itkis’ excellent survey on methods in forward-
secure cryptography [16].

3 It is, in fact, not difficult to see that the scheme is generically insecure (i.e., a security
proof cannot exist).
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Seekable PRGs. We are not aware of any work so far that focuses on the seeka-
bility of PRGs. The observation that block ciphers operated in counter mode can
be seen as seekable PRGs, in contrast to most other stream ciphers, is certainly
folklore. We point out that the famous Blum-Blum-Shub PRG [4,5] is forward-
secure. Moreover, its underlying number-theoretic structure seems to allow for
seekability. Unfortunately it is not efficient: the computation of each individual
output bit requires one modular squaring.

2 Sequential Key Generators

We introduce sequential key generators (SKG) and their security properties. Note
that a similar primitive, stateful generator, was proposed by Bellare and Yee [3].
However, our syntax is more versatile and our security models are stronger, as
we will see. We extend SKGs to (seekable) SSKGs in Section 3.

2.1 Functionality and Syntax

An SKG consists of four algorithms: GenSKG generates a set par of public pa-
rameters, GenState0 takes par and outputs an initial state st0, update procedure
Evolve maps each state sti to a successor state sti+1, and GetKey algorithm de-
rives from any state sti a corresponding (symmetric) keyKi. KeysK0,K1, . . . are
supposed to be used in higher level protocols, for example as keys for symmetric
encryption or message authentication schemes.

Typically, SKG instances are not run in a single copy; rather, after distributing
‘clones’ of initial state st0 to a given set of parties, several copies of the same SKG
instance are run concurrently and independently, potentially on different host
systems, not necessarily in synchronization. If Evolve and GetKey algorithms are
deterministic, respective sequences K0,K1, . . . of computed symmetric keys will
be identical for all copies. This setting is illustrated in Figure 1 and formalized
as follows.

Definition 1 (Syntax of SKG). A sequential key generator is a tuple SKG =
{GenSKG,GenState0,Evolve,GetKey} of efficient algorithms as follows:

– GenSKG(1λ). On input of security parameter 1λ, this algorithm outputs a
set par of public parameters.

– GenState0(par). On input of public parameters par, this algorithm outputs an
initial state st0.

– Evolve(sti). On input of state sti, this deterministic algorithm outputs ‘next’
state sti+1. For convenience, for anym ∈ N, by Evolvem we denote the m-fold
composition of Evolve, i.e., Evolvem(sti) = sti+m.

– GetKey(sti). On input of state sti, this deterministic algorithm outputs key
Ki ∈ {0, 1}�(λ), for a fixed polynomial 	. For convenience, for any m ∈ N,
we write GetKeym(sti) for GetKey(Evolvem(sti)).

We also pose the informal requirement on Evolve algorithm that it securely erase
state sti after deriving state sti+1 from it. Note that secure erasure is generally
considered difficult to achieve and requires special care [12].

www.it-ebooks.info

http://www.it-ebooks.info/


Practical Secure Logging: Seekable Sequential Key Generators 117

GenSKG GenState0

Evolve Evolve Evolve Evolve

Evolve Evolve Evolve Evolve

par

st0 st1 st2 st3 st4

st0 st1 st2 st3 st4

Fig. 1. Interplay of GenSKG, GenState0, and Evolve algorithms of an SKG. The figure
shows two copies of the same SKG instance running in parallel. GetKey algorithm can
be applied to each intermediate state sti to derive key Ki.

2.2 Security Requirements

The fundamental security property of SKGs is the indistinguishability of keys Ki

from random strings of the same length. Intuitively, for any n of adversary A’s
choosing, target keyKn is required to be indistinguishable from random even ifA
has access to all other keys Ki, i �= n. This feature ensures generic composability
of SKGs with applications that rely on uniformly and independently distributed
keys Ki. In addition to the indistinguishability requirement, forward security
demands that an ‘old’ key Kn remain secure even when A learns state stm, for
any m > n (e.g., by means of a computer break-in).

We give two game-based definitions of these indistinguishability notions: one
with and one without forward security.

Definition 2 (IND and IND-FS Security of SKG). A sequential key generator
SKG is indistinguishable against adaptive adversaries (IND) if for all efficient
adversaries A = (A1,A2) that interact in experiments ExptIND,b from Figure 2
the following advantage function is negligible, where the probabilities are taken
over the random coins of the experiment (including over A’s randomness):

AdvIND
SKG,A(λ) =

∣∣∣Pr
[
ExptIND,1

SKG,A(1λ) = 1
]
− Pr

[
ExptIND,0

SKG,A(1λ) = 1
]∣∣∣ .

The SKG is indistinguishable with forward security against adaptive adversaries
(IND-FS) if analogously defined advantage function AdvIND-FS

SKG,A (λ) is negligible.

It is not difficult to see that the IND-FS notion is strictly stronger than the
IND notion. The proof of Lemma 1 appears in the full version [25, Appendix A].

Lemma 1 (IND-FS ⇒ IND). Any sequential key generator SKG that is indis-
tinguishable with forward security against adaptive adversaries is also indistin-
guishable against adaptive adversaries.

2.3 Comparison with Stateful Generators

Stateful generators, first described by Bellare and Yee [3, Section 2.2], aim at
similar applications as SKGs. Syntactically, the two primitives are essentially
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ExptIND,b
SKG,A(1λ):

(a) KList← ∅
(b) par←R GenSKG(1λ)
(c) st0 ←R GenState0(par)

(d) (state,n)←R AOKey
1 (par)

– If A queries OKey(i):
(a) KList← KList ∪ {i}
(b) Ki ← GetKeyi(st0)
(c) Answer A with Ki

(e) K0
n ←R {0, 1}�(λ)

(f) K1
n ← GetKeyn(st0)

(g) b′ ←R A
OKey

2 (state,Kb
n)

– Answer OKey queries as above
(h) Return 0 if n ∈ KList
(i) Return b′

ExptIND-FS,b
SKG,A (1λ):

(a) KList← ∅
(b) par←R GenSKG(1λ)
(c) st0 ←R GenState0(par)

(d) (state,n,m)←R AOKey
1 (par)

– Answer OKey queries as in ExptIND

(e) K0
n ←R {0, 1}�(λ)

(f) K1
n ← GetKeyn(st0)

(g) stm ← Evolvem(st0)

(h) b′ ←R AOKey
2 (state, stm,K

b
n)

– Answer OKey queries as in ExptIND

(i) Return 0 if n ∈ KList or m ≤ n
(j) Return b′

Fig. 2. Security experiments for SKG without and with forward security

identical. However, the security definition of stateful generators is weaker and
less versatile than the one of SKGs. Concretely, in the (game-based) security
definition for stateful generators, after having incremental access to a sequence
k0, k1, . . . of keys that are either all real (i.e., ki = Ki ∀i) or all random (i.e., ki ∈R

{0, 1}�(λ) ∀i), the adversary eventually requests to see the ‘current’ state stm
and, based upon the result, outputs a guess on whether keys k0, . . . , km−1 were
actually real or random. Important here is the observation that an adversary that
corrupts a state stm cannot request access to keys Ki, i > m, before making this
corruption (in contrast to our model). This is a severe limitation in contexts
where multiple parties evolve states of the same SKG instance independently of
each other and in an asynchronous manner; for instance, in the secure logging
scenario, the adversary might first observe the log auditor verifying MAC tags
on ‘current’ time epochs and then decide to corrupt a monitored host that is
out of synchronization, e.g., because it is powered down and hence didn’t evolve
its state. As such concurrent and asynchronous conditions are not considered in
the model by Bellare and Yee, in some practically relevant settings the security
of the constructions from [3] should not be assumed.

2.4 A Simple Construction

It does not seem difficult to construct SKGs from standard cryptographic prim-
itives. Indeed, many of the stateful generators proposed in [3], constructed from
PRGs and PRFs, are in fact IND-FS-secure SKGs. For concreteness, we repro-
duce a simple PRG-based design. Its security is analysed in [3, Theorem 1].

Construction 1 (PRG-based SKG [3]) Let G : {0, 1}λ → {0, 1}λ+�(λ) be a
PRG, where for each x ∈ {0, 1}λ we write G(x) as G(x) = GL(x) ‖ GR(x)
with GL(x) ∈ {0, 1}λ and GR(x) ∈ {0, 1}�(λ). Let then GenSKG output the
empty string, GenState0 sample st0 ←R {0, 1}λ, Evolve(sti) output GL(sti), and
GetKey(sti) output GR(sti).
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3 Seekable Sequential Key Generators

We have seen that secure SKGs exist and are not too difficult to construct. More-
over, the scheme from Construction 1 is efficient. Indeed, if it is instantiated with
a hash function-based PRG, invocations of Evolve and GetKey algorithms take
only a small (constant) number of hash function evaluations. However, this as-
sessment of efficiency is adequate only if SKG’s keys Ki are used (and computed)
in sequential order. We argue that in many potential fields of application such
access structures are not given; instead, random access to the keys is required,
likely implying a considerable efficiency penalty if keys need to be computed it-
eratively via Ki ← GetKeyi(st0). The following examples illustrate that random
access patterns do not intrinsically contradict the envisioned sequential nature
of SKGs.

Consider a host that uses SKG’s keys Ki to authenticate continuously in-
curring log messages. A second copy of the same SKG instance would be run
by the log auditor. From time to time the latter might want to check the in-
tegrity of an arbitrary selection of these messages4. Observe that this scenario
does not really correspond to the setting from Figure 1: While the upper SKG
copy might represent the host that evolves keys in the expected linear order
Ki → Ki+1, the auditor (running the independent second copy) would actually
need non-sequential access to SKG’s keys.

For a second example in secure logging, assume SKG’s epochs are coupled to
absolute time intervals (e.g., one epoch per second). If a host is powered up after
a long down-time, in order to resynchronize its SKG state, it is required to do
a ‘fast-forward’ over a large number of epochs. Ideally, an SKG would support
the option to skip an arbitrary number of Evolve steps in short time5.

A variant of SKG that explicitly offers random access capabilities is introduced
in this section. We claim that many practical applications can widely benefit from
the extended functionality. Observe that the advantage of SSKGs over SKGs is
purely efficiency-wise; in particular, the definition of SSKG’s security will be
(almost) identical to the one for SKGs.

3.1 Functionality and Syntax

When comparing to regular SKGs, the distinguishing property of seekable se-
quential key generators (SSKG) is that keys Ki can be computed directly from
initial state st0 and index i, i.e., without executing the Evolve procedure i times.
The corresponding new algorithm, Seek, and its relation to the other SKG algo-
rithms is visualized in Figure 3. For reasons that will become clear later, when
extending SKG’s syntax towards SSKG, in addition to introducing the Seek
algorithm we also had to slightly adapt the signature of the GenSKG algorithm:

4 For example, after a zero-day vulnerability in a software product run on the mon-
itored host becomes public, the log auditor might want to retrospectively look for
specific irregularities in log entries related to that vulnerability.

5 Clearly, a (fast-)forward algorithm with execution time linear in the number δ of
skipped epochs is trivially achievable. The question is: can we do better than O(δ)?
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Definition 3 (Syntax of SSKG). A seekable sequential key generator is a
tuple SSKG = {GenSSKG,GenState0,Evolve, Seek,GetKey} of efficient algorithms
as follows:

– GenSSKG(1λ). On input of security parameter 1λ, this algorithm outputs a
set par of public parameters and a seeking key sk.

– GenState0, Evolve, GetKey as for SKGs (cf. Definition 1).

– Seek(sk, st0,m). On input of seeking key sk, initial state st0, and m ∈ N, this
deterministic algorithm returns a state stm.

GenSSKG

GenState0 Evolve Evolve Evolve Evolve

GenState0 Evolve Evolve Evolve

Seek

Seek

par

par

sk

st0 st1 st2 stm−1 stm stm+1

st′0 st′1 st′m′−1 st′m′ st′m′+1

m

m′

Fig. 3. Interplay of the different SSKG algorithms. The figure shows two independent
SSKG instances running in parallel. Given seeking key sk and respective instance’s
initial state st0, one can seek directly to any arbitrary state stm. As in SKGs, GetKey
algorithm can be applied to any intermediate state sti to derive key Ki.

In contrast to SKGs, for SSKGs we need to explicitly require consistency of
keys computed with Seek and Evolve algorithms:

Definition 4 (Correctness of SSKG). A seekable sequential key generator
SSKG is correct if, for all λ ∈ N, all (par, sk) ←R GenSSKG(1λ), and all st0 ←R

GenState0(par), we have that Seek(sk, st0,m) = Evolvem(st0) for all m ∈ N.

Remark 1 (Security notions IND and IND-FS for SSKG). Indistinguishability
of SSKGs is defined in exactly the same way as for regular SKGs, with one
purely syntactical exception: As the new GenSSKG algorithm outputs the auxil-
iary seeking key, the experiments in Figure 2 need to be adapted such that the
par ←R GenSKG(1λ) line is replaced by (par, sk) ←R GenSSKG(1λ). However,
seeking key sk is irrelevant for the rest of the experiment.

Example 1 (Practical SSKG setting). We describe a practical setting of secured
local logging with multiple monitored hosts. The system administrator first runs
GenSSKG algorithm to establish system-wide parameters; each host then runs
GenState0 algorithm to create its individual initial state st0, serving as a basis
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for specific sequences (sti)i∈N and (Ki)i∈N. The log auditor, having access to
seeking key sk and to initial states st0 of all hosts, can reproduce all corresponding
keysKi without restriction. Observe that, as the SSKG instances run on different
hosts are independent of each other, authenticated log messages from one host
cannot be ‘replayed’ on other hosts.

In practice, it might be difficult to find ‘the right’ frequency with which keys
should be evolved. Recall that, even if forward-secure log authentication is in
place, an intruder cannot be prevented from manipulating the log entries of the
epoch in which he got access to a system. This suggests that keys should be
updated at least every few seconds — and even more often to obtain protection
against fully-automated attack tools. On battery-powered mobile devices, how-
ever, too frequent wakeups from system’s sleep mode with the only purpose of
evolving keys will noticeably contribute to draining devices’ energy reserves.

Remark 2 (On the necessity of seeking trapdoors). For standard SKGs, the secret
material managed by users is restricted to one ‘current’ state sti. In contrast, for
SSKGs, we introduced additional secret information, sk, required to perform the
seek operation. One might ask whether this step was really necessary. We fixed
the syntax of SSKGs as given in Definition 3 for a technical reason: the SSKG
construction we present in Section 5 is factoring-based and its Seek algorithm
requires knowledge of modulus’ factorization n = pq. However, as knowledge
of p and q thwarts the one-wayness of designated Evolve operation, we had to
formally separate the entities that can and cannot perform the Seek operation.
While this property slightly narrows the applicability of SSKGs, it is irrelevant
for the intended secure logging scenario as described in Example 1.

4 Shortcut Permutations

We introduce a novel primitive, shortcut one-way permutation (SCP), as a build-
ing block for our SSKG construction in Section 5. Consider a finite set D together
with an efficient permutation π : D → D. Clearly, for any x ∈ D and m ∈ N,
it is easy to compute the m-fold composition πm(x) = π ◦ · · · ◦ π(x) in linear
time O(m), by evaluating the permutation m times. In shortcut permutations,
we have the efficiency requirement that the value πm(x) can be computed more
efficiently than that, using a dedicated algorithm. In addition, we require one-
wayness of π: given y ∈ D, it should be impossible to compute π−1(y).

While we will rigorously specify the one-wayness requirement of SCPs, we do
not give a precise definition of what ‘more efficiently’ means for the computation
of πm. The reason is that we aim at practicality of our construction, and, in
general, practical efficiency strongly depends on the concrete parameter sizes
and computing platforms in use. However, we anticipate that the SCPs that we
construct in Section 4.1 have algorithms that compute πm(x) in constant time.

We next formalize the syntax and functionality of SCPs. For technical reasons,
the definition slightly deviates from the above intuition in that the algorithm
which efficiently computes πm also requires an auxiliary input, the shortcut in-
formation.
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Definition 5 (Syntax of SCP). A shortcut permutation is a triple SCP =
{GenSCP,Eval,Express} of efficient algorithms as follows:

– GenSCP(1λ). This probabilistic algorithm, on input of security parameter 1λ,
outputs public parameters pp and a corresponding shortcut information sc.
We assume that each specific value pp implicitly defines a finite domain
D = D(pp). We further assume that elements from D can be efficiently
sampled with uniform distribution.

– Eval(pp, x). This deterministic algorithm, given public parameters pp and a
value x ∈ D, outputs a value y ∈ D.

– Express(sc, x,m). This deterministic algorithm takes shortcut information sc,
an element x ∈ D, and a non-negative integer m, and returns a value y ∈ D.

A shortcut permutation SCP is correct if, for all λ ∈ N and all (pp, sc) ←R

GenSCP(1λ), we have that (a) Eval(pp, · ) implements a bijection π : D → D,
and (b) Express(sc, x,m) = πm(x), for all x ∈ D and m ∈ N.

As the newly introduced shortcut property is solely an efficiency feature, it
does not appear in our specification of one-way security. In fact, the one-wayness
definitions of SCPs and of regular one-way permutations [18] are essentially the
same. Observe that we model one-wayness only for the case that the adversary
does not have access to shortcut information sc.

Definition 6 (One-wayness of SCP). We say that a shortcut permutation
SCP is one-way if the probability

Pr
[
(pp, sc) ←R GenSCP(1λ); y ←R D(pp);x←R B(pp, y) : Eval(pp, x) = y

]
is negligible in λ, for all efficient adversaries B.
Remark 3 (Comparison of SCPs and TDPs). The syntax of (one-way) SCPs is,
to some extent, close to that of trapdoor permutations (TDPs, [18]). However,
observe the significant difference between the notions of trapdoor and shortcut.
While a TDP’s trapdoor allows efficient inversion of the permutation (i.e., com-
putation of π−1), a shortcut in our newly defined primitive allows acceleration
of the computation of πm, for arbitrary m. In particular, for SCPs, there might
be no way to invert π even if the shortcut information is available. We admit,
though, that in our number-theory-based constructions from Section 4.1 one-
wayness does not hold for adversaries that obtain the shortcut information: any
party knowing the shortcut can also efficiently invert the permutation.

4.1 Constructions Based on Number Theory

We propose an efficient number-theoretic SCP construction: FACT-SCP.
Let N be a Blum integer, i.e., N = pq for primes p, q such that p ≡ q ≡

3 mod 4. Let QRN = {x2 : x ∈ Z
×
N} denote the set of quadratic residues mod-

ulo N . It is well-known [26] that the squaring operation x �→ x2 mod N is a
permutation on QRN . Moreover, computing square roots in QRN , i.e., inverting
this permutation, is as hard as factoring N . This intuition is the basis of the
following hardness assumption.
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Definition 7 (SQRT assumption). For probabilistic algorithms GenSQRT that
take as input security parameter 1λ and output tuples (N, p, q, ϕ) such that N =
pq, factors p and q are prime and satisfy p ≡ q ≡ 3 mod 4, and ϕ = ϕ(N) =
|Z×N |, the SQRT problem is said to be hard if for all efficient adversaries A the
success probability

Pr
[
(N, p, q, ϕ) ←R GenSQRT(1λ); y ←R QRN ;x←R A(N, y) : x2 ≡ y mod N

]
is negligible in λ, where the probability is taken over the random coins of the
experiment (including A’s randomness). The SQRT assumption states that there
exists an efficient algorithm GenSQRT for which the SQRT problem is hard.

The construction of an SCP based on the SQRT assumption is now straight-
forward:

Construction 2 (FACT-SCP) Construct SQRT-based SCP as follows: Let
GenSCP(1λ) run GenSQRT(1λ) and output pp = N and sc = ϕ, let D = QRN , let
Eval(N, x) output x2 mod N , and let Express(ϕ, x,m) output x(2

m mod ϕ) mod N .

Remark 4 (Correctness and security of FACT-SCP). Observe that the specified
domain D is efficiently samplable (take x ←R Z×N and square it), that correct-
ness of the SCP follows from standard number-theoretic results (in particular [26,
Fact 2.160] and [26, Fact 2.126]), and that every Express operation takes about
one exponentiation modulo N . Further, comparing the experiments in Defini-
tions 6 and 7 makes evident that FACT-SCP is one-way if the SQRT problem is
hard for GenSQRT, i.e., if integer factorization is hard [26, Fact 3.46].

Similarly to FACT-SCP, in the full version [25, Appendix C] we define the
RSA-based RSA-SCP. Observe that both constructions rely on different, though
related, number-theoretic assumptions. In fact, while the security of FACT-SCP
can be shown to be equivalent to the hardness of integer factorization, RSA-SCP
can be reduced ‘only’ to the RSA assumption. Although equivalence of the RSA
problem and integer factorization is widely believed, a proof has not been found
yet. Hence, in some sense, SQRT-based schemes are more secure than RSA-based
schemes. In addition to that, our SQRT-based scheme has a (slight) performance
advantage over our RSA-based scheme (squaring is more efficient than raising to
the power of e). The only situation we are aware of in which RSA-SCP might
have an advantage over FACT-SCP is when the most often executed operation
is Express, and deployment of multiprime RSA is acceptable (e.g., N = pqr).
Briefly, in the multiprime RSA setting [17,13], private key operations can be
implemented particularly efficiently, based on the Chinese Remainder Theorem
(CRT). Observe that Definition 8 in [25, Appendix C] is general enough to cover
the multiprime setting.

5 Seekable Sequential Key Generators from Shortcut
Permutations

We construct an SSKG from a generic SCP. Briefly, the Evolve operation cor-
responds to the Eval algorithm, the Seek algorithm is implemented via SCP’s
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Express procedure, and keys Ki are computed by applying a hash function (mod-
eled as a random oracle in the security analysis) to the corresponding state sti.

Construction 3 (SCP-SSKG) Let SCP = {GenSCP,Eval,Express} be a shortcut
permutation, and let H : {0, 1}∗ → {0, 1}�(λ) be a hash function, for a polyno-
mial 	. Then the algorithms of our seekable sequential key generator SCP-SSKG
are specified in Figure 4.

GenSSKG(1λ):
(a) (pp, sc)←R GenSCP(1λ)
(b) (par, sk)← (pp, sc)
(c) Return (par, sk)

GenState0(par):
(a) pp← par
(b) x0 ←R D(pp)
(c) st0 ← (pp, 0, x0)
(d) Return st0

Seek(sk, st0,m):
(a) sc← sk
(b) (pp, 0, x0)← st0
(c) xm ← Express(sc, x0, m)
(d) stm ← (pp,m, xm)
(e) Return stm

Evolve(sti):
(a) (pp, i, xi)← sti
(b) xi+1 ← Eval(pp, xi)
(c) sti+1 ← (pp, i+ 1, xi+1)
(d) Return sti+1

GetKey(sti):
(a) (pp, i, xi)← sti
(b) Ki ← H(pp, i, xi)
(c) Return Ki

Fig. 4. SCP-based SSKG construction SCP-SSKG

Correctness of Construction 3 follows by inspection. We state IND-FS secu-
rity of SCP-SSKG in Theorem 1; the corresponding proof appears in the full
version [25, Appendix D]. Recall that IND security follows by Lemma 1.

Theorem 1 (Security of SCP-SSKG). The SSKG from Construction 3 offers
IND-FS security if SCP is a one-way shortcut permutation, in the random oracle
model.

6 Implementing Seekable Sequential Key Generators

Let FACT-SSKG denote the factorization-based SSKG obtained by combining
Constructions 2 and 3. Some implementational details that increase the efficiency
and versatility of this construction are discussed next.

We first propose a small tweak to the scheme that affects the storage size
of the initial state. Recall that, in foreseen applications of SSKGs, the initial
state st0 is first created by (randomized) GenState0 algorithm and then copied
to other parties (cf. discussion in Section 2.1). In FACT-SSKG, between 1024 to
4096 bits would have to be copied, depending on the desired level of security [1],
just counting the size of x0 ∈ QRN . However, in the specific application we
are aiming at, described in detail in Section 6.1, that much bandwidth is not
available. We hence propose to make GenState0 algorithm deterministic, now
providing it with an explicit random seed of short length (e.g., 80–128 bits);
all randomness required by the original GenState0 algorithm is deterministically
extracted from that seed via a PRG, and only 128 bits (or less) have to be
shared with other parties. We implement this new feature by introducing an
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auxiliary algorithm, RndQR, that deterministically maps seed ∈ {0, 1}�(λ) to an
element in QRN such that the distribution of RndQR(N, seed) with random seed
is negligibly close to the uniform distribution on QRN . The new GenState0 and
RndQR algorithms are shown in Figure 5. The admissibility of proposed RndQR
construction is confirmed by [10] and [27, §B.5.1.3], in the random oracle model.

The second modification of FACT-SSKG improves the efficiency of the Seek
operation. A standard trick [17,6] to speed up private operations in factoring-
based schemes is via the Chinese Remainder Theorem (CRT). For instance,
if an exponentiation y ← xk mod N is to be computed and the factorization
N = pq is known, then y can be obtained by CRT-decomposing x into xp ←
x mod p and xq ← x mod q, by computing yp ← x

k mod ϕ(p)
p mod p and yq ←

x
k mod ϕ(q)
q mod q independently of each other, and by mapping (yp, yq) back to

ZN (by applying the CRT a second time). The described method to compute xk

is approximately four times faster than evaluating the term directly, without the
CRT [26, Note 14.75]. The correspondingly modified Seek algorithm is shown in
Figure 5.

GenSSKG(1λ):
(a) (N, p, q, ϕ)←R GenSQRT(1λ)
(b) par← N
(c) sk← (N, p, q)
(d) Return (par, sk)

GenState0(par, seed):
(a) N ← par
(b) x0 ← RndQR(N, seed)
(c) st0 ← (N, 0, x0)
(d) Return st0

Seek(sk, seed,m):
(a) (N, p, q)← sk
(b) x0 ← RndQR(N, seed)
(c) (xp, xq)← CRTDecomp(x0, p, q)
(d) kp ← 2m mod p− 1
(e) kq ← 2m mod q − 1
(f) xp,m ← (xp)

kp mod p
(g) xq,m ← (xq)

kq mod q
(h) xm ← CRTComp(xp,m, xq,m, p, q)
(i) stm ← (N,m, xm)
(j) Return stm

Evolve(sti):
(a) (N, i, xi)← sti
(b) xi+1 ← (xi)

2 mod N
(c) sti+1 ← (N, i+ 1, xi+1)
(d) Return sti+1

GetKey(sti):
(a) (N, i, xi)← sti
(b) Ki ← H(N, i, xi)
(c) Return Ki

RndQR(N, seed):
(a) h← H ′(N, seed)
(b) h← h mod N
(c) s← h2 mod N
(d) Return s

CRTDecomp(x, p, q):
(a) xp ← x mod p
(b) xq ← x mod q
(c) Return (xp, xq)

CRTComp(xp, xq, p, q):
(a) u← p−1 mod q
(b) a← u(xq − xp) mod q
(c) x← xp + pa
(d) Return x

Fig. 5. Algorithms of optimized FACT-SSKG, together with auxiliary RndQR,
CRTDecomp, and CRTComp algorithms. In the specification of RndQR we assume a
hash function H ′ : {0, 1}∗ → {0, . . . , 2t − 1}, where t = �log2N�+ 128.

We combine Remark 4, Theorem 1, and Lemma 1 to obtain:

Corollary 1 (Security of FACT-SSKG). Under the assumption that integer
factorization is hard, our seekable sequential key generator FACT-SSKG offers
both IND and IND-FS security, in the random oracle model.

6.1 Deployment in Practice

We implemented FACT-SSKG (incorporating the tweaks described above) [28].
In fact, the code is part of the journald logging component of the systemd system
and service manager, the core piece of many modern commercial Linux-based
operating systems [31]. The SSKG is used as described in the introduction: it is
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combined with a cryptographic MAC in order to implement secured local logging,
called Forward-Secure Sealing in journald. Generation of initial state st0 takes
place on the system whose logs are to be protected. The corresponding seed is
shown on screen only (hence the restriction on seed’s size), both in text and
as QR code [15]; the latter may be scanned off the screen with devices such as
mobile phones. The separation between on-disk storage of public parameters and
on-screen display of the seed is done in order to ensure the latter will not remain
on the system. Each time the SKG state is evolved, a MAC tag protecting the
data written since the previous MAC operation is appended to the log file. An
offline verification tool that checks the MAC tag sequence of log files taken from
a system is provided. If a log file is corrupted, the verification tool will determine
the time range where the integrity of the log file is intact. When the SKG state is
evolved, particular care is taken to ensure the previous state is securely deleted
from the file system and underlying physical storage, which includes techniques
to ensure secure removal even on modern copy-on-write file systems.

On the technical side, our implementation supports modulus sizes of 512–
16384 bits (1536 bits is recommended), uses SHA256 for key derivation, and
relies on HMAC-SHA256 for integrity protection. The code links against the
gcrypt library [22] for large integer arithmetic and the SHA256 hash function,
and is licensed under an Open Source license (LGPL 2.1).

Conclusion

We review different cryptographic schemes for log file protection and point out
that they all lack an important usability feature: seekability. In short, seekability
allows users of sequential key generators to jump to any position in the oth-
erwise forward-secure keystream, in negligible time. We introduce a new prim-
itive, seekable sequential key generator (SSKG), and give two provably-secure
factorization-based constructions. As a side product, we introduce the concept
of shortcut one-way permutations (SCP), which may find independent applica-
tion.
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Abstract. An order-preserving encryption (OPE) scheme preserves the
numerical order of numbers under encryption while hiding their original
values in a some extent. However, if all the numbers in a certain domain
are encrypted by an OPE, the original numbers can be restored from
their order. We introduce a notion of novel encryption scheme “request-
based comparable encryption” that provides a certain level of security
even when OPEs cannot. A request-based comparable encryption hides
original values, but it enables any pair of encrypted values to be com-
pared each other when and only when one of them is accompanied by
a “token”. We also consider its weaker notion and a concrete construc-
tion satisfying it. We consider a request-based comparable encryption
complements OPEs and can be an essential security primitive.

Keywords: order-preserving encryption, request-based, database en-
cryption, range query.

1 Introduction

1.1 Background and Motivation

A database (DB) is a system that stores a large amount of data and passes its
portions when requested. It has been an indispensable platform for variety of
services through the network. Since many DBs store sensitive information, they
are potentially vulnerable to abuse, leakage, and theft. Hence, it is important
to unfailingly protect confidentiality of their data. An access control is a fairly
effective approach for it, but it is helpless if the DB is compromised. Hence, it
is desirable to enforce DBs by such an encrypting mechanism that the keys for
decryption are kept by only data owners (not DB). This strategy is considered
to be especially effective for the database-as-service, and can indeed be found
in [12,20,21].

Although encrypting data in a DB can be effective in protecting data, it tends
to spoil the availability of the DB since the DB can handle data only in limited
manner. This may require users to retrieve all data in the DB, decrypt them,
find necessary data among them, and process them all by himself. This imposes
a large amount of computation, communication, and the memory on the user.

A searchable encryption [2,5,17,19] enables DBs to search necessary data
without decrypting them, and an order-preserving encryption ( OPE) [1,8,9]
enables DBs to recognize the numerical order of data without decrypting them.

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 129–146, 2013.
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These ability recovers the availability of DBs by enabling them to return only
the ciphertexts of data that are required by the users.

A relational database (RDB) [16], which is the most widely-used database
nowadays, frequently selects data in a certain range from a table. This task
can be done by an OPE even if data are encrypted. Since such selection of
data drastically reduces the amount of computation and communication of the
users, OPE is considered to be one of pivotal primitives for RDB with encrypted
data. This is why the proposal of an OPE [8] immediately received attention
from the applied community [18,25,26,29,31,34]. An OPE as well as a searchable
encryption plays an important role for CryptDB [29], an encrypted RDB, to
mark practical efficiency in TPC-C [32] measure.

Boldyreva et al. proposed an OPE [8] and studied the security of OPEs [9] for
its practical use. Their positive result shows that OPEs enjoy reasonable security
as long as the number of ciphertexts is sufficiently small compared to the square
root of size of the domain of relevant numbers. But nothing is guaranteed in the
case the number of ciphertexts is larger than that. Indeed, it is clear, as in the
following example, that OPEs fail to hide anything about encrypted numbers
in some cases. Consider a set of numbers that includes the all numbers in a
domain D and every elements of this set are encrypted by an OPE. If all of
these encrypted numbers are given to an adversary, the adversary is able to
decrypt all the ciphertexts simply by sorting all of them.

That an OPE has a limitation in its secure use causes a serious concern for
encrypted DBs since the OPE is a pivotal primitive for them. Several stronger
primitives such as the committed efficiently-orderable encryption (CEOE) [9]
that exploits a monotone minimal perfect hash function [3], range query meth-
ods in a public key setting [30,11], and searchable encryptions in a public key
setting [5,6,10] have been proposed, but these are not sufficient for salvaging
the benefit of DBs in the case described above. An order-preserving encryption
with additional interactions [28] can enhance the security, but most applications
assume that an RDB handles a thread of instructions without such additional in-
teractions. It is now clear that we definitely need a novel cryptographic primitive
so as an encrypted DB to function with practical efficiency and security.

1.2 Request-Based Comparable Encryption

In this paper, we propose a novel notion of cryptographic primitive called
“request-based comparable encryption (comparable encryption for short)” that
complements OPEs. The comparable encryption overcomes the limitation of
OPEs just as the searchable encryption in [17,13,22] does the limitation of de-
terministic encryptions. It is a symmetric key encryption with such an additional
mechanism that enables one to compare an encrypted number to other encrypted
numbers if and only if the one is given a token associated to this number. Searches
in [11] are also triggered by tokens.

Let us consider applying a comparable encryption to an encrypted DB. The
DB stores encrypted numbers only and, upon a range query, it receives tokens for
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the edges of the range. Then, the DB is able to compare these stored encrypted
values with the edge values without interacting with the user1. Thus, the DB is
able to select out the data which the user required via the query. We emphasize
that encrypted values themselves cannot be compared each other unless either
of them is an edge unlike the case of OPE. Although the token does leak some
numerical orders of the data to the DB, what is leaked to the DB is what the DB
needs for processing data with practical efficiency. A protocol such as“private
information retrieval” introduced in [14,15,23] leaks less data to DB, but such
an approach inevitably requires heavy computational and communicational cost
for DBs. This is not practical for realistic DBs and we thus dismiss such an
approach.

If a user makes a huge number of range queries to a database and this database
accumulates all tokens in these range queries, the database may acquire enough
knowledge to decrypt all ciphertexts in some cases. Our approach is no longer
effective in such an extreme case as OPE is no longer so. However, real users
rarely deposit their data to totally untrusted DBs. The real concerns are that
DBs leak their data because of careless system managers, viruses, via unpatched
vulnerability of the system, design error, or configuration fault. As long as an
intrusion of an adversary is temporal, it succeeds to seize only those tokens that
are in insertion or selection queries which are made at the time of the intrusion.
An example of temporal intrusion is a leakage of the memory data with respect a
query. Such a temporal intrusion only enables the adversary to compare the each
element in the stored data with the encrypted numbers in the query. Since such
a comparison is already delegated to the DB in the query corrupted, leakage of
this result can be considered as the minimum, unavoidable, and acceptable as
long as efficiency is required.

1.3 A Weaker Property and Our Comparable Encryption

The introduced comparable encryption is a very promising primitive for practical
encrypted DBs. However, we have not completely succeeded to propose an ideal
comparable encryption with practical efficiency. We find no definite reason that
it is inherently impossible but we have not. As the DB cannot be practical unless
with practical efficiency literally, we propose a comparable encryption that has a
weaker property than ideal one, but has a stronger security property than OPE
and has practical efficiency. In particular, our comparable encryption is such
that its tokens leak knowledge more than ideally allowed.

To evaluate the difference of security properties between the ideal one and
ours, we first formalized the ideal security requirement and its weaker variant as
well. Then, as a measure of the security level of this weaker variant, we evaluate
the expected ratio between the number of occasions when a token of an ideal
scheme leaks and the number of occasions when a token of a weaker scheme

1 Since DB receives a sequence of requests at one time to avoid heavy communication
and incoherent transaction, DB needs to process requests without interacting with
the user.
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leaks, which we show to be only at most “2.8”. Suppose a temporal intrusion
leaked a token as well as encrypted numbers. Then, the probability that this
token helps to distinguish any of two encrypted numbers is 2.8 times larger in
our scheme than in an ideal scheme.

Our comparable encryption is proved to satisfies this weaker property in the
standard model but is sufficiently fast. The length of ciphertext is proportional
to the bit length of the maximum number. The size of database shall increase
severely if all data are encrypted with our comparable encryption. However,
if the encryption is limitedly applied to only highly confidential data that re-
quire comparison, the database can remain in moderate size. Such limitation is
common when a current product for database encryption such as [27] is used.
Hence, although to reduce ciphertext length is highly desirable, our comparable
encryption as it is still has practical value. The dominant cost for encryption,
generation of token, and comparison are the cost for computing hash values in
these processes, whose number of computation is again proportional to the bit
length of the maximum number 2, which cost is very light. Considering the merit
of efficiency that our scheme enjoys, we consider the weakness of our scheme is
not so serious.

1.4 Organization:

The paper is organized as follows: Section 2 introduces the model of comparable
encryption and describes its basic functionality. Section 3 presents a concrete
scheme of comparable encryption and compares complexity of our scheme with
that of OPE. Section 4 introduces the security requirement of ideal comparable
encryptions and its weaker variant. Then it evaluates the difference between the
two security requirements. Section 5 concludes the paper and poses an open
problem.

2 Model

We introduce the model of comparable encryption and a basic property. Com-
parable encryption is composed of four algorithms, Gen,Enc,Der, and Cmp.

Gen: A probabilistic algorithm that, given a security parameter κ ∈ N and a
range parameter n ∈ N, outputs a parameter param and a master key mkey.
n is included in param.

(param,mkey) = Gen(κ, n)

Enc: A probabilistic algorithm that, given a parameter param, a master key
mkey, and a number 0 ≤ num < 2n, outputs a ciphertext ciph.

ciph = Enc(param,mkey, num)

2 The cost for the decryption is constant if we provide this functionality.
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Der: A possibly probabilistic algorithm that, given a parameter param, a master
key mkey, and a number 0 ≤ num < 2n, outputs a token token.

token = Der(param,mkey, num)

Cmp: An algorithm that, given a parameter param, two ciphertexts ciph and
ciph′, and a token token, outputs −1, 1, or 0.

Cmp(param, ciph, ciph′, token) ∈ {−1, 1, 0}

Although we call the scheme encryption, it provides no decryption algorithm.
But such a functionality can be easily provided by appending an ordinary ci-

phertext c̃iph to each comparable encryption ciphertext ciph as ciph|c̃iph and
preparing an ordinary decryption algorithm for it. Then, decryption is straight-
forward. Although we consider the decryption algorithm is necessary in practice,
we omit it in our model for the simplicity of the presentation.

We assume ciph and token input to Cmp are related so that they satisfy
ciph = Enc(param,mkey, num) and token = Der(param,mkey, num) for the
same param,mkey, and num. The output of Cmp is −1, 1, or 0, respectively,
when num < num′, num > num′, or num = num′. This requirement is formal-
ized in the following property of completeness.

Definition 1. We say a comparable encryption is complete if, for every κ ∈ N,
n ∈ N, and 0 ≤ num, num′ < 2n, there exist param,mkey, token, ciph, and ciph′

such that

(param,mkey) = Gen(κ, n) , token = Der(param,mkey, num)

ciph = Enc(param,mkey, num) , ciph′ = Enc(param,mkey, num′)

Cmp(param, ciph, ciph′, token) =

⎧⎨⎩−1 if num < num′

1 if num > num′

0 if num = num′

hold with overwhelming probability. Where probability is taken over the distribu-
tion of random tapes input to Gen, Enc, and Der.

3 Proposed Scheme

3.1 Preliminaries and Overview of Our Scheme

Our construction of comparable encryption exploits prefix-preserving encryption
(PPE) [35,4,24]. PPE considers each message as a sequence of blocks. If two
messages have the same sequence of n blocks as their prefixes, the encryptions
of these messages also have the same sequence of n blocks as their prefixes. But
the rest of blocks are different. Thus, a PPE preserves the equivalence of prefix
blocks. A PPE as-is does not meet the purpose of our comparable encryption
since it enables neither to hide the similarity of two numbers nor to recognize
the numerical order of two numbers from their ciphertexts. Our comparable
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encryption is similar to PPE in that it also considers numbers as a sequence of
blocks, where each block is a bit”.

We list here some of the terms necessary in the rest of the paper. Suppose that
n is a given fixed number such that num =

∑n−1
i=0 bi2

i and num′ =
∑n−1

i=0 b
′
i2

i

with bi, b
′
i ∈ {0, 1} for all 0 ≤ i ≤ n− 1. We let (b0, . . . , bn−1) and (b′0, . . . , b

′
n−1),

respectively, represent num and num′. We say the most significant prefix (n −
	− 1) bits of num is (b�+1, . . . , bn−1). We let MSPBs(num, 	) = (b�+1, . . . , bn−1)
denotes this relation.

Our comparable encryption uses PPE ciphertext of a number num as the to-
ken of num (token = Der(param,mkey, num)). Note that, if tokens of num and
num′ are, respectively, token = Der(param,mkey, num) and
token′ = Der(param,mkey, num′) and if MSPBs(num, 	) = MSPBs(num′, 	),
then MSPBs(token, 	) = MSPBs(token′, 	) holds. Let token = (d0, . . . , dn−1). If
each 	′-th bit of num, i.e. b�′ , is probabilistically encrypted by d�′ , then one can
check whether or not MSPBs(num, 	) = MSPBs(num′, 	) holds for given 	 (e.g.,
by decrypting them) using either token or token′. But, whether MSPBs(num, 	) =
MSPBs(num′, 	) or not is hidden if the both token and token′ are kept hidden.
This mechanism enables to compare the similarity of encrypted two numbers
only when either of their tokens is given.

When MSPBs(num, 	) = MSPBs(num′, 	) but
MSPBs(num, 	 − 1) �= MSPBs(num′, 	 − 1), Cmp compares num and num′ by
comparing 	-th bits of num and num′(b� and b′� respectively). For this com-
parison, e� = b� + mask� mod 3 is generated with a random looking mask
mask�, and encryption of e� is included in the ciphertext of num. Let mask′�
and e′� be also generated in the same manner for num′ here. Suppose that
mask� and mask′� depend on only on MSPBs(num, 	) and MSPBs(num′, 	) respec-
tively (as well as on the master key), then mask� = mask′� if MSPBs(num, 	) =
MSPBs(num′, 	). Then b� and b′� are revealed from e� and e′� if b� and b′� are dif-
ferent (i.e.,MSPBs(num, 	− 1) �= MSPBs(num′, 	− 1)), since e� − e′� = b� − b′� =
1 mod 3 if b� = 1 but e� − e′� = 2 mod 3 if b� = 0. But b� and b′� are hidden if
b� and b′� are the same (i.e., MSPBs(num, 	 − 1) = MSPBs(num′, 	 − 1)), since
e�− e′� = b�− b′� = 0 mod 3 does not depend on b�. bi and b′i for i < 	 are hidden
if MSPBs(num, 	 − 1) �= MSPBs(num′, 	 − 1), since ei − e′i mod 3 depends on
maski − mask′i mod 3 which is pseudo-random. If token is designed to reveals
e� and e′�, one can decide which number (num or num′) is greater from their
ciphertexts. Note that bi and b′i for none of i �= 	 is revealed.

The above construction of comparable encryption from PPE provides satisfac-
tory functionality of comparable encryption. However, its tokens leak knowledge
more than the numerical order of numbers. Suppose that ciph and ciph′ are,
respectively ciphertexts of two numbers num and num′. From ciph, ciph′, and
the token token of num, one can recognize not only the numerical order of num
and num′ but also the most significant bit at which num and num′ differ. This is
not a scheme with an ideal security property, but this is the best we can provide
at this moment. And we analyze the negative impact of this leakage later.
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3.2 Construction

Now we present the specific construction of our comparable encryption below.

Gen: Suppose a security parameter κ ∈ N and the number of digit n. Gen first
randomly chooses a hash function Hash : {0, 1}κ × {0, 1}4+κ+1 → {0, 1}κ
and assigns param = (n,Hash). Next, Gen uniformly and randomly chooses
a master key mkey ∈ {0, 1}κ. Gen outputs param = (n,Hash) and mkey.

Der: Suppose that param = (n,Hash), mkey, and a number
num = (b0, b1, . . . , bn−1) :=

∑
0≤i≤n−1 bi2

i are given. Der generates

dn = Hash(mkey, (0, 0κ, 0))

di = Hash(mkey, (1, di+1, bi)) for i = n− 1, . . . , 0

Der outputs the token token = (d0, d1, . . . , dn).
Enc: Suppose thatparam=(n,Hash),mkey, and a numbernum=(b0, b1, . . . , bn−1)

are given. Enc first generates (d0, d1, . . . , dn) = Der(param,mkey, num) and
then randomly chooses random number I ∈ {0, 1}κ. Next, Enc generates

ci = Hash(di, (2, I, 0))

ei = Hash(mkey, (4, di+1, 0)) + bi mod 3

fi = Hash(di+1, (5, I, 0)) + ei mod 3

for i = n− 1, . . . , 0. Enc finally outputs ciphertext
ciph = (I, (c0, . . . , cn−1), (f0, . . . , fn−1)).

Cmp: Suppose that param = (n,Hash), a pair of ciphertexts
ciph = (I, (c0, . . . , cn−1), (f0, . . . , fn−1)) and
ciph′=(I ′, (c′0, . . . , c

′
n−1), (f ′0, . . . , f

′
n−1)), and a token token=(d0, d1, . . . , dn)

are given.
1. Cmp searches and find j such that

(0 ≤ j ≤ n− 1) ∧(
∀k s.t. j < k < n, c′k =Hash(dk, (2, I

′, 0))
)
∧

(
c′j �=Hash(dj , (2, I

′, 0))
)

In case

∀k s.t. 0 ≤ k < n, c′k = Hash(dk, (2, I
′, 0))

hold, Cmp outputs 0 and stops.
2. Cmp generates

ej = fj − Hash(dj+1, (5, I, 0)) mod 3

e′j = f ′j − Hash(dj+1, (5, I
′, 0)) mod 3

3. Cmp outputs

1 if ej − e′j = 1 mod 3
−1 if ej − e′j = 2 mod 3

Here, input (c1, . . . , cn) are unnecessary. But we include them in the input
only for the simplicity of the description.
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3.3 Completeness of Our Comparable Encryption

The theorem 1 below guarantees that our scheme successfully compares en-
crypted numbers.

Definition 2. We say a function Hash : {0, 1}κ×{0, 1}� → {0, 1}L is a pseudo-
random function if every poly-time distinguisher D has an advantage in distin-
guishing whether it is accessing Hash(K, ·) with randomly chosen key K ∈ {0, 1}κ
or it is accessing a random function R : {0, 1}� → {0, 1}L with at most negligible
probability in κ.

Theorem 1. The proposed comparable encryption is complete as long as Hash
is a pseudorandom function.

Proof. Let num =
∑n−1

i=0 bi2
i, num′ =

∑n−1
i=0 b

′
i2

i, 	 be the largest 	′ such that
MSPBs(num, 	′)=MSPBs(num′, 	′) holds, (d0, . . . , dn)=Der(param,mkey, num),
(d′0, . . . , d

′
n) = Der(param,mkey, num′),

(I, (c0, . . . , cn−1), (f0, . . . , fn−1)) = Enc(param,mkey, num),
and (I ′, (c′0, . . . , c

′
n−1), (f ′0, . . . , f

′
n−1)) = Enc(param,mkey, num′). Since di and

d′i depend only on {bj}j=i+1,...,n−1 and {b′j}j=i+1,...,n−1 respectively and on
mkey, that bi = b′i holds for i = 	 + 1, . . . , n − 1 implies that di = d′i holds
for i = 	 + 1, . . . , n− 1. Hence, Hash(d′k, (2, I

′, 0)) = c′k = Hash(dk, (2, I
′, 0)) for

i = 	+ 1, . . . , n− 1.
If num = num′, Hash(d′k, (2, I

′, 0)) = c′k = Hash(dk, (2, I
′, 0)) holds for i =

0, . . . , n− 1. Hence, the output of Cmp is 0 if num = num′. If num �= num′, then
d� = d′� holds with negligible probability. This is because, if collision occurs with
non-negligible probability for a function whose output length is κ, such a func-
tion can be distinguished from the random function by using collisions. Hence,
Hash(d′�, (2, I

′, 0)) = c′� �= Hash(d�, (2, I
′, 0)) with overwhelming probability. For

this 	,

e� − e′� := (f� − Hash(d�+1, (5, I, 0)))− (f ′� − Hash(d�+1, (5, I
′, 0))) mod 3

= (Hash(mkey, (4, d�+1, 0)) + b�)−
(
Hash(mkey, (4, d′�+1, 0)) + b′�

)
mod 3

= (Hash(mkey, (4, d�+1, 0)) + b�)− (Hash(mkey, (4, d�+1, 0)) + b′�) mod 3

= b� − b′� mod 3

Since that num > num′ if b� = 1 > 0 = b′� and that num < num′ if b� = 0 < 1 =
b′�, the output of Cmp is 1 if num > num′ and is −1 if num < num′.

3.4 Efficiency

We compare complexity measures of our scheme with those of OPE. We list them
when numbers num are chosen as 0 ≤ num < 2n in the Table 1. The dominant
cost of computation is computation of hash functions in our scheme. Hence, we
evaluate the computational complexity of our scheme by the number of hash func-
tion Hash. Encryption in OPE [8] requires sampling from negative hypergeometric
distribution, which cost is denoted by “sampling”. This requires rather high cost.
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Table 1. Comparison

Our Scheme OPE[8]

ciphertext(text) length (bits) (n+ 1)κ+ 2n n+ constant

token length (bits) (n+ 1)κ -

encryption cost (4n+ 1) · Hash n · sampling

token generation cost (n+ 1) · Hash -

comparison cost (n−B + 2) · Hash (n−B) · bit-comparison

“bit-comparison” is very light computation and n bit-comparison operations is
usually executed in one operation. B is the largest 	 such that MSPBs(num, 	) =
MSPBs(num′, 	) holds.

From the table, we see that OPE is more efficient except for generating cipher-
texts. However, we consider that the cost our comparable encryption requires is
still acceptable for most applications, and a comparable encryption is essential
for data to which OPE cannot be applied securely.

4 Security Analysis

We analyze the security of our scheme. As our scheme is not ideal comparable en-
cryption, we introduce a weaker security requirement of comparable encryption
as well as the ideal one.

We require comparable encryption to be semantically secure under chosen
plaintext attacks as long as no token is generated. When a token token is gener-
ated with respect to a number num, it is best if token only enables to compare
this num with other encrypted numbers. To capture such a requirement, we start
from defining a distinguishing game of comparable encryption. In this game, the
adversary may send the challenger either of two types of test query, that is, type
I and type II. This type indicates whether or not ciphertext in the test query
is accompanied with the corresponding token. Then we define two notions of
resolved games followed by two related definitions of indistinguishability of com-
parable encryption. The first notion captures ideal comparable encryption but
the latter captures comparable encryption with an extra leakage of knowledge.

We chose game-based definition rather than simulation-based definitions (in
[17,13,22]) because what each token leaks depends on all issued ciphertexts,
which bothers ideal functionality to check all of them every time a token is
issued. However, game-based definition requires to check if issued tokens have
leaked something crucial only once at the end of the game.

4.1 Ideal Indistinguishability

Definition 3. The distinguishing game is played between challenger C and
adversary A∗ as in the following. It begins when C receives a security parameter
κ ∈ N and a range parameter n ∈ N, runs (param,mkey) ← KeyGen(κ, n), and
gives param to A∗. C responds to queries from A∗ in the game as follows;
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– Whenever C receives (encrypt, num) for any 0 ≤ num < 2n, it returns ciph =
Enc(param,mkey, num).

– Whenever C receives (cmprkey, num) for any 0 ≤ num < 2n, it returns
token = Der(param,mkey, num).

– C receives (test, type, num∗
0, num

∗
1) such that 0 ≤ num∗

0, num
∗
1 < 2n, num∗

0 ≤
num∗

1, and type ∈ {I, II} only once in the game. On receiving this message, C
randomly chooses b ∈ {0, 1} and generates ciph∗ = Enc(param,mkey, num∗

b)
and token∗ = Der(param,mkey, num∗

b ). Then C returns

ciph∗ if type = I
token∗, ciph∗ if type = II.

At the end of the game, A sends b′ ∈ {0, 1} to C. The result of the game ExpκC,A

is 1 if b = b′; otherwise 0.

Type I tests indistinguishability of the encryption of num∗
b . Type II tests indis-

tinguishability of the token with respect to num∗
b . We do not consider chosen-

ciphertext attacks here since encrypt-then-MAC [7] generic construction can
easily make the scheme resistant for them when an ordinary ciphertext is con-
catenated to each ciphertext so as to be decryptable.

The distinguishing game challenges the adversary’s ability to distinguish ci-
phertexts. However, if a certain set of queries is sent to the challenger, it is
inevitable to prevent rational adversaries from distinguishing these ciphertexts.
This is because that tokens enable to compare encrypted numbers inevitably
leaks their orders. Hence, the cases and only the cases when such a leakage triv-
ially helps distinguishing ciphertexts/tokens need to be excluded from the games
to measures the strength of the scheme. For this purpose we introduce the notion
of resolved games.

Definition 4. We say a distinguishing game is resolved if A∗ queries such
(command, num) that the following relation holds during the game, where command
is cmprkey if type = I but command is either cmprkey or encrypt if type = II.

(num∗
0 ≤ num ≤ num∗

1) ∧ (num∗
0 �= num∗

1) , (1)

which relation can be equivalently expressed as

((num∗
0 < num) ∧ (num∗

1 �< num)) ∨ ((num �< num∗
0) ∧ (num < num∗

1)) .

The first form of the relation in Def. 4 represents that num is between num∗
0

and num∗
1 but the case num∗

0 = num = num∗
1 is excluded. It is crystal clear that

two test messages can be distinguishable if a token that can distinguish them is
queried (type I). And it is also clear that two test tokens can be distinguishable
if an message that these tokens decide in different way is encrypted (type II).

The second form of the relation in Def. 4 represents that num∗
0 and num∗

1 are
related to num in different way via the relation “<”. The first and the second
forms are equivalent but the second form has more affinity with distinguishabil-
ity, and we use the second type of form for Def. 6.
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Definition 5. We say that a comparable encryption is indistinguishable (Ind)
if, for every polynomial time adversary A∗, AdvκC,A∗ := |Pr[ExpκC,A∗ = 0] −
Pr[ExpκC,A∗ = 1]| is negligible with respect to κ in the game which is not resolved.

We emphasize that num∗
0 and num∗

1 are always distinguishable in resolved games
as long as the comparable encryption is complete. In other words, adversaries
are not considered to be successful in distinguishing ciphertexts if and only if
distinguishing them is trivially possible due to the functionality of the scheme.

4.2 Weak Indistinguishability

The indistinguishability in Def. 5 is ideal but the scheme we devised does not sat-
isfy this property. However, the scheme partially achieves this property. Hence,
we need to estimate what and how much it achieves. A token for num in our
scheme leaks one bit for each ciphertext addition to that in an ideal scheme
leaks. As we want estimate the relative impact of this leakage compared to the
impact of what an ideal scheme leaks, we introduce a security notion that include
this leakage in term of indistinguishability. For this purpose, we introduce weak
indistinguishability.

We say num <� num
′ if num < num′, MSPBs(num, 	) = MSPBs(num′, 	), and

b� �= b′� all hold. Note that “num �<� num
′” (the negation of num <� num

′) holds
for some 	 even if num < num′. We will see how this notion works.

Suppose that num < num′ < num‡ and MSPBs(num, 	) = MSPBs(num′, 	)
and MSPBs(num′, 	′) = MSPBs(num‡, 	′) for 	 < 	′. It is trivial that token† =
Der(param,mkey, num†) and ciph† = Enc(param,mkey, num†) enable to dis-
tinguish ciph = Enc(param,mkey, num) and ciph′ = Enc(param,mkey, num′)
if num < num† < num′. In our scheme, token‡ = Der(param,mkey, num‡)
and ciph‡ = Enc(param,mkey, num‡) also enable to distinguish ciph and ciph′.
This is because as follows. ciph, ciph‡, and tokenddagger reveal that 	-th bit
of num and num‡ are different. ciph′, ciph‡, and tokenddagger reveal that 	-th
bit of num′ and num‡ are the same. The notion “<�” captures this property by
num <� num

‡ and num′ �<� num
‡.

Definition 6. We say a distinguishing game is weakly resolved if A∗ queries
such (command, num) that the following relation holds during the game, where
command is cmprkey if type = I but command is either cmprkey or encrypt if
type = II.

∃	(0 ≤ 	 < n) s.t.

((num∗
0 <� num) ∧ (num∗

1 �<� num)) ∨ ((num �<� num
∗
0) ∧ (num <� num

∗
1)) .(2)

Here, n is the range parameter given to C at the beginning of the game.

Note that Def. 4 and Def. 6 are different only in that “∃	” is added and that
< is replaced with <�. The Fig. 1 illustrates this difference between Def. 4 and
Def. 6 in the case num∗

0 = 9 and num∗
1 = 13. The figure consists of nodes of

a tree expressed by dots. The leftmost dot is the root and rightmost dots are
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Fig. 1. Tree Representations of 9 and 13, and the ranges specified by “<” and “∃�,<�”

leaves. Other dots are internal nodes. Each path from the root to a leaf expresses
a number in [0, 25). Each path consists of five edge and each edge represents a
bit. An upward edge represents 1 and downward one represents 0. Hence 13,
which is (b4, b3, b2, b1, b0) = (0, 1, 1, 0, 1), is expressed as a path that advances
from the root to a leaf by choosing directions (down,up,up,down,up) at nodes
on the path.

In the case of Fig. 1, the game is resolved if (command, num) for m∗
0 = 9 ≤

num ≤ 13 = m∗
1 is queried but the game is weakly resolved if (command, num)

for 8 ≤ num ≤ 15 is queried. Note that these numbers 8, 9, 13, 15 share the
same node pointed indicated by “branch point(9, 13)” in the figure. Here, 8 and
15 are the minimum and the maximum number that share the node where 9
and 13 branch away. Def. 6 forbids numbers in wider range to be queried so as
the game to be not resolved than Def. 4 forbids. We consider how much this
range is widened is how much schemes get weaker. In this example, the range
13− 9 + 1 = 5 is widened to 15− 8 + 1 = 8 by the ratio of 8/5 = 1.6. We later
argue that the expected value of this ratio is 2.8.

Definition 7. We say that a comparable encryption is weakly indistinguish-
able (wInd-secure) if, for every polynomial time adversary A∗, AdvκC,A∗ :=
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|Pr[ExpκC,A∗ = 0] − Pr[ExpκC,A∗ = 1]| is negligible with respect to κ in the game
which is not weakly resolved.

Since Def. 7 considers that the game is resolved under wider class of queries
than Def. 5 does, it provides weaker security. But we consider this difference is in
moderate extent. The impact of difference between Def. 7 and Def. 5 is analyzed
in Subsection 4.3.

Theorem 2. The proposed comparable encryption is weakly indistinguish-
able as long as Hash is a pseudorandom function.

Proof. The proof is straightforward. We replace some of outputs of hash func-
tions with random variable and then simply prove indistinguishability of them.
The proof is given in Appendix A.

4.3 Comparison of Two Indistinguishability Notions

Although a comparable encryption that are only wInd-secure leaks more knowl-
edge than ideal ones, ciphertexts in it reveal no knowledge without tokens. Hence,
such a comparable encryption is still effective, unlike OPEs, even when encrypt-
ing numbers that are densely distributed in a table. But, as there is a chance
for an adversary to obtain tokens, it is now essential to evaluate the amount of
knowledge that these tokens leak.

From a simple observation, each token with respect to num leaks where num
and num′ branch away for each encryption of num′. This is a great amount of
information if we insist on semantic security. But it is not clear in the context
of such an encryption schemes that comparisons are already possible. Hence,
we evaluate the how knowledge of these branching bits gives an impact in dis-
tinguishing numbers compared to the ideal comparable encryption. We do not
consider ours is the only way to evaluate the impact and consider a lot of dis-
cussion is necessary. We hope our evaluation opens the problem.

Suppose that 0 ≤ num∗
0, num

∗
1 < 2n are given. LetD(num∗

0, num
∗
1) be the num-

ber of num that satisfies Eq. (1) and letN(num∗
0, num

∗
1) be the number of num that

satisfies Eq. (2). Then R(num∗
0, num

∗
1) = N(num∗

0, num
∗
1)/D(num∗

0, num
∗
1) is the

ratio of “the number of occasions when tokens of a weaker scheme leaks” to “the
number of occasions when tokens of an ideal scheme leaks”, which represents how
much wInd-secure comparable encryption is weak compared to ideal comparable
encryption. When the ratio is one, a wInd-secure comparable encryption has no
worse than ideal comparable encryptions. But the ratio that is larger than one
signifies the weakness of wInd-secure comparable encryption.

Since the ratio R(num∗
0, num

∗
1) varies over the choice of pair (num∗

0, num
∗
1),

the ratio at a single point cannot represents the total security of wInd-secure
comparable encryptions. Hence, we evaluate its expected value over uniformly
and randomly chosen (num∗

0, num
∗
1) and consider it as a measure of the weakness

of wInd-secure comparable encryptions. Although imposing uniform distribution
is rather crude, we have no reasonable alternative choice.
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Let 	(x, y) be largest 	 such that MSPBs(x, 	) = MSPBs(y, 	) holds. Then, the
expected value of R(num∗

0, num
∗
1) is,

2

2n(2n − 1)

∑
0≤x<y<2n

R(x, y) =
2

2n(2n − 1)

∑
0≤x<y<2n

2�(x,y) − 1

y − x

=
2

2n(2n − 1)

n−1∑
�=0

∑
{x,y|�(x,y)=�}

2� − 1

y − x

=
2

2n(2n − 1)

n−1∑
�=0

2n−1−�
∑

0≤a,b<2�−1

2� − 1

a+ b+ 1

� 2

2n(2n − 1)

n−1∑
�=0

2n+1+� 1

22(�−1)

∫ 2�−1

a=1

∫ 2�−1

b=1

2�

a+ b
dbda

� 2

2n(2n − 1)

n−1∑
�=0

2n+1+� · 2 ln 2 = 4 ln 2 � 2.8

Therefore, we may conclude that, in average, the number of values that helps
adversary distinguish num∗

0 and num∗
1 in wInd-secure comparable encryption is

at most 2.8 times as large as that of values in ideal comparable encryptions. We
consider this is not a considerable sacrifice for achieving practically efficiency of
comparable encryption in most applications. This measure is based on rather
crude assumption of the distribution but note that tokens are always deleted
after their use.

As well as the expected ratio N(num∗
0, num

∗
1)/D(num∗

0, num
∗
1), we give two

more measures of comparison in Table 2. The expected value of
D(num∗

0, num
∗
1)/N(num∗

0, num
∗
1) is almost 1/2. The expected value of

N(num∗
0, num

∗
1) divided by the expected value of D(num∗

0, num
∗
1) is at most 2.

Although the interpretations of these measures are not as natural as that of
the expected value of ratio N(num∗

0, num
∗
1)/D(num∗

0, num
∗
1), they measures the

security of wInd-secure schemes in some extent. Both measures indicate better
security as they get closer to 1.

Table 2. Various comparison measures

Measures value

Expected Value of “N(num∗
0,num

∗
1)/D(num∗

0,num
∗
1)” ≤ 2.8

Expected Value of “D(num∗
0,num

∗
1)/N(num∗

0,num
∗
1)” ≤ 2

“E.V. of N(num∗
0, num

∗
1)”/ “E. V. of D(num∗

0,num
∗
1)” ≥ 1/2

5 Summary and Open Problem

We introduced a novel type of encryption scheme called comparable encryp-
tion, which enables one to compare the numerical order of two encrypted num-
bers only when either of numbers is accompanied by a token. We presented an
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ideal property and a weaker but reasonably nice property of comparable encryp-
tion. We also constructed a comparable encryption that satisfies only the weaker
property but is practically efficient. We consider a comparable encryption is a
useful primitive for encrypted DBs and consider proposing an efficient compa-
rable encryption with the ideal property is a remaining important challenge.
Our construction can be its starting point. By comparing efficiency of OPE and
comparable encryption, we suggest to use an OPE in encrypted DBs when its
positive result (shown by [9]) holds but suggest to use a comparable encryption
when that positive result no longer holds.
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A Proof of Theorem 2

The proof is by contraposition. Suppose that there exists an adversary A∗ such
that AdvκC,A∗ is not negligible with respect to κ in the game which is not weakly
resolved. Then, we show that Hash is distinguishable from the random function,
which is against the assumption that they are pseudorandom function. In par-
ticular, we consider a sequence of games by challengers C,C1, and C2 and then
prove the theorem by the hybrid argument. We let Branch(num, num′) denote
the largest 	 such that MSPBs(num, 	) = MSPBs(num′, 	) holds.

Proof. From two lemmas 1 and 2 and the hybrid argument, |AdvκC,A∗−AdvκC2,A∗ |
is negligible in κ as long as Hash is a pseudorandom function. Since AdvκC2,A∗ = 0
from Lemma 3, AdvκC,A∗ is negligible in κ. Hence, the theorem is proved.

Definition 8. Challenger C1 is the same as the challenger C in Definition 3
except the following:

– At the beginning of the game, C1 discards mkey.
– C1 prepares a table and simulate hash function Hash(mkey, ·). That is, when-

ever C1 generates output = Hash(mkey, input) for some input, C1 let
output be output′ if an entry (input, output′) is in the table. Otherwise,
C1 randomly chooses output ∈ {0, 1}κ and writes (input, output) into the
table.

Note that (di)i=0,...,n and (ei)i=0,...,n that C1 outputs for every num is completely
random.

Lemma 1. Assume that Hash is a pseudorandom function. For every polyno-
mial time A∗, |AdvκC1,A∗ − AdvκC,A∗ | is negligible in κ.

Proof. Since mkey is used for only input to hash functions and is never revealed
to A∗, the lemma follows from the indistinguishability of pseudorandom function.

Definition 9. Challenger C2 is the same as the challenger C1 except the fol-
lowing:

– Let (d̄0, . . . , d̄n) and (d̂0, . . . , d̂n) be

(d̄0, . . . , d̄n) = Der(param,mkey, num∗
0)

(d̂0, . . . , d̂n) = Der(param,mkey, num∗
1).

Note that d̄i = d̂i for all i such that Branch(num∗
0, num

∗
1) < i ≤ n

C2 prepares a table and simulate hash function Hash(d̄i, ·) and Hash(d̂i, ·)
for all i such that 0 ≤ i ≤ Branch(num∗

0, num
∗
1). The simulation is as is the

before.
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Lemma 2. Assume that Hash is a pseudorandom function. For every polyno-
mial time A∗, |AdvκC2,A∗ − AdvκC1,A∗ | is negligible in κ.

Proof. Let num∗
0 = (b̄0, . . . , b̄n−1), num∗

1 = (b̂0, . . . , b̂n−1), and

B = Branch(num∗
0, num

∗
1). Then b̄i = b̂i for all i such that B < i ≤ n. Suppose

that the adversary queries (command, num) for num := (b0, . . . , bn−1). If bi = b̄i
for all i such that B < i < n, then Branch(num∗

1, num) ≤ B. This implies that
the distinguishing game is weakly resolved. Therefore, there exists i such that
bi �= b̄i and that B < i < n, as long as the distinguishing game is not weakly
resolved.

– In the case when type = I, none of d̄0, . . . , d̄B , d̂0, . . . , d̂B is revealed to the
adversary. For such data to be revealed, all d̄B+1, . . . , d̄B needs to be revealed.
But the existence of i such that bi �= b̄i and that B < i < n prevents it.
Since, the values d̄0, . . . , d̄B, d̂0, . . . , d̂B are randomly chosen and unrevealed,
the hardness of distinguishing random values with outputs of Hash(d̄i, ·) and

Hash(d̂i, ·) for all i such that 0 ≤ i ≤ Branch(num∗
0, num

∗
1) = B follows from

the indistinguishability of pseudorandom function. This proves the lemma
in the case type = I.

– In case when type = II, one of tuples (d̄0, . . . , d̄B) and (d̂0, . . . , d̂B) is
given to the adversary depending on the value of b unlike the case when
type = I. We assume b = 0 in the following without lose of generality. Then,
d̄0, . . . , d̄B are given to A∗ in this case. Unlike the case when type = I,
Hash(mkey, (4, d̄i+1, 0)) is used only for generating ēi := Hash(mkey, (4,
d̄i+1, 0))+ b̄i mod 3 for i = 0, . . . , B−1 in ciph∗. Hence, replacing Hash(d̄i+1,
(5, I, 0)) in f̄i := Hash(d̄i+1, (5, I, 0)) + Hash(mkey, (4, d̄i+1, 0)) + b̄i mod 3
with a random value for i = 1, . . . , B does not affect the distribution of f̄i.
This is because the distribution of f̄i for i = 0, . . . , B−1 are already random.
This proves the lemma in the case type = II.

Lemma 3. For every polynomial time A∗, AdvκC2,A∗ = 0.

Proof. The lemma follows from the fact that ciph∗ does not depend on b, which
can be shown as follows. The difference in ciph∗ between num∗

0 and num∗
1 may

occur only in (ci, fi) for i = 0, . . . , B. Since each Hash(d̄i, ·) (we assume b = 0
w.l.g.) for i = 0, . . . , B is randomly chosen, every ci for i = 0, . . . , B does not
depend on b. Since each Hash(d̄i, ·) for i = 0, . . . , B is randomly chosen, every fi
for i = 0, . . . , B does not depend on b. Therefore, the lemma is proved.

www.it-ebooks.info

http://www.it-ebooks.info/


Ensuring File Authenticity in Private DFA

Evaluation on Encrypted Files in the Cloud

Lei Wei and Michael K. Reiter

Department of Computer Science
University of North Carolina at Chapel Hill

{lwei,reiter}@cs.unc.edu

Abstract. Cloud storage, and more specifically the encryption of file
contents to protect them in the cloud, can interfere with access to these
files by partially trusted third-party service providers and customers.
To support such access for pattern-matching applications (e.g., malware
scanning), we present a protocol that enables a client authorized by the
data owner to evaluate a deterministic finite automaton (DFA) on a
file stored at a server (the cloud), even though the file is encrypted by
the data owner for protection from the server. Our protocol contributes
over previous work by enabling the client to detect any misbehavior of
the server; in particular, the client can verify that the result of its DFA
evaluation is based on the file stored there by the data owner, and in
this sense the file and protocol result are authenticated to the client.
Our protocol also protects the privacy of the file and the DFA from the
server, and the privacy of the file (except the result of evaluating the
DFA on it) from the client. A special case of our protocol solves private
DFA evaluation on a private and authenticated file in the traditional
two-party model, in which the file contents are known to the server. Our
protocol provably achieves these properties for an arbitrarily malicious
server and an honest-but-curious client, in the random oracle model.

1 Introduction

Outsourcing file storage to clouds is a dominant trend today that appears likely
to continue for the foreseeable future. However, cloud storage comes with in-
creased risks of data manipulation, since the data is stored outside the adminis-
trative control of the data owner. Numerous techniques have thus been developed
to enable third parties who search on the data to confirm that the cloud service
faithfully serves requests using the data owner’s intended data (e.g., [26,25,21]).

Such techniques, however, typically do not account for the privacy of searches
and the data itself. To protect cloud-resident files from disclosure, it is not un-
common for the data owner to encrypt her files before storing them. Special-
ized cryptographic protocols are then needed to permit third parties to perform
searches on that data. For example, a data owner may wish to enable an an-
tivirus vendor to perform malware scanning on her cloud-resident files without
decrypting the files in the cloud. Similarly, owners of a genome database may
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wish to enable qualified researchers to perform searches on the data (e.g., [1,2]),
again without decrypting the files in the cloud. These applications are espe-
cially challenging if the third parties should be given only limited access to the
data (versus disclosing all of it to them) and because the searches themselves
may be sensitive: malware signatures can be used to develop malware to evade
them [18,32] and searches on genome datasets may reflect proprietary research
directions.

Protocols for a third-party client to perform private searches on encrypted
data in the cloud, while revealing nothing to the cloud server and nothing but the
search result to the client, do exist for some types of searches (e.g., [27,11,30]).
To our knowledge, however, none also enforces that the cloud server employs
the data that the data owner stored at the cloud server. Indeed, the traditional
notion that a protocol is secure against arbitrarily malicious adversaries provides
no guarantees on what input a malicious party may use in the protocol.

In this paper, we provide a protocol that enables a client to evaluate a de-
terministic finite automaton (DFA) on a file encrypted at the cloud server so
that the authenticity of the file input by the server and the integrity of the
computation result are both enforced. At the same time, the protocol provably
protects the file contents (except for the result of the computation) from an
honest-but-curious client (and heuristically from even a malicious client) and
provably protects both the file contents and DFA from an arbitrarily malicious
server. To our knowledge, our protocol is the first example of performing secure
DFA computation on both encrypted and authenticated data.

Traditionally, one needs to know the file content and the signature to verify the
authenticity of a file, and so the main technical difficulty in our case is to ensure
computation on authenticated (signed) data without disclosing the plaintext
to either party. The most common approach one might first consider to solve
this problem is to leverage zero-knowledge proof techniques. By asking the data
owner to publish commitments of the file character signatures, the server might
then prove that his input used in the protocol is consistent with the published
commitments. In the ways we see to instantiate this intuition, however, it would
require much higher computation and communication costs than our protocol.
Instead, we introduce a new technique to enforce correct server behavior and
the authenticity of the input on which it is allowed to operate, without relying
on zero-knowledge proofs at all. At a high level, the protocol takes advantage of
the verifiability of the computation result to check the correctness of the server
behavior. The protocol is designed so that that legitimate outputs are encoded
in a small space only known to the client, and any malicious behavior by the
server will result in the final output lying outside this space, which is then easily
detected by the client. We prove this property (in the random oracle model) and
the privacy of both the file and the DFA against an arbitrarily malicious server.
We also prove the privacy of the file (except for the result of the DFA evaluation)
against an honest-but-curious client.

The rest of this paper is structured as follows. We discuss related work in Sec-
tion 2 and review our goals in Section 3. We detail our protocol and summarize
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its security proof in Section 4. We discuss the impact of file updates in Section 5.
We discuss extensions in Section 6 and conclude in Section 7.

2 Related Work

The topic on which we focus in this paper falls into the general paradigm of two-
party secure computation [31,15]. The specific problem of private DFA evaluation
was first studied by Troncoso-Pastoriza et al. [29] who presented a protocol for
honest-but-curious adversaries in which one party can evaluate its private DFA
on a string held by another party, without either party leaking any information
about its input beyond what is implied by the outcome of the evaluation. Since
then, the problem has been extensively studied. Frikken [13] presented a proto-
col that improved on the round complexity and computational costs. Gennaro et
al. [14] proposed a protocol that is secure against malicious adversaries. Mohassel
et al. [23] presented a protocol that significantly improves on the computational
costs of both participants. Blanton and Aliasgari [4] proposed protocols that
outsource the computation to two computational servers by secret sharing the
DFA and data between them (with extension to multiple servers). The work by
Wei and Reiter [30] is the most relevant to ours. They introduced new proto-
cols in the cloud outsourcing scenario where a client can evaluate a DFA on
the encrypted data stored on a cloud server, once authorized to do so by the
data owner. However, the protocol does not guarantee the authenticity of the
data input by the cloud server. The related problem of secure pattern matching
has also attracted attention [16,17,19], though again without treatment of data
authenticity as we consider here.

Secure computation on authenticated input was previously considered in the
context of private set intersection. Several works [7,10,9,28] studied private inter-
section of certified sets, in which the set elements of each party must be certified
by a trusted third party for use in performing the intersection. However, none
considered the scenario where the data input to one party is only in ciphertext
form and must remain hidden to it. In addition, to our knowledge we are the first
to consider secure computation on authenticated data in the context of private
DFA evaluation.

One of our protocol extensions (Section 6) secret-shares the file decryption
key between the server and client in order to perform DFA evaluation on the
encrypted data. In this respect, the protocols of Choi et al. [8] are related. They
developed protocols based on a garbled circuit technique that enable two parties
to compute any functionality after a secret decryption key is shared between
them. This work, however, did not enforce authenticity of the protocol inputs.

3 Goals

A deterministic finite automaton M is a tuple 〈Q, Σ, δ, qinit〉 where Q is a set
of |Q| = n states ; Σ is a set (alphabet) of |Σ| = m symbols ; δ : Q × Σ → Q
is a transition function; and qinit is the initial state. (A DFA can also specify a
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set F ⊆ Q of accepting states; we ignore this here to save space, though our
protocols can easily be adapted to accommodate it, similar to the techniques
suggested in previous work [30].) Our goal is to enable a client holding a DFA
M to interact with a server holding a file ciphertext to evaluate M on the file
plaintext. More specifically, the client should output the final state to which the
file plaintext drives the DFA; i.e., if the plaintext file is a sequence 〈σk〉k∈[�]
where [	] denotes the set {0, 1, . . . , 	 − 1} and where each σk ∈ Σ, then the
client should output δ(. . . δ(δ(qinit, σ0), σ1), . . . , σ�−1). We also permit the client
to learn the file length 	 and the server to learn the number of states n in the
client’s DFA. (Indeed, because the DFA output leaks log n bits about the file to
the client, the server should know n to measure the leakage to the client and to
limit the number of DFA queries the client is allowed, accordingly.) However, the
client should learn nothing else about the file; the server should learn nothing
else about the client’s DFA and nothing about the file plaintext.

An additional goal of our protocols — and their main contribution over prior
work — is to ensure that the client detects if the server deviates from the protocol.
More specifically, we presume that a data owner stores the file ciphertext at the
server, together with accompanying authentication data. We require that the
client return the result of evaluating its DFA on the file stored by the data
owner or else that the client detect the misbehavior of the server. In this paper
we do not explicitly concern ourselves with misbehavior of the client, owing to
the use cases outlined in Section 1 that involve a partially trusted third-party
customer or service provider (e.g., antivirus vendor). That said, we believe our
protocol to be heuristically secure against an arbitrarily malicious client.

4 Private DFA Evaluation on Signed and Encrypted Data

In this section we present a protocol meeting the goals described in Section 3:
the client learns only the length of the file and the output of his DFA evaluation
on the file stored at the server; the server learns only the number of states in the
client’s DFA and the length of the file; and the client detects any misbehavior
by the server that would cause him to return an incorrect result. Again, we do
not consider misbehavior of the client here; the client is honest-but-curious only.
In this section we consider the file as static. The impact of file updates will be
discussed in Section 5.

4.1 Preliminaries

Let “←” denote assignment and “s
$← S” denote the assignment to s of a

randomly chosen element of set S. Let κ be a security parameter. Let ParamGen
be an algorithm that, on input 1κ, produces (p, G1, G2, g, e) ← ParamGen(1κ)
where p is a prime; G1 and G2 are multiplicative groups of order p; g is a
generator of G1; and e : G1×G1 → G2 is an efficiently computable bilinear map
such that e(Pu, Qv) = e(P,Q)uv for any P,Q ∈ G1 and any u, v ∈ Z∗p.
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BLS Signatures. Our protocol makes use of the Boneh-Lynn-Shacham (BLS)
signature scheme [6]. Suppose (p,G1, G2, g, e) ← ParamGen(1κ) and let H1 be
a hash function H1 : {0, 1}∗ → G1. The BLS scheme consists of a triple of
algorithms (BLSKeyGen,BLSSign,BLSVerify), defined as follows.

BLSKeyGen(p,G1, G2, g, e): Select x
$← Z∗p. Return private signing key 〈G1, x〉

and public verification key 〈p,G1, G2, g, e, h〉 where h← gx.
BLSSign〈G1,x〉(m): Return the signature H1(m)x.

BLSVerify〈p,G1,G2,g,e,h〉(m, s): Return true if e(H1(m), h) = e(s, g) and false oth-

erwise.

Paillier encryption. Our scheme is built using the additively homomorphic en-
cryption scheme due to Paillier [24]. This cryptosystem has a plaintext space
R where 〈R,+

R
, ·

R
〉 denotes a commutative ring. Specifically, this encryption

scheme includes algorithms PGen, PEnc, and PDec where: PGen is a randomized
algorithm that on input 1κ outputs a public-key/private-key pair (pek , pdk ) ←
PGen(1κ); PEnc is a randomized algorithm that on input public key pek and
plaintext m ∈ R (where R can be determined as a function of pek) produces a
ciphertext c ← PEncpek (m), where c ∈ Cpek and Cpek is the ciphertext space
determined by pek ; and PDec is a deterministic algorithm that on input a pri-
vate key pdk and ciphertext c ∈ Cpek produces a plaintext m ← PDecpdk (c)
where m ∈ R. In addition, E supports an operation +pek on ciphertexts such
that for any public-key/private-key pair (pek , pdk), PDecpdk(PEncpek(m1) +pek

PEncpek (m2)) = m1+
R
m2. Using +pek , it is possible to implement ·pek for which

PDecpdk(m2 ·pek PEncpek(m1)) = m1 ·R m2.
In Paillier encryption, the ring R is ZN , the ciphertext space C〈N,g〉 is Z∗N2 ,

and the relevant algorithms are as follows.
PGen(1κ): Choose random κ/2-bit strong primes p1, p2; set N ← p1p2; choose
g ∈ Z∗N2 with order a multiple of N ; and return the public key 〈N, g〉 and private
key 〈N, g, λ(N)〉 where λ(N) is the Carmichael function of N .

PEnc〈N,g〉(m): Select r
$← Z∗N and return gmrN mod N2.

PDec〈N,g,λ(N)〉(c): Return m =
L(cλ(N) mod N2)

L(gλ(N) mod N2)
mod N , where L is a function

that takes input elements from the set {u < N2 | u ≡ 1 mod N} and returns
L(u) = u−1

N .
c1 +〈N,g〉 c2: Return c1c2 mod N2.

m ·〈N,g〉 c: Return cm mod N2.

We use pek

∑
to denote summation using +pek ; R

∑
to denote summation using +

R
;

and R

∏
to denote the product using ·

R
of a sequence.

4.2 Initial Construction without File Encryption

We denote the file stored at the server as consisting of characters σ0, . . ., σ�−1,
where each σk ∈ Σ. Prior to storing this file at the server, however, the data owner
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uses its private BLS signing key 〈G1, x〉 to produce sk ← BLSSign〈G1,x〉(σk||k) for
each k ∈ [	] — i.e., a per-file-character signature that incorporates the position
of the character in the file1 — and stores these signed characters at the server,
instead. (Here, “||” denotes concatenation.) Note that since sk = H1(σk||k)x,
anyone knowing the corresponding verification key 〈p,G1, G2, g, e, h〉 cannot only
verify sk but can also extract σk and k, by simply testing for each σ ∈ Σ and
k ∈ [	] whether e(H1(σ||k), h) = e(sk, g). As such, while in our initial protocol
description, the data owner stores s0, . . ., s�−1 at the server, this implicitly
conveys σ0, . . ., σ�−1, as well.

The basic structure of the protocol, which is borrowed from previous work [30],
involves the client encoding its DFA transition function δ as a bivariate polyno-
mial f(x, y) over R where x is the variable representing a DFA state and y is the
variable representing an input symbol. In our protocol, the client and server then
evaluate this polynomial together, using a single round of interaction per state
transition (i.e., per file character), in such a way that the client observes only
ciphertexts of states and file characters and the server observes only a randomly
blinded state. More specifically, in our protocol, if the current DFA state is q,

then the server observes only π(q) +
R
ϕ for ϕ

$← R chosen by the client and
where π : Q → R maps DFA states to distinct ring elements. The client, with
knowledge of π and ϕ, can calculate f(x, y) so that f(π(q) +

R
ϕ, σ) = π(δ(q, σ))

for each q ∈ Q and σ ∈ Σ. Then, starting with a ciphertext of π(q) for the
DFA state q resulting from processing file characters σ0, . . ., σk−1, the client can
interact with the server to obtain a ciphertext of f(π(q) +

R
ϕ, σk) [30].

The central innovation in our protocol is a technique by which the client, with-
out knowing sk, can compute an encoding of the file character σk that the server
must use in round k of the evaluation. If the server does not, it “throws off” the
evaluation in a way that the server cannot predict. As a result, if the server devi-
ates from the protocol, the end result of the evaluation will be an unpredictable
element of the ring R, which will not correspond to any state of the DFA with
overwhelming probability. To accomplish this, the client defines the encoding of
character σ ∈ Σ and position k ∈ [	] to be τ(σ, k, ψk) = H2(e(H1(σ||k)ψk , h)),
where H2 is a hash function H2 : G2 → R (modeled as a random oracle) and

where ψk
$← Z∗p is selected by the client in the round for the k-th char-

acter. If the client sends Ψk ← gψk to the server in the round for the k-th
character, then the server can compute τ(σk, k, ψk) for the file character σk as
τ(σk, k, ψk) = H2(e(sk, Ψk)). However, without ψk the server will be unable to
compute the encoding τ(σ, k, ψk) for any σ �= σk.

The final difficulty to overcome lies in the fact that the client, by altering
the encoding of each character σ ∈ Σ per round k, must also recompute f(x, y)
to account for this new encoding. As such, the client recomputes f(x, y) to sat-
isfy f(π(q) +

R
ϕk, τ(σ, k, ψk)) = π(δ(q, σ)) per round k, for every q ∈ Q and

1 The file name or other identifier could be included along with the character position,
to detect the exchange of characters between files. Similarly, the length � can be
included to detect file truncation. These issues are discussed further in Section 5.
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σ ∈ Σ. In our algorithm, we encapsulate this calculation as 〈aij〉i∈[n],j∈[m] ←
ToPoly(Q,Σ, δ, π, k, ϕk, βk, ψk) where 〈aij〉i∈[n],j∈[m] are the coefficients forming

f, i.e., so that f(x, y) = R

∑n−1
i=0 R

∑m−1
j=0 aij ·R xi ·R yj. (The value βk will become

relevant in Section 4.3 and can be ignored for now.)
This protocol is shown in Figure 1. The protocol is written with the steps

performed by the client listed on the left (lines c101–c120), with those per-
formed by the server on the right (lines s101–s113), and with the messages ex-
changed between them in the middle (lines m101–m106). The client takes as
input the data owner’s public verification key 〈p,G1, G2, g, e, h〉, a public en-
cryption key ek ′, and its DFA 〈Q,Σ, δ, qinit〉. (For the moment, ignore the ad-
ditional input dk , which will be discussed in Section 4.3.) The server takes as
input 〈p,G1, G2, g, e, h〉, the DFA alphabet Σ, and the signed file characters s0,
. . ., s�−1, i.e., signed with the data owner’s private key 〈G1, x〉 corresponding
to 〈p,G1, G2, g, e, h〉. (Again, please ignore the bk values for now. These will be
discussed in Section 4.3.) Note that neither the client nor the server receives any
information about the private key dk ′, and so values encrypted under ek ′ (θ
in line c104, and ρ in line c109) are never decrypted or otherwise used in the
protocol. These values are included in the protocol only to simplify its proof and
need not be included in a real implementation of the protocol.

At the beginning of the protocol, the server generates the public/private key
pair (pek , pdk) (line s102) that defines the ring R for the protocol run. The
server conveys pek and the file length 	 to the client (m101). Upon receiving this
message, the client selects an injection π : Q→ R at random from the set of all
such injections, denoted Injs(Q → R) (c103). The client sends the number n of
states in his DFA in message m102. (To simplify our proofs, the client also sends
the chosen injection π encrypted under ek ′ to server, denoted by θ. We will not
discuss this further here.)

The heart of the protocol is the loop represented by lines c106–c117 for the
client and lines s104–s112 for the server. The client begins each iteration of this
loop with a ciphertext α of the current DFA state, which it blinds with the
blinding term ϕk (c107) using the additive homomorphic property of Paillier
encryption (c108). The client also selects ψk (c110) and creates Ψk (c111) as
described above, and sends the now-blinded ciphertext α and Ψk to the server
(m103). After decrypting the blinded state γ (s105) and using Ψk and sk to
create the encoding η = τ(σ, k, ψk) for the character σk being processed in this
loop iteration (s106), the server creates the encryption of γi ·

R
ηj for each i ∈ [n]

and j ∈ [m] (s107–s111). After the server sends these values back to the client
(m104), the client uses them together with the coefficients of f that it computed
as described above (c113) to assemble a ciphertext of the new DFA state (c116).

After this loop iterates 	 times, the client sends the state ciphertext to the
server (m105). The server decrypts the (random) state (s113) and returns it
(m106). The client checks to be sure that the result represents a valid state
(c118) and, if so, returns the corresponding state as the result (c120).
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client(〈p,G1, G2, g, e, h〉, server(〈p,G1, G2, g, e, h〉,
dk , ek ′, 〈Q,Σ, δ, qinit〉) Σ, 〈sk, bk〉k∈[�])

c101. n← |Q|,m← |Σ| s101. m← |Σ|
s102. (pek , pdk)← PGen(1κ)

m101.
pek ,�	

c102. 〈N, g〉 ← pek , R← ZN s103. 〈N, g〉 ← pek , R← ZN

c103. π
$← Injs(Q→ R)

c104. θ ← Encek′(π)

m102.
n,θ 


c105. α← PEncpek (π(qinit))
c106. for k← 0 . . . �− 1 s104. for k ← 0 . . . �− 1

c107. ϕk
$← R

c108. α← α+pek PEncpek (ϕk)
c109. ρ← Encek ′(ϕk)

c110. ψk
$← Z∗

p

c111. Ψk ← gψk

m103.
α,ρ,Ψk 


s105. γ ← PDecpdk (α)
s106. η ← H2(e(sk, Ψk))
s107. for i ∈ [n]
s108. for j ∈ [m]
s109. μij ← PEncpek (γ

i ·
R
ηj)

s110. endfor
s111. endfor

m104.
〈μij 〉i∈[n],j∈[m],bk	

c112. βk ← Decdk(bk)
c113. 〈aij〉i∈[n],j∈[m]

← ToPoly(Q,Σ, δ, π, k, ϕk, βk, ψk)
c114. if ∃i, j : aij �= 0 ∧ gcd(aij , N) > 1
c115. then abort

c116. α← pek

n−1∑
i=0

pek

m−1∑
j=0

aij ·pek μij

c117. endfor s112. endfor

m105.
α 


s113. γ∗ ← PDecpdk (α)

m106.
γ∗

	
c118. if γ∗ �∈ {π(q)}q∈Q

c119. then abort
c120. else return π−1(γ∗)

Fig. 1. Protocol Π , described in Section 4
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4.3 Adding File Encryption

As presented so far, our protocol guarantees the integrity of the DFA evaluation
against a malicious server. However, the confidentiality of the file content is not
protected from the server because the signatures of the file characters are known
to the server. With cloud outsourcing becoming increasingly popular, there is
need to enable a data owner to outsource her file to the cloud while protecting
its privacy, as well, against a potentially untrusted cloud provider. So, in this
section, we refine our protocol so that it provides the same guarantees while also
protecting the confidentiality of the file content from the server.

As we described our protocol so far, the server holds the BLS signature sk =
H1(σk||k)x, which enables him to learn σk by testing for each σ ∈ Σ whether
e(H1(σ||k), h) = e(sk, g). So, to hide σk from the server, it is necessary to change
the signature sk to prevent the server from confirming a guess at the value of σk.

To do so, in our full protocol the data owner randomizes the signature by

raising it to a random power, i.e., sk ← H1(σ||k)x·βk where βk
$← Z∗p. sk

then does not leak information about σk to the server because it is randomly
distributed in G1. However, this randomization also introduces new difficulties
for the server and client to perform the DFA evaluation, since both of them need
to be able to compute the same encoding for each σk despite sk being randomized
in this way.

To facilitate this evaluation, the data owner encrypts βk under a public key
ek of an encryption scheme whose plaintext space includes Z∗p and provides its
ciphertext, denoted bk, along with sk to the server; see the input arguments
to server in Figure 1. Of course, the server should not be able to decrypt bk,
since this would again enable him to reconstruct σk. As such, the data owner
provides the corresponding private decryption key dk only to the client; see the
input arguments to the client. Analogous to previous protocols [30], conveying dk
can serve as a step by which the data owner authorizes a client to perform DFA
queries on its file stored at the server. (In Section 6, we summarize an alternative
approach that does not disclose dk or 〈βk〉k∈[�] to the client.)

Given this setup, the full protocol Π thus executes the following additional
steps. First, the client defines the encoding of character σ ∈ Σ and position k ∈ [	]
to be τ(σ, k, βk , ψk) = H2(e(H1(σ||k)βkψk , h)), where again H2 is a hash function

H2 : G2 → R (modeled as a random oracle) and where ψk
$← Z∗p is selected by

the client in the round for character k. Note that the client needs to know βk to
compute τ(σ, k, βk, ψk), and recall that the client needs to know τ(σ, k, βk , ψk) for
each σ ∈ Σ in order to compute f(x, y) to satisfy f(π(q)+

R
ϕk, τ(σ, k, βk, ψk)) =

π(δ(q, σ)) for every q ∈ Q and σ ∈ Σ. Therefore, it is necessary for the client to
include βk as an argument to the ToPoly call (i.e., ToPoly(Q,Σ, δ, π, k, ϕk, βk, ψk)
in c113) and to delay that call until after receiving bk in m104 and using it to
obtain βk (c112).
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4.4 Communication and Storage

Protocol Π has a communication complexity of O(	mnκ) bits, dominated by
message m104 consisting of mn elements of Z∗N2 sent by the server in each of
	 rounds, where pek = 〈N, g〉 and N is κ bits in length. The storage cost on
the server is dominated by the size of 〈sk, bk〉k∈[�]. Now letting κ denote the
maximum of the security parameters for the BLS signatures (i.e., the sk values)
and the ciphertexts (i.e., the bk values), and assuming that the bit length of
each value type is linear in its security parameter (which is the case for BLS
signatures and, say, Paillier ciphertexts), the storage cost is O(κ	) bits.

4.5 Security

For brevity, we defer a full proof of security for Π to a forthcoming technical
report. In this section we simply highlight the central insights and lemmas needed
to complete that proof.

Privacy against server adversaries. The insight needed for arguing file and DFA
privacy against server adversaries is to notice that, aside from 〈bk〉k∈[�] provided
as input to the server and the encrypted function θ sent by the client (m102),
the values observed by the server are independent of the file contents or the
DFA state. That is, each sk = H1(σ||k)x·βk is distributed independently of σ

because βk
$← Z∗p, and the values γ ← PDecpdk (α) that the server recovers in

line s105 are independent of the current DFA state and the file contents, owing
to its blinding by the client (c107–c108). Similarly, γ∗ is independent of the
DFA and file contents because it is simply a random ring element determined
by the random selection of π in line c103, and no other output from π is ever
disclosed to the server. Also note that ρ and Ψk sent to the server (m103) are
independent of the file characters or DFA states. Consequently, any information
leakage about the file or DFA to the server must originate in a leakage either
from the ciphertexts 〈bk〉k∈[�] or from the ciphertext θ, for which the server holds
neither decryption key. Consequently, it is possible to reduce the DFA and file
privacy against server adversaries to the IND-CPA security [3] of encryption
under ek or ek ′, respectively.

Privacy against honest-but-curious client adversaries. The final state γ∗ of the
DFA evaluation is revealed to the client in line m106, but aside from this value,
the only other values sent to the client are a Paillier public key pek (m101),
ciphertexts 〈μij〉i∈[n],j∈[m] encrypted under that public key, and the ciphertext
bk. The plaintext βk of bk is independent of the file content, and so its disclosure
to the client (c112) does not reveal additional information about the file. Con-
sequently, any leakage about the file (beyond the final state γ∗ to which the file
pushed the DFA) must originate from the ciphertexts 〈μij〉i∈[n],j∈[m] and so can
be used to attack the IND-CPA security [3] of the Paillier encryption scheme.

This reasoning pertains equally well to malicious client-compromising adver-
saries and so we believe our protocol is heuristically secure against malicious
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client adversaries, as well. However, the simulation for the client adversary uses
the plaintexts of the values θ (m102) and ρ (m103) sent by the client, which are
correct only if the client is honest-but-curious. We could force the correctness
of these values against an arbitrarily malicious client through the addition of
zero-knowledge proofs, but we do not pursue that here.

Detection of server misbehavior. There are essentially two avenues by which
a server might attempt to misbehave while escaping detection. The first is to
create τ(σ, k, βk, ψk) = H2(e(H1(σ||k)βkψk , h)) for some σ �= σk, and to use
τ(σ, k, βk, ψk) as η in the protocol. The second is to cause the client to execute a
state transition into an erroneous state in Q without computing τ(σ, k, βk , ψk)
for some σ �= σk. We first show that the former implies the ability to break the
bilinear computational Diffie-Hellman assumption [6]:

Assumption 1. For any probabilistic polynomial-time adversary A,

P

(
v = e(g, g)z1z2z3

∣∣∣∣∣ (p,G1, G2, g, e) ← ParamGen(1κ);

z1, z2, z3
$← Z∗p; v ← A(p,G1, G2, g, e, g

z1, gz2 , gz3)

)

is negligible as a function of κ.2

Lemma 1. Let H1 and H2 be random oracles. Under Assumption 1, there is
no probabilistic polynomial time server-compromising adversary S that computes
τ(σ, k, βk, ψk) for some k ∈ [	] and σ �= σk with non-negligible probability, after
interacting with the client in protocol Π.

Proof. Suppose such a server adversary S exists. We build an adversary A that
takes in a challenge (p,G1, G2, g, e, g

z1, gz2 , gz3) as input, interacts with S, and
outputs e(g, g)z1z2z3 with non-negligible probability, violating Assumption 1. A
is defined as follows, where Z1 = gz1, Z2 = gz2 and Z3 = gz3 :

– Setup: A generates a public/private key pair (ek , dk) for an encryption
scheme, a file length 	 > 0, an alphabet Σ such that |Σ| > 1, and a se-
quence of plaintext file characters 〈σk〉k∈[�], σk ∈ Σ. A sets H1(σk||k) ← gu

where u
$← Z∗p and then computes the encrypted file sequence 〈sk, bk〉k∈[�]

such that sk ← Zuβk

1 for βk
$← Z∗p and bk ← Encek (βk). A invokes

S(〈p,G1, G2, g, e, Z1〉, Σ, 〈sk, bk〉k∈[�]). Note that the file ciphertext 〈sk, bk〉k∈[�]
is well formed because e(sk, g) = e(Zuβk

1 , g) = e(gz1uβk , g) = e(g, g)z1uβk =
e(gu, gz1)βk = e(H1(σk||k), Z1)βk , as in the real protocol. Finally, A chooses

k∗
$← [	] and σ∗

$← Σ \ {σk∗}.
– Simulation for S: After receiving pek and 	 from S (m101), A chooses
n > 0 arbitrarily and computes θ exactly as in the real protocol, using an
encryption key ek ′ of its own choosing. A sends n and θ to S (m102).

2 A function μ is negligible as a function of κ if for every positive polynomial p, there
is some κ0 such that μ(κ) < 1/p(κ) for all κ > κ0.
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In round k ∈ [	], A computes α to be the ciphertext of random element of
R. If k �= k∗, then A generates the random challenge Ψk exactly as specified
in c110–c111. If k = k∗, then A sets Ψk ← Z3. In either case, A then sends
α and Ψk to S (m103).

After 	 such rounds, A computes α to be the ciphertext of a random
element of R, and sends it to S (m105).

– Hash queries to H1: For any query that was previously posed to H1, A
returns the value returned to that previous query, and for new queries, A
generates a return value as follows. If the query is σ∗||k∗, then A returns Z2.

For all other queries, A picks u
$← Z∗p and returns gu.

– Hash queries to H2: For any query that was previously posed to H2, A
returns the value returned to that previous query. For new queries, A picks

r
$← ZN and returns r to S.

The view that A simulates for S is indistinguishable from a real protocol
execution. If S computes

τ(σ∗, k∗, βk∗ , ψk) = H2(e(H1(σ
∗||k∗)βk∗ψk , Z1))

= H2(e(Z
βk∗z3
2 , Z1))

= H2(e(g, g)
z1z2z3βk∗ )

then A can output e(g, g)z1z2z3 with non-negligible probability by selecting a

random query χ that S made of H2 and returning χβ−1
k∗ mod p. The probability

that A outputs e(g, g)z1z2z3 is then 1
(m−1)·�·#(H2)

times the probability that S
produces τ(σ, k, βk, ψk) for some k ∈ [	] and σ �= σk, where #(H2) is the number
of queries that S poses to H2. If the latter probability is non-negligible, then the
former is, too. ��

We now consider the second possibility, i.e., that the server causes the client
to execute a state transition into an erroneous state in Q without computing
τ(σ, k, βk, ψk) for some σ �= σk. To prove that this happens with negligible
probability, we leverage properties specific to the Paillier cryptosystem.

Lemma 2. Let H2 be a random oracle, and let S be a server-compromising ad-
versary. If in no round k does S compute τ(σ, k, βk, ψk) for some σ �= σk, then
the client outputs an incorrect state q ∈ Q with probability at most negligibly
more than n−1

N .

Proof. In round k, the client transitions to the next DFA state by encoding the
DFA transition function using a polynomial f satisfying f(π(q) +

R
ϕk, τ(σ, k,

βk, ψk)) = π(δ(q, σ)) for every q ∈ Q and σ ∈ Σ; let f(x, y) = R

∑n−1
i=0 R

∑m−1
j=0 aij ·R

xi·
R
yj . To cause a state transition to an erroneous state q′ ∈ Q, a server adversary

must therefore produce ciphertexts 〈μij〉i∈[n],j∈[m] with corresponding plaintexts
〈νij〉i∈[n],j∈[m] so that

π(q′) = R

n−1∑
i=0

R

m−1∑
j=0

aij ·R νij (1)

www.it-ebooks.info

http://www.it-ebooks.info/


Ensuring File Authenticity in Private DFA Evaluation 159

without having any information about τ(σ, k, βk , ψk) for any σ �= σk (since H2 is
a random oracle). Note that the distribution of 〈aij〉i∈[n],j∈[m] is not independent
of the DFA transition function δ and the injection π. That is, once π is fixed,
only certain values for 〈aij〉i∈[n],j∈[m] are possible.

We argue the result under the conservative assumption that δ and π uniquely
determine 〈aij〉i∈[n],j∈[m] (which in general they do not). Even then, for any
i′ ∈ [n] and j′ ∈ [m] such that ai′j′ �= 0 and gcd(ai′j′ , N) = 1 (lines c114–c115
abort the protocol if gcd(aij , N) > 1 for some aij �= 0), and for any choices
of 〈νij〉i∈[n],j∈[m] excepting νi′j′ , there is exactly one value for νi′j′ in ZN that
satisfies (1). Moreover, prior to the last message sent by the client (m105), the
server receives no information about π. So, the probability S succeeds in selecting
〈νij〉i∈[n],j∈[m] to satisfy (1) is 1

N , and since there are n − 1 possible erroneous
states q′, the probability S succeeds in causing an erroneous state transition to
any q′ ∈ Q is at most n−1

N .
Finally, while the server learns π(q) for one q ∈ Q in the last client-to-server

message (m105) — if it behaved thus far — it does so only for the correct state
q at this point. Again, it can then guess π(q′) for an incorrect q′ ∈ Q to return
as γ∗ with probability only n−1

N . ��

5 On File Updates

Protocol Π is presented for a static file, and so in this section we consider the
impact of file updates. As we discuss below, these impacts are nontrivial, and so
our protocol is arguably most useful for static files.

To enable protocol Π , the data owner signs the file position k along with
σk when producing sk to detect the server reordering file characters, i.e., sk ←
H1(σ||k)x·βk where βk

$← Z∗p. Such a representation would require any character
insertion or deletion at position k to further require updating the signature sk′

for all k′ > k. If the total file length 	 is also included as an input to H1 to detect
file truncation, then insertions and deletions may require updating the signatures
sk′ for all k′ < k, as well. This latter cost can be eliminated by not including
	 as an input to H1 but rather to have the data owner sign 	 and the server to
forward this signature along with 	 to the client in message m101. The former
cost can be mitigated somewhat by breaking each file into blocks (essentially
smaller files) so that insertions and deletions require only the affected blocks to
be rewritten. In this case, the block index within the file should presumably also
be included as an input to H1 to detect block reorderings by the server.

Even with these modifications, there remain other complexities in handling
file updates, in that a server could simply use a stale version of the file when
performing protocol Π with the client, ignoring any earlier updates to the file
by the data owner. Detecting a server that selectively suppresses updates seems
to require additional interaction between the data owner and the client and has
been the subject of much study (for file stores subject to reads and updates
only) under the banner of fork consistency [22]. We leave as future work the
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integration of our DFA evaluation techniques with these ideas, i.e., so that DFA
evaluations performed against stale files are efficiently detected when the client
subsequently interacts with the data owner.

6 Extensions

The protocol Π can be extended in various ways that may be of interest and
that we will discuss here. The first “extension” is simply the removal of the
file encryption step described in Section 4.3, which is suitable for the standard
two-party model where the server’s input need not be kept secret from the server
himself. This simplification eliminates the dk , βk and bk values from the protocol,
implicitly setting βk = 1.

A more interesting variant of the protocol addresses the concern that the
protocol as stated in Figure 1 discloses the decryption key dk and the values
〈βk〉k∈[�] to the client, either of which can be used to decrypt the file from its
ciphertext 〈sk, bk〉k∈[�]. While this file ciphertext is not disclosed to the client
during the protocol, it seems unnecessarily permissive to disclose its decryption
key to every client that performs a DFA evaluation on the file: if the file ciphertext
were ever unintentionally disclosed, then any such client could decrypt the file
if it retained the key. In the rest of this section we discuss an extension to the
protocol in Figure 1 to avoid disclosing dk and the values 〈βk〉k∈[�] to the client.

In order to avoid disclosing dk to the client, one alternative is for the data
owner to provide shares of dk to both the client and the server, so as to enable a
two-party decryption of each bk. Then, rather than sending only bk to the client
in message m104, the server can also send its contribution to the decryption of
bk, enabling the client to complete the decryption of bk without learning dk itself.

Still, however, this alternative would disclose βk to the client, which would
enable it to determine σk if sk were ever disclosed. To avoid disclosing βk, one
strategy is for the server to first blind βk with another random value tk, i.e.,
to execute the protocol with βktk in place of just βk. Of course, this factor tk
would also then need to be reflected in k-th file character used in the protocol,
i.e., so the server would use stkk = H1(σk||k)xβktk in place of sk in the protocol.
Because the server does not have access to βk but rather has access only to its
ciphertext bk, it is necessary that the encryption scheme used to construct bk
enable the computation of a ciphertext b̂k from bk and tk such that Decdk (b̂k) =

βktk mod N ′ for some valueN ′ such that p | N ′. In this case, selecting tk
$← ZN ′

suffices to ensure that βktk mod N ′ is distributed independently of βk and so
hides βk from the client when it learns βktk mod N ′.

An encryption scheme meeting our requirements (supporting two-party de-
cryption and homomorphism on ciphertexts) is ElGamal encryption [12] in a
subgroup of Z∗N ′ . However, note that setting N ′ = p is inefficient: the security
parameter κ and so the size of p required for security is an order of magnitude
less for BLS signing than it would be for ElGamal encryption in a subgroup of
Z∗p [20], and so setting N ′ = p would add considerable expense to the protocol.
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As such, a more efficient construction would be to choose N ′ = pp′ for another
prime p′. ElGamal encryption is believed to be secure with a composite modulus
even if its factorization is known [5].

7 Conclusion

We presented a protocol by which a data owner can outsource storage of a
file to an untrusted cloud server while still enabling partially trusted third-party
clients (e.g., customers and service providers) to evaluate DFAs on that data. Our
protocol is novel in provably enabling the client to detect the server’s misbehavior
— including the use of a file other than the data owner’s in the protocol — in
the random oracle model, while simultaneously protecting the privacy of the file
and of the DFA from an arbitrarily malicious server. Moreover, our protocol
provably protects the privacy of the file (except for the DFA evaluation result)
from an honest-but-curious client (and heuristically does so from an arbitrarily
malicious one). We accomplish these goals without the use of zero-knowledge
proofs, yielding a protocol that is more efficient than alternatives of which we
are aware. We believe that our protocol has applications to malware scanning or
genome analysis on encrypted, cloud-resident data, and we plan to explore these
applications in ongoing work.
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Abstract. Security analysis often requires understanding both the con-
trol and data-flow structure of a binary. We introduce a new program
representation, a hybrid information- and control-flow graph (HI-CFG),
and give algorithms to infer it from an instruction-level trace. As an
application, we consider the task of generalizing an attack against a pro-
gram whose inputs undergo complex transformations before reaching a
vulnerability. We apply the HI-CFG to find the parts of the program
that implement each transformation, and then generate new attack in-
puts under a user-specified combination of transformations. Structural
knowledge allows our approach to scale to applications that are infeasible
with monolithic symbolic execution. Such attack polymorphism shows
the insufficiency of any filter that does not support all the same trans-
formations as the vulnerable application. In case studies, we show this
attack capability against a PDF viewer and a word processor.

1 Introduction

In security analysis it is often necessary to understand both the information-
flow and control-flow structure of a large code base. Disassemblers concentrate
on recovering control-flow structure, and some research systems [18,26,17] re-
verse engineer data structures. But there is insufficient automated support for
understanding the flow of information between data structures, and the relation-
ship between data structures and code. We propose new techniques that combine
information-flow analysis with control-flow graph recovery to scale precise binary
analysis to large software systems, and apply them to generating polymorphic
attacks against programs that support complex input transformations.

Applications are getting larger and more complex due to increasing function-
ality, a more sophisticated software stack, and new abstractions and concepts
that simplify development. These applications are hard to debug and vulnerabil-
ities are becoming more and more complex, e.g., a vulnerable program location
might only be reached after a specific input is passed through several buffers and
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1 // ISO -8859-1 to UTF -8 conversion
2 void trafo(char *src,
3 char *dst, int len) {
4 while (len -- > 0) {
5 if (*src < 0x80) {
6 *dst++ = *src++;
7 } else {
8 *dst++ = 0xc0 | \
9 (*src & 0xc0) >> 6;

10 *dst++ = 0x80 | \
11 (*src++ & 0x3f);
12 }
13 }
14 }
15 ...
16 trafo(buf0 , buf1 , 256);

Fig. 1. This example shows both (a) simple transformation and (b) the corresponding
HI-CFG

functions whereas the data can be modified by each function. Symbolic execution
is a great tool to analyze security properties of an application given a potentially
vulnerable program location. Unfortunately, symbolic execution does not scale
well to large contexts and long-running programs with multiple input transfor-
mations, due to the explosion of the number of possible paths that have to be
evaluated and the state that has to be tracked. A simple alternative to sym-
bolic execution is (concrete) fuzzing or fuzz testing. Fuzz testing uses templates
to probabilistically generate input data that tries to trigger a program crash.
A security analyst then analyzes the crash logs to locate vulnerabilities. Due to
the probabilistic input generation fuzz testing is unlikely to reach a vulnerability
that is guarded by complex, low-probability conditions.

This paper introduces a new program representation, a Hybrid Information-
and Control-Flow Graph (HI-CFG), that captures both the information-flow
graph and the control-flow graph of a program. The HI-CFG shows the data
structures within a program as well as the code that generates and uses these
data structures, inferring an explicit connection of producer and consumer edges
between data-flow nodes and blocks in the control-flow graph. Figure 1(a) shows
a simple example of a transformation and the corresponding HI-CFG graph. The
transformation that copies data from buffer buf0 to buf1. Figure 1(b) shows the
HI-CFG that contains the control flow graph as well as the data flow graph and
the producer/consumer edges between the two graphs.

Using the information in the HI-CFG about individual data structures (i.e.,
buffers) and transformations enables an iterative, step-by-step analysis of these
buffer transformations. Instead of using monolithic symbolic execution that re-
verses all transformations in a single (but potentially exponentially large) step,
iterative symbolic execution starts from a potentially vulnerable program loca-
tion and reverses each transformation individually. Figure 2 shows a vulnerabil-
ity hidden behind several transformations that can be reversed using iterative
symbolic execution.
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Fig. 2. Iteratively reversing a set of data transformations based on information from
the HI-CFG

One possible way to build a HI-CFG is using source-based program analysis.
Unfortunately, in the context of security analysis, the source-code of a program
is usually not available and the program itself might be stripped. This paper
presents an algorithm to build a HI-CFG for a given binary-only program based
on the analysis of an execution trace for a benign input that executes the buffer
transformations but does not necessarily trigger the vulnerability. Prerequisites
for the algorithm are only the (stripped) binary and a benign input that executes
the buffer transformations.

Another advantage of the HI-CFG from an attacker’s perspective is that given
one vulnerability the symbolic execution engine can be used to generate many dif-
ferent exploit paths, leveraging different encodings or different transformations.
Often transformations are many-to-one (e.g., many different deflate compressed
streams decode to the same original data) and the symbolic execution engine can
be used to produce different encodings for a specific target string. Also, many
file formats allow a specific program location to be reached by different chains of
transformations. With file formats that allow recursive objects, an attacker can
choose from an infinite amount of transformations. Such attacks can only be de-
tected if the analysis tool has deep knowledge of the file format and implements
all transformations as well.

We evaluate the feasibility of HI-CFG construction using only a stripped
binary for two case studies: a PDF viewer, and a word processor. For both
programs, we describe the construction of the HI-CFG as well as how symbolic
execution can be used to generate different attacks by inverting transformations
along the HI-CFG buffer chains.

The contributions of this paper are:

1. we introduce a new program representation, a Hybrid Information- and
Control-Flow Graph (HI-CFG), which combines control-flow and data-flow
information by inferring producer/consumer edges;

2. we give algorithms for building a HI-CFG given only a stripped binary pro-
gram and a benign input to that program;

3. we evaluate the security capabilities of the HI-CFG using two case studies
for large, real-world programs: Poppler and AbiWord.
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Our symbolic execution approach for attack generation is not a contribution
here; it is described in more detail in a technical report [21]. Further information
about the project is available on the BitBlaze web site [12].

2 The Hybrid Information- and Control-Flow Graph

For the central program representation used in our approach we propose what we
call a Hybrid Information- and Control-Flow Graph (“HI-CFG” for short, pro-
nounced “high-C-F-G”). The HI-CFG combines information about code, data,
and the relationships between them. Because data structures represent the in-
terface between code modules, a HI-CFG is a suitable representation for many
tasks that require decomposing a large binary program into components.

We start by describing the kinds of nodes and edges found in a HI-CFG (Sec-
tion 2.1). Then we mention potential variations of the concept and applications
for which they would be suitable (Section 2.2).

2.1 Nodes and Edges

A HI-CFG is a graph with two kinds of nodes: ones representing the program’s
data structures, and ones representing its code blocks. Data structure nodes are
connected with information-flow edges showing how information is transferred
from one data structure to another. Code block nodes are connected with control-
flow edges indicating the order in which code executes. Finally, data nodes and
code nodes are connected by producer-consumer edges, showing which informa-
tion is created and used by which code: a producer edge connects a code block to
a data structure it generates, while a consumer edge connects a data structure to
a code block that uses it. A more detailed example HI-CFG is shown in Figure 3.

The subgraph of a HI-CFG consisting of code blocks and control-flow edges
is similar to a control-flow graph or call graph, and the subgraph consisting
of data structure nodes and information-flow edges is similar to a data-flow
graph. However, the HI-CFG is more powerful than a simple combination of a

Fig. 3. A detailed example of a coarse-grained HI-CFG for a program which parses
two kinds of commands from its input, decodes those commands using lookup tables,
and then performs an appropriate computation for each command.
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control-flow graph and a data-flow graph, because the producer-consumer edges
additionally allow an analysis to find the code that is relevant to data or the
data that is relevant to part of the code.

2.2 Generality and Uses

We can create a HI-CFG with differing levels of granularity for code and data.
A fine-grained code representation has one code block per basic block, while
a coarse-grained representation has one code block per function. Analogously,
a fine-grained data representation has a data structure node for each atomic
value (like an integer), while a coarse-grained data representation has one data
structure node per allocated memory region. To record information about finer-
grained structure, we can augment a coarse-grained data structure node with an
inferred type that describes its internal structure.

When an analysis can recover only part of the information about a program’s
structure, such as when combining static and dynamic approaches, we can also
annotate each HI-CFG edge with a confidence value between 0 and 1. A confi-
dence value of 1 represents a relationship that our system knows definitively to
hold, whereas a fractional value indicates an uncertain relationship.

Component Identification. One application of a HI-CFG would be to identify
functional components within a binary. The hierarchical, modular structure of
a program is important at the source level for both developer understanding
and separate compilation, but this structure is lost after a compiler produces
a binary. Below the level of a dynamically linked library, a text segment is
an undifferentiated sequence of instructions. However we would often like to
determine which parts of a binary implement a certain functionality, such as to
extract and reuse that functionality in another application. Caballero et al. [5]
demonstrate the security applications of such a capability for single functions,
but many larger functional components would also be valuable to extract.

An insight that motivates the use of a HI-CFG for this problem is that the
connection between different areas of functionality in code are data structures.
A data structure that is written by one part of the code and read by another
represents the interface between them. Thus locating these data structures and
dividing the code between them is the key to finding functional components.
Given a HI-CFG, the functional structure of the program is just a hierarchical
decomposition of the HI-CFG into connected subgraphs. Data structures con-
nected to multiple areas represent the interfaces of those components.

Information-Flow Isolation. A different kind of decomposition would be valu-
able for programs that operate on sensitive data. In a monolithic binary program,
a vulnerability anywhere might allow an attacker to access any information in the
program’s address space. But often only a small part of an application needs to
access sensitive information directly. Just as automatic privilege separation [4]
partitions a program to minimize the portion that requires operating system priv-
ileges, we would like to partition a program to minimize the portion that requires
access to sensitive information. This problem can again be seen as finding a
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structure within the HI-CFG, but for information-flow isolation we wish to find a
partition into exactly two components, where there is information flow from the
non-sensitive component to the sensitive one but not vice-versa.

Attack Generation. For this paper, our application of the HI-CFG is to find
the structure of a program’s buffer usage to facilitate efficient attack generation.
For this, we use a relatively coarse-grained HI-CFG. We represent code at the
level of functions, so control-flow edges correspond to function calls and returns.
To represent data structures, we use a level of granularity intermediate between
atomic values and memory allocations: our tool detects buffers consisting of
adjacent memory locations that are accessed in a uniform way, for instance an
array. Our current prototype implementation detects only one level of buffers,
so we do not infer types to represent their internal structure.

Because our HI-CFG construction algorithm, as described in Section 3, is
based on dynamic analysis, each edge in the HI-CFG represents a relationship
that was observed on a real program execution. Thus all edges effectively have
confidence 1.0. The converse feature of this dynamic approach is that relation-
ships that did not occur in the observed execution do not appear in the HI-CFG.
However this is acceptable for our purposes because we base the HI-CFG, and
thus the search for an attack, on an analyst-chosen benign execution. If desired
the analyst can repeat the search with a benign input that exercises different
parts of the program functionality.

3 Dynamic HI-CFG Construction

In this section, we describe our approach to HI-CFG construction: first some in-
frastructure details, then techniques for collecting control-flow information from
dynamic traces, categorizing memory accesses into an active memory model,
grouping data accesses into buffers, tracking information flow via targeted taint
analysis, and merging significantly similar buffers.

3.1 Infrastructure

To construct a HI-CFG via dynamic analysis, we take a trace-based approach.
We use the BitBlaze Tracecap tool to record instruction traces. Tracecap also
records statistics about loaded executables and libraries, and produces a log of
function calls including arguments and return values that we later use to track
standard memory allocation routines.

Our modular trace analysis system interfaces with Intel’s XED2 [15] library
(for instruction decoding). It includes an offline taint propagation module that
allows for a virtually unlimited number of taint marks, and a configurable num-
ber of taint marks per byte in memory and registers. The implementation of
the trace collection and trace analysis focuses on x86 while the techniques for
HI-CFG construction apply to general architectures.
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3.2 Control Flow

The HI-CFG construction module primarily identifies functions by observing
call and ret in the instruction trace. At a call instruction, the module updates
the call stack for the current thread and creates a control-flow edge from the
caller to the callee. (This includes indirect call instructions such as those used
for C++ virtual methods.) At a ret, the module finds the matching entry in
the call stack and marks any missed call stack entries as invalidated.

In addition to literal call instructions, our system also recognizes optimized
tail-calls by noticing execution at addresses that have previously been call

targets. A limitation of this approach is that tail-called functions will never be
recognized if not normally called. This limitation of the current implementation
could be addressed by adding a static analysis step to the HI-CFG construction
process, but it has not been a problem so far.

3.3 Memory Hierarchy

The HI-CFG construction records memory accesses in a hierarchical model of
memory which follows the lattice shown in Figure 4. space types at the top
of the lattice represent an entire process address space. At the bottom of the
lattice, primitives represent memory accesses observed in the instruction trace.
The categorization of a memory access corresponds to a path from the top of
the lattice to the bottom. Existing entries in the memory model add their own
types as additional requirements in the path. For example, a memory access
under an existing dynamically allocated memory region will at least have the
path space, dynamic region, dynamic allocation, primitive. The memory
model will then insert the memory access and create or adjust layers according
to the types in the path.

Memory structures such as dynamic allocations and stack frames are added to
the memory model as they are identified by one of several indicators. Dynamic

Fig. 4. The hierarchy of types in the model of memory used in our HI-CFG construction
algorithm
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allocations are added to the memory model by tracking standard memory alloca-
tion routines such as malloc and free. Stack frames are created by tracking esp

during call instructions and claiming all memory accesses between the base of
the stack frame and the end of the stack region during matched ret instructions.

Memory structures such as stack and dynamic regions are based on memory
pages. The “region” type classification relies on the intuition that most programs
tend to use each page for a single purpose such as for stacks, dynamic alloca-
tions, memory-mapped executables, or operating system structures. Additional
constraints prohibit stack frames and dynamic allocations from appearing in the
memory model without their respective regions.

3.4 Grouping Buffers

Instruction traces contain every individual load and store instruction performed
by the traced program, but for the HI-CFG we wish to group these accesses into
buffers to better understand their structure. We identify buffers as groups of
adjacent memory locations between which the program expresses commonality.

We experimented with several heuristics for identifying buffers and currently
use a combination of two approaches. Our first system recognizes instructions
that calculate memory access addresses by adding an index to a base pointer. The
system searches the operands involved in the address calculation for a suitable
base pointer (which must point to an active page of memory). Upon finding a
suitable base pointer, the system submits a candidate buffer consisting of an ad-
dress equal to the value of the base pointer and a size that extends the buffer from
the base pointer to the end of the observed memory access. For example, analyz-
ing a one-byte memory access of address 0x800000ff by the instruction “movzbl
(%esi,%edx,1), %eax” where the base pointer esi is 0x80000000 would yield
a 0x100-byte candidate buffer from 0x80000000 to 0x800000ff.

The first system often detects both arrays consisting of homogeneous data
types and structures consisting of heterogeneous data types. However, it fails
when the address of the memory access is constructed by pointer arithmetic
across multiple instructions. Our second system addresses this weakness by rec-
ognizing spatially adjacent memory accesses. To reduce the false positive rate of
buffer detections, our second system also tracks the order of memory accesses
within each function. Upon observing a return instruction and updating the call
stack, or freeing a chunk of dynamically allocated memory, the second system
uses the accesses from the returned function or freed memory as starting points
to search through the active memory model for linear access patterns. Specifi-
cally, our system numbers the accesses sequentially and then sorts them by their
address. A long enough run of adjacent accesses (currently 6) form a group if for
each pair of adjacent accesses, the distances between them, both in the sequen-
tial order and in address, match. A pseudocode description of this algorithm,
simplified to omit the treatment of nested functions and some optimizations, is
in Figure 5. An example of the algorithm applied to strcpy can be found in a
companion technical report [8]. Similar access patterns across multiple calls to
the same function, such as by functions that access one byte of a buffer per call,
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are also recognized by this system. In addition, access patterns are stored within
buffers so that they may grow with subsequent accesses. If found, the system
will submit the candidate buffer for further processing described next.

const MIN SIZE = 6
for insn in trace

match insn.type of
case CALL: opcount := 0; accesses := [ ]

case LOAD(addr) or STORE(addr):
append(accesses, (addr, opcount++))

case RETURN:
a := sort(accesses, by(addr))
for indexes i in a

group := [ a[i ] ]
old stride := None
for indexes j=i, j+1 in a

new stride := (a[j+1].addr − a[j ].addr, a[j+1].opcount − a[j ].opcount)
if (old stride == None) old stride := new stride
if (old stride �= new stride) break
append(group, a[j+1])

if (group.length ≥ MIN SIZE) make group(group)

Fig. 5. Pseudocode for identifying linear access patterns in a trace

Once the two systems have submitted their candidate buffers, the HI-CFG
module combines the sets of discovered buffers (keeping all non-overlapping
buffers, and preferring larger buffers in the case of overlap) and commits them to
the active memory model. Adding a buffer to the active memory model merges
the grouped memory accesses with the new buffer, which summarizes relational
information such as producer and consumer relationships with functions and in-
formation flow to other buffers, which are described in the next subsection. Our
system merges a subsequent buffer with an existing one if the starting or ending
addressing of the new buffer matches either the starting or ending address of the
old one, or if either buffer is completely contained within the other.

3.5 Information Flow

To trace the information flow between buffers, our system primarily uses a spe-
cialized form of dynamic taint analysis [23,24]. We introduce a fresh taint mark
for each buffer as a possible source for information flow. We then propagate these
taint marks forward through execution as the data values are copied into registers
and memory locations, or used in arithmetic or bitwise operations. When a value
with a taint mark is stored into another buffer distinct from the source buffer, we
record an information flow from the source to that target. Like most techniques
based on dynamic taint analysis, this technique will not in general account for
all possible implicit flows. Therefore, we supplement it with an upper-bound
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technique that constructs a low-confidence information-flow edge whenever the
temporal sequence of buffers consumed and produced by a function would allow
an information flow. (In other words, if a function first reads from buffer A, and
then later writes to buffer B, we create a low-confidence information flow edge
from A to B.)

3.6 Buffer Summarization

Buffers in the active memory model are moved into the historical memory model
when they or their hierarchical parents are deactivated. Primarily, this occurs
for stack allocated buffers (when functions return) and dynamically allocated
buffers (when the allocated chunk is freed). The remaining entries in the active
memory model are deactivated when the HI-CFG construction module analyzes
the last instruction in the trace.

Passthrough buffers, through which information flows without being acted
upon by multiple functions, are not added to the historical memory model af-
ter deactivation. The motivations for this choice are twofold: first, passthrough
buffers are generally less interesting for our analysis and their removal is a slight
optimization; second, passthrough buffers will connect legitimately separate sec-
tions of the HI-CFG with information flow. Removing passthrough buffers im-
proves the precision of the HI-CFG by eliminating cases that would indicate
spurious information flow: for instance, if memcpy copied through an internal
buffer that were not removed, every source of a copy would appear information-
flow connected to every target.

We define passthrough buffers as those that satisfy the following criteria:

– The buffer is not a source of information flow (i.e., it has at least one incoming
information flow edge).

– The buffer is not a sink of information flow (i.e., it has at least one outgoing
information flow edge).

– The buffer is produced and/or consumed by exactly one function.

If all of the criteria are met, the passthrough buffer is removed from the
graph, and new information flow edges connect buffers that were connected by
the passthrough buffer. When deactivated buffers do not meet the criteria for
passthrough buffers, they are moved into the historical memory model and sum-
marized, as we describe next.

The summarization process finds buffers that are related (intuitively, multiple
instances of the “same” buffer), and merges them along with their relational
information. We define when two buffers should be merged by giving each buffer
a value we call a key. Two buffers should be merged if they have both the same
parent and the same key. In the current implementation we store an MD5 hash
of the key material to save space. The key includes an identifier for the type of
an object, and by default it also contains the object’s offset within its parent.

The keys for dynamic allocations and stack frames contain different informa-
tion in addition to a type identifier. Dynamic allocations use the calling context
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of the allocation site, up to a configurable depth (currently set to 10 calls),
similar to a probabilistic calling context [3]. Stack frames use the address of
the function. As a result, our system is able to identify two local variables or
dynamic allocations as the same across multiple calls to a function and in the
presence of custom memory allocation wrappers.

We use a disjoint-set union-find data structure [13] to manage the identities of
buffers as they are summarized. The merging of buffers corresponds to a union
operation, and we use a find operation with path compression to maintain a
canonical representative, associated for instance with a taint mark. This allows
the tool to efficiently maintain information-flow from historical buffers even after
they are deactivated.

4 Application: Attack Polymorphism

As our primary example of a security application of a HI-CFG, we describe how
to use the transformation structure represented in the HI-CFG to efficiently
produce new attacks that differ in the transformations applied to the input
before reaching a vulnerability. We first describe the technique and how it uses
the HI-CFG, then describe experiments applying the technique to two vulnerable
document-processing applications.

4.1 Transformation-Aware Attack Generation with a HI-CFG

In a large application, an input value will typically undergo a number of trans-
formations before being used in a vulnerable function. Moreover, the sequence
of transformations that apply may vary depending on the input structure. For
instance portions of a document might appear in one of several encoding for-
mats, or they might be compressed. This flexibility is potentially powerful for an
attacker, because it allows for polymorphism: the same underlying attack can be
carried out using a wide variety of input files which look superficially dissimilar.

We show that using the transformation structure available in the HI-CFG,
along with symbolic execution, an attacker can easily generate transformed at-
tack inputs, without a need to understand the transformations. We treat the
generation of transformed inputs as a search problem, and we use the struc-
ture of transformations to guide the search. Symbolic execution does not scale
to generate complete inputs to a large program. But using the transformation
structure, we can apply symbolic execution to search for a pre-image of a single
transformation at a time.

Specifically, our approach generates a HI-CFG from an execution of the vul-
nerable program on a benign input which does not contain an attack, but does
exercise the desired transformations. We also presume that the attacker has
enough knowledge to trigger the attack in the vulnerable function (perhaps also
by symbolic execution); in general this is not enough to directly give a program
input that triggers the vulnerability. Our system uses the transformation struc-
ture from the HI-CFG to determine the relevant transformations performed on
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Table 1. Set-up of the different test cases. All values are in bytes

Test 1 Test 2 Test 3 Test 4 Test 5

Hex encoded 10 16 55 125 250
RLE encoded 5 8 25 60 120
Object data 12 10 29 57 114

the program input to produce the buffer contents used by the vulnerable func-
tion. It then uses repeated searches based on symbolic execution, working back-
ward from the vulnerable function’s input buffer. For each transformation, it
computes a pre-image: buffer contents for a previous buffer, which when passed
through the transformation, yield the contents for the next buffer in the trans-
formation sequence. This process is shown graphically in Figure 2.

A sequence of transformations leading to the function containing a potential
vulnerability will appear in the HI-CFG as a path. The first node in the path is
a buffer representing the program input. The remaining nodes in the path before
the last are additional buffers internal to the program, connected by information-
flow edges. Finally, the path ends with a consumer edge leading to the function
containing the potential vulnerability. There may be multiple such paths, such
as if there are buffers containing both primary data and meta-data. Among all
the paths of the form described above, we choose the path for which the size of
the smallest buffer on the path is maximized, to prefer primary data buffers.

Given the sequence of buffers, the HI-CFG also contains information about
which functions implement each transformation. Specifically, each function that
implements part of the transformation will have a consumer edge from the earlier
buffer and a producer edge to the later buffer. In the case where the transfor-
mation is spread across multiple functions, the nearest call-graph ancestor that
dominates all of the functions connected to both buffers will generally be a func-
tion whose execution performs the transformation.

4.2 Performance Comparison between Iterative and Monolithic
Symbolic Execution

This section empirically evaluates the proposition that iteratively reversing in-
dividual transformation is faster than reversing all transformations in one single
(but more complex) step.

Our test program sets up a chain of two transformations. The input is first hex
decoded (pairs of ASCII characters in the ranges 0–9, a–f, or A–F map into data
bytes, skipping whitespace). The data bytes are then decompressed according
to a byte-level run length encoding (RLE), in which compressed bytes indicate
either a repeat count for a single byte, or a run of bytes to be copied verbatim.
Both encoding schemes are supported for objects in PDF files: in sequence they
encode data that is compressed but still printable.

For our performance evaluation we use three different configurations of the
same application with different input data. See Table 1 for the different test
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Table 2. Scalability of iterative symbolic execution compared to monolithic symbolic
execution. All numbers are in seconds, the timeout was set to 12 hours.

Test 1 [s] Test 2 [s] Test 3 [s] Test 4 [s] Test 5 [s]

Iterative SE 20 183 77 816 37635
Monolithic SE 599 14042 35972 Timeout Timeout

configurations of the data that is used for the two transformations. We then
evaluate both iterative and monolithic symbolic execution. Monolithic symbolic
execution uses the object data as its target and directly recovers the hex encoded
input data. Iterative symbolic execution leverages the HI-CFG representation to
split up the large transformation into two transformations and recovers the RLE
encoded data first and uses the result from the first step as input for the second
step where the RLE encoded data is reversed to hex encoded data.

The experiments use our binary symbolic execution tool FuzzBALL [2,20],
which builds in turn on the Vine library from the BitBlaze framework [27].
To further improve its performance on generating transformation pre-images,
FuzzBALL includes support for pruning unproductive paths, prioritizing paths
by the prefix length they produce, and handling loads and stores to tables with
single large formulas. These are described in detail in a technical report [21], and
the implementation is available from the BitBlaze web site. To isolate the benefit
of the HI-CFG, we enable these other optimizations for monolithic symbolic
execution as well.

Table 2 shows the different performance for iterative and monolithic symbolic
execution. Even for very short input sequences with only few bytes as object data
iterative symbolic execution clearly outperforms monolithic symbolic execution
by 30x (for Test 1). For larger test cases iterative symbolic execution outperforms
monolithic symbolic execution by up to 78x (Test 2) or 467x (Test 3).

4.3 Case Studies

As case studies, we apply our attack polymorphism to two vulnerable document-
processing systems: the PDF parsing library Poppler and the word processor
AbiWord. These programs are open-source, and we use the source code to verify
our results, but the system does not use the source code or source-level informa-
tion such as debugging symbols.

Poppler. Poppler is a PDF processing library used in applications such as
Evince. The vulnerability for which we generate attacks is cataloged as CVE-
2010-3704 [22]. The vulnerability is an integer overflow in a Type 1 font character
index, which can trigger an arbitrary memory write. The “stream” that contains
an embedded font within a PDF document is typically compressed to save space;
it can also be encrypted if the document uses access control, or transformed using
other filters. By applying our system with benign documents that use various
filters, we can create PDF files where the exploit is transformed in various ways.
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We can also apply symbolic execution to create the malicious font itself; details
are in a previous technical report [8]. We used a separate benign input and
generated a separate HI-CFG for each sequence of transformations. For space
reasons we give a detailed description of the first; the others were similar.

The most common PDF compression format is FlateDecode, using the De-
flate algorithm of RFC 1951 [10]. As a benign input, we use a PDF file generated
by pdftex applied to a small TEX file, which contains a FlateDecode-compressed
font. The execution trace from the benign execution contains 13,560,478 instruc-
tions, and constructing the HI-CFG took about 1.2 hours (4217 s) on a Xeon
X5670. The HI-CFG contains 1283 functions and 1590 groups.

An excerpt of the relevant portion of the HI-CFG generated by our tool is
shown in Figure 6. Input passes through a sequence of four buffers before the
vulnerable code is triggered, so given contents for the final buffer which trigger
a vulnerability in the font parser, our system compute three levels of preimages.
However, two of the transformations are direct copies for which preimage com-
putation is trivial. Between the second and third buffers our system computes
a preimage under the FlateDecode transformation: a compressed font that de-
compresses to the attack font. One average this requires searching through 111
execution paths, and takes a little less than two hours (6598.69 s over ten runs
dropping the fastest and slowest, on an Intel Core 2 Duo E8400).

Another commonly-used transformation of streams in PDF files is RC4 en-
cryption. It is relatively easy for our symbolic execution system to re-encrypt
modified data by constructing pre-images because RC4 is a stream cipher, and
the key is fixed. We applied our technique to a version of the previously described
sample document with RC4 and an owner password. There is one symbolic path,
and the running time is 20 seconds, mostly devoted to program startup.

Two further transformations supported by Poppler include run-length encod-
ing and a hexadecimal encoding of binary data, as described in Section 4.2. We
test inverting these two transformations with a PDF file that again contains the
benign Type 1 font, but run-length encoded and then hex-encoded. As seen with
the implementation in Section 4.2, these transformations are relatively easy to
invert; the preimage computation requires 143 seconds and 315 symbolic paths.

AbiWord. AbiWord is a word-processing application that supports a number
of file formats. In particular we examined its processing of documents in Office

Fig. 6. Anexcerpt of theHI-CFG for our Poppler case study showing the buffer sequence.
The input travels from left to right and FoFiType1::parse contains the vulnerability.
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Open XML format (used with the extension .docx) from Microsoft Word. An
Office Open XML document is structured as a compressed Zip file containing
multiple XML documents representing the document contents and metadata.

Recent versions of AbiWord (we used 2.8.2) suffer from a crash in XML pro-
cessing that is triggered when a shading tag occurs outside of a paragraph tag;
we have not determined whether this bug is exploitable. The execution trace
collected from the benign execution contains 69,503,117 instructions, and con-
structing the HI-CFG took about 5.8 hours (20910 s). The generated HI-CFG
contains 5379 functions and 5838 groups. Looking at the sequence of buffers in
the HI-CFG, the document data starts in a standard-IO input buffer, and is
then decompressed by the inflate function. The decompressed buffer is then
copied via memmove into a structure called the parser context, which is used
by xmlParseDocument; the function containing the vulnerability is a callback
from this parser. An XML document triggering the crash could be found using
a schema-aware random testing tool, or the details of the attack can also be
completed using symbolic execution of the parser [8].

Given the crash-inducing XML text, our tool finishes the task of producing
an attack .docx file by finding a preimage for the compression used for the
XML text in the .docx file’s Zip encapsulation. In fact, Zip files use the same
DEFLATE algorithm mentioned earlier in the Poppler case study, though an
independent implementation. On average (across 10 runs dropping the fastest
and slowest), the search requires 237 seconds and 92 symbolic paths.

4.4 Discussion

Next we discuss in more detail some of the limitations and implications of the
attack polymorphism capability.

Invertible Transformations. Our approach for computing inverse images via
symbolic execution depends on several features of a transformation implementa-
tion in order to find an inverse efficiently. While common, these features are not
universal. First, our tool is designed for transformations whose input and output
come via contiguous data structures such as arrays that are accessed sequen-
tially. With additional data-structure inference, the approach could be extended
to more complex linked and nested structures. However it must be clear when the
transformation has committed to an output value: our current approach works
when each output location is written exactly once. Second, pruning is most ef-
fective if the transformation’s input and output are closely interleaved, so that
unproductive paths can be pruned early. One example of a class of transforma-
tions that do not satisfy these features, and cannot generally be inverted by our
approach, are cryptographic hash functions.

Implications for Attack Filters. Our results show that it is easy for an
attacker to create variants of an attack that are camouflaged using transforma-
tions supported by an input format, such as the various filters supported in PDF
documents. The consequence for the designers of defenses such as network sen-
sors and anti-virus systems is that in order to recognize all the variants of an

www.it-ebooks.info

http://www.it-ebooks.info/


HI-CFG: Construction by Binary Analysis 179

attack, these systems would have to duplicate all of the transformations imple-
mented in the system they protect. For instance to recognize all possible variants
of an attack PDF, a defense system would need to include decoders for all the
stream formats supported by Adobe Reader.

5 Related Work

Our techniques for determining which memory accesses constitute a buffer are
most similar to the array detection algorithms of Howard [26,25], a tool which
infers data-structure definitions from binary executions. Our algorithms are
somewhat simpler because we do not currently attempt, for instance, to de-
tect multidimensional arrays. Other systems that perform type inference from
binaries include REWARDS [18] which has been used to guide a search for
vulnerabilities, and TIE [17] which can be either a static or dynamic analysis.
Similar algorithms have also been used for inferring the structure of network pro-
tocols [7]. By contrast, our HI-CFG also contains information about code and
the relationships between code and data, which are needed for our application.

Perhaps the most similar end-to-end approach to attack generation is the
decomposition and restitching of Caballero et al. [6]. They also tackle the prob-
lem of vulnerability conditions which are difficult to trigger because of other
transformations the input undergoes, in their case studies decryption. Though
they use symbolic exploration to find vulnerabilities, they use a different tech-
nique, based on searching for an inverse function in the same binary, to gener-
ate preimages. The decomposition and restitching technique can also recompute
checksums, which is a key capability of TaintScope [28]. TaintScope uses taint-
directed fuzzing to search for vulnerabilities, and a checksum can typically be
recomputed using simple concrete execution. However TaintScope uses symbolic
execution, including lookup tables identified by IDAPro, to find preimages for
simple transformations of the checksum value in a file, such as endian conversions
or decimal/binary translation.

The AEG [1] and Mayhem [9] systems also generate attack inputs using sym-
bolic execution. AEG automates some additional aspects of exploit generation
not covered in this paper, such as generating some common kinds of jumps to
shellcode. However, these projects do not describe any vulnerabilities as involv-
ing transformation of the input prior to the vulnerable code, which is the key
challenge we address.

The kinds of program information contained in the HI-CFG are available sep-
arately using existing techniques; the focus of our contribution is the extra value
that comes from combining them in a single representation. For instance, hav-
ing both information-flow and producer-consumer edges allows our approach to
characterize a transformation in terms of both the data structures it operates on
and the code that implements it. The program dependence graph (PDG) [11,14]
also has edges representing both control and data flow, but it is unsuitable for
our application as it has no nodes representing data structures.

Our problem of computing preimages for transformations is similar to the
“gadget inversion” performed by Inspector Gadget [16], which also applies to
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functionality automatically discovered within a binary. Inspector Gadget’s search
for inverses uses only concrete executions, but it keeps track of which output
bytes depend on which input bytes. Symbolic execution can be seen as a gen-
eralization in that symbolic expressions indicate not just which input values an
output value depends on, but the functional form of that dependence. This often
allows symbolic execution to compute a preimage using many fewer executions.

Our technique is based on searching backwards through the program execution
to see if a vulnerability can be triggered by the input. A similar intuition has
been applied to the control flow of a program (as opposed to information flow
as we consider); examples include the static analysis tool ARCHER [29] and the
call-chain-backward symbolic execution approach of Ma et al. [19].

6 Conclusion

In this paper we introduce a new data structure, the Hybrid Information- and
Control-Flow Graph (HI-CFG), and give algorithms for constructing a HI-CFG
from binary-level traces. The HI-CFG captures the structure of buffers and trans-
formations that a program uses for processing its input. This structure lets us
generate transformed attack inputs efficiently, because understanding the struc-
ture of transformations allows our system to find preimages for them one-by-one.
We show the feasibility and applicability of our approach in two case studies of
the Poppler PDF library and the AbiWord word processor. This demonstrated
ease of constructing attacks using complex transformation sequences implies that
the problem of filtering such attacks is very difficult.
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Abstract. The popularity and utility of smartphones rely on their vi-
brant application markets; however, plagiarism threatens the long-term
health of these markets. We present a scalable approach to detecting sim-
ilar Android apps based on their semantic information. We implement
our approach in a tool called AnDarwin and evaluate it on 265,359 apps
collected from 17 markets including Google Play and numerous third-
party markets. In contrast to earlier approaches, AnDarwin has four
advantages: it avoids comparing apps pairwise, thus greatly improving
its scalability; it analyzes only the app code and does not rely on other
information — such as the app’s market, signature, or description —
thus greatly increasing its reliability; it can detect both full and partial
app similarity; and it can automatically detect library code and remove
it from the similarity analysis. We present two use cases for AnDarwin:
finding similar apps by different developers (“clones”) and similar apps
from the same developer (“rebranded”). In ten hours, AnDarwin detected
at least 4,295 apps that have been the victims of cloning and 36,106 apps
that are rebranded. By analyzing the clusters found by AnDarwin, we
found 88 new variants of malware and identified 169 malicious apps based
on differences in the requested permissions. Our evaluation demonstrates
AnDarwin’s ability to accurately detect similar apps on a large scale.

1 Introduction

As of March 2012, Android has a majority smart phone marketshare in the
United States [15]. The Android operating system provides the core smart phone
experience, but much of the user experience relies on third-party apps. To this
end, Android has an official market and numerous third-party markets where
users can download apps for social networking, games, and more. In order to
incentivize developers to continue creating apps, it is important to maintain a
healthy market ecosystem.

One important aspect of a healthy market ecosystem is that developers are
financially compensated for their work. Developers can charge directly for their
apps, but many choose instead to offer free apps that are ad-supported or contain
in-app billing for additional content. There are several ways developers may lose
potential revenue: a paid app may be “cracked” and released for free or a free
app may be copied, or “cloned”, and re-released with changes to the ad libraries
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that cause ad revenue to go to the plagiarist [20]. App cloning has been widely
reported by developers, smart phone security companies and the academic com-
munity [8,10,11,16,21,33,32]. Unfortunately, the openness of Android markets
and the ease of repackaging apps contribute to the ability of plagiarists to clone
apps and resubmit them to markets.

Another aspect of a healthy market ecosystem is the absence of low-quality
spam apps which may pollute search results, detracting from hard-working de-
velopers. Of the 569,000 apps available on the official Android market, 23%
are low-quality [7]. Oftentimes, spammers will submit the same app with minor
changes as many different apps using one or more developer accounts.

To improve the health of the market ecosystem, a scalable approach is needed
to detect similar app for use in finding clones and potential spam. As of Novem-
ber, 2012, there are over 569,000 Android apps on the official Android market.
Including third-party markets and allowing for future growth, there are too many
apps to be analyzed using existing tools.

To this end, we develop an approach for detecting similar apps on a un-
precedented scale and implement it in a tool called AnDarwin. Unlike previous
approaches that compare apps pair-wise, our approach uses multiple clusterings
to handle large numbers of apps efficiently. Our efficiency allows us to avoid the
need to pre-select potentially similar apps based on their market, name, or de-
scription, thus greatly increasing the detection reliability. Additionally, we can
use the app clusters produced by AnDarwin to detect when apps have had simi-
lar code injected (e.g. the insertion of malware). We investigate two applications
of AnDarwin: finding similar apps by different developers (cloned apps) and
groups of apps by the same developer with high code reuse (rebranded apps).
We demonstrate the utility of AnDarwin, including the detection of new variants
of known malware and the detection of new malware.

2 Background

2.1 Android

Android users have access to many markets where they can download apps such
as the official Android market – Google Play [2], and other, third-party markets
such as GoApk [1] and SlideME [3].

Developers must sign an app with their developer key before uploading it
to a market. Most markets are designed to self-regulate through ratings and
have no vetting process which has allowed numerous malicious apps onto the
markets [34]. Google Play has developed a Bouncer service [26] to automatically
analyze new apps. However, its effectiveness for finding similar apps, such as
spam and clones, which may not be malicious, has not been studied.

2.2 Program Dependence Graphs

A Program Dependence Graph (PDG) represents a method in a program, where
each node is a statement and each edge shows a dependency between statements.
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There are two types of dependencies: data and control. A data dependency edge
between statements s1 and s2 exists if there is a variable in s2 whose value
depends on s1. For example, if s1 is an assignment statement and s2 references
the variable assigned in s1 then s2 is data dependent on s1. A control dependency
between two statements exists if the truth value of the first statement controls
whether the second statement executes.

2.3 Code Clones and Reuse Detection

Many approaches have been developed over the years to detect code clones
[19,22,24,25]. A code clone is two or more segments of code that have the same
semantics but come from different sources. Finding and eliminating code clones
has many software engineering benefits such as increasing maintainability and
improving security, as vulnerabilities in clones only need to be found and patched
once. Plagiarism and code clone detection share the same common goal: detect-
ing reused code. However, code clone detection is largely focused on intra-app
reuse, while plagiarism detection focuses on inter-app reuse, where the apps have
separate code bases and have been identified as having different authors.

Tools that detect code clones generally fall into one of four categories: string-
based, token-based, tree-based and semantics-based with semantics-based detec-
tion being potentially the most robust and often the most time consuming. Early
approaches considered code as a collection of strings, usually based on lines, and
reported code clones based on identical lines [9]. More recently, DECKARD [22]
and its successor [19] use the abstract syntax tree of a code base to create vectors
which are then clustered to find similar subtrees.

3 Threat Model

Our goal is to find Android apps that share a nontrivial amount of code, pub-
lished by either the same or different developers. We determine similarity based
on code alone and do not use meta data such as market, developer, package
or description for any purpose other than analyzing the results of AnDarwin’s
clusters of similar apps. We consider only similarities between the DEX code of
apps. We choose to leave native code to future work as only a small percentage
(7%) of the 265,359 apps we analyzed include native code.

4 Methodology

AnDarwin consists of four stages as depicted in Figure 1. First, it represents each
app as a set of vectors computed over the app’s Program Dependence Graphs
(Section 4.1). Second, it finds similar code segments by clustering all the vectors
of all apps (Section 4.2). Third, it eliminates library code based on the frequency
of the clusters (Section 4.3). Finally, it detects apps that are similar, considering
both full and partial app similarity (Section 4.4).
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Fig. 1. Overview of AnDarwin

We base the first two stages of AnDarwin on the approaches of Jiang et al. [22]
and Gabel et al. [19] to find code clones in a scalable manner. AnDarwin uses
these results to detect library code and, ultimately, to detect similar apps.

4.1 Extracting Semantic Vectors

The first stage of AnDarwin represents each app as a set of semantic vectors
as follows. First, AnDarwin computes an undirected PDG of each method in
the app using only data dependencies for the edges (as control dependencies
edges may be easier to modify). Each PDG is then split into connected com-
ponents as multiple data-independent computations may occur within the same
method. We call these connected components semantic blocks since each cap-
tures a building block of the method and represents semantic information stored
in the PDG. Finally, AnDarwin computes a semantic vector to represent each
semantic block. Each node in the semantic block represents a statement in the
method and has a type corresponding to that statement. For example, a node
representing an add might have the type binary operation. To capture this in-
formation, semantic vectors are calculated by counting the frequency of nodes
of each type in the semantic block. Continuing the above example, a seman-
tic block with just x adds would have an x in the dimension corresponding
to binary operations. AnDarwin uses a total of 20 node types, however, we
could easily use more node information such as which binary operation is be-
ing performed to increase the precision of our vectors without dramatically
increasing the complexity (Section 4.5). Semantic blocks with fewer than 10
nodes are discarded because they usually represent trivial and uncharacteristic
code.
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4.2 Identifying Similar Code

When two semantic blocks are code clones, they share the majority of their
nodes and, thus, their semantic vectors will be similar. Therefore, we can identify
code clones by finding near-neighbors of semantic vectors. While not all near-
neighbors will be code clones, this technique works well in practice (Section 5).

To determine all the near-neighbors, we could attempt to compute similarity
pairwise between all the semantic vectors. However, this approach is quadratic
in the number of vectors which is computationally prohibitive given that there
can easily be millions of vectors. Instead, we leverage Locality Sensitive Hashing
(LSH), which is an algorithm to efficiently find approximate near-neighbors in
a large number of vectors [5]. LSH achieves this by hashing vectors using many
hash functions from a special family that have a high probability of collision
if the vectors are similar. To identify near-neighbors, LSH first hashes all the
vectors with the special hash functions and then looks for near-neighbors among
the hash collisions. This allows LSH to identify approximate clusters of similar
vectors (code clones) which AnDarwin will use to detect similar apps.

Since semantic blocks of vastly different sizes are unlikely to be code clones,
we can improve the scalability further by grouping the vectors based on their
magnitudes [22]. To ensure that code clones near the group boundaries are not
missed, we compute groups such that they overlap slightly. LSH can then cluster
each group quickly as each individual group is much smaller than the set of all
vectors. Moreover, each LSH computation is independent which allows all the
groups to be run in parallel. This also has the added benefit that we can tailor
the clustering radius for each group to the magnitude of the vectors within the
group — potentially allowing us to detect more code clones.

4.3 Excluding Library Code

A library is a collection of code that is designed to be shared between many apps.
In Android, libraries are embedded in apps which makes it difficult to distinguish
app code from library code. This is problematic because app similarity detec-
tion tools should not consider library code when analyzing apps for similarity.
Prior approaches [16,32] identified libraries using white lists and manual efforts;
however, these approaches are inherently not scalable and prone to omission. In
contrast, AnDarwin automatically detects libraries by leveraging the results of
its clustering of similar code (Section 4.2).

A library consists of many semantic blocks which are mapped to semantic
vectors by AnDarwin. When an app includes a library it inherits all the semantic
vectors derived from library code. Therefore, when the semantic vectors are
clustered and AnDarwin maps features to apps, features from library code will
appear in many more apps. This is also the case for boilerplate code and any
common compiler constructs which tend to occur in many apps. To exclude these
uncharacteristic features, AnDarwin ignores any feature that appears in more
than a threshold number of apps.
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4.4 Detecting Similar Apps

The previous sections describe how AnDarwin creates features by clustering
semantic vectors and how characteristic features are selected. AnDarwin deter-
mines app similarity based on these characteristic features using two approaches,
one for full app similarity and the other for partial app similarity.

Full App Similarity Detection. For full app similarity detection, AnDarwin
represents each app as a set of features. In the simplest case, two very similar
apps will have mostly or completely overlapping feature sets. Dissimilar apps’
feature sets, on the other hand, should have little to no overlap. This is captured
in the Jaccard Index of their two feature sets FA and FB, which reduces the
problem of finding similar app to that of finding similar sets.

J(A,B) =
|FA ∩ FB|
|FA ∪ FB|

(1)

Partial App Similarity Detection. The above approach successfully finds
apps that share most of their code but it is not robust enough to find clones
that share only a part of their code. For example, consider an app and a copy
of it that has added many methods and also removed many original methods to
maintain a similar size. Although the app feature sets of these two apps agree
on many features, their Jaccard Index may be low. To detect partial similarity,
for each feature not excluded in the previous section, AnDarwin computes the
set of apps that contain the feature. If two features have similar app sets, as
determined by the Jaccard Index, these two features are shared by the same set
of apps. If enough features share the same set of apps, AnDarwin has discovered
a non-trivial amount of code sharing of non-library code. Therefore, by creating
clusters of features based on their app sets, AnDarwin can detect partial app
similarity by finding similar sets.

Finding Similar Sets. Both full and partial app similarity detection require
finding similar sets. As in Section 4.2, we could attempt to compute similarity
pairwise between all the sets, however, this is again computationally prohibitive.
Fortunately, this can be approximated efficiently using MinHash [12,13].

MinHash was originally developed at Alta Vista to detect similar websites
when represented as a set of features. To understand how MinHash works, first
consider the binary matrix representation of the sets for full app similarity de-
tection where columns are apps and rows are features. Let h(A) be the MinHash
of an app, A, and let it be defined as the first row of the matrix (going top-to-
bottom) that is a one for the column corresponding to A. Then, if we were to
create a random permutation of the rows of the binary matrix, for two apps, A
and B, the probability that h(A) = h(B) is the same as the Jaccard Index of the
two app feature sets [29]. Rather than using just one permutation which may
not find that two similar sets have the same MinHash value, many permutations
and MinHash values can be calculated — creating a MinHash signature vector.
These signature vectors are calculated for each app and can be clustered using
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LSH (see Section 4.2). Therefore, MinHash allows AnDarwin to efficiently detect
both full and partial app similarity.

The output of MinHash is a list of pairs of sets that are similar which we
combine to create clusters of similar sets. To do so, we initialize a union-find
data structure, which enables fast cluster merging and element lookup, with
each set in a cluster by itself. We then process each pair, (X,Y ) and merge the
two clusters that contain X and Y if they are not already in the same cluster.
By merging clusters in this way, the average similarity of sets within each cluster
is decreasing with each pair processed. For example A may be similar to B, B
to C, and C to D but this does not mean that A must be similar to D. We
believe this is an acceptable trade off and leave alternative approaches to future
work.

4.5 Time Complexity

In this section, we examine the total time complexity of AnDarwin. Let N be the
number of apps analyzed. Then, the complexity of extracting semantic vectors
is trivially O(N ∗m), where m is the average number of methods per app (m
is independent of N). The complexity of identifying similar code with LSH is:
O(d

∑
g∈G |g|ρ log |g|) [22]. Where d is the dimension of the semantic vectors (20),

G is the set of vector groups, |g| is the size of the vector group (|g| <= N ∗m)
and 0 < ρ < 1. This produces at most O(N ∗ m) clusters when there are no
code clones at all. Finally, the complexity of MinHash is: O(n log n) where n is
the number of sets. For full app similarity detection where there is one set per
app, n = N , and for partial app similarity detection where there is one set per
code clone, n <= N ∗m. Therefore, the total time complexity of AnDarwin is
linearithmic, O(N logN), in the number of apps analyzed.

5 Evaluation

We have implemented our approach in a tool called AnDarwin. AnDarwin uses
dex2jar [28] version 0.9.8 to convert DEX byte code to Java byte code. To build
the PDGs required to represent apps as a set of semantic vectors, AnDarwin
uses the T. J. Watson Libraries for Analysis (WALA) [14]. WALA supports
building PDGs from Java byte code, eliminating the need for decompilation.
Once AnDarwin has converted all the apps and represented them as sets of
semantic vectors, AnDarwin uses the LSH code from [5] to cluster the semantic
vectors to create features. These clustering results are then used to create the
feature sets and app sets described in Section 4.4. Finally, to detect full and
partial app similarity, AnDarwin uses MinHash, which we implemented based
on [29].

We crawled 265,359 apps from 17 Android markets including the official mar-
ket and numerous third-party markets (Table 1).
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Table 1. Market origins of the apps analyzed by AnDarwin. Since some apps appear
on multiple markets, the total apps in the table is slightly more than the total 265,359
apps analyzed.

Market Apps Market Apps Market Apps

Google Play 224,108 SlideME 16,479 m360 15,248

Brothersoft 14,749 Android Online 10,381 1Mobile 9,777

Gfan 7,229 Eoemarket 5,515 GoApk 3,243

Freeware Lovers 1,428 AndAppStore 1,301 SoftPortal 1,017

Androidsoft 613 AppChina 404 ProAndroid 370

AndroidDownloadz 245 PocketGear 227

5.1 Semantic Vectors

There are a total of 87,386,000 methods included in the 265,359 apps. These
methods produced a total of 90,144,000 semantic vectors, meaning that on aver-
age a method has 1.03 connected components. Among the 90,144,000 semantic
vectors, there are 4,825,000 distinct vectors. The average size of these 4,825,000
vectors is 77.87 nodes. The largest has 17,116 nodes. When we manually investi-
gated the largest method, we found that the app builds a massive 5-dimensional
array using hard coded values depending on different flags. Although perhaps
not the best coding style, this large semantic vector does represent valid code
that could be copied.

5.2 Code Features

In total, AnDarwin found 87,386,000 methods included in the 265,359 apps that
are clustered into 3,085,998 distinct features by LSH. 133,753 (4.3%) of these
features are present in more than 250 apps and thus are not used in either full or
partial app similarity detection. We selected this threshold based on the following
insight: only features from library code tend to map to methods that share the
same method signatures. Therefore, if the ratio of the number of apps a feature
appears in to the number of distinct method signatures for that feature is large,
it is highly likely that the feature represents library code. To select a library code
threshold, we select a value and then count the number of excluded features for
which this ratio is large and evaluate whether the threshold is acceptable. Using
a ratio of four, we selected the threshold such that at least 50% of the excluded
features exhibit this trait. We note that this threshold may be easily tweaked
depending on false positive and false negative requirements.

5.3 App Complexity

Overall, AnDarwin found that a large number of apps are not very complex.
Figure 2a shows the number of features per apps for the 265,359 apps before
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(a) Before common feature exclusion (b) After common feature exclusion

Fig. 2. Distribution of the number of features per app on logarithnic scale

common feature exclusion. On average, apps have 2,045 features and the largest
app has 23,918 features. Once libraries are excluded, the number of apps with at
least one feature drops to 231,184. Figure 2b shows that the average complexity
drops dramatically once common features are excluded. The average number of
features for these apps is 148, with the largest app having 7,908 features.

This is interesting from a software development point of view because it sug-
gests that through libraries and good API design, most Android apps don’t have
to be very complex in order to perform their function.

5.4 Full App Similarity Detection

Using full app similarity detection (Section 4.4), AnDarwin found 28,495 clusters
consisting of a total of 150,846 distinct apps. Figure 3a shows the sizes of the
clusters. As expected, the majority of clusters consist of just two apps. Surpris-
ingly, some clusters are much larger, the largest of which consists of 281 apps.
We will investigate these clusters in Section 6.2.

To evaluate the quality of the clusters, we compute intra-cluster app similarity
based on the average Jaccard Index (Equation 1) between each pair of apps. For
each cluster C, we compute the similarity score, Sim(C), as:

Sim(C) = avg{(A,B) ∈ C : J(A,B)} (2)

The similarity scores are between 0 and 1, where a score close to 1 indicates
that all apps in the cluster have almost identical feature sets. Figure 3b shows
the cumulative distribution of the similarity scores of the 28,495 clusters. It
shows that almost no clusters have similarity scores below 0.5, and more than
half of the clusters have similarity scores of over 0.80. This demonstrates the
effectiveness of AnDarwin in clustering highly similar apps.
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(a) Histogram of the cluster sizes on loga-
rithmic scale

(b) Cumulative distribution function of
Sim(C)

Fig. 3. Full App Similarity Detection

5.5 Partial App Similarity Detection

Using partial app similarity detection, AnDarwin found 11,848 clusters consist-
ing of 88,464 distinct apps. Figures 4a and 4b show the sizes and similarity of
these clusters, respectively. As partial app similarity is designed to detect app
pairs that share only a portion of their code, we cannot measure them with
Equation 1. Consider the scenario where an attacker copies an app but adds
an arbitrarily large amount of code. In this case, Equation 1 will be small even
though the original and clone share all of the original app’s features. Therefore,
for each cluster C, we compute the similarity score, Simp(C), as:

Simp(C) = avg{(A,B) ∈ C :
|FA ∩ FB|

min(|FA|, |FB |)
} (3)

Figure 4b shows the cumulative distribution function of Simp(C) for the
partial app similarity detection clusters. Comparing Figure 3b to Figure 4b,
we observe that some clusters based on partial app similarity have low intra-
cluster similarity scores while almost no cluster based on full app similarity has
similarity scores below 0.5. On the surface, this might suggest that partial app
similarity produces lower quality clusters. However, this in fact shows the power
of partial app similarity. When a cluster has a low similarity score, it indicates
that the common features among the apps in this cluster are relatively small
compared to the app sizes, so full app similarity detection cannot identify these
common features.

5.6 Performance

We evaluated AnDarwin’s performance on a server with quad Intel Xeon E7-
4850 CPUs (80 logical cores with hyper threading) and 256GB DDR3 memory.
Using 75 threads, it took 4.47 days to extract semantic vectors (Stage 1) from all
265,359 apps (only 109 seconds per thread to process each app). We note that
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(a) Histogram of the cluster sizes on loga-
rithmic scale

(b) Cumulative distribution function of
Simp(C)

Fig. 4. Partial App Similarity Detection

this stage only occurs once for each app, regardless of changes to subsequent
stages and can be parallelized to any number of servers to reduce the total time.

The next most expensive stages are the LSH clustering in Stage 2 (Section 4.2)
and the two MinHash-based clusterings in Stage 4 (Section 4.4). LSH clusters all
4,825,000 distinct vectors in just over 49 minutes. This time could be reduced to
seven minutes if we were to run all the groups in parallel, rather than serially (as
done in our current implementation). Full app similarity detection runs in just
over 35 minutes. In total, it takes under ten hours to complete full app similarity
detection including all the database operations and data transformations. On its
own, partial app similarity detection took seven hours but this is expected as it
clusters 2,952,245 sets whereas full app similarity detection only clusters 265,359.
Interestingly, this time estimates how long it would take to run MinHash for
full app similarity detection on 2,952,245 apps. Both MinHash times could be
improved by using more than our single server.

5.7 Accuracy

Full App Similarity Detection. To measure the false positive rate of An-
Darwin’s full app similarity detection, we leverage DNADroid [16], a tool that
robustly compares Android apps pairwise for code reuse. DNADroid uses sub-
graph isomorphism to detect similarity between the PDGs of two apps. In the
author’s evaluation of DNADroid, it had an experimental false positive rate of
0%, making it an ideal tool for evaluating AnDarwin’s accuracy.

Unfortunately, DNADroid is too computationally expensive to apply to all
the pairs of apps AnDarwin found. Instead, we randomly selected 6,000 of the
28,495 clusters and then randomly selected one app from each cluster to compare
against all other apps in the cluster. This resulted in a total of 25,434 pairs which
it took DNADroid 83 hours to analyze.

DNADroid assigns each app in a pair a coverage value which indicates how
much of the app’s PDG nodes appear in the other app. To assess AnDarwin, we
use the maximum of these two coverage values for each pair. DNADroid found
that 96.28% of the clusters had 70% of the max coverage values over 50%(equal
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to the Jaccard Index used by AnDarwin) and 95.50% of the clusters had 90%
of them over the threshold. Using the 70% criteria, this gives full app similarity
detection a false positive rate of just 3.72% at the cluster level.

We do not attempt to measure the false negative rate of AnDarwin as there
is no feasible way to find ground truth, e.g., all the similar apps in our collection
of 265,359 apps.

Partial App Similarity Detection. Unfortunately, DNADroid and its cover-
age values are inappropriate for evaluating the accuracy of partial app similarity
detection. DNADroid considers apps as a whole and calculates similarity based
on the matched portion to the size of the whole app. If DNADroid were used
to verifying partial app similarity detection, we would incorrectly report a false
positive in the case where two apps share a part of their code but not a sig-
nificant (over the DNADroid coverage threshold of 50%) amount of their total
code. Again, due to the lack of ground truth, we do not attempt to measure the
false positive or false negative rate of partial app similarity detection.

6 Findings

6.1 Clone Victims

One use case of AnDarwin is finding clones on a large scale. Clones are different
apps (not different versions of the same app) that are highly similar but have
different owners. We determine ownership using two identifiers associated with
each app we crawl: 1) the developer account name plus the market name and
2) the public key fingerprint of the private key that digitally signed the app.
Assuming that a developer’s account and her private key are not compromised,
no two apps with different owners can share both of these identifiers. Therefore,
we assume apps have different owners if they do not share either identifier.

Definitively counting the number of clones is non-trivial as it requires knowing
which apps are the originals. Instead, we estimate the number of apps that are
the victims of cloning. Each app belongs to at most one cluster and each app
in a cluster is similar to at least one other app in the cluster. Therefore, each
cluster is a family of similar apps which must have a victim app, the original
app, even if we have not crawled the victim app. Then, the number of victims
is at least equal to the number of clusters where there is more than one owner,
as determined by the two identifiers above. Using just the full app similarity
clusters, which were vetted in Section 5.7, AnDarwin found that at least 4,295
apps have been the victims of cloning.

6.2 Rebranded Apps

Using full app similarity detection, AnDarwin found 764 clusters containing more
than 25 apps. Our investigation of these large clusters found a trend that some
developers rebrand their apps to cater to different markets. The idea of rebrand-
ing is not a new concept – it has been widely used on the web (e.g. WordPress
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blogs). For example, one cluster consists of weather apps each targeting a dif-
ferent city. Similarly, we found clusters for news, trivia, books, radio stations,
wallpapers, puzzles, product updates and even mobile banking apps. Some of
these rebrandings are as trivial as just swapping the embedded images.

To estimate the number of rebranded apps, we use the owner identifiers de-
scribed in Section 6.1 to map each app to an owner. If at least 25 apps in a
cluster have the same owner, we consider those apps to be rebranded. Using this
metric, 599 of the 764 clusters with at least 25 apps include rebranded apps. In
total, we found 36,106 rebranded apps.

A surprising example of app rebranding is a cluster of mobile banking apps.
This cluster contains 109 distinct apps that share a common package name
prefix. Searching by this prefix, we found 175 apps on the Google Play Store,
which includes 80 of the 109 apps present in our clusters. Interestingly, several
of the apps were available on both 1Mobile and Play, and two of the apps are
signed by a different key than the other 107 apps.

6.3 New Variants of Known Malware

Once malware has been discovered, it is important to use this knowledge to
identify variants of the malware in an automated way. We hypothesize that by
analyzing the clusters produced by AnDarwin containing known malware we
may automatically discover new variants of those malware. Using the malware
dataset from [34], we found 333 apps were clustered with known malware and
were not included in the malware dataset.

We uploaded these 333 apps to VirusTotal [4], a website for running a suite of
anti-virus software on files. It recognized 136 as malware, with 88 never having
been uploaded to VirusTotal before. Among the 136 malware, approximately
20 are variants of the DroidKungFu family [23]. Approximately another 20 are
identified as belonging to various malware families described in [34]. The remain-
ing apps are identified as adware that contains either AirPush or AdWo. These
advertising libraries show ads even when the app is not running [30] and have
been known to have misleading ad campaigns [31]. These results demonstrate
AnDarwin’s utility for discovering new variants of malware.

6.4 New Malware Detection in Clones

Zhou et al. [34] found that 86.0% of their malware samples were repackaged ver-
sions of legitimate apps with additional malicious code, aiming to increase their
chances of being installed by providing useful functionality. Since malware often
requires many more permissions than regular apps, we hypothesize that we may
detect new malware by searching for apps that require more permissions than
the others in the same cluster. Intuitively, apps that are clustered together have
similar code and for some to require more permissions is suspicious. To inves-
tigate this hypothesis, we searched for apps that require excessive permissions
as follows (using clusters from both full and partial app similarity detection).
First, for each cluster, we compute the union of the permissions required by
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all its apps. Then, we identify apps that require at least 85% of the permission
union. Finally, if the apps identified in the previous step are fewer than 15% of
the total apps in the cluster, we mark these apps as suspicious. Using this crite-
rion, we found 608 suspicious apps. 16 of these apps overlap with the malware
dataset from [34] and 1 overlaps with the previous section.

As before, we uploaded these apps to VirusTotal and it identified 243 as mal-
ware. Furthermore, 169 of these had never been seen before. This represents a
lower bound on the actual number of malware in the suspicious apps as we did
not investigate the suspicious apps for new malware which may not be iden-
tified by VirusTotal. The identified malware is from known families such as
DroidKungFu [23], BaseBridge [18] and Geinimi [27]. By searching for apps with
excessive permissions, AnDarwin identified known malware as suspicious with-
out prior knowledge of their existence. This result demonstrates that AnDarwin
is an effective tool for identifying suspicious apps for more detailed analysis.

7 Discussion

7.1 Adversarial Response

A specific use case of AnDarwin is to find plagiarized apps in a scalable manner.
Based on our implementation details, plagiarists may attempt to evade detection
using obfuscation. Some of these obfuscation techniques are effective against
AnDarwin, however, they are difficult to perform automatically.

Futile Obfuscations. AnDarwin is robust against all transformations that do
not alter methods’ PDGs, which is the basis for our similarity detection. This
includes, but is not limited to, (1) syntactical changes such as renaming pack-
ages, classes, methods and variables, (2) refactoring changes such as combining
or splitting classes and moving methods between classes, and (3) method re-
structuring such as splitting methods with multiple connected components into
separate methods and reordering code segments within a method that are data
and control independent.

AnDarwin is also robust against code addition. A plagiarist may add a few
methods or a new library to their plagiarized app. Since the original and the
plagiarized app still share a core of similar code, AnDarwin would still detect
them using partial app similarity detection.

Potentially Effective Obfuscations. AnDarwin is less robust against obfus-
cations that dramatically alter methods’ PDGs. For example, plagiarists may
be able to alter app methods to mimic the semantic vectors of library code or
use PDG node splitting to increase the distance between the original semantic
vector and the plagiarized one. Additionally, plagiarists could artificially join
connected components within methods using dead code to increase the distance
between the semantic vectors or split each connected component into a set of
very small methods that are too small to be considered by AnDarwin. Ultimately,
plagiarists could reimplement the original app.
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The subversions listed above are difficult for most similarity detection tools
to detect, including AnDarwin. Fortunately, all these subversions require sub-
stantial effort on the part of the plagiarists as it would be difficult for tools to
do this automatically. Further, such a tool would require intimate knowledge of
the targeted app to ensure that the plagiarized app still functions correctly.

7.2 Probability of a False Positive

In this section, we examine the probability that two dissimilar apps are clustered
together by full app similarity detection. Consider two similar apps that share n
features. Assuming that features are independent, which is the case when library
code is excluded, then:

Pr[share n features] = Pr[share feature]n = Pr[share close SV]n (4)

Where “close SV” means two semantic vectors that will be clustered together
by LSH or are identical. Now, consider the case where two apps are not similar,
but are clustered together anyway. This means they must still agree on n features,
where each of these n agreements is a false positive which we shall refer to as
a feature collision. Feature collisions can occur in two ways: (1) semantic vector
collision and (2) non-code clone semantic blocks generating “close” semantic
vectors. Fortunately, even if the probability of a feature collision is very high,
there has to be n feature collisions in order to have a false positive. We have found
that, on average, apps contain 148 features after excluding common features.
Therefore, in order for two unrelated apps to have a Jaccard Index above our
threshold of 50%, there must be approximately 100 feature collisions. Even if
the probability of a feature collision was 95%, the probability of a false positive
with this many features would be less than one percent.

8 Related Work

There have been several approaches proposed recently to find similar Android
apps. Closest to AnDarwin is [33]. They use a heuristic based on how tightly
classes within the app are coupled (using its call graph) to split apps into pri-
mary and rider sections. Then, they represent the primary section as vectors
which they cluster in linearithmic time. This heuristic allows [33] to detect some
partial app similarity, however, it would be easy for a plagiarist to circumvent
these heuristics by adding dead code to the call graph to artificially couple un-
related classes. In contrast, AnDarwin’s partial app similarity does not rely on
heuristics. Additionally, while AnDarwin’s features represent the functionality
of methods of an app and are thus difficult to change, [33]’s features include the
app’s permissions, the Android API calls used and several other features, all of
which may be easily changed. [33] can also detect commonly injected code by
clustering the rider sections, however, they use the same features and heuris-
tics which are easily changed and circumvented, respectively. All other related
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work described below compares applications pairwise, yielding significant scal-
ability problems. Additionally, neither [33] nor any other related work provides
the ability to robustly find partial app similarity, as AnDarwin does.

Androguard [6] currently supports two methods of similarity detection: com-
paring apps using the SHA256 hashes of methods and basic blocks and using
the normal compression distance of pairs of methods between apps. DEXCD [17]
detects Android clones by comparing similarities in streams of tokens from An-
droid DEX files. DroidMOSS [32] computes a series of fingerprints for each app
based on the fuzzy hashes of consecutive opcodes, ignoring operands. Apps are
then compared pairwise for repackaging by calculating the edit distance between
the overall fingerprint of each app. DNADroid [16] compares apps based on the
PDGs of their methods. Juxtapp [21] disassembles each app and creates k-grams
over the opcodes inside the app’s methods. Next it hashes the k-grams to create
features which are used to represent each app and then computes similarity by
comparing sets of these features between pairs of apps. All of these approaches
except DNADroid are vulnerable to plagiarism that involves moderate amounts
of adding or modifying statements, though DNADroid’s comparison is compu-
tationally expensive.

9 Conclusion

We present AnDarwin, a tool for finding apps with similar code on a large
scale. In contrast with earlier approaches, AnDarwin does not compare apps
pairwise, drastically increasing its scalability. AnDarwin accomplishes this using
two stages of clustering: LSH to group semantic vectors into features and Min-
Hash to detect apps with similar feature sets (full app) and features that often
occur together (partial app). We evaluated AnDarwin on 265,359 apps crawled
from 17 markets. AnDarwin identified at least 4,295 apps that have been cloned
and an additional 36,106 apps that are rebranded. From the clusters discovered
by AnDarwin, we found 88 new variants of malware and could have discovered
169 new malware. We also presented a cluster post-processing methodology for
finding apps that have had similar code injected. AnDarwin has a low false pos-
itive rate — only 3.72% for full app similarity detection. Our findings indicate
that AnDarwin is an effective tool to identify rebranded and cloned apps and
thus could be used to improve the health of the market ecosystem.
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Abstract. In software security and malware analysis, researchers often need to
directly manipulate binary program – benign or malicious – without source code.
A useful pair of binary manipulation primitives are binary functional component
extraction and embedding, for extracting a functional component from a binary
program and for embedding a functional component in a binary program, respec-
tively. Such primitives are applicable to a wide range of security scenarios such as
legacy program hardening, binary semantic patching, and malware function anal-
ysis. Unfortunately, existing binary rewriting techniques are inadequate to sup-
port binary function carving and embedding. In this paper, we present BISTRO, a
system that supports these primitives without symbolic information, relocation in-
formation, or compiler support. BISTRO preserves functional correctness of both
the extracted functional component and the stretched binary program (with the
component embedded) by patching them in a systematic fashion. We have im-
plemented an IDA Pro-based prototype of BISTRO and evaluated it using real-
world Windows software. Our results show the effectiveness of BISTRO, with
each stretched binary incurring low time and space overhead. Furthermore, we
demonstrate BISTRO’s capabilities in various security applications.

1 Introduction

In software security and malware analysis, researchers often need to manipulate binary
code – benign or malicious – without source code and symbolic information. One pair
of complementary binary manipulation primitives is to (1) extract a re-usable functional
component from a binary program and (2) embed a value-added functional component
in an existing binary program. We call these primitives binary component extraction
and embedding. The primitives are useful in a wide range of software security scenar-
ios. In security hardening of legacy binaries, binary component embedding enables the
retrofitting of legacy or close-source software with a third-party functional component
that performs a value-added security function such as access control. In binary seman-
tic patching, binary programs from different vendors may leverage the same functional
component. Suppose one vendor identifies a vulnerability in such a component and re-
leases a patched version for its own program; whereas other vendors are not aware of
the vulnerability or have not patched their products. We can apply binary component
extraction to carve out the patched component from a patched program and replace the
vulnerable version of the same component in an un-patched program using binary com-
ponent embedding. In malware analysis, binary component extraction and embedding
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supports “plug and play” of malicious functions extracted from malware captured in
the wild. One can even “stitch” multiple extracted malware functions to compose a new
piece of malware – a capability that might help enable strategic cyber defence.

Binary component extraction and embedding poses significant challenges. Brute
force extraction and insertion of binary functions will most likely fail. Instead, both the
extracted component and the target binary program need to be carefully transformed.
For example, instructions in the target binary need to be shifted to create space for the
embedded function; when a function is extracted from its origin binary, the instructions
in it need to be re-positioned and re-packaged; accesses to global variables need to be
re-positioned; function pointers need to be properly handled; and indirect jumps/calls
need to have their target addresses recalculated. These problems are especially chal-
lenging when the binary component or the target binary program is not relocatable,
which is often the case when dealing with legacy or malware binaries.

Despite advances in binary instrumentation and rewriting, existing techniques are
inadequate to address the binary component extraction and embedding challenges. Dy-
namic binary instrumentation tools such as PIN, Valgrind, DynamoRIO [2] and QEMU
perform instrumentation only when a binary program is executed on their infrastruc-
tures. They do not generate an instrumented, stand-alone binary for production runs.
Static binary rewriting tools such as Diablo [4], Alto [5], Vulcan [30], and Atom [7]
can generate instrumented, stand-alone binaries. However, they require symbolic infor-
mation or that the binaries be generated by special compilers.

More lightweight techniques exist that do not require symbolic information or spe-
cial compilers [8–13]. Among them, some create trampolines at the end of a target
binary in which instrumentation is placed and then use control flow detours to access
the trampolines [8–10]. The others duplicate the body of a target binary program in its
virtual memory space and only the replica is instrumented. The original binary body
is retained in its original position to provide a kind of control flow forwarding mech-
anism [11–13]. However, none of these techniques supports extraction of binary com-
ponent or implanting an extracted component in another binary. Many of them cause
substantial space/performance overhead. To the best of our knowledge, none of them
has been successfully applied to large-scale Windows applications or kernel code. A
more detailed comparison is presented in our technical report [1].

Recently, researchers proposed approaches that focus on identification, extraction
and reuse of components from binaries. Inspector Gadget [29] performs dynamic slic-
ing to identify and extract components from malware. The extracted component might
have incomplete code path coverage due to the limitation of dynamic analysis. BCR [16]
adopts a combination of static and dynamic approach to extract a function from a bi-
nary. However, it uses labels to represent jump/call targets, thus does not preserve the
semantic of indirect jumps/calls. ROC [23] uses dynamic slicing to identify reusable
functional components in a binary but does not extract them. These approaches do not
aim to reuse extracted components for enhancing legacy binaries. Moreover, they can-
not extract components from non-executable binaries (e.g., malware corpse) due to the
use of dynamic analysis.

In this paper, we present BISTRO, a systematic approach to binary functional
component extraction and embedding. BISTRO automatically performs the following:
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(1) extracting a functional component, with its instructions and data section entries non-
contiguously located in the virtual address space, from an original binary and (2) em-
bedding a binary component of any size at any user-specified location in a target binary,
without requiring symbolic information, relocation information, or compiler support.
For both extraction and embedding, BISTRO preserves the functionalities of the tar-
get binary program and the extracted component by accurately patching them. BISTRO

performs extraction and embedding efficiently and the “stretched” target binary after
embedding only incurs small time and space overhead.

We have developed a prototype of BISTRO as an IDA-Pro [21] plugin. We have
conducted extensive evaluation and case studies using real-world Windows applica-
tions (e.g., Firefox and Adobe Reader), kernel drivers, and malware. Our evaluation
(Section 6) indicates BISTRO’s efficiency and precision in patching extracted compo-
nents and target binaries. Moreover, the stretched target binary incurs small perfor-
mance overhead (1.9% on average) and space overhead (10.9% on average). We have
applied BISTRO to the following usage cases: (1) We carve out patched components
from a binary and use them to replace their vulnerable versions in other applications,
achieving binary semantic patching (Section 6.2); (2) We stitch malicious functions
from an un-executable Conficker worm [14] sample and compose a new, executable
malware (Section 6.3); and (3) We demonstrate the realistic threat of trojan-ed kernel
drivers with malicious rootkit functions embedded in benign driver – using real-world
drivers and rootkits1.

2 Overview and Assumptions

An overview of BISTRO is shown in Figure 1. BISTRO has two key components: binary
extractor and binary stretcher.

Binary
Extractor

Original binary program Q
Component to extract

Binary
StretcherTarget

binary P

Stretched binary
program
P’ = P + c

Component c

To be called
independently

Independent
Component

Fig. 1. Overview of BISTRO

The binary extractor is responsible for extracting a designated functional component
c from an original binary Q. c includes both code and data of the functional compo-
nent. The extractor does so by removing the unwanted code and data from Q and then
collapsing the remaining data and code into a re-usable component c that occupies a
contiguous virtual address region. More importantly, the instructions in c are properly
patched for repositioning. We note that c can either be called as a library function or be
embedded directly in another binary program.

The binary stretcher is responsible for stretching the target binary P to make “room”
(holes in its address space) to embed a function component. As shown in Figure 1,
the stretcher takes the target binary P and the to-be-embedded component c as input;
stretches P , and patches the code in P to allow the embedding of c. The output of the
stretcher is a “stretched” binary P ′ = P + c ready for execution.

1 Due to lack of space, Case (3) is presented in our technical report [1].
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Summary of Enabling Techniques. Both the binary extractor and stretcher are based
on the same binary stretching algorithm (Section 3). The overarching idea is to shift
instructions for creating space (stretcher) or squeezing out unwanted space (extractor).
The algorithm focuses on patching the control transfer and global data reference in-
structions by precisely computing the adjusted offsets. For instance, if a component
with size |c| = n is inserted, all the original instructions following the insertion point
will be shifted by n bytes, and control transfers to any of the shifted instructions need
to be incremented by n.

To address the challenge of handling indirect calls and call back functions invoked
by external libraries, we develop another algorithm (Section 4.1) that stretches a sub-
ject binary at the original entries of functions that are potential targets of indirect calls,
creating small holes (usually a few bytes) to hold a long jump instruction to forward
any calls to those functions to their shifted locations. These holes must not be shifted
by any stretching/shrinking operations. They always stay in their original positions and
thus are called “anchors”. Our algorithm precisely takes into account these anchors
when performing stretching/shrinking. To handle indirect jumps, we leverage an effi-
cient perfect hashing scheme to translate jump targets dynamically. These techniques
are used to patch indirect jumps/calls in both extracted components and target binaries.

Assumptions. We make the following assumptions (hence stating the non-goals of
BISTRO): (1) The user, not BISTRO, will predetermine the semantic appropriateness
of embedding component c in target program P . Furthermore, he/she will decide the
specific location to insert c. This can be practically done by performing reverse engi-
neering on P . For example, to harden P with some security policy enforcement mech-
anism based on control flow [6], the user can reconstruct the control flow graph of P ,
collect its dominance and post-dominance information, and decide proper locations to
insert c. (2) The identification of c in the original binaryQ is done a priori through man-
ual or automated techniques, such as Inspector Gadget [29], binary slicing [15], binary
differencing [31], and BCR [16]. While we will present our experience with functional
component identification in our case studies (Section 6), the identification technique
itself is outside the scope of this paper. (3) Binaries can be properly disassembled (e.g.,
by IDA-Pro) before being passed to BISTRO. This assumption is supported by the large
number of real-world, off-the-shelf binaries in our experiments. Although we currently
do not handle obfuscated or self-modifying binaries, we note that, in addition to IDA-
Pro, other conservative disassembling [13, 35] and unpacking [34] tools can also be
used as the pre-processor of BISTRO to handle more sophisticated binaries.

3 Basic Algorithm for Binary Extraction/Stretching

In this section, we present the basic algorithm (Algorithm 1) executed by both the bi-
nary extractor and stretcher of BISTRO. For the time being, we assume (1) there is
no indirect control transfer and (2) global data is directly referenced in an instruction
using its address. The algorithm takes the subject binary and a list of virtual address
intervals called snippets representing (1) the holes to be created in the binary in the
case of stretching or (2) the unwanted instruction/data blocks in the case of shrinking
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(extraction). First, for each byte in the binary, the algorithm computes a mapping be-
tween its original index in the binary and its corresponding index after the snippets are
inserted/removed. After that, the algorithm patches address operands in control trans-
fer and global data reference instructions, and copy each byte to its mapped location
according to the mapping.

Practical Challenges. To make BISTRO work for real-world large-scale software, we
still need to overcome a number of practical challenges not addressed by Algorithm 1.
Solutions to these challenges will be presented in the next few sections.

– The target of an indirect control transfer instruction (e.g., call eax) is computed
during execution and takes different values depending on the execution path. Such
an instruction cannot be patched by Algorithm 1.

Algorithm 1. Basic binary stretching/shrinking algorithm
Input: P – the subject binary; it has size and base addr fields to represent its size when loaded into memory and

base loading address, respectively.

M – a list of address intervals represent code/data to be inserted/removed, sorted increasingly by their location;
each interval has addr, len and type fields, denoting the location, size and type respectively. Type “INSERT”
means inserting right before addr; “REMOVE” means the block starting at addr is to be removed.

Output: P ′ – the stretched/shrunk binary.

1: function BASICSTRETCHING(P, M)
2: map ← ComputeMapping(P,M)
3: P ′ ← PatchTarget(P,map)
4: end function

5: function COMPUTEMAPPING(P, M)
6: offset ← 0
7: m ← M.begin()
8: for i ← 0 to P.size do
9: if m.addr == P.base addr + i then
10: if m.type == INSERT then
11: offset ← offset + m.len
12: else if m.type == REMOV E then
13: offset ← offset −m.len
14: i ← i + m.len
15: end if
16: m← M.next()
17: end if
18: map[i] ← i+ offset
19: end for
20: return map
21: end function

22: function PATCHTARGET(P, map)
23: P ′ ← {nop, nop, ..., nop}
24: for i ← 0 to P.size do

25: if map[i] �= ⊥ then
26: if P [i] is instruction then
27: ins ← P [i]
28: for each data address operand op in ins do
29: target ← op.addr− P.base addr
30: off ← map[target]− target
31: op.addr ← op.addr + off
32: end for
33: if ins is near call/jump then
34: target ← i + ins.len + ins.target
35: off ← map[target]− target
36: off ′ ← map[i+ ins.len]− (i+ ins.len)
37: ins.target ← ins.target + off − off ′

38: else if ins is far call/jump then
39: target ← ins.target − P.base addr
40: off ← map[target]− target
41: ins.target ← ins.target + off
42: end if
43: P ′[map[i]]← ins
44: else if P [i] is data then
45: P ′[map[i]]← P [i]
46: end if
47: end if
48: end for
49: return P ′

50: end function

– Function pointers may be present in data or in an instruction as an immediate
operand. These function pointers might be passed as parameters to external libraries
as callback functions. If a function is relocated due to stretching, the external library
will call back to a wrong address. All these have to be properly handled to ensure
correctness of binary stretching/shrinking.

– Accesses to global data may be via data pointers (e.g., mov ebx, ptr data;
mov eax, [ebx+4]). The addresses of data are not known until runtime. These
instructions cannot be patched using Algorithm 1 either.
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4 Handling Indirect Control Transfer

Handling indirect jumps and calls is one of the key challenges in the design of BISTRO.
The difficulty is that the jump/call target cannot be known statically and thus is hard
to patch. To understand the challenge, consider the example in Figure 2. On the left,
there are three objects that are connected via pointers, with two of type B and one
of type A. On the right, part of function foo() is presented. The function takes two
parameters stored in eax and ebx denoting pointer values. These two pointers may
be aliased to each other. If so, ecx at 0x4302B2 gets the value 0x400340 defined at
0x4302A0, and then eventually the call instruction at 0x4302BD acquires the function
pointer 0x444142. However, if the two pointer parameters are not aliased, the call in-
struction may get a completely different target, making statically patching it difficult.

.rdata:0x400300 0x444142 //int (*fp)();

.rdata:0x400304 36 //int x;
… 
.rdata:0x400324 0 //int y;
.rdata:0x400328 0x400300 //void * p;
… 
.rdata:0x400340 1 //int y;
.rdata:0x400344 0x400324 //void * p;
… 
.rdata:0x40040A   “BAD\0”       //char * s

Class A a;

Class B b1

Class B b2

mov [eax], 0x400340
…
mov ecx, [ebx]
mov edx, [ecx+4]
mov eax, [edx+4]
call [eax]

//eax=&b2

//ebx aliased to eax
//edx=400324
//eax=400300
//*(a.fp)( )

.text:0x4302A0

.text:0x4302B2

.text:0x4302B6

.text:0x4302BA

.text:0x4302BD

//foo (eax, ebx):

Fig. 2. An example showing indirect call handling in binary stretching/extraction.

A naive solution is to identify and patch any constant value in the binary that appears
to be a jump/call target. But this is not safe as such values may not be jump/call targets.
Notice in the example, there is a null-terminated string “BAD” at address 0x40040A.
With the little endian representation in x86, this string has the same binary value as
the function pointer at 0x400300. Without type information, it is impossible to know
whether the value is a string or function pointer. Failure to identify and patch a function
pointer leads to broken control-flow, changing the semantics of the target binary. Mis-
classifying a string as a function pointer leads to undesirable changes to data. While it
is plausible to leverage recent advances in binary type inference to type constants in a
binary [17–20], the involvement of aliasing as in the example makes such analysis very
difficult. In fact, IDA-Pro [21] failed to recognize the function pointer for this case.

If a binary has a relocation table and it does not perform any address space layout
self-management such as through a packer, the relocation table will provide the posi-
tions of all constant values that are jump/call targets for BISTRO to patch them, thus
lead to a sound and complete solution to binary stretching/shrinking. However, relo-
cation table may be absent or contain bogus entries in legacy and malware binaries.
Hence, for the rest of the paper, we do not assume the presence of relocation tables in
our design and evaluation. Next, we describe how to handle indirect calls in Section 4.1
and indirect jumps in Section 4.2.

4.1 Handling Indirect Calls

Indirect calls are very common in modern binaries to leverage the flexibility of function
pointers. We have discussed the difficulty of handling function pointers at the beginning
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of Section 4. In fact, there is a more challenging situation, in which a binary may pass its
function addresses to external library functions which call back the provided functions
(e.g., a user function cmp() is provided as a parameter to an external library function
qsort()). In this case, if a function entry has changed due to stretching or shrinking,
its invocation sites are outside the body of the binary and thus beyond our control. It
is difficult to patch call back function pointer parameters before they are passed on to
libraries for two reasons. First, a function pointer might not directly appear as a pa-
rameter. It could be a member of a structure passed to an external library. It may even
require several layers of pointer indirection to access its value. Patching that is chal-
lenging. Second, for many external library functions, we cannot assume the availability
of their prototype definitions, it is hence difficult to know their parameter types.

To handle indirect calls including call back functions, we propose to stretch the target
binary to make small holes at the entry point of each function that may be an indirect
call target. These holes are called anchors; they should not be moved during stretch-
ing/shrinking. Inside an anchor, we place a jump instruction that jumps to its mapped
new address in the stretched/shrunk binary, which is the new entry of the function. As
such, we do not need to identify or patch any function pointers in the binary.

Since an anchor must be placed at a fixed address in the stretched binary, it could
coincide with instructions that get shifted to that address. To ensure correctness, we put
a jump right before an anchor to jump over it. We call the jump the prefix of an anchor.

(b) stretching w/o anchor

//cmp ()
push ebp
… 
push 0x400120
call sort
… 

… 
400120:
400122:
… 

400160:

401680:
401685:

40

app.exe

//cmp ()
push ebp
… 
push 0x400120
call sort
… 

… 
400120:
400125:
… 

400169:

401689:
40168E:

40+
9

jmp 400125
jmp 400169

anchor

(c) stretching w/ anchor

app.exe

//qsort() msvcrt.dll
…
//eax= 0x400120
call eax
… 

AF8614:

…           
//cmp ()
push ebp
mov ebp, esp
add esp, …
… 

push 0x400120
call sort
… 

400120:
400122:
400126:
… 

401640:
401645:

(a) original binary

app.exe

//qsort() msvcrt.dll
…
//eax= 0x400120
call eax
… 

AF8614:

//qsort() msvcrt.dll
…
//eax= 0x400120
call eax
… 

AF8614:

Fig. 3. Stretching with Anchors. The shaded area in (b) is the 40-byte snippet inserted.

Consider the example in Figure 3(a). The call-back function cmp() is invoked in-
side qsort(). The entry address of function cmp() in the original binary is 0x400120.
When we stretch without anchors (Figure 3(b)) in function qsort(), the indirect call
to cmp() at 0xAF8614 will incorrectly go to 0x400120 in the shaded area. When we
stretch with anchors (Figure 3(c)), an anchor containing the jump instruction will be
placed at 0x400120. Any indirect call that goes to the original entry address of cmp(),
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0x400120, will be redirected to the actual function body at the new entry address. The
jump instruction preceding 0x400120 is its prefix.

Anchor-Based Algorithm. With the presence of anchors, fixing control flow transfer
instructions becomes more challenging than in Algorithm 1. We hence devise a new al-
gorithm (Algorithm 2). The idea is to divide the stretching/shrinking operation into two
phases. In phase one, the subject binary program is stretched/shrunk using Algorithm 1
to create space for the inserted snippets or removed blocks. Then the stretched/shrunk
binary is further stretched to insert anchors using a similar procedure. Separating the
two phases substantially simplifies the interference of anchors.

Algorithm 2. Anchor-based stretching algorithm.
Input: P – the subject binary; it has size and base addr fields to represent its size when loaded into memory and

base loading address, respectively.
M – a list of code/data snippets to be inserted/removed, sorted increasingly by their location; each snippet has
addr, len and type fields, denoting the location, size and type respectively.
A – a list of anchors to be placed, sorted increasingly by their location; each anchor has addr and len fields,
denoting the location and the content size, respectively.

Output: anchor map – the mapping between the indices after placing snippets and their corresponding indices after
anchors are placed.
prefixlen[a] – the prefix length of an anchor a.

1: function STRECHINGWITHANCHOR(P, M,A)
2: map ← ComputeMapping(P,M)
3: Pt ← PatchTarget(P,map)
4: anchor map ← ComputeAcMapping(Pt, A)
5: P ′ ← PatchTarget(Pt, anchor map)
6: end function

7: function COMPUTEACMAPPING(P, A)
8: offset ← 0
9: ac← A.begin()
10: i ← 0
11: while i < P.size do
12: curaddr ← P.base addr + i + offset
13: if ac.addr == curaddr then
14: prefix ← i− SIZEOF(JMP)

15: if P [prefix] is not the start of an instruction then
16: prefix ← start of instruction before prefix
17: end if
18: prefixlen[ac] ← i− prefix
19: i ← prefix
20: offset ← offset + ac.len + prefixlen[ac]
21: ac ← A.next()
22: else
23: anchor map[i] ← i + offset
24: i ← i+ 1
25: end if
26: end while
27: return anchor map
28: end function

Pruning Anchors. Potentially, we can create anchors for all function entries to guar-
antee that we never miss any necessary function call forwarding. However, this is not
efficient. In fact, we only need to create anchors for the subset of functions that could
be the possible target of some indirect call. Assuming a 32-bit machine, we construct
the subset with the following criterion: Any four-byte data value or any four-byte im-
mediate operand in an instruction is considered a possible indirect call target, if it is
equal to one of the function entries. We obtain this subset by sequentially scanning data
and code sections. Our pruning heuristic is very effective in practice. For example, the
code section size of gcc in SPEC CPU 2000 benchmark suite is over 1MB, with over
2000 functions; after pruning, there are only 271 functions left that need anchors.

Embedding a Component with Anchors. If an extracted component contains a func-
tion that may be invoked by an indirect call in the component, BISTRO will create an
anchor in the target binary at exactly the same address of the function entry in the com-
ponent’s original binary to allow proper forwarding. If the anchor conflicts with some
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existing anchor in the target binary, BISTRO will integrate the two overlapping anchors
into an arbitration function and redirect control flow to the function instead. The func-
tion further determines which real target it should forward the call to. The calls from
the target binary and those from the to-be-embedded component are distinguished by
setting a flag. The arbitration function uses the flag to decide the real forwarding target.

In some rare cases, the space between two function entries might not be enough to
hold the anchors. In such cases, instead of using the jump instruction for redirection, we
use a software interrupt instruction, which takes only one byte. When an indirect call
reaches the old function entry, a software exception will be generated and intercepted
by our exception handler, which will redirect the control flow to the new function entry.

4.2 Handling Indirect Jumps

Indirect jumps are different from indirect calls as the jump targets may not be function
entries, but rather anywhere in the binary. If we adopt the anchor approach, there would
be too many anchors needed. One might leverage some heuristics such as that indirect
jumps usually receive their targets from jump tables and thus simply patch the jump
table entries. However, this is unsafe because of the difficulty of determining jump
table boundaries. A jump table may not be distinguishable from regular data. Hence,
we propose a different approach. Specifically, we insert a code snippet right before
each indirect jump to translate the jump target to its mapped address in the stretched
binary at runtime, as shown in the example below.

jmp eax
−→

mov eax, mapping[eax - old_base]
add eax, new_base
jmp eax

Note that the example is just for illustration. In our implementation, we use perfect
hashing for address lookup, which will be explained later, and preserve the flag register
during translation. Since a complete byte-to-byte mapping is computed in Algorithm 1,
any indirect jump target could be properly translated and handled by this method. Ob-
serve that additional instructions need to be added to perform translation. We can easily
handle this by stretching the subject binary to accommodate those instructions.

Branch Target Set Pruning. Although the translation using a complete mapping guar-
antees safety, it also introduces significant memory overhead. Each byte in the original
binary requires 4 bytes to represent its mapped address. In fact, we only need a subset of
the mapping: the stretched/shrunk binary will be safe as long as the mapping contains
translation for every possible indirect jump target.

We construct the set with the following criterion: any four-byte data value or any
four-byte immediate operand in an instruction is considered a possible indirect jump
target, if the value falls in the range of some code section. We further prune the set
by removing the values that point to the middle of an existing instruction. Note that
the strategy is safe for long/set jumps as their jump targets are acquired at runtime.
This pruning strategy is very effective in practice. For example, the code section size
of Adobe Reader X (AcroRd32.exe) is over 800KB, with over 260K instructions; after
pruning, there are only 3635 possible branch targets left.

Perfect Hash Translator. The remaining challenge is to achieve fast translation. Note
that after pruning, the jump target set becomes a sparse set in the address space. As a
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compromise between memory consumption and runtime overhead, we choose to use
perfect hashing for translation. A perfect hash function maps a set of keys to another
set of integer values without any collision. It guarantees O(1) translation time. We use
gperf [22] to generate the perfect hash function for the jump target set and compile it
into a linkable .obj file that can be embedded in the target binary through BISTRO.

A perfect hash function may require more space than the N keys to achieve O(1)
translation time. In practice, we find the size of generated perfect hash functions ac-
ceptable. For example, for the 3635 branch targets of Adobe Reader, the generated hash
function is about 152KB, which is about 11% of the size of the Adobe Reader binary.

5 Handling Data References

Binary extraction/stretching may cause relocation of data entries, so we need to ensure
the correctness of instructions referencing those data. We discuss how to address this
problem from the perspectives of the target binary and the component to be embedded.

Compared to the component, the target binary is usually more complex and involves
a lot of global data references. To handle this problem efficiently, we group data in the
binary as continuous data blocks. If a data block might be indirectly accessed, we will
make sure the block is not re-located to avoid patching data accesses, by wrapping the
block in an anchor. Note that the number of data access instructions is much larger
than the number of indirect jumps/calls. Otherwise, if the data block is only directly
accessed, we allow it to be relocated (by Algorithm 1). We use the following criterion: if
the value of any four-byte data, or any four-byte immediate operand (in an instruction)
that is not directly used as an address falls in the range of a data block, then this block
might be indirectly accessed using data pointers and hence should not be re-located.

In contrast, data entries extracted as part of the to-be-embedded component are most
likely to be relocated. For example, if they are sparsely distributed in the address space,
the BISTRO extractor (Section 2) will collapse them into a contiguous block, causing
relocation. We adopt a method similar to the dynamic jump target translation scheme
to translate data reference addresses. We add a comparison before translation to avoid
translating stack or heap accesses. According to our experience, only 2% of dynamic
memory references need to be translated. We further use offline static peephole scanning
to identify references that surely access stack and avoid instrumenting them completely.

6 Evaluation

We have implemented BISTRO for Win32 PE binaries as an IDA-Pro plug-in. We
have addressed a variety of engineering challenges such as virtual space layout re-
arrangement with a large embedded component, patching PE header, import and export
tables, and re-generating relocation table. We omit the details due to space limitation.

6.1 Performance: Efficiency and Overhead

We first evaluate the performance of BISTRO by stretching (1) real-world Windows-
based applications and (2) SPEC CPU 2000 binaries. Our experiments are done on a
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Table 1. Performance results of stretching Windows software and SPEC CPU 2000 binaries

Binary Instr. Indirect Indirect Call/Jump Targets: Data Blocks: File Size (KB) Initial Mem. Image Size (KB) Run Time (s) Stretching
Count Jumps Calls Anchors(%) Data Anchors(%) Orig: Stch’ed growth(%) Orig: Stch’ed growth(%) Orig: Stch’ed overhead(%) Time (s)

SPEC CPU 2000 benchmarks
164.gzip 19825 19 103 98: 23 (23.47%) 163: 1 (0.61%) 86.5: 98.5 13.87% 424: 440 3.77% 83.2: 84.6 1.68% 0.752
175.vpr 54595 53 106 229: 31 (13.54%) 404: 1 (0.25%) 232: 248.5 7.11% 248: 268 8.06% 64.5: 64.6 0.16% 0.755
176.gcc 337033 456 260 3855: 271 (7.03%) 2580: 14 (0.54%) 1264: 1393 10.21% 1348: 1480 9.79% 33.3: 33.9 1.8% 1.420
181.mcf 20566 36 103 144: 25 (17.36%) 100: 2 (2.00%) 76.5: 85.5 11.76% 100: 108 8% 40.2: 40.4 0.5% 0.685
186.crafty 65375 56 130 312: 29 (9.29%) 247: 1 (0.40%) 283: 298.5 5.48% 1344: 1360 1.19% 38.2: 38.9 1.83% 0.935
197.parser 44554 36 112 155: 27 (17.42%) 463: 1 (0.22%) 164: 173.5 5.79% 352: 360 2.27% 83.1: 83.5 0.48% 0.754
252.eon 114249 50 441 1659: 1253 (75.53%) 1455: 1 (0.07%) 499: 575 15.23% 592: 668 12.84% 42.7: 44.7 4.68% 0.950
253.perlbmk 164093 148 211 2166: 499 (23.04%) 1293: 6 (0.46%) 626: 743 18.69% 648: 764 17.9% 63.3: 67.9 7.27% 1.118
254.gap 129464 35 1357 816: 625 (76.59%) 1142: 1 (0.09%) 452.5: 492 8.73% 896: 936 4.46% 35.4: 37.2 5.08% 1.001
255.vortex 132034 66 145 446: 71 (15.92%) 738: 1 (0.14%) 561: 585 4.28% 588: 612 4.08% 50.6: 51.1 0.99% 1.050
256.bzip2 21360 36 101 145: 25 (17.24%) 150: 1 (0.67%) 87.5: 99 13.14% 172: 184 6.98% 73.4: 74.6 1.63% 0.714
300.twolf 64669 41 106 193: 30 (15.54%) 391: 2 (0.51%) 253: 263 3.95% 296: 304 2.7% 93.2: 93.6 0.43% 0.809
177.mesa 143679 211 552 2675: 473 (17.68%) 942: 5 (0.53%) 549.5: 652.5 18.74% 568: 672 18.31% 64.9: 65.6 1.08% 0.990
179.art 23353 38 103 149: 26 (17.45%) 103: 2 (1.94%) 85.5: 94.5 10.53% 104: 112 7.69% 32: 32.3 0.94% 0.690
183.equake 21824 38 101 146: 27 (18.49%) 116: 1 (0.86%) 88.5: 97 9.6% 104: 112 7.69% 26.1: 26.1 0% 0.720
188.ammp 61214 39 128 224: 70 (31.25%) 279: 1 (0.36%) 235.5: 245.5 4.25% 252: 264 4.76% 88.7: 88.3 1.92% 0.780
Average - - - - (24.80%) - (0.60%) - 10.09% - 7.53% - 1.90% -

Real-world Windows-based Software
putty 107220 57 662 942: 291 (30.89%) 93: 1 (1.08%) 444: 496 11.71% 472: 524 11.02% - - 0.865
gvim 561626 294 5111 3893: 1004 (25.79%) 5081: 22 (0.43%) 1950.5: 2150 10.23% 2008: 2212 10.16% - - 2.121
notepad++ 272434 159 4302 4897: 2695 (55.03%) 3394: 7 (0.21%) 1584: 1864 17.68% 1660: 1940 16.87% - - 1.480
Adobe Reader 273710 146 2543 3635: 2160 (59.42%) 3037: 11 (0.36%) 1445.9: 1702.4 17.74% 1472: 1728 17.39% - - 1.556
Chrome 230234 82 1280 1842: 933 (50.65%) 930: 6 (0.65%) 1211: 1338 10.49% 1240: 1368 10.32% - - 1.391
Average - - - - (44.36%) - (0.55%) - 13.57% - 13.15% - - -

Dell Inspiron 15R laptop with Intel(R) Core(TM) i5-2410M 2.30GHz CPU and 4GB
memory, running Windows 7 SP1. For the SPEC CPU 2000 benchmark suite, we use
the “win32-x86-vc7” config file which includes all integer benchmark binaries and four
floating-point benchmark binaries. We compile the benchmark suite using Visual Stu-
dio 2010, with full optimizations. To test BISTRO on non-relocatable binaries, we set
“/DYNAMICBASE:NO” switch for the compiler to prevent it from generating relocat-
able binaries. The application binaries are readily available and we do not know about
their compilers. Although the binaries of Adobe Reader and Chrome web browser carry
relocation tables, we ignore them for testing our solutions for non-relocatable binaries.

We measure the following performance metrics: (1) space overhead – for both binary
file and initial memory image – of a stretched binary compared with its original version,
(2) runtime overhead of the stretched binary, and (3) time for BISTRO to stretch the
binary. In particular, we are interested in the overhead incurred by BISTRO itself, not by
the execution of the embedded components. As such, we embed a minimal component
(a one-byte snippet) into each subject binary in our experiments. To create a “worst-
case” scenario, we insert it at the beginning of each binary so that every byte in the
binary gets shifted, which entails all indirect control transfer targets in the binary to be
redirected. The measured overhead is hence the upper bound of overhead.

For each SPEC 2000 binary, we run both its original and stretched versions, and
compare their execution time and file/initial image size. We do not measure the execu-
tion time of the Windows applications because they are all interactive. We experience
no perceivable overhead when using their stretched versions.

The results are shown in Table 1. From the Indirect Jumps and Indirect Calls 2

columns, we observe that indirect calls are very common in application binaries, in-
dicating that they might be C++ programs. Further investigation confirms our specu-
lation, indicating BISTRO’s effectiveness for binaries compiled from C++ programs.

2 We exclude indirect calls to external library functions through import address table (IAT), as
these external targets are not handled by our redirection mechanisms.

www.it-ebooks.info

http://www.it-ebooks.info/


BISTRO: Binary Component Extraction and Embedding 211

Moreover, there are much less indirect jumps than indirect calls, indicating they are
likely to have less impact on runtime overhead. Note that a small number of indirect
jumps does not imply an equally small number of potential indirect jump targets. In
fact, due to the difficulty of identifying jump table boundaries, we conservatively con-
sider any constant in a binary that appears to be an instruction address as a potential
jump target. The large number of potential jump targets and the low impact on perfor-
mance justify our design choice of using the slightly more expensive but more flexible
dynamic target translation scheme (Section 4.2), compared to the anchor scheme (Sec-
tion 4.1).

The Call/Jump Targets: Anchors column shows the number of potential indirect
call/jump targets, the number of anchors generated, and their comparison. Observe that
the number of anchors created is small, compared to the size of the potential set. For bi-
naries from C++ programs, due to the heavy use of virtual methods, it is not a surprise to
see many anchors created. The Data Blocks: Data Anchors column shows that only less
than 1% of all data blocks need to be preserved at their original locations using anchors.
From the File Size columns, we can see BISTRO only increases the file size by 10.1% on
average for SPEC programs, and 13.6% for application binaries. The overhead is dom-
inated by the perfect hash tables. The Initial Mem. Image Size columns show the initial
memory consumption when the binary is loaded into memory, which increases by only
7.5% on average for SPEC programs and 13.2% for application programs. Note that
BISTRO does not cause any additional memory overhead during execution. The Run
Time columns present the runtime overhead, which is only 1.9% on average. Except
eon, perlbmk and gap, all SPEC binaries have less than 2% overhead. The last column
Stretching Time shows the stretching time of BISTRO. The time is consistently short,
implying that BISTRO can stretch a binary at runtime when it is loaded.

6.2 Case Study I: Binary-Level Semantic Patching Using BISTRO

Code reuse is a common practice in software development. One popular approach is to
directly compile and statically link a piece of re-usable code with the target software
– either directly in the executable or in some private library – to make the software
self-contained, avoid compatibility problems, and improve performance. Indeed, devel-
opers of many popular programs (e.g., chrome and firefox) reuse code this way. The
consequence is that programs reusing the same code may have the code placed at dif-
ferent locations in their address spaces. The reused code may not even have the same
instructions if compiled by different compilers.

Table 2. Results of binary semantic patching using BISTRO

Vulnerability Patch Extracted From Vulnerable Application Patched Original File Size Patched File Size (KB) Semantic Patch Vendor Patch
(KB) w. / w.o. Reloc Available Available

CVE-2010-1205 libpng 1.2.43→ 1.2.44 (rpng2-win.exe) Firefox 3.6.6 (xul.dll) 11747.5 12371.5 / 13005 6/25/2010 7/20/2010
CVE-2011-3026 libpng 1.4.8→ 1.4.9 (rpng2-win.exe) Zoner Photo Studio 15 (Zxl.dll) 8225.1 8502.1 / 9181.6 2/18/2012 N/A

SA47322 / CVE-2012-0025 IrfanView 4.30→ 4.32 (Fpx.dll)
XnView 1.99.5 (Xfpx.dll) 356 368 / 400 12/20/2011 N/A

LeadTools 17.5 (ltkdku.dll) 138.5 143 / 151 12/20/2011 N/A

SA47388 XnView 1.98.5→ 1.98.8 (Xfpx.dll)
IrfanView 4.35 (Fpx.dll) 432 448 / 508 3/12/2012 N/A

LeadTools 17.5 (ltkdku.dll) 372.5 428.5 / 493.5 3/12/2012 N/A

SA48772 / CVE-2012-0278 IrfanView 4.33→ 4.34 (Fpx.dll)
XnView 1.99.5 (Xfpx.dll) 356 368 / 400 4/13/2012 N/A

LeadTools 17.5 (ltkdku.dll) 138.5 142.5 / 150.5 4/13/2012 N/A
SA49091 XnView 1.98.8→ 1.99 (Xfpx.dll) LeadTools 17.5 (ltkdku.dll) 372.5 428.5 / 488.5 6/15/2012 N/A
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However, code reuse via static linking introduces a security liability: When a piece of
re-usable code contains a vulnerability, all programs that reuse the code will suffer from
the same vulnerability. If these programs have been shipped in binary forms, the only
way to fix the vulnerability is to release multiple binary patches – one for each program
and by the corresponding vendor. However, not all vendors react to a vulnerability with
equal timeliness and some may not even be aware of the vulnerability not in their own
code. Thus it may be desirable for customers, who do not have source code access, to
patch these programs without vendors’ involvement. Binary syntactic patching, which
directly applies a patch for software A to software B sharing the same (vulnerable)
code, will hardly work, because of the different locations of the code and the syntactic
differences between the two code copies (due to different compilers used or different
call/jump targets inside the copies).

In our first case study, we show that BISTRO can enable binary semantic patching.
Assume that software A and B share a function f and the vendor of A has released a
binary patch of f for a vulnerability. Let the patched program and the patched function
beA′ and f ′, respectively. We will use BISTRO to extract f ′ fromA′ and embed it to B
to replace the vulnerable version. Note that BISTRO is critical in ensuring the extracted
f ′ is properly patched and the target binary B is properly stretched to contain f ′.

We acquire a group of application binaries that leverage the same vulnerable com-
ponent using public, vendor-provided information (e.g., which libraries are used in the
software) or by finding similar binary snippets using the binary comparison tool bin-
diff [31]. Suppose at least one binary in the group, say A, has a patched version A′.
Our goal is to extract a semantic patch out of A′ and transplant it to patch the other
vulnerable binaries {B1, ..., Bn}.

We collect 6 real-world vulnerabilities, with their CVE or Secunia IDs shown in
Column 1 of Table 2. For each vulnerability, the vulnerable program(s) that has been
patched by its vendor is shown in Column 2. The file names in braces represent the files
that are patched. Column 3 shows a list of other un-patched programs with the same
vulnerabilities. Column 6 shows the patch release date for the application in Column
2, i.e. the earliest date we can extract the semantic patch. Column 7 shows the date
when the vendors for the software in Column 3 release their patches (N/A means no
vendor patch is available yet). Most of the applications used in this case study are close-
source (except libpng and firefox). Observe that most of the applications in Column 3
do not have vendor patches so far. For firefox, the new version (3.6.7) which patched the
vulnerability was released – but with a one-month latency. With BISTRO, we can fix all
these vulnerable applications as soon as one vendor releases the corresponding patch.

Failure of Syntactic Patching. We first verify that simple syntactic patching does not
work – that is, using an existing binary differencing tool that generates and applies
patches (e.g., xdelta, bsdiff, bspatch, etc.) will not properly patch B1...n. For each vul-
nerability in Table 2, we use bsdiff to extract the syntactic difference between the pair of
shared functions (f and f ′) in the versions in Column 2 as a patch, and use bspatch to
apply it to the corresponding vulnerable applications in Column 3. None of the resultant
binaries works. Further inspection shows that syntactic patches cannot properly fix the
call/jump targets that are different among copies of the same reused code.
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Patch Transplanting. We have developed a binary semantic patching tool based on
BISTRO and bindiff. The identification of the vulnerable function f in A and B1...n

and the patched function f ′ in A′ is omitted here since it is not the main focus of this
paper. Details are presented in our technical report [1]. We use BISTRO to extract f ′

from A′ as the semantic patch for f . For each vulnerable binary B, we use BISTRO

to cut out f and then stretch the resulting binary to implant f ′ at the same starting
address of f . BISTRO ensures the correctness of both f ′ and the patched binary B′

by properly stretching and patching control transfer instructions and data references.
Our patching tool tries to avoid extracting dependent functions or global data entries
of f ′ (i.e., functions being called and global data accessed by f ′) as much as possible
by redirecting them to their counterparts in the target binary B. Since f ′ is a patched
version of f , they likely share the same dependencies. For example, for each function
invocation to function g′ inside f ′, if bindiff is able to identify the matching function
g in B, our tool will automatically redirect the invocation in the extracted patch to g,
without extracting g′. To be conservative, g and g′ must be fully matched. Otherwise,
g′ will be extracted as part of the semantic patch.

We evaluate our patching tool on the subjects in Table 2. We apply our tool in two
different ways to stress-test the robustness of BISTRO: first, we use the relocation infor-
mation when it is present in the binary; second, we do not use relocation information at
all. In both runs, the patching is successful: the patched applications work well and no
longer suffer from the corresponding vulnerabilities. Columns 4 and 5 show the file size
changes. We note that the patches are not large, each consisting of tens to hundreds of
instructions. However, it is not straightforward to generate them independently because
of the nature of the vulnerabilities being patched.

The first two vulnerabilities are in libpng, which is widely used in various software
to read, write and render PNG images. The two vulnerable applications in Column 3
have libpng statically linked in their private DLLs (xul.dll and Zxl.dll). To patch these
DLLs, we extract the semantic patch from rpng2-win.exe, a sample application in the
libpng package. The remaining four vulnerabilities lie in libfpx, a library to handle the
Flashpix (.fpx) image format. For the four vulnerabilities, only the first one was patched
by the maintainer of libfpx; the other three were patched by individual developers who
use libfpx. However, as shown in the table, individual developers only care about patch-
ing the libfpx code in their own applications. Using our binary semantic patching tool,
users of the un-patched applications can transplant the patches and eliminate the vul-
nerabilities without the help of application developers.

6.3 Case Study II: Malware Stitching Using BISTRO

In the second case study, we demonstrate how BISTRO helps in the study of cyber at-
tacks and counter-attacks. Specifically, we use BISTRO to compose a new, executable
malware by stitching 3 separate functional components extracted from a non-executable
sample of the Conficker worm [14]. It is an unpacked version without relocation infor-
mation. Based on the published technical report of Conficker [14] and manual code
inspection, we identify the code and data associated with the following 3 components:

– DNS API hijacking. This component prevent DNS query of the web sites in a
blacklist by hijacking the functions Query Main, DNSQuery A, DNSQuery W and
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DNSQuery UTF8 in dnsapi.dll. The result is that those web sites will no longer be
accessible using their domain names.

– Code injection. To hijack the functions in dnsapi.dll used by a process (e.g., Inter-
net Explorer), the malware must inject itself into the address space of the process.
This component performs the injection. It takes the process identifier (PID) of the
target process and the path of the malware as parameters.

– Process identification. This component gets a process’ PID using its process name
and provide the PID to the code injection component.

It takes us 60 minutes to manually identify the three components above. After that
we use BISTRO to extract the components from the Conficker sample. We then create
a dummy DLL to serve as the container of those components. Next, we use BISTRO

to embed the 3 components into the empty DLL, right before the DllMain() function.
After that, we add instructions to function DllMain() to invoke the inserted components.
The invocation code first checks if the current process is the target process. If so, it will
invoke the DNS API hijacking component to hijack the DNS query. If not, it will call
the process identification component to find the PID of the target process, and then
call the DLL injection component to inject itself into the target process for DNS API
hijacking. The whole composition process takes us about 30 minutes.

To verify the functionality of the newly composed malware, we select two applica-
tions as our targets (in two experiment runs): Internet Explorer and FlashFXP (an FTP
client). After being loaded, the malware injects itself into the target processes. Then, in
the target application, we try to access web site avast.com, which is blacklisted by Con-
ficker [14]. Interestingly, the access was not blocked at first (namely, the malware did
not succeed). After debugging, we found that it was due to a bug in Conficker’s original
code: the hijacked DNSQuery W() has one unnecessary instruction which sets a wrong
return value. We point out that we would not have spotted the problem, had we not made
these components executable and observed their runtime behavior. After removing this
instruction using BISTRO, both IE and FlashFXP are successfully compromised: they
can no longer access avast.com due to a DNS query error.

7 Discussion

BISTRO cannot work on self-modifying, self-checking or obfuscated binaries. Self-
modifying binaries generate instructions dynamically during runtime, which could not
be statically patched using BISTRO. Self-checking binaries use checksum or other in-
tegrity checks to detect changes made to their code by BISTRO. Obfuscated binaries
in many cases cannot be properly disassembled. However, we note that all other static
binary rewriting/instrumentation techniques face the same challenge.

Our anchor and branch target set pruning criteria assume the constants in a binary
represent a superset of all possible indirect control transfer targets. This assumption
should hold for binaries generated by common compilers. One exception is position
independent code (PIC), which obtains addresses at runtime and uses them to compute
indirect control transfer targets. All PIC we encountered has the form of making a call
and then obtaining the return address from the stack (e.g., call $+5; pop eax), which
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is the address of the instruction right after the call. We identify all such instructions
and insert snippets to adjust the addresses to their mapped addresses. Also, special
compilers or hand-written binaries might violate our assumption. For example, in the
instruction sequence mov eax, Target; add eax, 5; jmp eax, the actual target is Target
+5 instead of the constant Target; our pruning heuristic will miss the actual target. For
such binaries, we can choose not to prune the anchor set or the branch target set.

Currently, BISTRO only supports Win32 PE binaries. However, the design is general,
without relying on specific features of Win32 PE.

8 Related Work

The most related work is discussed in Section 1 (with details in [1].) In this section,
we discuss other related work in the general area of binary manipulation. They fall into
three categories: (1) static binary rewriting, (2) dynamic binary rewriting, and (3) binary
component identification, extraction and reuse.

Static Binary Rewriting. Static binary rewriting is widely applied to many scenarios,
such as in-lined reference monitors [33], software fault isolation [24, 25, 6, 26], binary
instrumentation [10, 9, 11, 5, 7, 4], binary obfuscation [36, 37] and retrofitting security
in legacy binaries [27, 12]. Most of these rewriters require the binary to be compiled by
specific compilers, or contains symbolic information.

PEBIL [11], REINS [33], STIR [13] and SecondWrite [12] are recently developed
rewriters targeting stripped binaries. However, they all aim at rewriting a single binary,
so they all keep the original code and data sections in place. In contrast, BISTRO sup-
ports “transplanting” binary components from one or more binaries to a target binary,
which requires rewriting and combining multiple binaries. Keeping original code and
data sections in place may result in address space conflicts and hence is not an option for
BISTRO. Detour-based techniques [10, 8, 9] are lightweight and can work on stripped
binaries. However, they cannot patch non-trivial jumps/calls that are repositioned.

Dynamic Binary Rewriting. Dynamic binary rewriters [2, 3, 28] are generally more
robust as they do not require specific compilers or symbolic information. It is possible
to apply them to conduct binary stretching and transplanting. However, we choose to
use a static approach mainly because of the following two reasons: (1) Dynamic binary
rewriters usually have much higher run time overhead than static ones. (2) It is more
difficult to deploy a instrumented binary using dynamic approaches, as the rewriter
itself must be deployed along with the binary.

Binary Component Identification, Extraction and Reuse. Recently, researchers
proposed to identify, extract and reuse components from binaries for security appli-
cations [29, 16, 23]. Kolbitsch et al. proposed Inspector Gadget [29], which performs
dynamic slicing on a malware binary to identify and extract the slice pertinent to a spe-
cific malicious functionality, and wrap the slice into a stand-alone binary that could be
reused later to execute the malicious functionality. Inspector Gadget is able to extract
component from self-modifying code, which is not supported by BISTRO due to the
limitation of static binary manipulation. Using dynamic slicing, Inspector Gadget also
avoids the problem of handling indirect calls/jumps in BISTRO as all call/jump targets
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are directly known in the slice. However, the slice may not cover all possible code paths,
which could result in incorrect execution when the user provides an input that would
lead to a code path which is not included in the slice. Compared to Inspector Gadget,
BISTRO statically extracts the component from the binary, which involves handling of
indirect calls/jumps but provides better code path coverage.

Caballero et al. proposed BCR [16] to identify and extract a function from a bi-
nary using a combination of static and dynamic analysis. The extracted function, in
the format of disassembly, is wrapped in a C file to be reused. BCR statically disas-
sembles the designated function starting at its entry point; when encountering indirect
call/jumps, BCR utilizes dynamic execution trace to find the call/jump targets. Dur-
ing the extraction, BCR rewrites all calls/jumps to use labels. Using labels implies that
indirect call/jump can only have one target, which may not always hold in practice. Al-
though BCR specially handles indirect jumps that use jump tables, there are other forms
of multiple-target indirect calls/jumps such as function pointers and vtables. Compared
to BCR, BISTRO preserves the original semantic of indirect calls/jumps when perform-
ing component extraction, hence does not suffer from this problem.

Neither Inspector Gadget nor BCR could extract components from non-executable
binaries (as in Section 6.3) because they are based on dynamic analysis. This is a very
common case in malware analysis, where a given malware sample may not run due
to various reasons (e.g., missing dependent libraries, missing inputs). In such a case,
BISTRO can still perform component extraction statically. Moreover, neither Inspector
Gadget nor BCR supports reusing extractedcomponents to enhance legacy binaries (as
in Section 6.2), as they lack the capability of embedding instructions that invoke the
components into the target binary. BISTRO is able to handle such a scenario by per-
forming both binary component extraction and embedding.

Lin et al. proposed ROC [23] which uses dynamic slicing to identify reusable func-
tional components in a binary. Different from BISTRO, ROC only invokes the identified
components from the same binary; it does not support extracting a component for reuse
in a different binary.

9 Conclusions

We have developed a new pair of binary program manipulation primitives called BISTRO

for extracting and re-packaging a functional component from a binary program; and for
embedding a functional component in a target binary program, respectively. We address
the challenges of patching control transfer instructions and data references to preserve
the semantics of both the extracted component and the stretched binary program, espe-
cially indirect calls and jumps. BISTRO incurs low runtime overhead (1.9% on average)
and small space overhead (11% on average). The extraction and embedding operations
are highly efficient, with less than 1.5s for most cases. We have applied BISTRO to two
security application scenarios, demonstrating its efficiency, precision, and versatility.
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Abstract. A growing number of networks delegate their DNS resolution
to trusted upstream resolvers. The communication to and from the up-
stream resolver is invisible to off-path attackers. Hence, such delegation
is considered to improve the resilience of the resolvers to cache-poisoning
and DoS attacks, and also to provide other security, performance, relia-
bility and management advantages.

We show that, merely relying on an upstream resolver for security may
in fact result in vulnerability to DNS poisoning and DoS attacks. The
attack proceeds in modular steps: detecting delegation of DNS resolution,
discovering the IP address of the internal (proxy) resolver, discovering
the source port used for the (victim) DNS request and then completing
the attack. The steps of the attack can be of independent use, e.g., proxy
resolver can be exposed to denial of service attacks once its IP address
is discovered.

We provide recommendations for securing the DNS service delegation,
to avoid these vulnerabilities.

Keywords: network security, DNS cache poisoning, port randomization.

1 Introduction

Increasingly, organisations delegate sensitive network-operation functions to
trusted providers (‘clouds’). The motivations are diverse, and include cost-savings,
efficiency, reliability, and even security, i.e., the trusted (cloud) provider is deemed
to be able to provide good or even better security. In this work, we study a par-
ticularly important type of such delegation: the use of upstream DNS resolver,
e.g., OpenDNS1. An upstream resolver is a DNS resolver operated by a trusted
provider, outside of the customer’s network, and used directly by the customer’s
DNS proxy (local resolver) 2.

� This work was carried out while the second author was in the Department of Com-
puter Science, Bar Ilan University.

1 Many upstream resolvers are open/public, i.e., provide resolution service to any In-
ternet client address, e.g., OpenDNS and Google-public-DNS.

2 Some authors use the term ‘forwarder’ for upstream resolver, while others use this
term for DNS proxy (local) resolver. To avoid confusion, we use the ‘upstream’ and
‘proxy’ resolver terms throughout this work.

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 219–236, 2013.
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Since DNS services are critical and often attacked, upstream DNS resolvers
are increasingly adopted by many networks, and recommended by leading ex-
perts and vendors, e.g., Google, OpenDNS, Comodo and Akamai. For example,
Akamai describe their upstream DNS service, dubbed eDNS, as follows [1]:

‘Using eDNS, a customer’s primary DNS servers are not directly exposed
to end users, so the risks of cache-poisoning and denial-of-service attacks are
mitigated.’

In this work, we show that typical use of upstream DNS resolvers, can ac-
tually result in illusion of security exposing to DNS cache poisoning and DoS
vulnerabilities.

To understand the potential loss of security due to the use of upstream DNS
resolvers, we next briefly discuss a simple case: DNSSEC validation. DNSSEC,
[RFC4033-4035], is a standard for signing DNS records, allowing resolvers to
validate DNS responses, and hence ensuring security against man-in-the-middle
(MitM) attackers. So far, DNSSEC is not widely deployed, both at the zones as
well as at the resolvers. For example, Google reports that less than 1% of the
DNS records it retrieves are signed; and [2] tested queries to org and found that
0.8% of the resolvers were validating. Clearly, the deployment of DNSSEC is still
very limited; we hope that our results will encourage wider adoption.

Some upstream DNS resolvers, e.g., Google’s public DNS, perform DNSSEC
validation. How does that effect the security of their customers? Clearly, since
these upstream resolvers validate responses, this prevents attacks where false
responses are sent to the upstream resolver. However, the proxy resolver may be
vulnerable to an attacker sending forged responses directly to the proxy resolver,
unless the the proxy resolver will also perform validation. In this way, the use
of upstream resolver may cause reduction of security, due to illusion of security
(by the upstream resolver).

The use of upstream resolvers was recommended by Kaminsky and other
experts, e.g., [3], as a defense against his off-path attack [4]. Indeed this con-
figuration is believed to defend against cache-poisoning attacks [5], and as a
result many proxies (that use upstream resolvers) are not patched. Furthermore,
DNS checker services, e.g., [6,7,8], designed to check if resolution services are
secure, are oblivious to the proxy-behind-upstream resolver scenario, and do not
report a problem, even when the proxy is using fixed a source port. Although
many studies report that resolvers adopted port randomisation, recommended in
[RFC5452], those statistics do not apply to proxies-behind-upstream resolvers,
most of which use fixed or predictable ports; we confirmed this using CAIDA’s
data traces [9]), see Section 4.

We show that, in contrast to folklore belief, customers whose proxy resolver
uses (a secure) upstream resolver for DNS services, with or without DNSSEC
validation, may actually be susceptible not only to a MitM attacker, but even
to an off-path attacker. Namely, such customers may fall victim to illusion of
security.

Attacker Model. We assume an off-path attacker on the Internet that can send
packets with a spoofed source IP address. The attacker also controls a weak,
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‘puppet’ (sandboxed client) [10], such as a client running scripts or presenting
Flash content.

Related Work. Cache poisoning poses one of the significant threats to DNS and
to Internet infrastructure. DNS poisoning can facilitate many other attacks, e.g.,
injection of malware, phishing, website hijacking/defacing, circumventing same
origin policy. The main technique for DNS poisoning (by the common off-path
attackers) is by generating spoofed responses to DNS requests which were sent
by resolvers. The best defense against DNS cache poisoning is cryptographic
authentication of the responses, using DNSSEC [RFC4033-4035]. In addition to
preventing attacks by off-path attackers, DNSSEC also defends against MitM
attackers. Unfortunately, DNSSEC is not widely deployed and most resolvers
use challenge-response mechanisms as a defense against off-path attackers, i.e.,
resolvers validate that the response echoes some unpredictable (random) values
sent within the request, such as the DNS transaction ID (TXID) field and the
source port, see [RFC5452] for more details; firewall-based defenses were also
proposed against poisoning [11].

Significant research effort was dedicated to identifying vulnerabilities allowing
off-path attacks, and improving defenses. We next review the main results.

Klein [12] showed that some implementations use weak TXID values which can
be predicted. Indeed, as pointed out by Vixie [13] already in 1995, the TXID field
alone is simply too short (16 bits) to provide sufficient defense against a deter-
mined off-path attacker, who can foil it by sending multiple spoofed responses.
Bernstein [14] suggested to improve the defense against spoofed responses by
sending DNS requests from random ports, which can add a significant amount of
entropy. To prevent the birthday attack, where attacker causes resolver to issue
multiple requests for the same domain in order to increase the probability of a
match with one of the spoofed responses, Bernstein [14] and others suggest to
limit the maximal number of concurrent requests for the same resource record.

Many implementations did not integrate support for these suggestions till the
Kaminsky attack, [4], which showed that DNS cache poisoning was a practical
threat, by leveraging the known birthday weakness and the fact that TXID is
too short, in tandem with an innovative method allowing to repeat the attack
without the cache limitation (rather than waiting for the cached record to ex-
pire). As a result, it became obvious that changes were needed to prevent DNS
poisoning. Indeed, most DNS resolvers were either patched or configured to use
a patched upstream resolver. The most basic patches are source port randomi-
sation and birthday protection, [RFC5452]. Recently we showed, [15], that NAT
devices that support port randomisation recommended in [RFC6056] are vulner-
able to port derandomisation attacks, and expose resolvers to cache poisoning;
we also presented techniques, [16,17], allowing to circumvent other patches.

In this work we show that the recommendation to (merely) rely on (a patched
and secure) upstream resolver may also fail to ensure security and such proxy
resolvers may yet be vulnerable to (off-path) poisoning. In particular, we show
how off-path attackers may find the IP address of the proxy resolver, as a first
step in a poisoning attack or for denial-of service attacks. This is in spite of the
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fact that upstream resolver are hidden from attackers, since their IP address is
not visible; we show how off-path attacker can find the IP address of the proxy
and abuse it, e.g., for denial-of service attacks.

Our contributions and observations. This work has the following contributions:
� We present technique that allows to detect the use of upstream resolvers (Sec-
tion 2).
� We show how an off-path attacker can find the IP address of a proxy resolver,
contradicting the belief that the use of an upstream resolver hides the address
of the proxy (e.g., to defend against DoS attacks3); see Section 3.
� In Section 4, we present efficient and practical techniques that allow an off-
path attacker to find the source port of a proxy resolver. Our attacks apply to
proxies that are configured to use an upstream resolver, and are effective for the
common case when the proxy supports either a fixed or sequentially increment-
ing source ports. We also show how to extend our attacks, so that they apply to
resolvers connected directly (without upstream resolver), for the common case
of per-destination incrementing source ports, recommended in [RFC6056].
� We conducted measurements on CAIDA data traces [9], and found that mul-
tiple proxies use fixed or sequential source ports, and are thus vulnerable; see
Section 4. Since many name servers, that collect statistics on DNS requests, re-
port that random ports are widely deployed, our statistics also imply that fixed
(or sequentially incrementing) ports, well known to be vulnerable, are more
commonly used for proxies (using upstream resolvers) than for resolvers making
direct requests to name servers.
� The best defense against DNS poisoning is to use DNSSEC validation (on the
clients), and we hope that this paper will help advance adoption of DNSSEC.
However, since DNSSEC adoption is not trivial and may take a long time, and
since DNSSEC does not prevent the DoS attack (when the proxy’s IP address
is exposed), we present several efficient defenses against all of the vulnerabilities
in this work, in the full version of this manuscript [18].

2 Detecting an Upstream Resolver

In this section we show that it is possible to detect whether DNS resolution
on a client’s network is done using an upstream resolver, using a puppet (e.g.,
sandboxed script) running on the client. This allows an attacker to detect if the
network is vulnerable to our attacks. The detection can be used for benign pur-
poses, e.g., collecting statistics, however we focus on its use as part of an attack;
in this case, the measurements are done by an attacker generating requests from
a client (e.g., using puppet), to a name server operated by the attacker. The
detection exploits the fact that when using an upstream resolver, the (round
trip) delay ΔR for a complete DNS resolution, from client to attacker’s name

3 One of the advantages of using upstream resolvers is that proxies have limited band-
width. Therefore, launching denial of service against proxies is often significantly
easier.
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Fig. 1. The latencies between a client, an off-path attacker and a resolver
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Fig. 2. Distribution of 100 measurements of δ values, with and without upstream re-
solver, for the two configurations: university proxy (with or without Google’s upstream
resolver), and an ADSL-connected proxy in an ISP (with or without the ISP’s upstream
resolver)

server (via both proxy and upstream resolver), can be broken down to three
components, as shown in Figure 1: ΔR = ΔCP + δ + ΔUA (ΔCP is the delay
from client to proxy, δ is the delay from proxy to upstream resolver, and ΔUA is
the delay from the upstream resolver to the attacker’s name server). We chose
a different notation for δ since this is not a measured value, but computed us-
ing measurements of the other values: δ = ΔR −ΔCP − ΔUA. Furthermore, δ
is exactly the indicator for the use of an upstream resolver; when an upstream
resolver is used, δ >> 0, while when an upstream resolver is not used, δ ≈ 0. See
our experimental results in Fig. 2. The detection exploits the fact, that we can
easily measure ΔR, ΔCP and ΔUA, and then test if δ is significant, indicating
existence of an upstream resolver; see [18] for details and techniques to sample
the ΔR, ΔCP and ΔUA parameters.

Evaluation Results. We tested our proxy detection method via active measure-
ments which we collected on two different network topologies: (1) puppet and
local DNS resolver were set up on our university’s wired 100Gb/s Ethernet net-
work, and Google-Public-DNS (at IP 8.8.8.8) was used as an upstream resolver,
and (2) puppet and the DNS resolver were set up on an ADSL network of a
commercial ISP, and the upstream resolver was set up on a different network
segment in the same wireless network of the ISP. We ran two tests in each topol-
ogy (total of four tests): without an upstream resolver and with an upstream
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resolver. During each of the four tests we collected 100 samples (of latency) for
each of the following parameters: ΔCA, ΔCP , and ΔUA (in milliseconds). Based
on these values we then calculated 100 values of δ for each of the four sequences
of test (plotted in Figure 2), as follows: Repeat for i = 1...100: (1) calculate
average of j = 5 samples4 selected at random from a 100 samples from (each of)
ΔCA, ΔUA and ΔCP respectively, and (2) then calculate the latencies difference:

δi =
1

j
·

j∑
k=0

(
ΔCA −ΔUA −ΔCP

)
As can be seen from the measurements, Figure 2, the latency differences between
configurations, with and without an upstream resolver, are significant.

3 Proxy DNS Resolver IP Address Discovery

In this section we show techniques to discover the address of the proxy, allowing
denial of service as well as for cache poisoning attacks on proxy resolvers.

The idea is: (1) to find the network address block of the puppet, and then (2)
to traverse the address block, until the resolver is found. To traverse the network
block we apply IP defragmentation-cache poisoning. We present defragmentation-
cache poisoning of a single host in Section 3.1. Then, Section 3.2, we show how
to apply defragmentation-cache poisoning for resolver’s IP discovery.

Network Address Block. The attacker runs a whois.net tool5 on the IP ad-
dress of the client (on which the puppet is running) to find out the network
address block allocated to that network. One of the IP addresses on that net-
work block is the IP address of the victim proxy resolver (that the attacker
wishes to attack). The IPs range is typically not large; we ran a whois tool on
100,000 top domains according to Alexa, and found, that 70% of the networks
have less than 215 IP addresses, see Figure 3.
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4 Other values of j could be used (0 < j < 100), but j = 5 provided sufficiently good
results.

5 http://www.whois.net/ip-address-lookup/
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IP Fragmentation. The basic requirement of our IP address discovery technique
is fragmentation: the attacker should (1) trigger a DNS request to a domain
which responses exceed the MTU (maximal transmission unit), e.g., responses
from domains that adopted DNSSEC typically exceed the MTU (see Fig. 4), and
then (2) replace the authentic second fragment, of a fragmented DNS response,
with a spoofed second fragment. The resulting packet is discarded by the resolver,
and resolver retransmits the DNS request. If the packet arrives at host other than
the resolver, no packet loss occurs. We use this timing channel to detect the IP
address of the resolver.
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Fig. 5. Defragmentation-cache poisoning via a spoofed second fragment

3.1 Defragmentation-Cache Poisoning via Second Fragment

Defragmentation-cache poisoning is caching of spoofed fragments, in IP defrag-
mentation cache, which get reassembled with the authentic fragments. The num-
ber of fragments that the recipient host can cache is limited6. We use B to denote
the number of spoofed fragments sent by the attacker. The defragmentation-cache
poisoning attack, illustrated in Figure 5, begins when the attacker sendsB spoofed
second fragments (step 1), which are stored at the defragmentation cache of the
destination (for 30 seconds by default), and triggers (via a puppet) a DNS request,
for its own domain, e.g., atk.org (step 2). When the authentic first fragment (of
the DNS response) arrives, it is reassembled with the (cached) spoofed second frag-
ment (step 3); the resulting IP packet has incorrect checksum, and is discarded by

6 Typical defragmentation cache size allows several thousands of fragments; operating
systems often impose a limit on the number of cached fragments per each (source,
destination, protocol) triple. For example, in recent versions of the Linux kernel, the
default value is 64 (and it is kept via the variable ipfrag max dist; see [19]).
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the IP layer at the proxy (after defragmentation). Hence, the proxy retransmits
the request after a timeout.

The probability that the IP-ID of a legitimate (fragmented) response matches
the IP-ID of one of the (up to B) spoofed second fragments, which the attacker
sent, depends on the IP-ID assignment method. We next analyse efficiency of
defragmentation-cache poisoning for common IP-ID allocation methods: incre-
menting (supported by more than 70% of name servers) and random (supported
by less than 1% of name servers); statistics are based on the IP-ID allocation
methods supported by name servers of top level domains.

Random IP-ID. In a random IP-ID allocation the name server selects the IP-
ID values in each response uniformly. Let n be the number of DNS requests
triggered by the attacker and B the number of spoofed second fragments sent by
the attacker. Note that defragmentation-cache poisoning allows to circumvent
the birthday protection, thus enabling the attacker to trigger concurrent requests;
see [18]. The probability for successful poisoning is:

Pr[success] ∼= 1−
(

1− B

216

)n

(1)

See graph representing defragmentation cache-poisoning success probability, based
on Eq. (1), in Figure 6; results of the experimental evaluation appear in the full
paper version [18].

Incrementing IP-ID. Incrementing IP-ID can be either global (i.e., a single
counter to all destinations) or per-destination (i.e., first IP-ID to some desti-
nation is selected at random and subsequent packets are allocated sequentially
incrementing values). If the upstream resolver uses separate interfaces for com-
munication to the Internet and for communication to the proxy, then the pro-
cedure for discovering the global and the per-destination IP-ID is similar. If the
same network interface is used for communication to the Internet and to the
proxy, then the IP-ID discovery, in case of a global counter, is simple: the at-
tacker can trigger a query to a host that it controls and sample the IP-ID value.
The attacker can efficiently hit the correct IP-ID by using a meet-in-the-middle

strategy. The attacker triggers 216

B DNS requests and plants B spoofed second
fragments in the defragmentation-cache of the recipient, each fragment i contains

IP-ID value of {i · 216B }Bi=1.

3.2 Discovering Resolver’s IP via Defragmentation-Cache Poisoning

The idea behind our IP discovery technique is the following: the attacker applies
defragmentation-cache poisoning, via a second spoofed fragment, that is sent to
each IP in the IP address block allocated to the victim network. The second
fragment with the IP of the proxy poisons the defragmentation cache and ruins
the DNS response sent by the upstream resolver to the proxy. The attacker
then inspects the subsequent DNS requests from the upstream resolver to learn
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information about the reaction of the proxy. The reaction from the proxy is used
as a side-channel, and allows to determine if the address of the proxy is found.
Application of defragmentation cache poisoning for attacks is not new, and was
mainly used for denial of service attacks, see [RFC6274] and [20,21]. The first
application of fragmentation for attacks on DNS was in [15,16] for name server
pinning and for cache-poisoning, respectively. Let B be the maximal number of
fragments that can be cached at the defragmentation cache of the resolver, then
216

B is the maximal number of requests required in order to find the correct IP-ID
for a single recipient, assuming a sequentially incrementing IP-ID is supported.
Let /x denote the CIDR subnet mask of the address block, returned from the
whois.net query on the IP address of the puppet, and set y = 32− x. Then 2y

is the number of IP addresses in a network block defined by the network part
/x. We use binary search for proxy resolver IP address discovery, and since there
are 2y addresses, the procedure has to be repeated log 2y = y times.

IP Address Discovery. For each 0 ≤ i ≤ y, repeat:

(1) During attempt i the attacker triggers 216

B DNS requests (via the puppet)

for records in its own domain, and sends B 2y

2i = B·2y−i spoofed second fragments

to a set of 2y

2i IP addresses (from the network address block); each fragment has
a source IP address of the upstream resolver, destination IP addresses are from
the network block (which the attacker traverses), and offset value of 1480. These
fragments are stored at the defragmentation cache of the recipients, and then
discarded if not reassembled (after 30 seconds by default).

(2) The upstream resolver receives the requests from the proxy and forwards
them to attacker’s name server. The responses to those requests result in (frag-
mented) referrals to subdomains of attacker’s domain. The attacker inspects the
subsequent requests from the upstream resolver to learn the reaction of the proxy
resolver, and uses it as side-channel, to determine if the IP of the proxy was among
the set of 2y

2i IP addresses that it sent the spoofed fragments to, in step (1).
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(3) If the attacker sent the fragments to the correct IP address of the proxy,
then when the authentic first fragment, sent by the upstream resolver, arrives,
real first fragment and fake second fragment will be defragmented. Prior to
accepting and caching responses, the resolver validates a number of fields, e.g.,
UDP port and checksum, DNS TXID. The reassembled response has incorrect
checksum and is hence discarded by the proxy. If there is a pending DNS request,
which the proxy resolver sent earlier to the upstream resolver, it times-out and
the proxy retransmits its DNS request. The upstream resolver forwards7 it to
attacker’s name server.

If the attacker receives a retransmitted DNS request - it knows that the IP
of the proxy is in the set of 2y

2i tested IP addresses. In contrast, if the response
arrives correctly to the resolver - there is no timeout, and the attacker receives
a referral request (it responded with that referral to the request from upstream
resolver in step 2). In this case, the attacker knows that the IP was not among
the set of the IPs sampled in the current attempt, and repeats the attack with
the next set of IPs.

Analysis and Experimental Evaluation. In our experimental evaluation the up-
stream resolver ran on a Linux OS, which implements a per-destination incre-
menting IP-ID allocation method, and our analysis and evaluation are adapted
to this case; globally incrementing IP-ID can be sampled directly.

During the ith iteration the attacker sends 216

B DNS requests and B 2y

2i =
B · 2y−i spoofed second fragments (0 ≤ i ≤ y). The number of spoofed second
fragments that the attacker has to send in the worst case, can be expressed via
geometric series:

B · 2y
y∑

i=0

1

2i
= B · 2y ·

(
1 +

1

1− 1
2y

)
= B · 2y · 2 = B · 2y+1

Notice that 1
1− 1

2y
≈ 1 since 1

2y ≈ 0. The number of DNS requests that the puppet

has to trigger in the worst case is: log 2y · 216

B = y · 216B . The number of packets
(requests and spoofed fragments) can be expressed as (see analysis in Fig. 7):(

216

B +B 2y

20

)
+ ...+

(
216

B +B 2y

2y

)
= y · 216B +B · 2y+1

Resolvers Behind NAT Devices. If the puppet and the proxy resolver are behind
a many-to-one (network address translation) NAT device, then they share the
same IP address. To take this possibility into account the attacker should start
the search with the IP of the puppet, and extend its search at each iteration (fol-
lowing the binary search technique). We ran statistics on two CAIDA datasets
from 2012 [9], that were collected on equinix-chicago and equinix-sanjose moni-
tors on high-speed Internet backbone links. Both traces contained packets sent
from distinct 89750 source IP addresses, collected over two minutes interval.

7 To ensure that the upstream resolver does not respond to the proxy from the cache,
the attacker sets a low TTL (time-to-live), e.g., TTL=0, on the requested record.
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We ran the following test to check for DNS resolvers behind NAT devices: (1)
we collected all DNS requests, i.e., packets sent to port 53; (2) we created a set
of IP addresses that sent at least one DNS request per second (to ensure that
we do not mistakenly interpret a host for a resolver behind a NAT; (3) we ran
over the traces to check if those IP addresses also sent packets to other ports,
including port 80, and 443. We then concluded with high probability that those
resolvers were behind NAT devices. We came up with a total of 3492, out of
89750, resolvers behind NAT devices.

Restricted Rate. The attacker may be restricted to transmit at a low rate, e.g.,
to launch a stealth attack in order to evade detection in networks that are known
to be well-monitored, or if the attacker does not have sufficient resources and its
transmission rate is limited. We next calculate the number of IPs that the at-
tacker can try at each attempt, when it is restricted by a rate of R Bytes/sec. Let
τ seconds be the maximal time that fragments are stored in the defragmentation-
cache; typical (default) value of τ is 30 seconds. Let f be the size (in bytes) of
the second fragment; the second fragment can be of minimal size, e.g., 8 bytes
and the 20 byte IP header. Then, the maximal number of IPs that the attacker
can sample during a single attempt is x < τ ·R

B·f . With a modest rate of 50, 000

Bytes/sec (50 KB/sec), and B = 64 (fragments per host IP), the attacker can
sample 781 IP addresses in a single iteration, and with 50MB/sec the attacker
can sample at most 78, 125 IP addresses each time, i.e., more than the size of
many network blocks. Most network blocks are not too large, and can be tra-
versed efficiently (see Section 3.2 and Figure 3).

IP-ID Discovery. Once the attacker completes the IP discovery, it knows the

that the IP-ID is in range of 216

B potential values. The attacker can also find
the precise value of the IP-ID of the upstream resolver (in its communication to
the victim proxy resolver); the knowledge of the IP-ID value is useful for UDP
port discovery (see Section 4). The attacker again applies a binary search on

the range of 216

B potential IP-ID values. This requires log 216

B attempts in the

worst-case. Since during each attempt the attacker sends 216

B /2i = 216

B·2i spoofed

second fragments, in the worst-case the attacker will send a total of 217

B spoofed
second fragments:

216

B

216

B∑
i=0

1

2i
=

216

B
·
(

1 +
1

1− 1
216

B

)
∼=

217

B

4 UDP Port Discovery and DNS-Cache Poisoning

The next step towards a successful cache poisoning is to find the port that the
proxy resolver assigns to the request which the attacker wishes to poison.

We collected statistics from two CAIDA datasets from 2012 [9] and found that
many proxies, which delegate DNS resolution to upstream resolvers, support
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the following popular port allocations: fixed port, globally incrementing and per-
destination incrementing8. We used the traces to collect all the DNS requests
(destination port 53) over UDP, and then filtered out IP addresses with a single
DNS request, and collected only the sources that sent two or more requests. This
allowed us to infer information about the source port allocation of the remaining
DNS requests. We found that 30% of the requests were sent from some fixed
port and 54% of the requests were sent from incrementing ports. Notice that
the packets’ traces are collected by CAIDA on (several) backbone (OC192) links,
therefore, most DNS requests, appearing in those traces, are probably sent from
proxies to upstream resolvers, since local DNS (proxy) resolvers are located on
LANs; this premise is also coherent with the standard, [RFC5625] that states:
‘proxy resolvers receive DNS requests from clients on the LAN side, forward
those verbatim to one of the known upstream recursive resolvers on the WAN’.

The use of a fixed client port was shown to be vulnerable by Kaminsky [4]: the
attacker triggers a DNS request to a name server under its control and learns the
port the resolver uses for DNS requests. Security experts also identified the glob-
ally incrementing port assignment as vulnerable: the attacker can use a sampling
procedure similar to [4], to obtain the current port value and then extrapolate
the port that will be assigned by the (victim) resolver to the subsequent DNS
request which the attacker wishes to poison. A per-destination incrementing
port is believed to be secure, and is a recommended standard [RFC6056], since
different ports’ sequences are assigned by the resolver to different destinations;
in particular learning the port value to one destination does not leak the port
value to some other destination. We checked the predictability rate assigned by
the popular DNS checker service provided by the OARC [7], to resolvers that
send DNS requests with per-destination incrementing port. The tool reported
(the highest) great score to a per-destination fixed port (i.e., a different fixed
port is assigned to each destination) and to a per-destination incrementing port
(i.e., sequentially incrementing to each destination), indicating that both port
allocation methods are believed to be secure by the DNS experts. However, our
results (within) show otherwise.

In this section we present techniques that allow to predict the ports efficiently
for each of the three popular allocation methods (above), contrary to folklore
belief that, when a resolver does not send queries to the Internet directly, but only
via an upstream resolver, it is secure. Our techniques do not rely on sampling
the port, since in our setting this is not possible: the attacker does not receive
DNS requests from the proxy-resolver directly, but only via an upstream DNS
resolver. Furthermore, our results show that sequential allocation, whether per-
destination or global, surprisingly allows for a more efficient port prediction,
than a fixed port allocation; see comparison in [18].

During the port discovery the attacker triggers queries to a domain that it
controls. This allows the attacker to control, not only the time at which the

8 The effect of globally incrementing and per-destination incrementing ports’ assign-
ment methods is identical when proxies delegate DNS resolution to an upstream
resolver.
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request is triggered but also the time at which the response is sent; furthermore,
if the attacker does not respond at all, this will result in a timeout at the resolver
and in a retransmission of the DNS request. The attacker then traverses the port
range until a correct port is found. Notice that often not all ports are used9 and
the supported ports ranges are significantly smaller than 216, e.g., it is considered
safe to use ports in the range (1024−49152), [RFC5452]. Therefore, some ports
are more probable than others.

The attacker succeeds in a poisoning attack (of its own domain) when a correct
port is found. As a result the attacker receives a subsequent request to the IP
that was returned in the poisoned record, instead of a retransmission request.

However, prior to accepting and caching a DNS response resolvers validate
a number of fields (recommended in [RFC5452]), e.g., IP addresses, UDP port,
DNS TXID. The attacker knows the IP addresses: the address of the proxy-
resolver was found using techniques in Section 3, and the address of the upstream
is known since it sends the DNS requests to the name servers. The attacker has
to find the correct UDP port and DNS TXID. A naive strategy is to apply the
Kaminsky attack [4], however, this requires sending 232 packets in the worst case
in each poisoning attempt and is thus not feasible.

We devise a new approach for port discovery (explained next) which we dub
the Midway Rendezvous. We show that this approach allows to significantly re-
duce the complexity of port discovery. We then propose to apply the midway
rendezvous with two different strategies for port discovery: (1) an optimised ex-
haustive search and (2) search via defragmentation-cache poisoning; we compare
the efficiency and complexity of both strategies in [18].

Midway Rendezvous. The idea is to traverse the ports range in a direction op-
posite to port incrementation, supported by the resolver. At each iteration i the
attacker sends spoofed DNS responses, to p ports, each time decreasing the port
number; p can be arbitrary, e.g., p = 1, and typically depends on attacker’s
bandwidth. Thus the attacker walks the port range towards the direction in

which the resolver walks. In the worst case, they meet after 216

2p attempts, where
p is the number of ports tried during each attempt. The value of p depends on
port assignment method supported by the resolver. When incrementing ports
are used, 1 ≤ p ≤ 15; if the attacker samples a single port each time, i.e., p = 1,
the attacker has to traverse half the ports range (assuming maximal ports range
of 216). When a fixed port assignment is supported, p = 0, the attacker has to
repeat the attack till it meets the fixed port (used by the resolver), and has to
traverse in the worst case, 216 − 1 ports.

When next show how to apply this strategy using two different techniques
optimised exhaustive search and search via defragmentation-cache poisoning, and
compare efficiency.

9 DNS running on Windows server 2008 uses ports range (49152−65535) and Windows
2000/XP/server 2003 use ports from range (1025 − 5000). Older Bind versions use
fixed ports.
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4.1 Optimised Exhaustive Port Search

The attacker applies the midway rendezvous to discover the port and proceeds
as follows (Figure 8): For i = 1...15 or till ‘port is found’, repeat: (1) attacker
triggers a DNS request to a record in a domain under its control, and (2) sends
p · 216 DNS responses to p (decreasing) ports’ values starting with the highest
port, e.g., 65535, for each possible TXID value (this is required to be able to
detect when the correct port is hit, otherwise the response is discarded by the
proxy resolver); in the worst case, the attacker sends p · 216 responses. If the
port is not one of the p ports tested at the current iteration, then increment i
and update the port for next iteration. Although practical, this technique
has a disadvantage: in order to hit the correct UDP port the attacker has to
also guess the TXID. In the next section we show that the attacker can apply
first-fragment defragmentation-cache poisoning to split the distribution of TXID
and port to two separate distributions of size (at most) 216 each (assuming all
maximal number of ports is used).
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Fig. 8. DNS request port discovery: in step 1, the puppet triggers a DNS request to a
resource within the attacker’s domain. The off-path attacker, in step 2, at IP 6.6.6.6,
sends 216 fake responses (each containing a different TXID value) to each port of the
DNS resolver. If failure - repeat the attack from step 2. When timeout, repeat the
attack from step 1.

4.2 Port Discovery via First Fragment Defragmentation-Poisoning

The attacker can often improve the efficiency of port discovery, and in what follows
we present port discovery which uses a technique we dub first-fragment
defragmentation-cache poisoning. The steps of the attack are illustrated in Fig-
ure 9. We assume that the attacker knows the IP-ID value, e.g., it ran earlier the IP
discovery phase, which also exposes the current IP-ID value (details in Section 3).
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Fig. 9. DNS port discovery: in step 1, the puppet triggers a DNS request to a resource
within the attacker’s domain. The off-path attacker, in step 2, at IP 6.6.6.6, plants a
spoofed first fragment (with UDP length 8 bytes, and checksum 0) into the defragmen-
tation cache of the resolver. The first authentic fragment is reassembled with the spoofed
fragment, and then with the authentic second fragment. If the port is correct, the attacker
will receive a referral, otherwise timeout and retransmission of the previous request.

The idea is to use fragmentation to overwrite the transport layer header of
the fragmented IP packet sent by the upstream resolver to the proxy. In each
such attempt the attacker sends a spoofed fragment with a source IP of the
upstream resolver and includes a guess for a port. If the guess is correct - the
response is accepted and cached by the resolver. Otherwise, if the port in the
spoofed fragment is incorrect - the proxy rejects the response, and retransmits
the request. This allows the attacker to distinguish the two events.

The goal of this step is to craft a spoofed first fragment, with a new port, and
to overwrite only the transport layer header in the authentic first fragment. How-
ever, if two fragments contain identical offsets, then the last arriving fragment
overwrites the first. Therefore, in order for the spoofed fragment to overwrite the
transport header of the authentic fragment, it must arrive at the resolver after
the first authentic fragment, and before the IP packet is reassembled, when the
authentic second fragment arrives. Let f = f1||f2 be the IP packet consisting of
two fragments f1 starts at offset 0 and is of length |f1| and f2 starts at offset
|f1| and is of length |f2|. The steps of the attack are described next.

(1) attacker sends a spoofed second fragment f ′2, starting at offset (|f1|+ ε),
where ε is some number of bytes.
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(2) attacker triggers a DNS request (whose response is fragmented). When the
first authentic fragment f1 arrives it is reassembled with the spoofed second frag-
ment f ′2 that is already in the defragmentation cache; when the authentic second
fragment f2 arrives, it is discarded since a spoofed fragment starts and ends at
a higher offset (|f1| + ε). However, the reassembled IP packet does not leave the
defragmentation cache since there is a gap of ε bytes that are still missing.

(3) The attacker sends a short fragment that overwrites only the UDP header
in the original first fragment. This fragment overlaps with first 8 bytes (the
UDP header) with the authentic first fragment; the fragment contains checksum
0, which indicates that checksum validation is disabled10, more fragments is set
to 1 (mf=1), and offset is 0. When initiating the attack, the attacker sets the
UDP port in this spoofed first fragment to 216, and decrements its value during
each subsequent iteration, following the midway rendezvous strategy.

(4) Then the attacker sends a fragment that starts at offset |f1| and is of size
ε to fill the gap.

4.3 Analysis and Experimental Evaluation

Let r be a DNS response size in bytes; for simplicity we round to 100 bytes
(also in our experimental evaluation). Let R bytes/sec be the transmission rate
of the attacker. Let t seconds be a limit on the timeout for a DNS request (i.e.,
including all retransmitted requests for that query) and let q be a number of
times a pending query is retransmitted until it is terminated and serverfail is
returned. Resolvers implement retransmission policy based on round trip time
estimates of the name servers, [RFC1536], and support timeout management
with exponential backoff. When a timeout occurs resolver enters an exponential
backoff phase, i.e., the timeout is doubled, and query is retransmitted. Resolvers
implement variable timeout and retransmission values, typically up to 45 seconds
(which is also a recommended ceiling for total timeout for a query [RFC1536]),
and attempt up to 15 retransmissions. For instance, Unbound1.4.19 sets t to a
maximal value of 40 seconds and Bind9.8.1 sets t ≤ 30 seconds and q ≤ 10, i.e.,
supports up to 10 retransmissions before terminating a query.

In each retransmission the resolver advances the port (in case an incrementing
allocation is supported). This allows the attacker to sample a number of ports in
a single iteration (since with each retransmission there is a new pending request).

Optimised Exhaustive Port Search. The number of iterations i that the attacker
has to repeat (or the number of queries that the puppet triggers) in the worst case,
assuming that in a single iteration the resolver triggers q retransmissions (before

terminating a DNS request) and the attacker samples p ports, is: (1) i ≤ 215

(p+q) for

incrementing port, and (2) i ≤ 216

p for some (unknown) fixed port.
The maximal number of ports p that the attacker can test in a single itera-

tion is p ≤ t·R
r·216 ; assuming that 216 is the number of possible values of TXID.

10 UDP checksum validation is optional, and it can be disabled by name servers by set-
ting it to 0 (0000 in hexadecimal). When the checksum is disabled it is not validated
by the resolvers.
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The analysis vs evaluation results are in technical report [18]. Once the port
is known the attacker launches a DNS cache poisoning attack, i.e., sends 216

spoofed DNS responses, for some victim domain, such that each response con-
tains a different TXID value.

Port Discovery via Defragmentation-Cache Poisoning. The number of itera-

tions required to hit the correct port in the worst case is: 216

(q+1) for a fixed port

and 215

(q+1) for incrementing port assignment; during each iteration the attacker

matches the original query and up to q retransmissions. Since the attacker does
not need to match the TXID, at each iteration only 3 fragments are sent (more
fragments will not improve the efficiency of the attack); this significantly reduces
the complexity of the attack. However, note that, the attacker cannot sample
more than a single port, for each DNS request, since the payload is taken only
from the last fragment, therefore, p = 1.

The worst-case number of requests required to guess the port is 215

(q+1) for incre-

menting allocation and 215

(q+1) for a fixed allocation. During each iteration 3(q+ 1)

fragments are sent, thus the worst case number of fragments is 3(q + 1) · 215

(q+1) =

3 · 215 for incrementing allocation and 3(q+ 1) · 216

(q+1) = 3 · 216 for a fixed port.

5 Conclusions

We presented DNS poisoning attacks on proxy DNS resolvers, i.e., resolvers
which use an upstream resolver. This attack is significant, since a large and
growing number of networks use upstream resolvers (and hence are vulnerable),
and prior to this work, a common belief was that this setting protects the proxy
resolvers from poisoning and DoS attacks. This belief is also partially due to the
fact that DNS resolver-testing services, report this DNS configuration as secure.
It is therefore imperative that networks, operating proxies, adopt appropriate
corrective defenses, as described in [18].
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Abstract. To proactively defend against denial of service attacks, we
propose an agile multipath routing approach called random route muta-
tion (RRM) which combines game theory and constraint satisfaction op-
timization to determine the optimal strategy for attack deterrence while
satisfying security, performance and QoS requirements of the network.
Our contribution in this paper is fourfold: (1) we model the interaction
between RRM defender and DoS attacker as a game in order to deter-
mine the parameters by which the defender can maximize her benefit,
(2) we model route selection as a constraint satisfaction optimization
and formalize it using Satisfiability Modulo Theories (SMT) to iden-
tify efficient practical routes, (3) we provide algorithms for sound and
smooth deployment of RRM on conventional as well as software-defined
networks, and (4) we develop analytical and experimental models to in-
vestigate the effectiveness and limitation of RRM under different network
and adversarial parameters. Our analysis and preliminary implementa-
tion show that RRM can protect up to 90% of flow packets from be-
ing attacked against persistent attackers, as compared with single-path
routing schemes. Moreover, our implementation shows that RRM can
be efficiently deployed on networks without causing any disruption for
flows.

1 Introduction

The tragic effect of DoS attacks on networks are significantly aggravated by adop-
tion of conventional least-cost single-path routing schemes. While such route se-
lection simplifies reachability and manageability, it gives adversaries significant
advantages to gradually learn network routes and plan DoS flooding attacks ac-
curately. For instance, intruders can disrupt the data session simply by attacking
one of the intermediate nodes along the associated route. Such a DoS attack is
feasible since only one single predictable route is chosen, and this singularity
enables intruders to readily discover the route and devote their resources to
attacking it.

In this paper we present a random multi-route approach, called random route
mutation (RRM), which protects designated flows by routing them via an op-
timal number of randomly-chosen routes such that each route satisfies security,

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 237–254, 2013.
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capacity, overlap and QoS constraints of the network. RRM significantly raises
the bar for attackers because to completely compromise the flow, intruders must
subvert all the routes and thus require more resources than those needed for
attacking a single route. Also, nondeterministic route selection disrupts recon-
naissance for attack planning and wastes attacker resources by forcing her to
blindly disperse her resources across network routes. Moreover, although routes
are chosen randomly, constraint-satisfying route selection guarantees that each
route has the desired security and performance-related properties.

We assume a persistent adversarial model where attacker is RRM-aware and
aims to defeat RRM by frequent hopping between network routes. The number
of hopping (mutation) between routes determines attacker’s strategy because
the more routes the adversary attacks, the higher the probability of hitting the
random routes which are chosen by RRM.

The first challenge of RRM is to determine the optimal number of routes for
flow transmission such that the defender’s benefit is maximized while making
her indifferent to the attacker’s strategy. We refer to this problem as optimal
strategy selection and model it as a static game of complete information between
attacker and defender, where players’ strategies are defined in terms of number
of mutations and their payoffs are defined based on the tradeoff between the
benefit and cost of mutation.

Knowing the number of routes, the next challenge is to determine a set of qual-
ified routes such that each route satisfies security and performance constraints
of the network. In this paper, we consider the following constraints, but other
constraints can be added as well:

– Capacity constraint : the routes should not include those nodes that are already
overloaded (based on node capacity) or those nodes that do not fulfil the
bandwidth requirement of the flow.

– Overlap constraint : to increase unpredictability and achieve fair load balanc-
ing, the overlap between the routes should be less than the tolerable overlap
threshold.

– Security constraint : the routes should preserve security enforcement by access
control policies such as firewalls; e.g., if a flow must pass through a firewall,
the firewall must be included in all the routes.

– QoS constraint : the routes should maintain the required quality, such as bounded
delays or number of hops.

We refer to this problem as optimal route selection and model it as a constraint
satisfaction problem using generalized Boolean/arithmetic format of Satisfiabil-
ity Modulo Theory (SMT). We use SMT solvers to discover a random set of
constraint-satisfying routes.

Knowing the set of routes, the final challenge is to design a sound mechanism
for route installation and revocation such that mutating from one route to an-
other does not cause any transient or permanent unreachability and the flow is
transmitted soundly and without any packet loss. We refer to this problem as
route mutation planning. We provide a formal algorithm for this problem and
prove that it guarantees reachability throughout flow transmission.
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While deployment of RRM on conventional network layer architectures is
challenging, more recent application-layer architectures such as overlay networks
(e.g., RON [2], SOS [4], and VNET/P [17]) and emerging software-defined
networking (e.g., OpenFlow [11]) provide promising platforms for RRM. We
implemented RRM algorithms in POX [10], a network SDN controller written in
Python that communicates with OpenFlow 1.0 switches. In our implementation
on SDN, mutation from one route to another is accomplished via a series of flow
table updates in all the switches both along the old and new routes.

To evaluate RRM effectiveness, we introduce an analytical metric called MPE
(Mutation Protection Effectiveness) which measures average effectiveness of RRM
against attackers by taking into account the attacker’s strategy and capability.
Moreover, we used our implemented framework for extensive evaluation of RRM
effectiveness in real-world scenarios. Our analytical and experimental evaluation
shows that RRM is significantly effective against DoS attackers.

Previous works on multipath routing in wireless networks such as [16] propose
using random forwarding to avoid jamming and blackhole attacks. These works
are far from being practical for wired networks because of many topological,
QoS and security constraints. Moreover, unlike previous works [16], we do not
use random walk heuristic-based algorithms to identify random routes because
it is infeasible to design a random walk algorithm to satisfy multiple constraints
simultaneously.

The rest of the paper is organized as follows: Section 2 discusses our basic
methodology. Section 3 presents implementation details of RRM. Section 4 shows
the evaluation results. Section 5 presents related work. Section 6 concludes the
paper.

2 Technical Approach

2.1 Adversarial Modeling

RRM effectiveness against static attackers (attackers that do not move) is obvi-
ously high. However, to accurately evaluate effectiveness for realistic scenarios,
we assume a generalized persistent RRM-aware adversarial model. In this model,
the attacker is characterized by two parameters: her capability and the number
of routes she attacks. Attacker’s capability, denoted as r, is defined in terms
of the number of nodes that are known to the attacker. Attacker’s mutation
intervals, denoted as Ma, defines the attacker’s strategy in the network. More
specifically, at each mutation interval, the attacker uniformly chooses a route
and attacks it. If the adversary by chance attacks a route that is being used by
RRM, she would stay on the route for as long as RRM continues using the route;
that is, until the expiration of defender’s mutation interval.

The objective of RRM is to protect a flow f that is being transmitted from
a source S to a destination D, such that the portion of the flow that evades
the attack is maximized. To distance our model from security through obscurity,
we assume that the attacker knows the flow properties including its source and
destination, its size and duration, as well as the starting time of its transmission.
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2.2 Overview

RRM responsibilities in a network are performed by a RRM controller with priv-
ileged accesses to network routers/switches. Alg. 1 defines the main algorithm
of this controller. After each mutation interval (T seconds), the algorithm uses
ChangeRoute to revoke the route rk and install rk+1. Note that for each route,
its reverse route must also be installed. r−1

k denotes the reverse route of rk. The
ChangeRoute algorithm is described in Section 2.5.

Algorithm 1. RRM Controller algorithm for route mutation of a flow from S
to D

determine optimal defender strategy (M∗
d ) by finding NE of the game � Sec. 2.3

determine qualified routes r1, . . . , rM∗
d
using SMT solver � Sec. 2.4

upon expiration of kth defender mutation interval
ChangeRoute(rk → rk+1) � Sec. 2.5
ChangeRoute(r−1

k → r−1
k+1)

2.3 Optimal Strategy Selection

Of fundamental significance is the problem of determining the number of routes
that are used for transmitting a flow. Although it is intuitive that using more
routes provides higher benefit for the defender on average, it also increases the
cost associated with the routing. Therefore, choosing the optimal mutation strat-
egy for the defender partly depends on the benefit-cost tradeoff of the mutation.

In addition to this tradeoff, the defender benefit also depends on the mutation
strategy of the attacker. If the defender’s mutation rate is slower than that of the
attacker’s, it is straightforward to see that RRM will be less effective. However,
although faster hopping between routes increases the probability of hitting a
flow route for the attacker, it also increases detectability of the attacker and
her resources. Therefore, the defender and attacker mutation strategies can be
defined as a static game of complete information, where each player aims to
determine her Nash equilibrium strategy by considering other players’ strategies
and the cost associated with her own strategy.

The game is defined as Γ = 〈I, S, U〉, where I = {a, d} is the set of players,
S = {Ma,Md} denotes the set of strategies for the attacker and defender, and
U = {ua, ud} defines the payoff function for each player. Note that the attacker’s
strategy is defined in terms of the number of routes, Ma, that she attacks during
flow transmission. Defender’s strategy is defined in terms of number of routes,
Md, that are used for flow transmission.

To evaluate RRM effectiveness against attackers, we define mutation protec-
tion effectiveness metric (MPE) as the average percentage of the flow that is
transmitted without being compromised. Suppose the defender aims to transmit
a flow f between a given source and destination and the network consists of n
nodes. The flow is transmitted during Md mutation intervals such that 1/Md

portion of f is transmitted during each interval.
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To calculate MPE, we first need to calculate node compromise probability,
x:

x =
r

n

The probability that a route is compromised is equal to the probability that
at least one node in the route is compromised by the attacker. Assume L denotes
the maximum length of routes in terms of nodes, and pi denotes the percentage
of routes with length i. Assuming disjointness between routes (no node is shared
between routes), the route expected compromise probability, denoted as X , is:

X =

L∑
i=1

pi(1 − (1− x)i) (1)

If Ma ≤ Md, the attacker may hit the flow at each interval with probability
X . Since route compromise probabilities are disjoint, the number of routes hit by
the attacker follows binomial distribution ∼ B(Ma, X). Therefore, the average
number of routes hit by the attacker is X ·Ma, and each hit compromises one
1/Md portion of the flow. For this case, MPE is:

MPE(Ma,Md) = 1− Ma

Md
X

For scenarios where Ma > Md, the number of routes hit by the attacker
follows binomial distribution ∼ B(Md, X). The average number of routes hit
by the attacker is X · Md. However, the exact percentage of the flow hit by
the attacker is more complex because the attacker is mutating faster than the
defender and she may hit one defender interval (route) after a portion of the flow
has been transmitted. Suppose z = �Ma/Md�; i.e., for each defender mutation,
the attacker mutates z times (defender is stationary to attacker during these
intervals). Based on the adversary model, if the attacker hits a route that is
being used, she will remain there until the defender’s mutation interval expires.
During the ith defender interval, the attacker mutates z times. If the attacker
hits the defender’s route during the first mutation with probability X , then the
whole flow is compromised. The probability that the attacker does not hit the
flow during the first mutation, but during the second mutation is (1 − X)X
(geometric distribution), and the portion of the flow that is compromised is
(z−1)/z

Md
. Generally, when Ma > Md the average percentage of the flow which is

compromised during one defender interval is:

z∑
k=1

(1−X)k−1 ·X · (z − k + 1)/z · 1/Md

Therefore, for this scenario MPE is:

MPE(Ma,Md) = 1−Md ·
(

z∑
k=1

(1 −X)k−1 ·X · (z − k + 1)/z · 1/Md

)
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We can combine both cases into the following formula:

MPE(Ma,Md) = 1−min(Ma,Md)·
(

z∑
k=1

(1−X)k−1 ·X · (z − k + 1)/z · 1/Md

)
(2)

where z = �Ma/Md�. For example, for static attackers where Ma = 1:

MPE(1,Md) = 1− X

Md

If both attacker and defender mutate with the same speed M :

MPE(M,M) = 1−X

The defender’s utility is defined based on the benefit from protecting the
flow in terms of MPE and the cost of Md mutations. Mutation cost emanates
from updating routing tables and installing new routes in routers/switches of
the network. On the other hand, the attacker’s utility is defined based on the
benefit from compromise (1 - MPE) and the cost of Ma mutations. The attacker
mutation cost originates from the fact that as the attacker increases the number
of attacked routes, her detection probability increases. Note that these benefit
and cost functions are application-dependent and differ based on the properties
of the flow and network. Eq. 3 and 4 denote generic utility functions for defender
and attacker respectively, where Π denotes the benefit function, Θ denotes the
cost function, and N denotes the number of disjoint routes.

ud(Ma,Md) = Πd(MPE(Ma,Md))− Θd(Md) (3)

ua(Ma,Md) = Πa(1 −MPE(Ma,Md))−Θa(Ma) (4)

Ma,Md ∈ (0, N ]

Since the route compromise probabilities are disjoint, N is the upper bound
for both players’ strategies. The objective of the game is to determine the Nash
equilibrium (NE) strategy profile (M∗

a ,M
∗
d ). Note that if the cost of mutation is

0, both players tend to maximize their mutation. For such scenarios, (N,N) is the
Nash equilibrium of the game. Otherwise, both players can deviate by increasing
their mutation and achieving higher payoffs (Fig. 3). However, if mutation cost
functions are nonzero, then the players’ payoffs depend on the trade-off between
benefit and cost of mutations. Numerical analysis of the game to determine the
pure Nash equilibrium requires θ(N2) payoff calculations. If no pure strategy NE
exists, we either determine the mixed Nash equilibrium of the game and then
randomly choose a strategy according to the distribution, or we assume that the
attacker plays Ma = N and determine the Md that maximizes defender’s payoff.

To determine the defender mutation interval, we simply divide flow dura-
tion Tf by M∗

d ; i.e., T = Tf/M
∗
d . Flow duration is either provided as input or

determined based on flow size and network bandwidth.
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2.4 Optimal Route Selection

Route selection is accomplished by formalizing RRM constraints and using off-
the-shelf SMT solvers to determine M∗

d qualified routes between the designated
source and destination. However, for large M∗

d , the computational complexity, as
well as topological limitations, does not allow SMT solvers to determine all the
routes at once. Instead, we relax the problem by defining a relatively small win-
dow size w such that at each iteration, SMT solver determines w new routes until
all M∗

d routes are generated. While computational limitations of SMT solvers
necessitate smaller window sizes, overhead resulting from multiple model solving
necessitates larger windows. In our approach, we set w = 10.

We can model the network as a directed graph G = (V,E), where V is the
set of hosts and E is the set of links. Suppose there is a flow with source S and
destination D (S,D ∈ V ). Also assume the network contains n nodes v1, . . . , vn
and m edges e1, . . . , em. The capacity of node vi is denoted as C(vi). Moreover,
the Boolean variable bki denotes inclusion of node vi in the kth route: if bki = 1,
then node vi is used for the flow; otherwise vi is not used for the flow. Our ob-
jective is to use a SMT solver to find a satisfiable assignment to all the variables
bki . The following formalization models the problem of discovering w qualified
routes between S and D:

bkS = 1, bkD = 1, 1 ≤ k ≤ w (5)

bki = 1 ⇒
∑

vj∈χ(vi)
bkj = 2, ∀vj except S and D, 1 ≤ k ≤ w (6)

∑
vj∈χ(y)

bkj = 1, y ∈ {S,D}, 1 ≤ k ≤ w (7)

∑
1≤i≤n

bki ≤ L, 1 ≤ k ≤ w (8)

bki = 1, ∀vi contains A, 1 ≤ k ≤ w (9)

bki = 0, ∀C(vi) ≤ Bf , 1 ≤ k ≤ w (10)

((bki = 1) ∧ (bli = 1)) ⇔ ζk,li = 1), ∀i, 1 ≤ k, l ≤ w, k �= l (11)

ηk,l =
∑

1≤i≤n

ζk,li , 1 ≤ k, l ≤ w, k �= l (12)

ηk,l ≤ Lp, 1 ≤ k, l ≤ w, k �= l (13)

bki , ζ
k,l
i ∈ {0, 1}, ∀i, k, l (14)

Eq. 5 guarantees that the source and destination of each route are S and
D. Eq. 6 guarantees that each intermediate node of each route is adjacent to
exactly two nodes in the route. This also disallows inclusion of cycles in the
routes. Moreover, Eq. 7 states that S and D are only adjacent to only one node
in each route.
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Eq. 8 (QoS constraint) guarantees that the length of the route does not exceed
L. Note that we assume a uniform delay for each network link.

Eq. 9 (Security constraint) guarantees that the route must pass through the
nodes that contain required access control devices (such as firewalls), which are
denoted as A.

Eq. 10 (Capacity constraint) guarantees that the route should avoid the nodes
that do not have the capacity that is required by the flow (denoted as Bf ).

Eq. 11, Eq. 12 and Eq. 13 (Overlap constraint) guarantee that any two routes
in the w intervals will have the maximum number of overlapping nodes Lp.

More specifically, Eq. 11 defines parameter ζk,li such that ζk,li = 1 if node vi
is shared between kth and lth routes. Eq. 12 counts the number of overlapping
nodes between the two routes and denotes it as ηk,l. Finally, Eq. 13 guarantees
that the number of overlapping routes does not exceed the threshold Lp; i.e.,
ηk,l ≤ Lp. Eq. 14 specifies the value range of the variables.

If SMT solver fails to find any satisfiable assignment, we will relax the con-
straints (e.g., increase Lp in Eq. 13, or decrease w) and solve the model again.
Note that in this paper, we only consider RRM for a single flow. However, RRM
for multiple flows can be defined similarly. In this case one needs to find the
routes for every flow and there may be additional constraints that are related to
the priority of the flows.

2.5 Route Mutation Planning

Given M∗
d routes, the objective of route mutation planning is to ensure end-

to-end reachability throughout flow transmission. To achieve this objective, we
must ensure that at any point during transmission all routers know how to
forward the incoming flow packets toward the destination. More specifically, we
must ensure that any mutation from the old route ro to the new route rn does
not cause unreachability. Alg. 2 describes a route management algorithm that
guarantees end-to-end reachability.

Theorem 1. Alg. 2 guarantees sound and lossless flow transmission.

Proof. Assume Alg. 2 does not guarantee lossless flow transmission. This implies
that there exists a router rt that fails to forward the flow packets at some point.
All network routers can be categorized into four classes based on their inclusion
or exclusion in ro and rn.

– rt �∈ rn ∧ rt �∈ ro: such routers will never receive any flow packets, because
no router will ever have any rule to forward flow packets to them.

– rt ∈ rn ∧ rt �∈ ro: the router will not receive any packet before rn entries
are added because no router in ro will forward any flow packet to them.
Afterwards, the router will forward the flow packets soundly.

– rt ∈ rn ∧ rt ∈ ro: the router will forward packets soundly, either based on ro
or rn entries.
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– rt �∈ rn ∧ rt ∈ ro: the latest time that rt may receive a packet after rn is
activated will less than the round-trip time between the source and destina-
tion. Before this time, rt will forward the packets soundly. Afterwards, the
router will not receive any flow packets.

Therefore, none of the routers will fail to forward the flow packets, resulting in
a contradiction.

Algorithm 2. route mutation planning algorithm

function ChangeRoute(ro → rn)
add entries for all routers rt s.t. rt ∈ rn ∧ rt �∈ ro
modify entries for all routers rt s.t. rt ∈ rn ∧ rt ∈ ro
wait for one RTT
delete entries for all routers rt s.t. rt ∈ ro ∧ rt �∈ rn

3 Implementation

Implementation of RRM on conventional networks can be done by installing
static route entries in the routing tables of the corresponding routers. For exam-
ple, to configure static routes in the Cisco routers, the administrator can specify
the exact routing entry by using the command “ip route”. The administrator can
also define the priority of the static entry (also called administrative distance) to
override the dynamic route entries. Route selection and mutation planning will
be performed by the central controller which has privileged access to all routers
in the network. Flow and network attributes are provided as input parameters to
the controller via a designated interface. The controller (1) determines M∗

d and
T by determining the game equilibrium, (2) uses a SMT solver such as Z3 [12]
to determine the set of routes, and (4) uses its privileged access to update the
routing entries for each mutation interval according to Alg. 2.

Thorough evaluation of RRM effectiveness and overhead requires its deploy-
ment in large-scale networks with random topologies. To this aim, we deployed
RRM on a software-defined network (SDN). In SDN, the network controller
monitors and controls the entire network from a central vantage point via an
interface, such as OpenFlow [11]. Due to flexibility and programmability of net-
work switches in software-defined networks, mutation from one route to another
can be accomplished as a series of flow table updates in all the switches both
along the old and new routes.

We used Mininet [5] python libraries to develop a random topology generator
that constitutes large-scale software-defined networks with various edge distribu-
tion models. The network is managed by a python POX [10] controller. The POX
controller acts as the central authority to manage route mutation in switches.
Optimal route selection is performed using Z3 [12] binding to Python. Our proto-
type implementation shows that route mutation in SDN can be deployed soundly
and without packet loss.
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4 Evaluation

We evaluate effectiveness and overhead of RRM through theoretical and exper-
imental analysis.

4.1 Effectiveness

Expected Theoretical Effectiveness. In Section 2.3 we define our analytical
evaluation metric, called MPE that denotes the average theoretical effectiveness
of RRM against persistent attackers in terms of the average percentage of the
flow that is transmitted without being compromised. Although analytical MPE
is defined based on the assumption that routes are disjoint (Lp = 0 in Eq. 13), it
provides an accurate approximation of RRM effectiveness in random topologies.

Fig. 1 shows effectiveness of RRM against static attackers with different ca-
pabilities. Note that (1) RRM is significantly effective against static attackers,
and (2) increasing Md (the defender mutation speed) slightly improves RRM
effectiveness against static attackers.

Fig. 2 compares effectiveness of RRM against persistent attackers in the non-
RRM network. Non-RRM network is a network where Md = 1; i.e., the defender
is not mutating. Note that (1) persistent attacks on non-RRM networks are very
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disruptive, and (2) as the number of defender’s mutation intervals approaches
that of attacker’s, RRM effectiveness is improved.

Fig. 3 compares RRM effectiveness for various attacker and defender mutation
interval lengths. Note that as the ratio ofMd overMa increases, MPE approaches
1. However, both Md and Ma cannot theoretically exceed the number of node-
disjoint routes, which is limited for practical networks [18].

Fig. 4 compares the effect of network size (n), and the route length L on
MPE in non-RRM and RRM (Md = Ma) networks with the fixed attacker
capability r = 250. Note that as the network size increases, the node compromise
probability decreases which improves MPE. Also the advantage of RRM over
non-RRM gradually decreases with the increase of n. This is because for large
non-RRM networks, the attacker needs longer time to hit the route.

Theoretical Effectiveness for Threshold-Critical Flows. Certain classes
of flows such as Shamir’s threshold k-out-of-n secret sharing scheme [15] require
threshold-critical effectiveness; i.e., the flow transmission is successful as long as
less than a certain percentage of flow packets are compromised.

For a flow that can tolerate up to l route (i.e., interval) compromises, MPEl

denotes the probability that at most l intervals are compromised by the attacker.
Note that l is an application-dependent input parameter, which is determined
based on sensitivity and criticality of the flow. If each route is compromised
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independently of other routes (routes are disjoint) and both players are mutat-
ing with the same rate (i.e., Ma = Md), the probability that exactly i mutation
intervals are hit is denoted as the random variable Z and follows binomial dis-
tribution Z ∼ B(Md, X) [16]. Accordingly, MPEl can be defined as:

MPEl = P (Z ≤ l) =

l∑
i=0

(
Md

i

)
· (X)i · (1−X)Md−i (15)

Also, it is straightforward to show that E(MPEl) = 1−X :

E(MPEl) =
1

Md

Md∑
i=0

P (Z ≤ i) =

=
1

Md
(Md − P (Z = 1)− . . . iP (Z = i)− . . .−MdP (Z = Md)

=
1

Md
(Md − E(Z)) =

= 1−X (16)
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which is consistent with Eq. 2. Fig. 5 shows the effect of mutation intervals
on threshold MPE. Note that all lines intersect at the point where l/M = X ;
i.e., where the route compromise probability is equal to the tolerable threshold.
Moreover, contrary to the average MPE, in cases where l/M > X , increasing
Md has a negative effect on the threshold MPE.

Experimental Effectiveness. In practical networks, very few node-disjoint
routes can be found for a fixed source and destination [18]. For overlapping
routes, the assumption that the compromise probabilities of routes are inde-
pendent is not valid. Therefore, for random topologies we calculate MPE via
experimentation. In order to generate required topologies we developed a ran-
dom topology generator for Mininet that allows generation of random Mininet
networks with n switches and average node degree d according to one of the
Erdos-Rnyi (random graph), Barabsi-Albert (scale-free), or Watts and Strogatz
(small-world) models.

To generate the ith simulation scenario, n and d are provided to the genera-
tor. The generator creates a network by uniformly choosing one of the random
graph, scale-free or small-world models. This ensures that the calculated MPE
demonstrates the average effectiveness of RRM for various real-world network
models. Then, given r the controller determines M∗

d and uses the SMT solver
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to determine the set of routes. Next, at each mutation interval the controller
uses one of these routes for flow transmission. The attacker is simulated in the
following way: given r, for each simulation we randomly choose r nodes as the
set of nodes known to the attacker. We also assume that the attacker is rational
and plays her best strategy M∗

a . At each interval, the attacker uniformly selects
one node and attacks it. If this node belongs to any route that is currently being
used by RRM, we mark the portion as compromised.

To approximate expected MPE with acceptable accuracy, we use the Monte
Carlo method [14]. Suppose random variable Yi denotes MPE of the ith simula-
tion for i = 1, . . . , l as iid sequence of samples of MPE. Using the law of large
numbers, the approximation of expected MPE is:

Ê(MPE) =
1

l

l∑
i=1

Yi

The estimated magnitude of error for Ê(MPE) is of order ˆσMPE . For each sim-
ulation scenario, the expected MPE is approximated by repeating the simulation
until the error falls below the threshold.

Fig. 6 compares analytical and experimental MPE for random networks with
n = 1000, d = 5 and L = 5. Note that analytical MPE serves as an upper bound
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for RRM effectiveness. Also note that expected MPE of the flow approaches 0
when node compromise probability approaches 1. This means that if an adversary
is highly persistent and highly capable, RRM will lose its effectiveness.

Fig. 7 compares the experimental MPEs for various overlap constraints. Note
that for Lp = 0, the experimental MPE is consistent with analytical MPE.
Moreover, as Lp increases, MPE decreases significantly. This is because as the
overlap between the routes increases, attack on a node has higher probability of
compromising more than one route.

4.2 Overhead Evaluation and Limitations

Alg. 1 describes the general outline of the RRM controller algorithm. The com-
plexity and computational overhead of each step is as follows:

– Optimal strategy selection: numerical calculation of pure Nash equilibrium
requires at most θ(N2) steps.

– Optimal route selection: Satisfiability problem is NP-complete in general. How-
ever, recent advances in SMT solvers have made them scalable to satisfiability
problems with thousands of variables. Fig. 8 shows the time of SMT solving
for optimal route mutation on a machine with Quad Core processor (3.3GHz,
6M cache) and 4 GB DDR3 RAM. We can see that the SMT solving time in-
creases with the network size n, especially when the number of switches/routers
in the network reaches 300. This is also because the number of possible routes
increases exponentially with the size of the network. This has a negative effect
on scalability of RRM. However, (1) RRM is used to protect the designated
flows, and normal traffic is routed via conventional protocols, and (2) instead
of using one centralized controller, the RRM responsibilities can be distributed
among several cooperating controllers.

– Route mutation planning: the RouteChange algorithm installs a new route in
O(n). The upper bound for the number of routing table updates is O(M∗

dL).
However, the accurate number of updates depends on the average route lengths
and the average number of overlaps between routes. Fig. 9 shows the average
length of the route found by the SMT formalization for random networks
with different sizes and different length upper bounds. We can see that the
average route length of the RRM algorithm converges to some value with
the increase of network size. Fig. 10 shows the experimentation results for the
average number of routing table updates (flow entries in SDN) in networks with
different number of mutation intervals and different overlap upper bounds. In
this figure, L = 6. Note that (1) higher mutation speeds requires higher number
of updates, (2) higher overlaps between routes reduces the number of updates,
and (3) although the number of updates increases linearly with the network
size, but since route lengths are upper bounded the linear line has a mild
upward slope.
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5 Related Works

Applying multipath routing in computer networks had been proposed as early
as 1970s, but the original purpose is mainly for load balancing. The protocols
such as Split Multiple Routing (SMR) [1], multipath DSR [3], AOMDV [8], and
AODVM [18] try to find disjoint paths in routing. However, in practical networks,
the number of disjoint paths is usually very small [18].

Other protocols try to improve security through multipath routing such as
SPREAD [7], SRP [13], SecMR [9], DSM [6]. The route selection in these proto-
cols is deterministic. This means if the attacker knows the algorithm, the routes
can be predicted.

The multipath algorithm in [16] generates randomized multipath routes that
are also highly dispersive and energy efficient in wireless sensor networks. The
algorithm is also based on random walk and its variants and the generated
multipath routes are highly resilient to black hole attacks.

Unlike previous approaches, our work provides an automated, nondeterminis-
tic, and optimal approach to route mutation problem by formalizing the strategy
selection based on game-theoretic concepts, and formalizing route selection as a
constraint satisfaction problem with various operational, QoS and security con-
straints. Moreover, in our approach the route selection is random and designed
to counter persistent and informed adversaries.

6 Conclusion

In this paper, we present RRM as a proactive defense strategy against DoS
attackers. To the best of our knowledge, RRM is the first proposed technique
that offers an efficient practical random route mutation which considers flow,
network and security constraints as well as attacker’s capabilities and strategies.
Our analysis and preliminary implementation show that RRM is feasible and
flexible, guarantees end-to-end reachability and can decrease the percentage of
disrupted packets to less than 10% of the case without RRM.

One drawback of RRM is its limited scalability due to the centralized control
as well as the overhead raised from solving the SMT model for large networks.
For future work, we plan to investigate how several controllers can interact to
improve the scalability of RRM. Solutions include separating the route selec-
tion and the route planning, or dividing the network into several segments each
managed by a separate controller.
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Appendix: Table of Parameters

Table 1. Description of main parameters

Bf capacity required by the flow
bki variable denoting whether node vi belongs to the kth route
C(vi) capacity of the node i
f flow
L maximum route length
Lp upper bound for number of overlapping nodes between the routes
Ma attacker strategy: no. of attacker’s mutations
Md defender strategy: no. of defender’s mutations
N average no. of routes between a given source and destination
n no. of nodes in the network
r no. of network nodes known to attacker
S source or sender of the flow
D destination or receiver of the flow
pi percentage of routes with length i
Tf duration of the flow f
x node compromise probability (x = r/n)
X route compromise probability
z ratio of attacker to defender mutations z = �Ma/Md�
vi network node
ua attacker’s payoff function
ud defender’s payoff function
ηk,l variable denoting number of shared nodes between kth and lth routes
A nodes that include access control devices
χ(vi) the set of neighbors of node vi
Π the benefit function
Θ the cost function
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Abstract. We present the Plug-and-Play IP Security (PnP-IPsec) pro-
tocol. PnP-IPsec automatically establishes IPsec security associations
between gateways, avoiding the need for manual administration and co-
ordination between gateways, and the dependency on IPsec public key
certificates - the two problems which are widely believed to have limited
the use of IPsec mostly to intra-organization communication.

PnP-IPsec builds on Self-validated Public Data Distribution (SvPDD),
a protocol that we present to establish secure connections between remote
peers/networks, without depending on pre-distributed keys or certifica-
tion infrastructure. Instead, SvPDD uses available anonymous commu-
nication infrastructures such as Tor, which we show to allow detection
of MitM attacker interfering with communication. SvPDD may also be
used in other scenarios lacking secure public key distribution, such as the
initial connection to an SSH server.

We provide an open-source implementation of PnP-IPsec and SvPDD,
and show that the resulting system is practical and secure.

1 Introduction

Consider two Internet users, Alice and Bob. Alice wants to communicate securely,
and possibly anonymously, with Bob. For anonymity, Alice may use an anonymity
service, such as the Tor network of relays [5]. However, Alice also wants to encrypt
her messages to Bob; how can she obtain securely Bob’s public key?

The standard answer is that Alice will send a request to Bob and receive
back his public key, certified by a trusted Certificate Authority (CA) [12], like
in normal use of SSL/TLS, e.g., by browsers; if anonymity is desired, all com-
munication would be via the anonymity service, e.g., Tor. However, this does
not apply to the IP-security protocol (IPsec) [15], where traditional certificates
are less appropriate, and which requires configuration (of security policies, net-
work blocks, etc.). Furthermore, users may prefer complementary or alternative
mechanisms to trusting a CA, e.g., due to several incidents where CAs authenti-
cation mechanisms were broken and false certificates were issued: CAs have been
compromised, e.g., [4], and used insecure cryptographic primitives [22]. Can Al-
ice securely receive Bob’s public key, without depending on a trusted CA for
authentication? Can she take advantage of IPsec, if supported by Bob?
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(a) Near-MitM Attacker. Communica-
tion between GWA and all other peers
routes via the attacker.
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(b) Far-MitM Attacker. Only commu-
nication between GWA and GWC routes
via the attacker.

Fig. 1. Types of MitM attackers with respect to GWA.

In this work we show that this is possible. We first present Self-validated
Public Data Distribution (SvPDD), which provides public key distribution using
an anonymity service, instead of relying on authentication and certification of
Bob by a trusted CA. SvPDD can use an existing anonymity service such as Tor,
the largest public anonymity network, as we do in our prototype implementation.

The basic idea of SvPDD is simple: Bob will periodically self-validate that
communication to and from himself is not tampered with, by sending to himself
anonymized requests for his public key, and validating that his responses arrive
correctly (with correct public key) and in timely fashion. Any tampering by
a MitM attacker with the response (public key) would be detected by Bob.
Similarly, Alice will use the anonymity network to send self-addressed ‘requests’;
a MitM trying to block Alice’s communication will not be able to distinguish
between this ‘self-test’ communication and ‘real’ communication between Alice
and Bob, and hence Alice will detect any tampering.

SvPDD detects when a MitM attacker disrupts communication as well as
points-out the attacker’s location. We classify MitM attackers with respect to a
particular party P to either of two types, illustrated in Figure 1:

Near-MitM who can manipulate communication between P and a significant
portion the network. This attacker will usually be en-route between P to
the anonymity network.

Far-MitM who can manipulate communication between P and few remote
peers. This attacker will usually be ‘near’ with respect to those peers.

This property is significant; a system administrator cannot do much about a
‘far’ MitM attacker disrupting communication with some peer and may ignore
such warning, but an alert about a ‘near’ MitM attacker is likely to result in
immediate corrective actions (such as changing ISP or scanning for malware).

SvPDD seems especially beneficial to facilitate adoption and deployment of
IPsec, the standard protocol for cryptographically-protecting IP traffic. IPsec is
a mature, well-validated protocol providing strong security guarantees. In par-
ticular, IPsec provides defenses against Denial of Service (DoS) attacks, while
the main alternatives, SSL and TLS, run over TCP, and hence are vulnerable to
TCP’s DoS attacks such as SYN flooding [6] and Ack-Storm [1] (although note
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that IPsec should also be implemented correctly to avoid DoS vulnerabilities,
see [11]). IPsec is implemented in most operating systems and in many devices
(it is even part of IPv6 specification). However, actual use of IPsec is very lim-
ited; the main reason seems to be the difficulty in establishing IPsec connections,
which normally require manual establishment of keys. SvPDD provides an alter-
native, allowing secure and completely-automated establishment of IPsec keys
between peers, without requiring (rarely-available) IP-address based certificates.

There is another challenge to the deployment of IPsec: the need to coordi-
nate its use among peers. Even if all IPsec peers had appropriate public-key
certificates from a trusted CA, in order for IPsec to be deployed between two
peers, each peer must be aware of the deployment at the other end, by an ap-
propriate security-policy rule setup by the administrator. Coordination is even
more challenging to support IPsec’s tunnel mode, where an IPsec gateway ma-
chine protects an entire network; here, the security-policy rule must specify the
network block(s) connected via the given peer (network gateway).

To completely address the IPsec deployment challenges, we present the Plug-
and-Play IP Security (PnP-IPsec) protocol, built on top of SvPDD. PnP-IPsec
automatically establishes IPsec security associations between networks (and/or
hosts); see the layering of PnP-IPsec and SvPDD in Figure 2. PnP-IPsec adds
two functions to SvPDD: (1) automated detection of remote peers, including
handling of scenarios where there are multiple PnP-IPsec gateways en route to
the destination; and (2) validation of the address block protected by the remote
gateway. In order to establish a secure IPsec connection between two networks,
all that is required is for each of the networks to independently run PnP-IPsec;
all the rest is done automatically by PnP-IPsec.

1.1 Our Contribution
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Fig. 2. The layering of our protocols (boxed
with solid lines) and related protocols
(boxed with dashed lines).

We present two protocols, SvPDD and
PnP-IPsec. SvPDD uses an available
anonymization service such as Tor to
establish secure public keys between
peers, without requiring off-path key
distribution or certification authori-
ties. This provides alternative means
for validation of public keys, for pro-
tocols and systems where appropriate
public-key certificates are unavailable.

PnP-IPsec, built on top of SvPDD,
allows automated IPsec tunnel
establishment, without requiring co-
ordinated administration or key dis-
tribution infrastructure. PnP-IPsec
automatically detects the existence of
a remote PnP-IPsec gateway, obtains its public key and network block, and
validates that the remote gateway indeed controls that network block.
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SvPDD and PnP-IPsec provide the following defense against MitM attackers:

– A far MitM attacker w.r.t. both peers cannot interfere with the protocol.
– A near-MitM with respect to one of the peers may interfere with the protocol,

but in this case it will be detected by the administrator of that peer.

We provide an open-source implementation for our protocols (see Section 7)
and hope that this will increase deployment of IPsec.

SvPDD is not limited to IPsec, and our implementation may be integrated
into other protocols, such as SSH, in order to cope with a MitM attacker during
the initial setup (when the user learns the server’s unauthenticated public key),
or even TLS/SSL, to provide additional means to obtain and validate the public
key (protect users against CA authentication failures).

Lastly, this paper has the conceptual contribution of showing how anonymity
infrastructure can be used in lieu of PKI, to establish security between arbitrary
peers, without common administration, pre-shared keys or CAs.

1.2 Related Work

Ishai et al. [13] presented a theoretical study of how two parties may use a shared
anonymous broadcast medium, to establish a shared secret key between them;
the two parties work in coordinated manner, which in practice implies, they could
have also established keys while coordinating, hence their work is not of much
practical impact. However, their work does provide some of the concepts used
and extended in our work, where we establish keys between arbitrary parties,
without assuming any coordination between them in advance. Hence, our work
extends their conceptual contribution, and shows that the basic idea of using
anonymity to establish security can also have practical implications.

There have been multiple efforts to simplify deployment of cryptographic pro-
tocols by automating their setup, without certification authorities or coordinated
management; we discuss these efforts below.

Several protocols, such as SSH [26] and BTNS [23,25], are based on the Leap
of Faith (LoF) approach (also called ‘Trust On First Use’). In LoF, public keys
are exchanged without any validation during the first connection, and later used
(assuming the initially-exchanged public keys were correct); SSH applications
also display the public key to the users, allowing users to use off-path validation
of the public key (but few do). LoF protocols assume a handicap of the MitM
attacker, i.e., that he does not impersonate during the initial handshake; in
contrast to these works, SvPDD and PnP-IPsec do not assume this limitation.

A notable effort for mitigating the need for coordinate deployment of IPsec is
by the FreeS/WAN project [9], who attempted ([21]) to create an opportunistic
version of IKE, as documented in [18,19]. The specification requires the network
administrator to place a reverse DNS record mapping to the network’s gateway
and public key. The initiator retrieves the DNS record and uses the fetched
configuration (gateway address and public key) to start the IKE negotiation.
However, using [19] requires configuration of the reverse DNS tree, which is
complex, and furthermore allows only one level of gateways - typically, by an ISP
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or a large organization; it does not allow multiple gateways, or protection of small
networks and individual hosts (who do not control the reverse-DNS records).

Perspectives [24] and Convergence [16] are proposals for web-server public key
validation mechanisms, to replace or complement the existing certificates (issued
by CAs trusted by the browsers). Both rely on the use of a set of trusted ‘notary’
servers, which collect (and potentially cache) the public keys for the users. The
idea is that a MitM near the client is not en route between most of the notaries
and the server, allowing the client to learn the keys from the notaries (according
to their majority). SvPDD performs a similar function to these proposals, with
two advantages: (1) SvPDD does not require establishment and maintenance
of a new infrastructure of notaries, and instead leverages an existing, general-
purpose, anonymity infrastructure (Tor), which has many users and handles
high traffic rates, compared to which the traffic generated by our protocols is
negligible (see [17]); and (2) SvPDD provides better security to the users by not
requiring them to trust new entities for authentication, and only to trust the
anonymity network to anonymize their requests.

Double-Check [2] shows how one can validate self-signed certificates by ac-
cessing the server from various locations, suggesting Tor as an available proxy
infrastructure. Double-Check helps against a MitM attacker that controls some
of the routes to the server, but fails if attacker controls all (or most) of the
routes from the client or to the server. In contrast, SvPDD utilizes anonymity,
and suggests the concept of self-validation. SvPDD provides the same benefits
as Double-Check, and in addition, using self-validation, SvPDD detects and pro-
vides a clear indication when an attacker controls all (or most) of the routes near
the client or near the server.

PnP-IPsec shares some aspects with a previous work of ours, LOT [7], an
opportunistic tunneling protocol for establishing credentials between two arbi-
trary networks in order to detect and block spoofed packets. However, there
are substantial differences. First, LOT was designed to secure against off-path
(non-eavesdropping) rather than MitM attackers. Second, LOT creates hop-by-
hop tunnels, decapsulating and re-encapsulating information at every node on
the path; this property is avoided in PnP-IPsec, which establishes gateway-to-
gateway IPsec tunnels.

2 SvPDD: Model and Security Requirements

SvPDD runs on two peers, a querier and a responder, without coordinated man-
agement or common public key infrastructure. The basic goal is that the querier
will learn the responder’s response for his query; however, clearly if there is a
MitM connecting one of the peers to the network, then the MitM can prevent sat-
isfying this goal simply by blocking all communication between the peers. This
section describes the model and security requirements of the SvPDD protocol.

Anonymity Infrastructure. We assume the availability of an anonymity network.
Peers can send messages via the anonymity network, hiding the intended recip-
ient; and receive messages from the network, while the sender remains hidden.
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Furthermore, we assume that the querier has the public key of the anonymity
network, i.e., can send authenticated and encrypted messages to it; this property
holds for many anonymity networks, such as Tor [5] and Mix-Nets [20], where
the client has a hard-coded copy of the network’s public key.

Notice that while the querier sends and receives authenticated content from
the anonymity network, he does not trust the network to authenticate other
peers (in contrast to CAs in the public key infrastructure).

Attacker Model. We consider two types of MitM attackers, defined according to
the near-MitM threshold, denoted by δ: a near-MitM attacker with respect to a
peer P obtains a message that P sends or receives from the anonymity network
with probability greater than δ; otherwise, the attacker is considered a far-MitM
with respect to P . If attacker A obtains a message, then he can block it or
modify its content (MitM capabilities). We assume that the attacker is either
near the querier or responder (but not both), or far with respect to both peers.

Based on the analysis that we present in Section 4, we require that 0 < δ ≤ 1
8 ;

the exact value of δ is a local configuration provided by the system administrator,
who essentially sets the threshold for a MitM-alert: the lower that δ is, the more
attackers will be classified as ‘near-MitM’ (in our implementation the default
configuration is δ = 1

10 ).

Communication Model. When a peer P sends a message to the anonymity net-
work: if the MitM attacker A is near P then he obtains the message, as well
as the identity of the sender; otherwise, A obtains the message and sender’s
identity with probability δ.

Similarly, when a peer P receives a message from the anonymity network: if
A is near P , then he obtains the message as well as the identity of the recipient;
otherwise, A obtains the message and identity of the recipient with probability δ.

Notice that our communication model is the ‘worst-case’ scenario, where a
near-MitM obtains a message from or to P with probability 1 (i.e., obtains all
such messages), and a far-MitM obtains such a message with probability δ.

Security Requirements. A public data distribution protocol with security param-
eter n is secure if the following properties hold, except with negligible probability
in n:

No False Alert: if A is far with respect to P , then P does not alert for MitM.
Authenticity: if neither peer alerts for MitM, then the querier learns the cor-

rect response for his query, exactly as sent by the responder.

From these properties follows the availability property: if A is far with respect
to both peers, then the querier learns the correct response for his query.

3 SvPDD: Protocol

In this section we present Self-validated Public Data Distribution (SvPDD), a
protocol that allows a querier to retrieve and validate content from a responder
and satisfies the security requirements in Section 2.
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Fig. 3. A Query-Response Transaction over the Tor Anonymity Network.

3.1 The Query-Response Transaction

In an SvPDD transaction the querier sends a query for which the responder
sends a response, both messages are transmitted via the anonymity network; see
illustration in Figure 3. Each transaction belongs to one of two classes:

Peer-to-Peer (p2p). The querier attempts to learn the responder’s response.
Self. A ‘dummy’ transaction, the peer is both the querier and the responder.

Each transaction has a random identifier, denoted by tid, which is chosen by
the querier and attached to the transaction messages. We refer to a message that
belongs to a p2p/self-transaction as a p2p/self-message (respectively).

A peer can validate that self-transaction messages were not modified or blocked
by a MitM since the peer is both the sender and recipient of messages: he knows
‘what he sends’ and compares it with ‘what he receives’. In order to keep track of
self transactions, each peer keeps a global self-table that maps the identifiers of
self-transactions to their corresponding messages as sent and received (to allow
validation), as well as each message’s transmission time.

Message Indistinguishability. An important property of SvPDD messages is that
two messages of the same type (query or response), but of different classes (p2p
and self), are indistinguishable. Namely, a MitM attacker who observes the mes-
sage (that routes via the anonymity network) usually cannot learn the identities
of both the sender and recipient, and detect whether they are different (a p2p-
message) or the same (a self-message).

The following describes the content of query and response messages:

Query Message. The querier initiates the transaction by sending a query message
to the responder. The message specifies a random ephemeral public key that the
querier generates1 and the request from the responder (see Figure 3).

In our model (described in Section 2), the querier has the public key of the
anonymity network, and therefore queries are authenticated and encrypted until
they leave the anonymity network (to reach their destination). However, a MitM

1 The ElGamal encryption scheme, for example, allows to efficiently generate private
and public key-pairs.
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near the responder can observe the clear-text query; in order to satisfy the
desired message indistinguishability property, we require that the query is either
constant (e.g., all SSH clients specify the same query, for the server’s public key)
or chosen according to a fixed distribution that is independent of the querier’s
identity or message history.

Response Message. When a responder receives a query message, he replies with
a response message. The response specifies the requested data encrypted with
the querier’s ephemeral key (see Figure 3). Note that we rely on the indistin-
guishability property of the (probabilistic) encryption scheme [10], hence, a MitM
attacker who observes the response cannot learn according to its content whether
it is a response for a self or p2p query (unless the MitM modifies the encryption
key in the query, risking that the query was ‘self’).

Transaction Completion. A transaction is complete if one of the following
conditions is true: either (1) a response was received in context of this transac-
tion, or (2) the query is stale (decided according to its transmission time). In
the latter case, we say that the transaction is expired.

3.2 The Query-Response Session

In order to retrieve data from the responder, the querier starts an SvPDD-session
which is composed of n p2p-transactions (where n is a security parameter). In
each transaction in the session, the querier sends the same request (but with a
different transaction identifier and ephemeral public key) to the responder. The
querier saves a per-session p2p-table which maps the transaction identifier (tid)
to the corresponding query and response (if received).

The querier and responder perform self-transactions in the background, in
parallel to ongoing query-response sessions (see details in Section 3.3).

Message Validation. When a peer receives a message, it first checks whether
its tid field indicates a self-transaction; if yes, then the message is assigned the
class ‘self’ and otherwise the class ‘p2p’. The validation process is different for
each message class.

If the received message (query or response) is a self-message, then the peer
validates that the message was not modified while it was in-transit. If the self-
message was modified, then its transaction is marked as ‘failed’.

In contrast to self-messages, the recipient peer cannot validate the content
of p2p-messages. The recipient only validates, in case of a p2p-response, that it
belongs to an uncompleted transaction in some session (otherwise the response
is discarded).

MitM Detection. Each self-transaction is associated with a result that is either
success or failure. The result of a self-transaction is failure if: (1) it expired (see
‘transaction completion’ in Section 3.1); or (2) the transaction was marked as
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‘failed’ during the message validation process (above). When a self-transaction
completes, its result is enqueued in a cyclic, n entry long, history queue (where
n is the number of transactions in each session).

If there are at least 3δn ‘failure’ results in the party’s history queue, where
0 < δ ≤ 1

8 is the near-MitM threshold (see Section 2), then SvPDD alerts the
local administrator of a near-MitM.

Session Completion. An SvPDD-session completes when all its transactions
have completed. The session is then associated with a success or failure result,
depending on the responses that were received for the queries in its context: If
more than 1

2n (i.e., a majority) transactions of that session received an iden-
tical response, then the session result is success and that response is returned.
Otherwise, the session’s result is failure and no response is returned.

Notice that the threshold for a near-MitM alert (3δn) is lower than that of
completing a session in success (12n > 3δn, since δ ≤ 1

8 ). In the following section
we present a security analysis and show that this property ensures the desired
security requirements, defined in Section 2.

3.3 Protocol Execution

In order to retrieve authenticated data from the responder, the querier starts
an SvPDD-session. Additionally, SvPDD runs in the background, on both the
querier and responder, and initiates self-transactions. SvPDD monitors the re-
sults of the n recent self-transactions, and alerts for a MitM in case that 3δn of
them are assigned the ‘failure’ result.

Self-Transactions Instantiation. SvPDD approximates the rate of p2p-messages
and sends self-messages at roughly the same rate. The reasoning is that if the
peers send only few self-messages, then a MitM can change arbitrary messages,
which are likely to be p2p; in contrast, if the peers send many self-messages,
then SvPDD’s overhead grows large.

A peer P instantiates approximately one self-transaction for every
p2p-transaction. This is achieved by measuring r(t), the number of new p2p-
transactions that P participates-in during time period t (each period has the
same length). During period t+ 1, P instantiates r(t) + c new self-transactions;
where c ≥ 1 is a constant value, such that even if the rate of new p2p-messages
increases during period t+ 1, it is still likely to be less than the number of new
self-transactions.

3.4 Instantiation over Tor

One of the advantages of SvPDD is that suitable anonymity infrastructures are
already available. In particular, it is possible to instantiate SvPDD over Tor [5],
the largest publicly available and well-studied anonymity network. Using Tor,
queries and responses route via a Tor circuit, which is a chain of proxies (chosen
by the querier), see Figure 3. Each transaction is relayed over a different random
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Tor circuit, such that transactions of the same session cannot be associated
together by a MitM observer.

The querier (running the Tor-client software) has the public keys of the Tor
proxies, which are used to authenticate and encrypt query messages until they
leave the network to reach the responder. This satisfies our assumption on the
anonymity network from Section 2.

In an online technical report [8] we describe the Tor network and SvPDD
instantiation over it in greater detail.

4 SvPDD: Analysis

In this section we show that SvPDD satisfies the security requirements presented
in Section 2.

No False Alert Requirement. A far MitM with respect to a peer P obtains a
message (sent to or from P) with probability δ. Since in every transaction there
are two messages (request and response), the probability that the far MitM
attacker obtains at least one message of a transaction is no more than 2δ (in this
case the attacker can modify or block the message, i.e., corrupt the transaction).

Let the random variable η denote the number of self-transactions, out of the
recent n self-transactions, where the far MitM obtains at least one message. The
expected value of η is E [η] ≤ 2δn. However, the attacker must modify or block
at least 3δn messages of the n recent self-transactions in order to cause a false
alert for near-MitM (see SvPDD definition in Section 3.2).

Hoeffding’s inequality allows to bound the probability that η ≥ 3δn; i.e.,
that η deviates from its expected value by at least δn, see Equation 1:

Pr [η ≥ 3δn] ≤ e−2(δn)2 (1)

This bound shows that the probability that the far-MitM attacker succeeds in
causing a false alert is a negligible function in n. In an online technical report [8]
we further explain the mathematical analysis behind the result in Equation 1.

Authenticity Requirement. The SvPDD protocol sends roughly the same amount
of self and p2p-messages. A message of one class is indistinguishable from that
of the other; therefore, an attacker that modifies a protocol message, modifies
with probability 1

2 a p2p-message and with probability 1
2 a self-message.

Assume that the total number of messages that near-MitM attacker modifies
is less than 7δn. Let ξ denote the number of p2p-messages that he modifies.
Since each message that the attacker modifies has probability 1

2 to be ‘p2p’, the
expected value of ξ is E [ξ] < 7

2δn. However, in order to provide a false response,
the attacker must modify messages of more than 1

2n ≥ 4δn p2p-transactions of
a particular SvPDD-session (since 0 < δ ≤ 1

8 ).
Hoeffding’s inequality allows to bound the probability that ξ ≥ 4δn (and

therefore, bound the probability that ξ > 1
2n); i.e., that ξ deviates from its

expected value by at least 1
2δn, see Equation 2:
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Fig. 4. PnP-IPsec Deployment Topology. Alice and Bob are communicating hosts;
PnP-IPsec is deployed on GWA and GWB and establishes an IPsec tunnel between them.

Pr [ξ ≥ 4δn] ≤ e−2( 1
2 δn)

2

= e−
1
2 (δn)

2

(2)

Complementary, assume that the total number of messages that the near-
MitM attacker modifies is at least 7δn. Let ξ′ denote the number of self-messages
that he modifies. Since each message that the attacker modifies has probability 1

2
to be ‘self’, the expected value of ξ′ is E [ξ′] ≥ 7

2δn. However, in order to avoid
a MitM alert, the attacker must modify less than 3δn self-messages.

Hoeffding’s inequality allows to bound the probability that ξ′ < 3δn; i.e.,
that ξ′ deviates from its expected value by at least 1

2δn, see Equation 3:

Pr [ξ′ < 3δn] ≤ e−2( 1
2 δn)

2

= e−
1
2 (δn)

2

(3)

The bounds in Equations 2 and 3 show that the probability that the attacker
succeeds in violating the authenticity property is a negligible function in n. In an
online technical report [8] we further explain the mathematical analysis behind
the results in Equations 2 and 3.

5 Plug-and-Play IP Security

This section presents Plug-and-Play IP Security (PnP-IPsec), a protocol that
establishes an IPsec tunnel [15] between two network gateways without coordi-
nated administration and without relaying on a public key infrastructure.

Figure 4 illustrates a typical deployment topology for PnP-IPsec. The proto-
col’s goal is that if there are two communicating hosts, Alice and Bob, behind
two PnP-IPsec gateways, then the gateways will automatically establish an IPsec
tunnel to secure all communication between their networks. In this section we
assume that there are no intermediate PnP-IPsec gateways (such as GWC in
Figure 4), Section 6 extends the protocol to handle this scenario.

PnP-IPsec builds on SvPDD; namely, each gateway uses SvPDD to retrieve
and validate the IPsec configuration from its peer. Figure 5 illustrates the three
phases that compose PnP-IPsec, which we describe in the following three sub-
sections. In the fourth subsection we describe the protocol’s security properties.
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Fig. 5. PnP-IPsec Diagram. Dashed arrows mark destinations of intercepted packets.

5.1 Initiation Phase

PnP-IPsec is initiated by a gateway, GWA, when it forwards a packet from Al-
ice to Bob. This is the trigger packet illustrated in Figure 5. The initiation is
probabilistic: a trigger packet initiates the handshake with a (configurable) prob-
ability p > 0; the lower p is, the lower PnP-IPsec overhead and the more time is
required to establish a tunnel.

GWA begins the PnP-IPsec handshake by initiating an SvPDD-session to re-
trieve the IPsec configuration of the gateway closest to Bob. The response con-
figuration includes the following three elements, which in ‘classic setup’ of IPsec
are manually configured by the network administrator at both gateways.

1. The gateway’s (responder) IP address; which is the encapsulation end-point
for tunneled traffic.

2. The gateway’s public key; used to secure IPsec messages.
3. The network address block behind the gateway; traffic to this network block

will be encapsulated.

Additionally, the response includes a client puzzle [3] and a cookie that allows
the responder to re-generate the puzzle (without keeping state). The initiator
solves this puzzle in order to request the responder to initiate a PnP-IPsec
handshake in the opposite direction; as we describe in the last phase of the
handshake. The use of a client-puzzle protects the responder from a denial of
service (DoS) attack that persuades him to initiate PnP-IPsec handshakes with
arbitrary peers (see security discussion in Subsection 5.4).
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Since GWA does not know the address of Bob’s gateway, SvPDD-queries (i.e.,
IPsec configuration requests) are sent to Bob’s address. The queries traverse the
route from the anonymity network to Bob, allowing Bob’s gateway, GWB, to
intercept the queries and respond. See phase 1 in Figure 5.

The responder (GWB) only handles the queries if it is unaware of another
PnP-IPsec gateway ‘behind it’ that is also a gateway of Bob. The reason is that
PnP-IPsec should establish IPsec tunnels between the closest gateways to Alice
and Bob (the communicating hosts) in order to protect their communication
from intermediate malicious nodes (MitM attackers). In Section 6 we show how
gateways automatically learn which of their subnets have a ‘closer’ gateway.

5.2 Validation Phase

In this phase the initiator validates that the responder controls the claimed
network address block (provided in the Initiation phase). This phase is similar
to the network block validation process that we presented in [7], except that the
messages here are sent over SvPDD in order to cope with a MitM attacker (see
analysis in Section 5.4); we briefly present the network block validation protocol.

Network block validation is composed of m parallel SvPDD-sessions (m is a
security parameter), where in each session the initiator (GWA) picks a random
address in the responder’s (GWB) claimed network block and sends a challenge
to it (each session is associated with a different address). If GWB is indeed the
gateway of that address, then it can intercept the challenge and respond; see
phase 2 in Figure 5. If all challenges receive correct responses, then GWB is
validated to control the network block that it claimed.

The following describes the challenge and response messages.

Challenge. The challenge is an SvPDD-query for a random string, denoted by c.

Response. The response is the tuple < c,H(GWB, pkB, netB) >, where c is an
echo of the challenge and < GWB, pkB, netB > is GWB’s IPsec configuration; H
is a cryptographic hash function.

When GWA receives the response (returned by SvPDD after a challenge-
response session completes), it verifies that the value c is correct. GWA also
verifies that the hash value matches that of GWB, pkB and netB which were re-
ceived in the Initiation phase, in order to ensure that the responder does not
change.

5.3 Invocation Phase

In the last phase, GWA invokes IKE [14] and attempts to bootstrap IPsec (phase 3
in Figure 5), using the remote configuration < GWB, pkB, netB >.

If GWB has the corresponding configuration of GWA (< GWA, pkA, netA >),
then IKE will establish an IPsec tunnel between the two gateways2. Otherwise,
IKE aborts; in this case, GWA requests GWB to initiate a PnP-IPsec handshake

2 Since the gateways run PnP-IPsec without coordination, it is likely that GWB had
already received GWA’s public IPsec configuration.
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in the opposite direction (see Figure 5). The request is an SvPDD-query which
specifies GWA’s public IPsec configuration configuration, < GWA, pkA, netA >, as
well as the solution to the client puzzle (i.e., proof of work) and cookie that GWB

sent in the Initiation phase. This request is encrypted using GWB’s public key;
therefore, it does not leak the identity of the initiator (GWA), which is required
in order to anonymize queries and use SvPDD (see Section 3.1).

When GWB receives this request, it re-generates the puzzle using the cookie
and verifies the solution of the puzzle. If the solution is correct, then GWB may
accept the request, if it is interested in setting up a tunnel with GWA (e.g., this
may depend on the Initiator’s network, netA); otherwise GWB rejects the request.
If GWB accepts, then it continues to the handshake’s Validation phase.

In the Invocation phase of this second handshake both gateways will have
each other’s configurations (IKE can bootstrap IPsec). However, if IKE initiation
does not succeed (on the second time), then a MitM is assumed to block IKE
(preventing establishment of IPsec), and the gateways block the (clear-text)
traffic between their networks.

5.4 Security Discussion

In this subsection we motivate the security properties of PnP-IPsec.

Discovery: PnP-IPsec gateways of communicating hosts quickly detect each other.
Assume that Alice sends packets to Bob. For every such packet, the probability

that GWA (Alice’s gateway) initiates the PnP-IPsec handshake is p; namely,
the probability that the handshake does not initiate after k packets is (1 −
p)k, i.e., exponentially decreasing (since p > 0). When GWA completes the PnP-
IPsec handshake, i.e., retrieves and validates GWB’s public IPsec configuration,
it triggers the handshake in the opposite direction. Namely, only a few packets
travel between Alice and Bob before the gateways discover each other.

Authentication: a PnP-IPsec gateway learns the IPsec configuration from the
correct responder, rather than a MitM attacker.

This property of PnP-IPsec follows from the authenticity property of SvPDD,
since the configuration is obtained over an SvPDD-session (in the Initiation
phase).

Correctness: a gateway only learns a correct configuration from its peer.
The gateway learns the configuration from the correct peer (the authenticity

property). It is left to show that this configuration is also correct; namely, that a
malicious responder cannot persuade the initiator that it controls a false network
block. We now motivate why such malicious responder will not pass the Valida-
tion phase, i.e., the responder will not be able to provide a correct response for
at least one challenge; we refer to [7] for further details.

Assume that the responder controls net1, but advertises net2 �= net1; namely,
|net1∩net2|

|net2|
= α < 1. The probability that the responder receives all challenges

is α−m, where m is the number of challenge-response sessions (and number
of different challenge destination addresses); i.e., the probability that a gateway
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does not control the entire network block that it claims, but passes the Validation
phase, is negligible in m. In practice the ratio is often α� 1, because ISPs use
CIDR address allocation; we refer to [7] for further analysis of the network block
validation technique.

Resilience to DoS: PnP-IPsec does not open a new denial of service attack vector
on the responder.

We show that: first, PnP-IPsec has low communication and computational
requirements from the responder; and second, the responder does not keep any
state during the handshake.

First, in terms of communication load, the responder only sends one message
(response) for every message (query) that the initiator sends. In terms of com-
putation, the responder generates a client puzzle in the Initiation phase, which is
very efficient (client puzzles [3] are means to mitigate DoS attacks). An initiator
can cause the responder to initiate a handshake, however this requires solving
the responder’s puzzle, which has significant computational overhead.

Second, in terms of memory, the responder does not keep state per-peer or
between requests: (1) the responder provides its (single, global) public IPsec
configuration during the Initiation phase; (2) the responder only requires the
challenge-field specified in the challenge packet in order to generate the corre-
sponding response during the Validation phase; (3) the responder re-generates,
rather than saves, the client puzzle (using the cookie) when it receives a request
to initiate a PnP-IPsec handshake in the Invocation phase.

6 Extending PnP-IPsec for Multiple Gateways

PnP-IPsec should establish an IPsec tunnel between the gateways that are ‘clos-
est’ to the communicating hosts; these are GWA and GWB in the example network
topology that is illustrated in Figure 4. However, an intermediate non-malicious
gateway, such as GWC, who is unaware of the existence of a gateway behind
it (i.e., GWB) may unintentionally ‘hijack’ the PnP-IPsec handshake by respond-
ing to the Initiation-phase message that GWA sends to Bob (see Figure 5). This
section describes the discovery process for lower-tier gateways, where GWC learns
that netB is, in-fact, under control of GWB

3.

6.1 Proactive Gateway Discovery

In order to detect higher-tier gateways, a PnP-IPsec gateway sends a discovery
message to a random address outside of its network block. This message specifies
a random identifier, the gateway’s public key and its network block.

If a gateway, say GWB (see Figure 4), connects to the Internet via another
PnP-IPsec gateway, GWC, then GWC will intercept the discovery message and

3 A malicious GWC may not follow the protocol described in this section and hijack
connections to netB, in this case GWB will identify GWC as a near MitM (since
PnP-IPsec builds over SvPDD).
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initiate a network block validation process with GWB. Network block validation
is similar to that described in Section 5.2 except that it does not run over SvPDD;
i.e., the challenges and responses are transmitted directly to their destinations
(and not via the anonymity network). The reason that we do not employ SvPDD
is that, in this case, protection against MitM attackers is not required: if there is
a MitM attacker between GWC and GWB who hijacks the PnP-IPsec handshake,
then he will be detected since PnP-IPsec runs over SvPDD (our goal in this
section is only to detect intermediate non-malicious PnP-IPsec gateways).

If the network block validation completes successfully, then GWC learns that
netB is in-fact under control of GWB. In this case, GWC will not respond to future
PnP-IPsec messages sent to or from netB (see network illustration in Figure 4),
which will allow GWA and GWB to use PnP-IPsec and establish a tunnel.

Dynamic Network Topologies. New PnP-IPsec gateways can unexpectedly
set-up while others can suddenly shut-down. Therefore, PnP-IPsec gateways
periodically send discovery messages, in order to allow new higher-tier gateways
to detect their presence (and network block ownership).

Additionally, gateways (such as GWC in Figure 4) periodically send challenges
to their subnets (such as netB) that are marked as controlled by lower-tier gate-
ways (i.e., GWB) in order to ensure that the lower-tier gateways are still available
and control their subnets.

Finally, when a PnP-IPsec gateway (such as GWB) gracefully shuts down,
it sends a prune message to its higher-tier gateway (GWC) in order to revoke
ownership over the subnet (netB) immediately.

7 Implementation and Deployment

We implemented PnP-IPsec as well as the underlying SvPDD protocol, as an
open-source application for Linux gateways; our implementation is available at
http://pnpipsec.sourceforge.net/.

In order to deploy PnP-IPsec, the network administrator only needs to install
our application on the local gateway and provide it with the gateway’s pri-
vate/public key pair (since the keys are not signed, e.g., by a CA, they may also
be automatically generated at install time). PnP-IPsec learns the reminder of
the local IPsec configuration, i.e., gateway’s IP address and the network address
block behind it, by reading the routing table. The configuration also includes the
near-MitM threshold (δ), the probability to initiate a PnP-IPsec handshake (p),
and security parameters (n,m), which have default values that may be modified
by the administrator. The following is an example of a deployment command:

PnpIPsec.py private-key-file public-key-file

In terms of efficiency, our implementation establishes an IPsec tunnel be-
tween two gateways, whose networks communicate at the rate 1mbps, in approxi-
mately two minutes; each gateway sends less than 3MB of PnP-IPsec traffic. This
measurement is by using the default parameters: δ= 1

10 , p= 1
100 , n = 40,m! = 20.
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8 Conclusions and Future Work

Our main conclusion from this work is that while ‘conservative’ key infrastruc-
tures such as key distribution centers and certification authorities may be incon-
venient for deployment of some protocols, other infrastructures may be suitable.
In particular, we showed how available anonymity networks can be utilized to
allow convenient and secure deployment of IPsec.

We presented SvPDD, a query-response protocol that utilizes an anonymity
infrastructure to cope with the man-in-the-middle threat model. We built PnP-
IPsec over SvPDD, which allows automatic establishment of IPsec tunnels. We
provided an open-source implementation of PnP-IPsec and hope that this work
will increase the deployment of the IPsec defense.

Future Work. The model considered in this paper, of using an available
anonymity infrastructure in order to authenticate public keys and data, is prac-
tical. It is therefore desirable to formally define this model which may benefit
other scenarios and protocols.

Furthermore, we believe that our protocols could further be improved. In
terms of efficiency, the use of anonymity networks to relay messages usually
comes at the price of encapsulation overhead. Can we improve the performance of
SvPDD without jeopardizing its security requirements? In terms of functionality,
can we extend PnP-IPsec to support setup of multicast IPsec tunnels?
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Abstract. We introduce a two-player stochastic game for modeling se-
cure team selection to add resilience against insider threats. A project
manager, Alice, has a secret she wants to protect but must share with
a team of individuals selected from within her organization; while an
adversary, Eve, wants to learn this secret by bribing one potential team
member. Eve does not know which individuals will be chosen by Alice,
but both players have information about the bribeability of each po-
tential team member. Specifically, the amount required to successfully
bribe each such individual is given by a random variable with a known
distribution but an unknown realization.

We characterize best-response strategies for both players, and give
necessary conditions for determining the game’s equilibria. We find that
Alice’s best strategy involves minimizing the information available to
Eve about the team composition. In particular, she should select each
potential team member with a non-zero probability, unless she has a
perfectly secure strategy. In the special case where the bribeability of
each employee is given by a uniformly-distributed random variable, the
equilibria can be divided into two outcomes – either Alice is perfectly
secure, or her protection is based only on the randomness of her selection.

Keywords: Insider Threats, Cyberespionage, Game Theory, Computer
Security, Access Control.

1 Introduction

Providing effective access control in organizations has been refered to as the
“traditional center of gravity of computer security” since it is a melting pot
for human factors, systems engineering and formal computer science approaches
[1]. Over the last decades, a large number of important contributions have been
made to address various technical challenges to the problem of access control for
important systems and sensitive data [18,19].
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This body of research is motivated in equal parts by the threat of malicious
attackers from the outside and potential abuse by legitimate system users. An-
derson further distinguishes between those situations in which insiders exploit
technical vulnerabilities of a system in opportunistic ways, and other situations
in which employees abuse the trust placed in them [1]. In our work, we address
the latter dimension of the problem space.

Data theft by trusted employees covers a significant share of insider attacks.
For example, a CERT investigation of 23 attacks showed that “in 78% of the
incidents, the insiders were authorized users with active computer accounts at
the time of the incident. In 43% of the cases, the insider used his or her own
username and password to carry out the incident” [16].

These attacks are occasionally attributed to disgruntled employees and are
said to be primarily destructive in nature. However, the steady rise of cyber-
espionage activities strongly motivates the threat scenario of employees stealing
information for monetary rewards. A recent article summarized publicly-known
United States legal data from the past four years and stated that “nearly 100
individual or corporate defendants have been charged by the Justice Department
with stealing trade secrets or classified information” [10]. The article just con-
sidered theft benefiting one particular foreign nation. Therefore, it is reasonable
to assume that the data merely represents the tip of the proverbial iceberg.

Turning a trusted employee into a spy provides a number of benefits for an
outside attacker. First, a security compromise by an insider might not be discov-
erable in comparison to external network-based attacks that might leave traces
identifiable for expert forensics teams. The result is that a corporation cannot
adequately plan and respond to evidence of a stolen trade secret. Second, an
insider can point the attacker towards particularly valuable secrets by identify-
ing the so-to-speak needle in the haystack. Given the accelerating data growth
within corporations it makes sense to assume that attackers are also suffering
from information overload as a result of their successful but unguided network
penetrations. Third, an insider can help the attacker interpret the stolen data
through complementary communications that do not have to take place at the
work location. Lastly, having an insider conduct the attack might be the only fea-
sibly way for an attacker to circumvent the defenses of particularly well-defended
targets such as military and intelligence services, i.e., the attacker makes use of
the human as the weakest link.

In this paper, we develop a formal model in which an attacker sidesteps tech-
nical security mechanisms by offering a bribe to one member of a project team
who works with sensitive data or business secrets. By applying game-theoretic
tools, we derive optimal strategies for the defender and attacker, respectively,
and provide numerical results to illustrate and explain our findings.

With our work, we intend to start a discussion about considering the com-
position of project teams as a formal and critical dimension of a comprehensive
corporate security policy.

The remainder of the paper is structured as follows: Section 2 provides the
background for our research and considers related work. In Section 3, we define
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the basic properties of our model. The conditions for Nash equilibria are given
in Section 4. Section 5 instantiates our model with explicit distributions, and
numerical illustrations of the derived solutions are given in Section 6. We discuss
our results and provide concluding remarks in Section 7.

2 Background and Related Work

2.1 Studies on Insider Threats and Cyber-espionage

Over the last several years, much research has been published in the area of
insider threats, using different models and loss figures. For example, Carnegie
Mellon University’s CERT has published several reports concerning the field
of insider threats, and industrial and economic espionage. Their 2011 report
identifies two different models of espionage [13]. Motivating for our scenario is
the so-called Ambitious Leader Model, where a leader (either from the inside or
the outside of the organization), tries to convince (other) employees to follow
her and to divulge secrets. In an earlier work, the institute identified several
indicators that preceded either industrial espionage or sabotage, and thus could
give hints if an employee might be vulnerable to being bribed [3]. In our research,
we do not explicitly model behavioral and motivational factors that influence
the trustworthiness of an employee. Instead, we assume that the defender has
an indicator available to measure the level of trustworthiness.

The awareness of this threat is represented, for example, by a brochure pub-
lished by the Federal Bureau of Investigation (FBI) [8], that lists:

“A domestic or foreign business competitor or foreign government intent
on illegally acquiring a company’s proprietary information and trade
secrets may wish to place a spy into a company in order to gain access to
non-public information. Alternatively, they may try to recruit an existing
employee to do the same thing.”

Additionally, the FBI “estimates that every year billions of U.S. dollars are lost to
foreign and domestic competitors who deliberately target economic intelligence
in flourishing U.S. industries and technologies [9].” The FBI further lists the
following recommended activities for organizations: “Implement a proactive plan
for safeguarding trade secrets, and confine intellectual knowledge on a need-to-
know basis [9].”

Another example from Germany includes a 2012 report which identifies the
loss for the German industry caused by industrial espionage to be around 4.2
billion e [6]. In this study, over 70% of these losses were caused by members
of their own organization, through a combination of giving away intellectual
property (47.8%) and failing to disclose their knowledge due to social factors
(22.7%). Note that these numbers might be unreliable and interest-driven, as
highlighted in [2].
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2.2 Related Work

This paper touches several different research areas. The struggle between hiders
of information and seekers of information is ubiquitous in the study of steganog-
raphy, the field from which our idea originated [11]. This inspiration arose from
exploring the plight of a steganographer who wishes to hide k bits in a binary
cover sequence of length n, and a steganalyst who wishes to detect whether the
sequence has been modified. That model differs significantly from our model
here, as the authors assume an equal a priori probability of modified and un-
modified sequences, and the function that measures the predictability of sequence
positions is part of the model as a parameter.

Another area that is directly connected to the situation we model is the or-
ganization of firms under weak intellectual property rights. For example, in [17],
the author considers a situation in which a monopolist may distribute intellec-
tual property across two employees. There is also a competitor who might hire
one of these two to gain access to the intellectual property. The author models
this situation as a leader–follower game, and derives equilibria.

There are many additional research directions covering the subject of insider
threats, including deterrence theory [7], game theory [12] and trust models [5],
which are all tangent to our model. But, to the best of our knowledge, none of
the published models gives directions for a project manager on how to staff a
team, that has to know a specific intellectual property, while being aware that
an attacker might try to bribe one of his personnel.

3 Model Definition

In this section, we describe a two-player, non-zero-sum, non-deterministic game
which models the team composition scenario. First, we describe the general
context and environment of the game. Next, we introduce the game’s players.
Then we define these players’ pure strategies, and the payoffs resulting from these
simple choices. Finally, we introduce notation to represent mixed strategies and
express the players’ expected payoffs in terms of this notation.

3.1 Environment

In our model, an organization with a secret of high value has N employees
who are qualified to operate on projects that require knowing the secret. The
organization must share the secret with at least k employees in order to operate.
The employees have varying levels of trustworthiness. For a given employee i,
this trustworthiness level is given by a random variable Ti whose distribution Ti
is known. We explicitly disregard other constraints on team building and assume
that all aspects of the trustworthiness of an employee can be captured by the
random variable Ti. If Ti = ti, then employee i will reveal her known secrets
whenever she is bribed by an amount at least ti, but she will not reveal the
secret if she is bribed by an amount less than ti. We use the standard notation
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FTi(b) = Pr[Ti ≤ b] (1)

to denote the probability that the trustworthiness level of employee i is at most b.

3.2 Players

The players in our game are Alice and Eve. Alice is an organization’s project
manager who is responsible for selecting a team of qualified employees to work on
a confidential project. The project requires each team member to know a secret
of the organization, and this secret has a value S. Alice needs to share this secret
with k of her N qualified employees. Eve is a spy from either inside or outside
of the organization. Eve wants to know the secret and has the resources to bribe
or eavesdrop on one of Alice’s employees. If Eve eavesdrops, the trustworthiness
level of an employee can be interpreted as a measure of difficulty for Eve to
eavesdrop on that employee. Note that Eve does not know which employees are
on the team.

3.3 Strategy Sets

Alice’s pure strategy choice is to select a subset of her N employees with whom
to share the secret. Formally, she chooses a size-k subset I of {1, . . . , N}.

Eve’s pure strategy choice is to select one employee and an amount to bribe.
Formally, she chooses a pair (i, b) consisting of an index i ∈ {1, . . . , N} and a
bribe value b ∈ R≥0.

3.4 Payoffs

Suppose that Alice plays a pure strategy I, and Eve plays a pure strategy (i, b).
If i ∈ I and Ti ≤ b, then Eve wins the value of the secret minus the amount of
the bribe, and Alice loses the value of the secret. In all other cases, Eve loses the
amount of the bribe, and Alice loses nothing.

Table 1. Payoffs for Alice and Eve for the strategy profile I, (i, b)

Strategy profile Payoff for
and outcome Alice Eve

i ∈ I and Ti ≤ b −S S − b
i /∈ I or Ti > b 0 −b

3.5 Representation of Mixed Strategies

A mixed strategy is a distribution over pure strategies. For Alice, the canonical
representation of her mixed strategy space is a finite probability distribution on
the set of size-k subsets of {1, . . . , N}. For Eve, the canonical representation of
her mixed strategy space is a continuous probability distribution over the set
{1, . . . , N} × R≥0. Because of the structure of the game, the payoff for both
players is determined by simpler representations of the strategy spaces than the
canonical ones, and we proceed to describe these representations next.
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Mixed Strategy for Alice. In the canonical representation of Alice’s mixed
strategy, we would let aI denote the probability that she recruits the members
of the size-k set I into the project team. However, since Eve can bribe only one
employee, the payoff for any mixed strategy depends only on the probabilities of
sharing the secret with each employee. Since several different mixed strategies
might induce the same projection onto employee probabilities, we gain simplicity
by restricting our attention to these projections.

By overloading notation, for each i = 1, . . . , N , we let ai denote the probability
that Alice shares the secret with employee i. Formally,

ai =
∑
I:i∈I

aI . (2)

The requirement that Alice has to share the secret with k employees induces
the notational constraint

N∑
i=1

ai = k. (3)

Furthermore, it can be shown easily that, for any sequence 〈ai〉 ofN probabilities
whose sum is k, there exists a mixed strategy for Alice whose projection is 〈ai〉.
Consequently, we will represent Alice’s mixed strategies by such sequences for
the remainder of this paper.

Mixed Strategy for Eve. To represent Eve’s mixed strategies, which are
distributions over the set {1, . . . , N}×R≥0, we introduce two random variables,
Y and B. Random variable Y takes values in {1, . . . , N}, and it represents which
employee Eve has chosen to bribe. Random variable B takes values in R≥0, and
represents the amount of the bribe.

Overloading notation in a way that is similar to what we did for Alice, for
each i = 1, . . . , N , we define ei to be the probability that Eve bribes employee
i, so that we have

ei = Pr[Y = i]. (4)

Since Eve always chooses exactly one employee, we have

N∑
i=1

ei = 1. (5)

To describe a distribution over bribes, we sometimes use the notation

FB(b) = Pr[B ≤ b], (6)

which gives the probability that the value of the bribe chosen by Eve is at most
b. It is also useful to describe the conditional distributions over bribes focused
on a particular employee i. For each i = 1, . . . , N , let Bi be the random variable
whose range is the set of all possible bribes to player i, and whose distribution
Bi is defined by

FBi(b) = Pr[Bi ≤ b] = Pr[B ≤ b|Y = i]. (7)
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In what follows, we will represent Eve’s mixed strategies as pairs (〈ei〉 , 〈Bi〉),
where each ei is the probability that Eve bribes the employee i, and each Bi is a
distribution over bribe values, conditioned on the assumption that Eve chooses
to bribe employee i.

3.6 Payoffs for Mixed Strategies

In order to use the simplified mixed-strategy representation defined above, we
have to express the players’ expected payoffs in terms of these representations. If
Alice plays a mixed strategy represented by 〈ai〉 and Eve plays a mixed strategy
represented by (〈ei〉 , 〈Bi〉), then the expected payoff for Alice is

−S ·
N∑
i=1

ai · ei · Pr[Ti ≤ Bi] (8)

and the expected payoff for Eve is

S ·
N∑
i=1

(ai · ei · Pr[Ti ≤ Bi])−
N∑
i=1

ei · E[Bi], (9)

where E[Bi] denotes the expected value of Bi under the distribution Bi.

4 Analytical Results

Our goal in this section is to derive analytical results on the structure of the
Nash equilibria of the game. We begin by characterizing Alice’s and Eve’s best-
response strategies. Then, we use these characterizations to constrain Alice’s
and Eve’s strategies in an equilibrium. Finally, based on these constraints, we
formulate an algorithm for computing an equilibrium.

4.1 Best-Response Strategies

Alice’s Best Response. For a fixed strategy of Eve, Alice’s best response
minimizes the probability of the secret being compromised. Since the probability
of employee i being targeted and successfully bribed is ei ·Pr[Ti < Bi], Alice has
to choose a set I of k employees to minimize

∑
i∈I ei · Pr[Ti ≤ Bi]. However, as

the set of k employees minimizing the probability of the secret being disclosed
can be non-unique, Alice’s best response can be a mixed strategy 〈ai〉 whose
support consists of more than k employees. This notion is formalized by the
following lemma:

Lemma 1. Given Eve’s mixed strategy (〈ei〉 , 〈Bi〉), Alice’s best response can be
characterized as follows:

– For any employee i, if there are at least N − k employees whose probabilities
of being targeted and successfully bribed are strictly greater than that of i,
then ai = 1.
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– For any employee i, if there are at least k employees whose probabilities of
being targeted and successfully bribed are strictly less than that of i, then
ai = 0.

Proof. First, for any employee i, if there are at least N − k employees whose
probabilities of sharing the secret are strictly greater than that of i, then i is
a member of every size-k subset of employees that minimizes the probability of
the secret being disclosed. Thus, in any best response, Alice always shares the
secret with this employee i.

Second, for any employee i, if there are at least k employees whose probabilities
of sharing he secret are strictly less than that of i, then i cannot be a member of
any k-subset that minimizes the probability of the secret being disclosed. Thus,
i cannot be in the support of any mixed strategy that is a best response for
Alice. ��

Eve’s Best Response. Suppose that Alice is playing a mixed strategy where
ai is the probability that she shares the secret with employee i. We define
MaxUE(Ti, ai) to be the maximum payoff that Eve can attain from targeting
employee i. Formally,

MaxUE(Ti, ai) = max
b∈R≥0

(ai · S · Pr[Ti ≤ b]− b) . (10)

Lemma 2. For any employee i and trustworthiness distribution Ti, Eve’s max-
imum payoff MaxUE(Ti, ai) as a function of Alice’s secret-sharing probability ai
has the following properties:

1. MaxUE(Ti, 0) = 0,
2. MaxUE(Ti, x) is increasing in x,
3. MaxUE(Ti, x) is uniformly continuous in x.

Proof.

1. First, it is clear that the maximum of maxb∈R≥0
(−b) is attained at b = 0.

2. To show that the function is increasing in x, let x, y ∈ [0, 1] with x < y.
Let bx be a bribe value at which the maximum payoff is attained for secret-
sharing probability x, that is, MaxUE(Ti, x) = x ·S ·Pr[Ti ≤ bx]− bx. Then,
we have

MaxUE(Ti, y) ≥ y · S · Pr[Ti ≤ bx]− bx
≥ x · S · Pr[Ti ≤ bx]− bx
= MaxUE(Ti, x).

3. Finally, to show uniform continuity, let x, y ∈ [0, 1] with x < y, and let by
be a bribe value at which the maximum payoff is attained for secret-sharing
probability y, that is, MaxUE(Ti, y) = y · S · Pr[Ti ≤ by] − by. Using the
previous result that MaxUE(Ti, y) is increasing, we have
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0 < MaxUE(Ti, y)−MaxUE(Ti, x)

≤ (y · S · Pr[Ti ≤ by]− by)− (x · S · Pr[Ti ≤ by]− by)

= (y − x) · S · Pr[Ti ≤ by]

≤ (y − x) · S.

So MaxUE(Ti, x) satisfies a Lipschitz condition in the variable x with Lips-
chitz constant S; and hence, it is uniformly continuous. ��

For a given employee, it is possible for more than one bribe value to give Eve
the maximal payoff. We define ArgMaxBE(Ti, x) to be the set of bribes that give
Eve her maximum payoff for employee i, which is a function of the employee’s
trustworthiness level distribution and the probability of receiving the secret from
Alice. Formally,

ArgMaxBE(Ti, ai) = argmax
b∈R≥0

(ai · S · Pr[Ti ≤ b]− b) . (11)

Using this notation, we may define constraints on Eve’s best response strategy
as follows.

Lemma 3. Given any strategy 〈ai〉 for Alice, Eve’s best response selects an
employee i with the largest MaxUE(Ti, ai) over all i ∈ {1, . . . , N}, and then
chooses a bribe value b from ArgMaxBE(Ti, ai). If there are multiple pairs (i, b)
satisfying these constraints, then Eve may choose any distribution whose support
is a subset of these payoff-maximizing pure strategies.

Proof. Follows readily from Equations (9), (10), and (11). ��

4.2 Nash Equilibria

Above, we introduced constraints on best-response strategies. In the following
subsection, we introduce additional constraints on equilibrium strategies.

Alice’s Strategy in an Equilibrium. It is generally in Alice’s interest to
minimize the maximum attainable payoff for Eve, as this generally (but, since
the game is non-zero sum, not necessarily) minimizes her loss. We know that
Eve’s best response is always to choose an employee (or a set of employees)
which will maximize MaxUE(Ti, ai) over i. Therefore, in an equilibrium, Alice’s
strategy should try to equalize these quantities, subject to the constraints that
her sharing probabilities cannot exceed 1 and that they sum to k.

This notion is made formal in the following theorem:

Theorem 1. In any Nash equilibrium,

1. if ai, aj < 1, then MaxUE(Ti, ai) = MaxUE(Tj , aj), and
2. if aj < ai = 1, then MaxUE(Ti, ai) ≤ MaxUE(Tj , aj).
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Proof. Let 〈ai〉 , (〈ei〉 , 〈Bi〉) be Alice’s and Eve’s mixed strategies and assume
that this strategy profile is a Nash equilibrium.

1. For the sake of contradiction, suppose that ai, aj < 1 and it holds that
MaxUE(Ti, ai) �= MaxUE(Tj , aj). We can assume without loss of generality
that MaxUE(Ti, ai) < MaxUE(Tj , aj). Then, MaxUE(Tj , aj) > 0, which
(from Lemma 2.1) implies that aj > 0. From Lemma 3, we have that the
support of Eve’s best-response mixed strategy does not include i. Thus, Alice
may strictly increase ai towards 1, and strictly decrease every other non-zero
component of her strategy for employees other than i, while still satisfying
the constraint

∑
m am = k. By decreasing her secret-sharing probability

on every employee that Eve might bribe, Alice necessarily decreases the
total probability of Eve learning the secret. Therefore, Alice can improve her
expected payoff by changing her strategy, which contradicts the equilibrium
condition.

2. For the sake of contradiction, suppose that aj < ai = 1 and that
MaxUE(Ti, ai) > MaxUE(Tj , aj). Then, MaxUE(Ti, ai) > 0, which (based on
Lemma 2) implies that ai > 0. Consequently, we have (from Lemma 3) that
the support of Eve’s mixed strategy does not include employee j. So Alice
may simultaneously increase aj towards 1 and decrease her non-zero secret-
sharing probabilities for employees other than j, all while satisfying the
constraint

∑
m am = k. Again, by decreasing her secret-sharing probability

on every employee that Eve might bribe, Alice necessarily decreases the
total probability of Eve learning the secret. Hence, this strategy change will
increase her expected payoff, contradicting the equilibrium condition. ��

It follows from Theorem 1 that Alice’s equilibrium strategy 〈ai〉 may have
some employees with whom she shares the secret with certainty, but for all other
employees, her secret-sharing distribution is only constrained by a smoothness
constraint on the quantities MaxUE(Ti, ai). Furthermore, these quantities do
not depend on Eve’s strategy, a fact on which we will rely when computing an
equilibrium.

From Theorem 1, we also have that:

Corollary 1. In any Nash equilibrium,

– Alice is either secure, that is, Eve has no strategy against her with a positive
payoff, or she shares the secret with every employee with a non-zero proba-
bility. Formally, either MaxUE(Ti, ai) = 0 for every employee i, or ai > 0
for every employee i.

– The employees with whom Alice shares the secret with certainty are at most
as likely to be targeted by Eve as the other employees, with whom Alice is
less likely to share the secret.

It is interesting to compare the first point of the above corollary with Lemma
3. The former says that Alice shares the secret with every employee with a
non-zero probability (when she cannot be secure), while Lemma 3 says that
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Alice never shares the secret with an employee if there are at least k employees
that have lower probabilities of being targeted and successfully bribed. Since
an equilibrium strategy is necessarily a best response, it has to satisfy both
constraints. This implies that, in an equilibrium, Eve equalizes the probability
of targeting and successfully bribing over the set of employees that maximize
her payoff.

Eve’s Strategy in an Equilibrium. In this section, we build on the character-
ization of Alice’s equilibrium strategies presented in Theorem 1 to characterize
Eve’s equilibrium strategies. In the previous paragraph, we discussed how Eve
equalizes the probability of targeting and successfully bribing over the set of
employees that maximize her payoff.

This notion is made formal in the following theorem:

Theorem 2. In any Nash equilibrium, if ai, aj < 1, then ei · Pr[Ti ≤ Bi] =
ej · Pr[Tj ≤ Bj ].

Proof. Let 〈ai〉 , (〈ei〉 , 〈Bi〉) be Alice’s and Eve’s mixed strategies and assume
that this strategy profile is a Nash equilibrium. For the sake of contradiction,
suppose that 〈ei · Pr[Ti ≤ Bi]〉 is non-uniform over the set of employees with
whom Alice does not always share the secret. Let Imax be the set of employees
i for which ei · Pr[Ti ≤ Bi] is maximal.

First, assume that k ≤ N − |Imax|. Then, Alice’s best response never shares
the secret with the employees in Imax, that is, ai = 0 for all i ∈ Imax, as there
are k strictly better employees (as stated in Lemma 1). Consequently, we have
ei = 0 for every i ∈ Imax as Eve’ strategy also has to be a best response. But this
implies that ei · Pr[Ti ≤ Bi] = 0 for every i such that ai < 1, which contradicts
that 〈ei · Pr[Ti ≤ Bi]〉 is non-uniform. Thus, it has to hold that k > N − |Imax|.

From k > N − |Imax|, we have that Alice’s best response always shares the
secret with every employee i for which ei ·Pr[Ti ≤ Bi] is not maximal (as stated
in Lemma 1). Consequently, the only employees i for which ai < 1 holds are the
employees in Imax. But this contradicts that 〈ei · Pr[Ti ≤ Bi]〉 is non-uniform
since all employees in Imax have the same maximal ei · Pr[Ti ≤ Bi]. ��

Finding an Equilibrium Based on Theorems 1 and 2, we can formulate the
following algorithm for finding an equilibrium of the game:

1. Find an equilibrium strategy 〈a∗i 〉 for Alice:
We have to find an 〈a∗i 〉 that satisfies the constraints of Theorem 1. This
can be done, for example, using any multidimensional numerical optimiza-
tion method (e.g., the Nelder-Mead algorithm[15]) by using the sum of the
amounts by which each constraining equality is violated as the objective func-
tion. Since we have from Lemma 2 that every MaxUE(Ti, ai) is increasing
and uniformly continuous in ai, there always exists a solution 〈a∗i 〉 satisfying
the constraints of Theorem 1. Note that, since MaxUE(Ti, ai) is not strictly
increasing, the solution might not be unique.
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2. Find an equilibrium strategy (〈e∗i 〉 , 〈B〉) for Eve:
We have to find (〈e∗i 〉 , 〈B〉) that satisfies both Lemma 3 and Theorem 2.
Let MaxUE∗ = maxi MaxUE(Ti, a∗i ) and let I∗ be the set of employees for
whom the maximum is attained. If MaxUE∗ = 0, then there is no strategy
with positive payoff for Eve, so let B∗i ≡ 0 for every i (and 〈e∗〉 can be
arbitrary). Otherwise:
(a) For every i �∈ I∗, let e∗i = 0.
(b) For every i ∈ I∗, let B∗i always take some arbitrary but fixed bribe value

from ArgMaxBE(Ti, a∗i ), and let

e∗i =

1
Pr[Ti≤B∗

i ]∑
j

1
Pr[Tj≤B∗

j ]

. (12)

It can be verified easily that 〈a∗i 〉 also satisfies Lemma 1. Thus, 〈a∗i 〉 and
(〈e∗i 〉 , 〈Bi〉) form an equilibrium.

5 Special Case: Uniform Distributions on Trustworthiness

In this section, we assume that the trustworthiness level of each employee i is
generated by a uniform random variable Ti ∼ U(li, hi), 0 < li < hi < S. In other
words, we assume that employee i never reveals the secret for a bribe less than
li, always reveals it for a bribe more than or equal to hi, and the probability of
revealing it increases linearly between li and hi. Note that we allow a different
distribution, i.e., different li and hi, for each employee.

We begin our analysis by computing Eve’s optimal bribe values for a given
mixed strategy 〈ai〉 of Alice.

Lemma 4. Eve’s optimal bribe values are

ArgMaxBE(Ti, ai) =

⎧⎪⎨⎪⎩
{0} if ai <

hi

S

{0, hi} if ai = hi

S

{hi} otherwise.

(13)

The proof is available in the online version on the authors’ websites.
For uniform trustworthiness level distributions, the equilibria of the game can

be characterized as follows:

Theorem 3. If the trustworthiness level of each employee is generated according
to a uniform distribution U(li, hi), 0 < li < hi < S, the equilibria of the game
can be characterized as follows:

– If k <
∑

i hi

S , then Alice is perfectly secure: in any equilibrium, ai ≤ hi

S for
every i, Eve never bribes any of the employees, and both players’ payoffs are
zero.

– If k =
∑

i hi

S , then in any equilibrium of the game, ai = hi

S for every i, and
Eve’s payoff is zero.
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– If k >
∑

i hi

S , then in any equilibrium of the game, ai >
hi

S andBi ≡ hi for every
i, and Eve’s payoff is strictly positive while Alice’s payoff is strictly negative.

Proof. Let 〈ai〉 , (〈ei〉 , 〈Bi〉) be Alice’s and Eve’s mixed strategies and assume
that this strategy profile is a Nash equilibrium. We prove each case separately:

– k <
∑

i hi

S : For the sake of contradiction, suppose that ai >
hi

S for some i.

Then, there has to be a j such that aj <
hi

S , otherwise
∑

i ai = k <
∑

i hi

S
would not hold. Consequently, MaxUE(Ti, ai) > MaxUE(Tj , aj) and, from
Lemma 3, we have that ej = 0. Furthermore, from Theorems 1 and 2, we also
have that ei > 0. Therefore, Alice can increase her payoff by decreasing ai
and increasing aj , which contradicts the equilibrium condition. Thus, ai ≤ hi

S
has to hold for every i.

Now, for the sake of contradiction, suppose that Eve targets and bribes
employee i non-zero probability, that is, ei > 0 and Bi �≡ 0. Since Eve’s
strategy has to be a best response, we have that ai ≥ hi

S . Consequently, there

has to exist some j satisfying aj <
hi

S . From Lemma 3, we have that ej = 0.
Therefore, Alice can increase her payoff by decreasing ai and increasing aj ,
which contradicts the equilibrium condition. Thus, Eve never bribes any of
the employees, and it follows immediately that both players’ payoffs are zero.

– k =
∑

i hi

S : For the sake of contradiction, suppose that ai >
hi

S for some i,

which implies that there has to be a j such that aj <
hi

S . Then, we can show
that this leads to a contradiction using the same argument as in the first
paragraph of the previous case. Thus, ai = hi

S for every i. The rest follows
readily from Lemma 4.

– k >
∑

i hi

S : First, it is easy to see that, for any strategy 〈ai〉, there has to be

at least one i such that ai >
hi

S , which implies MaxUE(Ti, ai) > 0. By using
the strategy ei = 1 and some constant bribe value from ArgMaxBE(Ti, ai),
Eve can achieve a positive payoff. Consequently, for every strategy 〈ai〉, Eve’s
best response payoff has to be strictly positive. It follows immediately that,
in any equilibrium, Eve’s payoff is strictly positive while Alice’s payoff is
strictly negative.

Now, for the sake of contradiction, assume that ai ≤ hi

S for some i, which
implies MaxUE(Ti, ai) = 0. Then, we have that ei = 0 from Lemma 3. There-
fore, Alice can increase her payoff (i.e., decrease her loss) by increasing ai
and decreasing every non-zero component of her strategy, which contradicts
the equilibrium condition. Thus, ai >

hi

S has to hold for every i.
Second, assume indirectly that, for some 〈ai〉 and e that form an equilib-

rium and some i, ai <
hi

S . If ei = 0, then Alice would be able to increase her
payoff (i.e., decrease her loss) by simultaneously increasing ai and decreasing
some aj >

hi

S , which would contradict the assumption that 〈ai〉 and e form
an equilibrium. On the other hand, if ei > 0, then Eve would be able to
increase her payoff by simultaneously decreasing ei and increasing ej where

j is such that aj >
hj

S , which would also lead to a contradiction. Therefore,

we have that ai ≥ hi

S for every i in any equilibrium. Finally, Bi ≡ hi follows
readily from Lemma 4. ��
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6 Numerical Illustrations

In this section, we provide numerical illustrations for the results derived in the
previous section. Thus, throughout this section, we model the trustworthiness
levels of the employees as independent uniform random variables Ti with param-
eters li and hi.

Figure 1 shows both players’ equilibrium payoffs as functions of the number

of employees k that have to know the secret. First, when k is less than
∑

i hi

S ,
Alice can choose a secure strategy such that bribing is infeasible for Eve. Thus,

both players’ payoffs are zero. Second, when k is larger than
∑

i hi

S , but it is low

enough such that ai < 1 for each employee i, Alice distributes k −
∑

i hi

S evenly
among the employees’ probabilities. Thus, the probability of compromise and,
hence, Alice’s loss and Eve’s payoff increase linearly with k. It is interesting to
note that, while Eve’s payoff is a continuous function of k, there is a big drop in
Alice’s payoff at the point where she can no longer play a secure strategy. This
phenomena is caused by the non-zero sum property of our game. Finally, when
k is large enough such that Alice assigns probability 1 to some employees, Eve’s
payoff increases super-linearly, while Alice’s loss increases non-monotonically.
Although Alice’s non-monotonically increasing loss might seem surprising at
first, it can be explained easily: as the secret is shared with more and more
employees who are more easily bribed (i.e., have lower hi), Eve can decrease
her bribing costs by targeting these employees. This might decrease her success
probability, but only by a value that is less than the decrease in her bribing

20 40 60 80 100
−10

−5

0

5

∑
i hi

S

Alice

Eve

k

P
ay

o
ff

Fig. 1. The players’ equilibrium payoffs as functions of the number of employees k that
have to know the secret. The total number of employees is N = 100, the value of the
secret is assumed to be S = 10, and the trustworthiness level of each employee i is
assumed to be a random variable of the distribution U(li, hi). For this example, each
hi is drawn from the set (0, 7) uniformly at random.
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Fig. 2. Alice’s equilibrium payoff for all combinations of 1 ≤ k ≤ 50 and 1 ≤ S ≤ 10.
The parameters for this figure were generated in the same way as for Figure 1, but
with N = 50.
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(a) k = 50
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Fig. 3. Alice’s equilibrium strategies for (a) k = 50 and (b) 80. The total number of
employees is 100, the value of the secret is assumed to be S = 10, the trustworthiness
level of each employee i is assumed to be a random variable of the distribution U(li, hi),
and the employees are sorted in decreasing order based on their hi values. For this
example, each hi is drawn from the set (0, 7) uniformly at random.

costs. Consequently, sometimes Alice is better off if she shares the secret with
more employees than she has to.

Figure 2 shows Alice’s payoff (darker values indicate a higher loss) for a wide
spectrum of parameter combinations of k and S. The figure clearly shows that,
for lower values of S, the area where Alice can play a secure strategy (white
plain) is greater than the area for higher values of S. Note that, for most val-
ues of S, we can identify the same three regions for k as in the previous figure:

for k <
∑

i hi

S , Alice’s loss is zero; for k >
∑

i hi

S , Alice’s loss first increases lin-
early with k, but for larger values of k, Alice’s loss increases non-monotonically.
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Fig. 4. Alice’s equilibrium strategies for
∑

i hi

S
< k ≤ 50. The parameters for this figure

were generated in the same way as for Figure 3, but with N = 50. Again, the employees
are sorted in decreasing order based on their hi values.

As expected, the worst case for Alice is when the number of employees k that
have to know the secret is large and the value S of the secret is high.

Figure 3 shows Alice’s equilibrium strategies for two different values of k.
Figure 3(a) shows a case where k is small enough such that Alice does not assign
probability 1 to any of her employees, while Figure 3(b) depicts a case where
several employees get to know the secret with certainty. Figure 4 shows her

equilibrium strategies for N = 50 and
∑

i hi

S ≤ k ≤ 50. The figure clearly shows
that, for all values of k, ai is a monotonically increasing function of hi, which can
be explained by Theorem 1. Furthermore, the figure also confirms our analytical
result that no ai can be 0.

7 Discussion and Concluding Remarks

In this paper, we introduce a game-theoretic model for studying the decision
making of a project manager who wants to maximize the security of an organi-
zation’s intellectual property. Motivated in part by known behavioral methods
of assessing trustworthiness [14], we assume that both the project manager and
her adversary know the distribution of a random variable representing the trust-
worthiness of each employee. Finally, we assume that both players are able to
estimate the value of the organization’s intellectual property [4].

As a result of our analysis, we find that a project manager should select every
employee with a non-zero probability, unless there is a secure strategy, where an
adversary has no incentives to attack at all. This contradicts the näıve assump-
tion that, to achieve maximal security, only the most trustworthy employees
should be selected. The explanation for this is the following: selecting the team
members deterministically always gives the adversary the knowledge of which
employees to target for bribing. So, by randomizing her strategy, the project
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manager minimizes the information available to the adversary for planning her
attack. It is an even more surprising result that, in an equilibrium, the adversary
is at most as likely to target employees that certainly know the secret as those
employees that know the secret with a probability less than 1. Again, this con-
tradicts the näıve assumption that an adversary will try to bribe the employees
that are the most likely to know the secret.

For the special case of uniform distributions on trustworthiness levels, we find
that the game has two distinct outcomes: either the number of team members
is small enough, such that the project manager has a perfectly secure strategy,
or the security of the secret depends solely on the randomness of selecting the
employee with whom it is shared.1 In the former case, the adversary has no
incentives to attack and, consequently, never learns the secret. In the latter case,
the adversary always attacks and always bribes the targeted employee with the
minimal amount that is never below the employee’s trustworthiness level. Thus,
if the adversary targeted an employee that actually knows the secret, then it is
certainly revealed. The project manager’s only possible defense in this case is to
randomize the selection of employees.

There are multiple possible directions for future work. First, a limitation of the
model is the restriction on the adversary, which constrains her to target only a
single employee at a time. This simplification can be motivated by the adversary’s
incentive to keep her operation covert and, thus, to minimize the number of
bribing attempts. However, it would be worthwhile to study the trade-off between
the adversary’s increased risk of being discovered and the increased probability of
learning the secret when she targets multiple employees. As another direction, we
want to study our model with specific distributions over trustworthiness levels.
In this paper, we provide results for the uniform distribution, which can be well-
motivated in practice; however, there are other distributions that can be justified
from practical observations: e. g., the beta distribution.
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2. Anderson, R., Barton, C., Böhme, R., Clayton, R., van Eeten, M., Levi, M., Moore,
T., Savage, S.: Measuring the cost of cybercrime. In: WEIS (2012)

3. Band, S., Cappelli, D., Fischer, L., Moore, A., Shaw, E., Trzeciak, R.: Compar-
ing insider IT sabotage and espionage: A model-based analysis. Technical Report
CMU/SEI-2006-TR-026, Carnegie Mellon University (2006)

1Note that the probability that an exact equality occurs is negligible in practice.

www.it-ebooks.info

http://www.it-ebooks.info/


290 A. Laszka et al.

4. Bontis, N.: Assessing knowledge assets: A review of the models used to measure in-
tellectual capital. International Journal of Management Reviews 3(1), 41–60 (2001)

5. Colwill, C.: Human factors in information security: The insider threat – Who can
you trust these days? Information Security Technical Report 14(4), 186–196 (2009)

6. Corporate Trust (Business Risk & Crisis Mgmt. GmbH). Studie: Industriespionage
2012 - Aktuelle Risiken für die deutsche Wirtschaft durch Cyberwar (2012)

7. D’Arcy, J., Hovav, A., Galletta, D.: User awareness of security countermeasures
and its impact on information systems misuse: A deterrence approach. Information
Systems Research 20(1), 79–98 (2009)

8. FBI. The insider threat (April 2013), http://www.fbi.gov/about-us/
investigate/counterintelligence/insider threat brochure

9. Federal Bureau of Investigation. Economic espionage, http://www.fbi.gov/
about-us/investigate/counterintelligence/economic-espionage

10. Finn, P.: Chinese citizen sentenced in military data-theft case. Washington Post
(March 2013)
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Abstract. Message authentication codes (MACs) are an essential primitive in
cryptography. They are used to ensure the integrity and authenticity of a message,
and can also be used as a building block for larger schemes, such as chosen-
ciphertext secure encryption, or identity-based encryption. MACs are often built
in two steps: first, the ‘front end’ of the MAC produces a short digest of the long
message, then the ‘back end’ provides a mixing step to make the output of the
MAC unpredictable for an attacker. Our verification method follows this struc-
ture. We develop a Hoare logic for proving that the front end of the MAC is an
almost-universal hash function. The programming language used to specify these
functions is fairly expressive and can be used to describe many block-cipher and
compression function-based MACs. We implemented this method into a proto-
type that can automatically prove the security of almost-universal hash functions.
This prototype can prove the security of the front-end of many CBC-based MACs
(DMAC, ECBC, FCBC and XCBC to name only a few), PMAC and HMAC. We
then provide a list of options for the back end of the MAC, each consisting of
only two or three instructions, each of which can be composed with an almost-
universal hash function to obtain a secure MAC.

1 Introduction

Message authentication codes (MACs) are among the most common primitives in sym-
metric key cryptography. They ensure the integrity and provenance of a message, and
they can be used, in conjunction with chosen-plaintext (CPA) secure encryption, to ob-
tain chosen-ciphertext (CCA) secure encryption. Given the importance of this primitive,
it is important that their proofs of security be the object of close scrutiny. The study of
the security of MACs is, of course, not a new field. Bellare et al. [5] were the first to
prove the security of CBC-MAC for fixed-length inputs. Following this work, a myr-
iad of new MACs secure for variable-length inputs were proposed ([4,7,8,9,17]). None
of these protocols’ proofs have been verified by any means other than human scrutiny.
Automated proofs can provide additional assurance of the correctness of these security
proofs by providing an independent proof of complex schemes. This paper presents a
method for automatically proving the security of MACs based on block ciphers and
hash functions.

Contributions: To analyze the security of MACs, we first decompose the MAC al-
gorithms into two parts: a ‘front-end’, whose work is to compress long input messages

� This work was partially supported by ANR project ProSe and Minalogic project SHIVA.

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 291–308, 2013.
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into small digests, and a ‘back-end’, usually a mixing step, which obfuscates the output
of the front-end. We present a Hoare logic to prove that the front-ends of block-cipher
based and hash based MACs are almost-universal hash functions in the ideal cipher
model and random oracle model respectively. We then make a list of operations which,
when composed with an almost-universal hash function, yield a secure MAC. We can
then attest the security of MACs by first proving the security of the front end using our
logic, and then by manually verifying that the back end of the MAC belongs to our list.

Our result differs significantly from previous works that used Hoare logic to generate
proofs of cryptographicprotocols (such as [12,15]) because those results proved the secu-
rity of encryption schemes. Proving the security of MACs proved to be singularly more
challenging: the security of encryption schemes could be simply proven by showing
that the ciphertext is indistinguishable from a random value, whereas the unforgeability
property required of MACs cannot, to our knowledge, be captured by their predicates.
As a result, we have to consider the simultaneous execution of the program, define a
dedicated semantics to capture these executions, and introduce appropriated predicates
that keep track of equality and inequality of values between the two executions.

In contrast to the previous results that only deal with schemes that had fixed-length
inputs, we are able to analyze for-loops, which allows us to prove the security of proto-
cols that can take arbitrary strings as an input. We describe two heuristics that can be
used to discover stable loop invariants and apply them to one example. These heuristics
successfully find stable invariants for all the hash functions analyzed in this paper.

Finally, we implemented our method into a prototype [14] that can be used to ver-
ify the security of the front-end of several well-known MACs, such as HMAC [4],
DMAC [17], ECBC, FCBC and XCBC [8] and PMAC [9], and could be used to ver-
ify the security of other hash functions based on the same primitives. We also give
a predicate filter that enables us to discard unnecessary predicates, which speeds up
our implementation and facilitates the discovery of loop invariants. Our prototype goes
through the programs from beginning to end, instead of the more common backward ap-
proach, to avoid an exponential blowout in the number of possibilities to examine, due
to the many choices of rules that can cause certain predicates caused by the presence of
the logical or connector in our Hoare logic.

Related Work: The idea of using Hoare logic to automatically produce proofs of
security for cryptographic protocols is not new. Courant et al. [12] presented a Hoare
logic to prove the security of asymmetric encryption schemes in the random oracle
model. A Hoare logic was also used by Gagné et al. [15] to verify proofs of security of
block cipher modes of encryption. Also worth mentioning is the paper by Corin and Den
Hartog [11], which presented a Hoare-style proof system for game-based cryptographic
proofs.

Fournet et al. [13] developed a framework for modular code-based cryptographic
verification. However, their approach considers interfaces for MACs. In a way, our work
is complementary to theirs, as our result, coupled with theirs, could enable a more
complete verification of systems.

In [1], the authors introduce a general logic for proving the security of cryptographic
primitives. This framework can easily be extended using external results, such as [12],
to add to its power. Our result could also be added to this framework to further extend it.
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Other tools, such as Cryptoverif [10] and EasyCrypt [3,2], can be used to verify the
security of cryptographic schemes, but they are not as convenient as our method for
proving the security of MACs. Cryptoverif does not support loop constructs, which are
an important part of our result, and is generally used for proving the security of higher
level protocols, assuming the security of primitives such as MACs. As for Easycrypt, it
relies on a game-based approach and requires human assistance to enter the sequence
of games. Our result is complementary to these approaches. Integrating our method
to these tools would enable a more complete analysis of cryptographic protocols and
remove the need for human assistance when analysing MACs.

Outline: In Section 2, we introduce cryptographic background. The following section
introduces our grammar, semantics and assertion language. In Section 4, we present our
Hoare logic and method for proving the security of almost-universal hash functions, and
we discuss our implementation of this logic and treatment of loops in Section 5. We then
obtain a secure MAC by combining these with one of the back-end options described
in Section 6. Finally, we conclude in Section 7.

2 Cryptographic Background

In this section, we introduce a few notational conventions, and we recall a few crypto-
graphic concepts.

Notation and Conventions
We assume that all variables range over domains whose cardinality is exponential in the
security parameter η and that all programs have length polynomial in η. We say that a
function f : N→ R is negligible if, for any polynomial p, there exists a positive integer
n0 such that for all n ≥ n0, f(n) ≤ 1

|p(n)| .

For a probability distribution D, we denote by x
$←− D the operation of sampling

a value x according to distribution D. If S is a finite set, we denote by x
$←− S the

operation of sampling x uniformly at random among the values in S.

MAC Security
A message authentication code ensures the authenticity of a message m by computing
a small tag τ , which is sent together with the message to the intended receiver. Upon
receiving the message and the tag, the receiver recomputes the tag τ ′ using the message
and his own copy of the key, and he accepts the message as authentic if τ = τ ′. More
formally:

Definition 1 (MAC). A message authentication code is a triple of polynomial-time al-
gorithms (K, MAC, V ), where K(1η) takes a security parameter 1η and outputs a
secret key sk, MAC(sk,m) takes a secret key and a message m, and outputs a tag,
and V (sk,m, tag) takes a secret key sk, a message m and a tag, and outputs a bit: 1
for a correct tag, 0 otherwise.

We say that a MAC is secure, or unforgeable if it is impossible to compute a new
valid message-tag pair for anybody who does not know the secret key, even when given
access to oracles that can compute and verify the MACs. This way, when one receives
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a valid message-tag pair, he can be certain that the message was sent by someone who
possesses a copy of his secret key.

Definition 2 (Unforgeability [5]). A MAC (K,Mac, V ) is unforgeable under a chosen-
message attack (UNF-CMA) if for every polynomial-time algorithm A that has oracle
access to the MAC and verification algorithm and whose output messagem∗ is different
from any message it sent to the Mac oracle, the following probability is negligible

Pr[sk $← K(1η); (m∗, tag∗)
$← AMac(sk,·),V (sk,·,·) : V (sk,m∗, tag∗) = 1]

A standard method for constructing MACs is to apply a pseudo-random function,
or some other form of ‘mixing’ step, to the output of an almost-universal hash func-
tion [18,19]. We assume that a MAC is constructed in this way.

Definition 3 (Almost-Universal Hash). A family of functionsH = {hi} indexed with
key i ∈ {0, 1}η is a family of almost-universal hash functions if for any two distinct
strings M and M ′, Prhi∈H[hi(M) = hi(M

′)] is negligible, where the probability is
taken over the choice of hi inH.

It is much easier to work with this definition than with the unforgeability definition
because of the absence of an adaptive adversary, and the collision probability is taken
over all possible choices of key.

Block Cipher Security
Many MAC constructions are based on block cipher, so we quickly recall the definition
of block ciphers and their security definition.

A block cipher is a family of permutations E : {0, 1}K(η) × {0, 1}η → {0, 1}η in-
dexed with a key k ∈ {0, 1}K(η) whereK(η) is a polynomial. A block cipher is secure
if, for a randomly sampled key, the block cipher is indistinguishable from a permutation
sampled at random from the set of all permutations of {0, 1}η. However, since random
permutations of {0, 1}η and random functions from {0, 1}η to {0, 1}η are statistically
close, and that random functions are often more convenient for proof purposes, it is
common to assume that secure block ciphers are pseudo-random functions.

Definition 4 (Pseudo-Random Functions). Let P : {0, 1}K(η) × {0, 1}η → {0, 1}η
be a family of functions and let A be an algorithm that takes an oracle and returns a
bit. The prf-advantage of A is defined as follows.

AdvprfA,P =
∣∣∣Pr[k $←− {0, 1}K(η);AP (k,·) = 1]− Pr[R $←− Φη;AR(·) = 1]

∣∣∣
where Φη is the set of all functions from {0, 1}η to {0, 1}η. We say that P is a family
of pseudo-random functions if for every polynomial-time adversary A, Advprf

A,P is a
negligible function in η.

Since all the schemes in this paper require only one key for the block cipher, to
simplify the notation, we write only E(m) instead of E(k,m), but it is understood that
a key was selected at the initialization of the scheme, and remains the same throughout.
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Random Oracle Model
For MACs that make use of a hash function, we assume that the hash function behaves
like a random oracle. That is, we assume that the hash function is picked at random
among all possible functions from the given domain and range, and that every algorithm
participating in the scheme, including all adversaries, has oracle access to this random
function. This is a fairly common assumption to provide a heuristic argument for the
security of cryptographic protocols [6].

Indistinguishable Distributions
Given two distribution ensembles X = {Xη}η∈� and X ′ = {X ′

η}η∈�, an algorithm
A and η ∈ �, we define the advantage of A in distinguishing Xη from X ′

η as the
following quantity:

Adv(A, η,X,X ′) =
∣∣∣Pr[x $← Xη : A(x) = 1]− Pr[x $← X ′

η : A(x) = 1]
∣∣∣ .

We say that X and X ′ are indistinguishable, denoted by X ∼ X ′, if Adv(A, η,
X,X ′) is negligible as a function of η for every probabilistic polynomial-time algo-
rithm A.

3 Model

In this section, we introduce the grammar for the programs describing almost-universal
hash function. We present the semantics of each commands, and introduce the assertion
language that will be used in for our Hoare logic.

3.1 Grammar

We consider the language defined by the BNF grammar below, where p and q are posi-
tive integers.

cmd ::= x := E(y) | x := H(y) | x := y | x := y ⊕ z | x := y‖z | x := ρ(i, y)
| for l = p to q do: [cmdl] | cmd1; cmd2

We refer to individual instructions as commands and to lists of commands as programs.
Each command has the following effect:

– x := E(y) denotes application of the block cipher E to the value of y and assigning
the result to x.

– x := H(y) denotes the application of the hash function H to the value of y and
assigning the result to x.

– x := y denotes the assignment to x of the values of y.
– x := y ⊕ z denotes the assignment to x of the xor or the values of y and z.
– x := y||z denotes the assignment to x of the concatenation of the values of y and z.
– x := ρ(i, y) denotes the computation of the function ρ on input i (an integer) and

the value of y and assigning the result to x.
– c1; c2 is the sequential composition of c1 and c2.
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– for l = p to q do: [cmdl] denotes the successive execution of cmdp; cmdp+1; . . . ;
cmdq when p ≤ q. If p > q, the command has no effect.

The function ρ is used to process the tweak in a common construction for tweakable
block ciphers [16]. A fixed-input-length almost-universal function is often sufficient,
but exact implementations vary from one scheme to the next, and we want to allow
for the possibility of functions that have additional properties. When a scheme uses a
function ρ, the properties of the function ρ required for the proof will be added to the
initial conditions of the verification procedure using the predicates of Section 3.3. We
do not any other assumptions about ρ other than it is a function with fixed output length.

Definition 5 (Generic Hash Function). A generic hash function Hash on message
blocks m1, . . . , mn with output cn, is represented by a tuple (FE ,FH, Hash(m1‖ . . .
‖mn, cn) : var x; cmd), whereFE is a family of pseudorandompermutations (usually a
block cipher),FH is a family of cryptographic hash functions, andHash(m1‖ . . . ‖mn,
cn) : var x; cmd is the program of the hash function, where x is the set of all the
variables in the program that are neither input variablesmi, output variable cn, or the
special variable k (used to hold a secret key), and the program cmd is in the language
described by our grammar.

The secret key sk of the generic hash is a combination of the value of the special
variable k and the choice of the block cipher E in the family FE .

We assume that, prior to executing the MAC, the message has been padded using
some unambiguous padding scheme, so that all the message blocks m1, . . . ,mn are
of equal and appropriate length for the scheme, usually the input length of the block
cipher. We also assume that each variable in the program cmd is assigned at most once,
as it is clear that any program obtained from our language can be transformed into an
equivalent program with this property, and that the input variables m1, . . . ,mn never
appear on the left side of any command since these variables already hold a value before
the execution of the program. For simplicity of exposition, we henceforth assume that
all the programs in this paper satisfy these assumptions.

HashCBC(m1‖ . . . ‖mn, cn) :
var i, z2, . . . , zn, c1, . . . , cn−1;
c1 := E(m1);
for i = 2 to n do:

[zi := ci−1 ⊕mi; ci := E(zi)]

We present to the right the program for
HashCBC , the hash function that is used as a
running example in this paper. We give the pro-
gram for other hash functions that can be veri-
fied with our method in the full version of this
paper [14].

3.2 Semantics

In our analysis, we consider the execution of a program on two inputs simultaneously.
These simultaneous executions will enable us to keep track of the probability of equality
and inequality of strings between the two executions, thereby allowing us to prove that
the function is almost-universal.

Each command is a function that takes a configuration and outputs a configurations.
A configuration γ is a tuple (S, S′, E ,H,LE ,LH) where S and S′ are states, E is a
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block cipher, H is a hash function (that will be modeled as a random oracle), and LE
and LH are sets of strings.

A state is a function S : Var → {0, 1}∗ ∪⊥, where Var is the full set of variables in
the program, that assigns bitstrings to variables (the symbol ⊥ is used to indicate that
no value has been assigned to the variable yet). A configuration contains two states, one
for each execution of the program.

The set LE records the values for which the functions E was computed. The set
is common for both executions of the program. Every time a command of the type
x := E(y) is executed in the program, we add S(y) and S′(y) to LE if they are not
already present. We define LH for the hash functionH similarly.

Let Γ denote the set of configurations and DIST(Γ ) the set of distributions on con-
figurations. The semantics is given below, where S{x �→ v} denotes the state which
assigns the value v to the variable x, and behaves like S for all other variables and ◦
denotes function composition. The semantic function cmd : Γ → Γ of commands can
be lifted in the usual way to a function cmd∗ : DIST(Γ ) → DIST(Γ ) by point-wise
application of cmd. By abuse of notation we also denote the lifted semantics by [[cmd]].

[[x := E(y)]](S,S′, E ,H,LE ,LH) =
(S{x �→ E(S(y))}, S′{x �→ E(S′(y))},E ,H,LE ∪ {S(y), S′(y)},LH)

[[x := H(y)]](S, S′, E ,H,LE ,LH) =
(S{x �→ H(S(y))}, S′{x �→ H(S′(y))}, E ,H,LE ,LH ∪ {S(y), S′(y)})

[[x := y]](S, S′, E ,H,LE ,LH) = (S{x �→ S(y)}, S′{x �→ S′(y)}, E ,H,LE ,LH)
[[x := y ⊕ z]](S, S′, E ,H,LE ,LH) =

(S{x �→ S(y)⊕ S(z)}, S′{x �→ S′(y)⊕ S′(z)}, E ,H,LE ,LH)
[[x := y||z]](S, S′, E ,H,LE ,LH) =

(S{x �→ S(y)||S(z)}, S′{x �→ S′(y)||S′(z)}, E ,H,LE ,LH)
[[x := ρ(i, y)]](S, S′, E ,H,LE ,LH) =

(S{x �→ ρ(i, S(y))}, S′{x �→ ρ(i, S′(y))}, E ,H,LE ,LH)

[[for l = p to q do: [cmdl]]]γ =

{
[[cmdq]] ◦ [[cmdq−1]] ◦ . . . ◦ [[cmdp]]γ if p ≤ q
γ otherwise

[[c1; c2]] = [[c2]] ◦ [[c1]]

The set of initial distributions DIST0(H), where H = (FE ,FH, Hash(m1‖ . . .
‖mn, cn) : var x; cmd) is a generic hash, contains all the following distributions:

D(M,M ′)
0 = [E $← FE(1η);H $← FH(1η);u

$← {0, 1}η :

(S{k �→ u,m1‖ . . . ‖mn �→M}, S′{k �→ u,m1‖ . . . ‖mn �→M ′}, E ,H, ∅, ∅)]

where M and M ′ are any two n block messages and k is a variable holding a secret
string needed in some MACs (among our examples, HashPMAC and HashHMAC

need it). Note that FE , FH, the domain Var of the states and the length n of the input
messages are defined in H. These distributions capture the initial situation of Definition
3 where the variablesmi contain the blocks of M andM ′ in S and S′ respectively.

The set DIST(H) is obtained by executing a program on one of the initial distribu-
tions. It contains all the distributions of the form [[cmd]]X0, whereX0 ∈ DIST0(H) and
cmd is a program.

www.it-ebooks.info

http://www.it-ebooks.info/
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A notational convention. It is easy to see that commands never modify E orH. There-

fore, we can, without ambiguity, write (Ŝ, Ŝ′,L′E ,L′H)
$← [[c]](S, S′,LE ,LH) instead

of (Ŝ, Ŝ′, E ,H, L′E ,L′H)
$←− [[c]](S, S′, E ,H,LE ,LH).

3.3 Assertion Language

Like [15], our assertion languages deals with block ciphers, so it stands to reason that
some of our predicates will be similar to theirs. However, the definition of all the pred-
icates has to be adapted to our new semantics with two simultaneous executions. We
also need additional predicates to describe equality or inequality of strings between the
two executions, that will allow us to capture the definition of almost-universal hash
functions. We first give an intuitive description of our predicates, then we define them
all formally.

Empty: means that the probability that LE contains an element is negligible.
Eq(x, y): means that the probability that S(x) �= S′(y) is negligible.
Uneq(x, y): means that the probability that S(x) = S′(y) is negligible.
E(E ;x;V ): means that the probability that the value of x is either in LE or equal to

that of a variable in V is negligible.
H(H;x;V ): means that the probability that the value of x is either in LH or equal to

that of a variable in V is negligible.
Ind(x;V ;V ′): means that no adversary has non-negligible probability to distinguish

whether he is given results of computations performed using the value of x or a
random value, when he is given the values of the variables in V and the values
of the variables in V ′ from the parallel execution. In addition to variables in Var,
the set V can contain special symbols 	E or 	H. When the symbol 	E is present, it
means that, in addition to the other variables in V , the distinguisher is also given
the values in LE , similarly for 	H.

Our Hoare logic is based on statements from the following language.

ϕ ::= ϕ ∧ ϕ | ϕ ∨ ϕ | ψ
ψ ::= Ind(x;W ;V ′) | Eq(x, y) | Uneq(x, y) | Empty | E(E ;x;V ) | H(H;x;V )

where x, y ∈ Var and V, V ′ ⊆ Var, andW ⊆ Var∪{	E , 	H}. We refer to the statements
produced by this grammar as formulas.

We introduce a few notational shortcuts that will help in formally defining our pred-
icates. For any set V ⊆ Var, we denote by S(V ) the multiset resulting from the ap-
plication of S on each variable in V . Also, for a set W ⊆ Var ∪ {	E} with 	E ∈ W ,
we use S(W ) as a shorthand for S(W \ {	E}) ∪ LE , and similarly for 	H. For a set
V ⊆ Var ∪ {	E , 	H} and an element x ∈ Var ∪ {	E , 	H}, we write V, x as a shorthand
for V ∪ {x} and V − x as a shorthand for V \ {x}.

We define that a distributionX satisfies ϕ, denotedX |= ϕ as follows:

– X |= ϕ ∧ ϕ′ iff X |= ϕ and X |= ϕ′

– X |= ϕ ∨ ϕ′ iff X |= ϕ or X |= ϕ′

– X |= Empty iff Pr[(S, S′,LE ,LH)
$← X : LE �= ∅] is negligible
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– X |= Eq(x, y) iff Pr[(S, S′,LE ,LH)
$← X : S(x) �= S′(y)] is negligible

– X |= Uneq(x, y) iff Pr[(S, S′,LE ,LH)
$← X : S(x) = S′(y)] is negligible

– X |= E(E ;x;V ) iff Pr[(S, S′,LE ,LH)
$← X : {S(x), S′(x)}∩ (LE ∪S(V −x)∪

S′(V − x)) �= ∅] is negligible1

– X |= H(H;x;V ) iff Pr[(S, S′,LE ,LH)
$← X : {S(x), S′(x)} ∩ (LH ∪ S(V −

x) ∪ S′(V − x)) �= ∅] is negligible
– X |= Ind(x;V ;V ′) iff the two following formulas hold:

[(S, S′,LE ,LH)
$← X : (S(x), S(V − x) ∪ S′(V ′))] ∼

[(S, S′,LE ,LH)
$← X ;u

$← U : (u, S(V − x) ∪ S′(V ′))]

[(S, S′,LE ,LH)
$← X : (S′(x), S′(V − x) ∪ S(V ′))] ∼

[(S, S′,LE ,LH)
$← X ;u

$← U : (u, S′(V − x) ∪ S(V ′))]

We now present a few lemmas that show useful relations and properties of our pred-
icates. In all these lemmas, it is assumed that H is any generic hash. The proof of these
lemmas is in the full version of this paper [14].

Lemma 1. The following relations are true for any sets V1, V2, V3, V4 and variables
x, y with x �= y

1. Ind(x;V1;V2) ⇒ Ind(x;V3;V4) if V3 ⊆ V1 and V4 ⊆ V2
2. H(H;x;V1) ⇒ H(H;x;V2) if V2 ⊆ V1
3. E(E ;x;V1) ⇒ E(E ;x;V2) if V2 ⊆ V1
4. Ind(x;V1, 	H; ∅)⇒ H(H;x;V1)
5. Ind(x;V1, 	E ; ∅)⇒ E(E ;x;V1)
6. Ind(x; ∅; {y})⇒ Uneq(x, y) ∧ Uneq(y, x)

Note that lines 4, 5 and 6 are particularly helpful because the predicate Ind is much
easier to propagate than the other predicates.

We also show that, as a consequence of our definition of DIST(H), we can always
infer the following predicates on the message blocks. This lemma is useful for proving
the rules corresponding to commands that introduce a new message block.

Lemma 2. Let X ∈ DIST(H). Then for any integer i, 1 ≤ i ≤ n, X |= Eq(mi,mi)
∨ Uneq(mi,mi).

The following formalizes the intuition that if a value can be computed in polynomial
time from other values available, then adding this value does not give the adversary any
useful information. In general, we say that an expression e is constructible from values
in a set V if e can be computed in polynomial time from V . But for the purpose of
the following lemma, it is sufficient to define constructible expressions as only single
variables x, as well as x⊕ y and x‖y for any variables x and y.

1 Since the variable x is removed from the set V when taking the probability, we always have
X |= E(E ;x;V ) iffX |= E(E ;x;V, x). This is to remove the trivial case that {S(x), S′(x)}∩
(LE ∪{S(x), S′(x)}) = ∅ never holds, and to simplify the notation. The same is also used for
predicates H(H; x;V ) and Ind(x;V ;V ′).
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Lemma 3. For any any X ∈ DIST(H), any sets of variables V , any expression e
constructible from V , and any variable x, z such that z �∈ {x} ∪ Var(e) if X |=
Ind(z;V ;V ′) then [[x := e]](X) |= Ind(z;V, x;V ′). We emphasize that here we use
the notation Var(e) (in its usual sense), that is to say, the variable z does not appear at
all in e. Similarly, if X |= Ind(z;V ′;V ), then [[x := e]](X) |= Ind(z;V ′;V, x).

The following, which is useful for proving some of the rules dealing with the con-
catenation commands, shows that the value of any given variable always have the same
length in each execution.

Lemma 4. For any distribution X ∈ DIST(H), any program cmd produced by our

grammar any (S, S′, E ,H,LE ,LH)
$← [[cmd]]X and any variable v ∈ Var, |S(v)| =

|S′(v)|.

4 Proving Almost-Universal Hash

Our main contribution is a Hoare logic for proving that a program is an almost-universal
hash function. We require that the program be written in a way so that, on input
m1‖ . . . ‖mn, the program must assign values to variables c1, . . . , cn in such a way
that the variable c1 contains the output of the function on inputm1, the variable c2 con-
tains the output of the function on inputm1‖m2 and so on. We model the security of an
almost-universal hash function using our predicates as follows.

Proposition 1. Let H = (FE ,FH, Hash(m1‖ . . . ‖mn, cn) : var x; cmd) be a generic
hash function on n-block messages. Then, H is an almost-universal hash function if, for
every positive integer n, UNIV (n) holds in the distribution obtained by executing the
program on any distribution in DIST0(H), where

UNIV (n) =
(∧n−1

i=1 Uneq(cn, ci) ∧
∧n

i=1 Eq(mi,mi)
)
∨
∧n

i=1 Uneq(cn, ci)

The proof of this proposition is in the full version of this paper [14].

Hoare Logic Rules
We present a set of rules of the form {ϕ}cmd{ϕ′}, meaning that execution of command
cmd in any distribution in DIST(H) that satisfies ϕ leads to a distribution that satisfies
ϕ′. Using Hoare logic terminology, this means that the triple {ϕ}cmd{ϕ′} is valid.

Since the predicates Eq(mi,mi) are useful only if the whole prefix of the two mes-
sages up to the ith block are equal, so that keeping track of the equality or inequality
of the message blocks after the first point at which the messages are different is un-
necessary. For this reason, when we design our rules, we never produce the predicates
Uneq(mi,mi) even when they would be correct.

We group rules together according to their corresponding commands. In all the rules,
unless indicated otherwise, we assume that t �∈ {x, y, z} and x �∈ {y, z}. . In addition,
for all rules involving the predicate Ind, we assume that 	E and 	H can be among the
elements in the set V . Since some of the rules (for example, rule (G5)) are valid only
under certain slightly complex conditions, we use square brackets in the statement of
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some conditions to remove any ambiguity about their meaning. The proofs of soundness
of our rules are given in the full version of this paper [14].

We first introduce a few general rules for consequence, sequential composition, con-
junction and disjunction. Let φ1, φ2, φ3, φ4 be any four formulas in our logic, and let
cmd, cmd1, cmd2 be any three commands. These rules are standard, and their proof
are omitted.
(Csq) if φ1 ⇒ φ2, φ3 ⇒ φ4 and {φ2}cmd{φ3}, then {φ1}cmd{φ4}
(Seq) if {φ1}cmd1{φ2} and {φ2}cmd2{φ3}, then {φ1}cmd1; cmd2{φ3}
(Conj) if {φ1}cmd{φ2} and {φ3}cmd{φ4}, then {φ1 ∧ φ3}cmd{φ2 ∧ φ4}
(Disj) if {φ1}cmd{φ2} and {φ3}cmd{φ4}, then {φ1 ∨ φ3}cmd{φ2 ∨ φ4}

Initialization:
We find that the following predicates holds in any distributionX ∈ DIST0(H).

(Init) {Ind(k;Var, �E , �H;Var− k) ∧ Eq(k, k) ∧ Empty}
We recall that k is a special variable holding a secret key. It is sampled at random be-

fore executing the program and is the same in both executions, so it is indistinguishable
from a random value given any other value.

Generic preservation rules:
Rules (G1) to (G6) show how predicates are preserved by most of the commands when
the predicates concern a variable other than that being operated on. For all these rules,
we assume that t and t′ can be y or z and cmd is either x := ρ(i, y), x := y, x := y‖z,
x := y ⊕ z, x := E(y), or x := H(y).

(G1) {Eq(t, t′)} cmd {Eq(t, t′)} even if t = y or t = z
(G2) {Uneq(t, t′)} cmd {Uneq(t, t′)} even if t = y or t = z
(G3) {E(E ; t;V )} cmd {E(E ; t;V )} provided x �∈ V and cmd is not x := E(y)
(G4) {H(H; t;V )} cmd {H(H; t;V )} provided x �∈ V and cmd is not x := H(y)
(G5) {Ind(t;V ;V ′)} cmd {Ind(t;V ;V ′)} provided [cmd is not x := E(y) or x := H(y)],

[x �∈ V unless x is constructible from V − t] and [x �∈ V ′ unless x is constructible from
V ′ − t]

(G6) {Empty} cmd {Empty} provided cmd is not x := E(y)
We note that, for rules (G3) to (G6), the straightforward preservation rule does not

apply when the command is either of the form x := E(y) or x := H(y), because some
predicates may no longer hold if the block cipher or the random oracle is computed
more than once on any given point. Therefore, the preservation of these predicates for
the block cipher and hash commands will have to be handled separately in rules (B4) to
(B6) and (H3) to (H5). For rule (G5), in general, we say that the value of a variable x is
constructible from the values of variables in V if there exists a deterministic polynomial-
time algorithm that can compute the value of x from the values in V . In this case, it
means that the variables in the right-hand side of cmd are all in V .

Function ρ:

(P1) {Eq(y, y)} x := ρ(i, y) {Eq(x, x)} for integer i
Since the details of the function ρ are not known in advance, we can infer only one

rule, that ρ preserves equality, because it is a deterministic function.

www.it-ebooks.info

http://www.it-ebooks.info/
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Assignment:
Rules (A1) to (A8), for the assignment, are all straightforward, and follow simply from
the simple fact that after the command, the value of x is equal to the value of y.
(A1) {true} x := mi {(Eq(mi, mi) ∧ Eq(x, x)) ∨ Uneq(x, x)}
(A2) {Eq(y, y)} x := y {Eq(x, x)}
(A3) {Uneq(y, y)} x := y {Uneq(x, x)}
(A4) {Ind(y;V ;V ′)} x := y {Ind(x;V ;V ′)} if x �∈ V ′ unless y ∈ V ′ and y �∈ V
(A5) {E(E ; y;V )} x := y {E(E ;x;V ) ∧ E(E ; y;V )} if y �∈ V
(A6) {H(H; y;V )} x := y {H(H; x;V ) ∧ H(H; y;V )} if y �∈ V
(A7) {E(E ; t;V, y)} x := y {E(E ; t;V, x, y)}
(A8) {H(H; t;V, y)} x := y {H(H; t;V, x, y)}

Concatenation:
Rules (C1) to (C6) propagate the predicates for the concatenation command.
(C1) {Eq(y, y)} x := y‖mi {(Eq(mi,mi) ∧ Eq(x, x)) ∨ Uneq(x, x)}
(C2) {Eq(y, y) ∧ Eq(z, z)} x := y‖z {Eq(x, x)}
(C3) {Uneq(y, y)} x := y‖z {Uneq(x, x)}
(C4) {Ind(y;V, y, z;V ′)∧Ind(z;V, y, z; V ′)} x := y‖z {Ind(x;V, x;V ′)} provided [y �= z],

[x, y, z �∈ V ] and [x �∈ V ′ unless y, z ∈ V ′]
(C5) {Ind(y;V, �E ;V )} x := y‖z {E(E ;x;V )}
(C6) {Ind(y;V, �H;V )} x := y‖z {H(H; x;V )}

The most important rule for the concatenation is (C4), which states that the concate-
nation of two random strings results in a random string. Note that it is important for this
rule that y �= z, otherwise the string x consists of a string twice repeated, which can
be distinguished easily from a random value. The condition x �∈ V ′ unless y, z ∈ V ′
is similar to rule (G5), and follows from the constructibility of x from y and z. Rules
(C5) and (C6) state that if a string is indistinguishable from a random value given all
the values in the set of queries to the block cipher (or the hash function), then clearly
it cannot be a prefix of one of the strings LE . For rules (C1), (C3), (C5) and (C6), the
roles of y and z, or y and mi in the case of (C1), can be exchanged.

Xor operator:
Rules (X1) to (X4) describe the effect of the Xor operation.
(X1) {Eq(y, y)} x := y ⊕mi {(Eq(mi,mi) ∧ Eq(x, x)) ∨ Uneq(x, x)}
(X2) {Ind(y;V, y, z;V ′)} x := y ⊕ z {Ind(x;V, x, z;V ′)} provided [y �= z], [y �∈ V ] and

[x �∈ V ′ unless y, z ∈ V ′]
(X3) {Eq(y, y) ∧ Eq(z, z)} x := y ⊕ z {Eq(x, x)}
(X4) {Eq(y, y) ∧ Uneq(z, z)} x := y ⊕ z {Uneq(x, x)}

Rules (X2) is reminiscent of a one-time-pad encryption: if a value z is xor-ed with a
random-looking value y, than the result is similarly random-looking provided the value
of y is not given. Again, the condition x �∈ V ′ unless y, z ∈ V ′ is similar to rule (G5),
and follows from the constructibility of x from y and z. The other rules are propagation
of the Eq and Uneq predicates. Due to the commutativity of the xor, the role of y and z,
or y and mi in the case of (X1), can be exchanged in all the rules above.

Block cipher:
Since block ciphers are modeled as random functions, that is, functions picked at ran-
dom among all functions from {0, 1}η to {0, 1}η, the output of the function for a point
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on which the block cipher has never been computed is indistinguishable from a random
value.
(B1) {Empty} x := E(mi) {(Uneq(x, x) ∧ Ind(x;Var, �E , �H;Var))∨

(Eq(mi,mi) ∧ Eq(x, x) ∧ Ind(x;Var, �E , �H;Var− x))}
(B2) {E(E ; y; ∅) ∧ Uneq(y, y)} x := E(y) {Ind(x;Var, �E , �H;Var)}
(B3) {E(E ; y; ∅) ∧ Eq(y, y)} x := E(y) {Ind(x;Var, �E , �H;Var− x) ∧ Eq(x, x)}
(B4) {E(E ; y; ∅) ∧ Ind(t;V ;V ′)} x := E(y) {Ind(t;V, x;V ′, x)} even if t = y, provided

�E �∈ V
(B5) {E(E ; y; ∅) ∧ Ind(t;V, �E , y;V ′, y)} x := E(y) {Ind(t;V, �E , x, y;V ′, x, y)}
(B6) {E(E ; y; ∅) ∧ E(E ; t;V, y)} x := E(y) {E(E ; t;V, y)}

This is expressed in rules (B1) to (B3), and also used in the proof of many other rules.
Note that, when executing x := E(y) on a new value, if the values of y from the two
executions are equal, then of course the values of x will be equal afterwards. However,
if the values of y are not the same in the two executions, then the values of x will be
indistinguishable from two independent random values afterwards.

Since the querying of a block cipher twice at any point is undesirable, we always
require the predicate E as a precondition. We also have rules similar to (B2) to (B6),
with the predicate E(E ; y; ∅) replaced by the predicate Empty, since both imply that the
value of y is not in LE .

Hash Function:
We note that the distinguishing adversary, described in Section 2, does not have access
to the random oracle. This is sufficient for our purpose since our goal is only to prove
inequality of strings, not their indistinguishability from random strings. As a result, the
rules for the hash function are essentially the same as those for the block cipher.
(H1) {H(H; y; ∅) ∧ Uneq(y, y)} x := H(y) {Ind(x;Var, �E , �H;Var)}
(H2) {H(H; y; ∅) ∧ Eq(y, y)} x := H(y) {Ind(x;Var, �H;Var− x) ∧ Eq(x, x)}
(H3) {H(H; y; ∅) ∧ Ind(t;V ;V ′)} x := H(y) {Ind(t;V, x;V ′, x)} even if t = y, provided

�H �∈ V
(H4) {H(H; y; ∅) ∧ Ind(t;V, �H, y;V ′, y)} x := H(y) {Ind(t;V, �H, x, y;V ′, x, y)}
(H5) {H(H; t;V, y)} x := H(y) {H(H; t;V, y)}

For loop:
(F1) {ψ(p− 1)} for l = p to q do: [cmdl] {ψ(q)} provided

{ψ(l − 1)} cmdl {ψ(l)} for p ≤ l ≤ q
The rule for the For loop simply states that if an indexed formula ψ(i) is preserved

through one iteration of the loop, then it is preserved through the entire loop. We discuss
methods for finding such a formula in Section 5.

Combining our logic with Proposition 1, we obtain the following theorem.

Theorem 1. Let (FE ,FH, Hash(m1‖ . . . ‖mn, cn) : var x; cmd) describe the pro-
gram to compute a hash function Hash on an n block message. Then, Hash is an
almost-universal hash function if, for every positive integern, {init} cmd {UNIV (n)}.

The theorem is the consequence of Proposition 1 and of the soundness of our Hoare
logic. We then say that a sequence of formulas [φ0, . . . , φn] is a proof that a program
[cmd1, . . . , cmdn] computes an almost-universal hash function if φ0 = true, φn ⇒
UNIV (n) and for all i, 1 ≤ n, {φi−1} cmdi {φi} holds.
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5 Implementation

We chose to go forward through the program, instead of the more common approach
of going backward from the end, after implementing both methods. Going backward
through the program can require exploring multiple combinations of choices that all
need to be explores when many rules can lead to the necessary predicate. The presence
of the logical-or connector in our logic often resulted in an exponential number of pos-
sibilities at each step. As a result, our prototype for the forward method was able to find
proofs much faster than an implementation of the backwards method.

We start at the beginning of the program and, at each command, apply every possible
rule. Once done, we test if the predicateUNIV (n) holds at the end of the program. One
downside of this forward approach is that the application of every possible rule can be
very time consuming because the formulas tend to grow after each command, which
leads to more and more rules being applied at every step. For this reason, we need a
way to filter out unneeded predicates, so that execution time remains reasonable.

5.1 Predicate Filter

We say that φ is a predicate on x if φ is either Eq(x, y), Uneq(x, y), E(E ;x;V ),
H(H;x;V ) or Ind(x;V1, V2) (for some y ∈ Var and V1, V2 ⊆ Var). We say that a
predicate φ on variable x is obsolete for program p if x does not appear anywhere in
p and if ¬(φ ⇒ Uneq(cn, ci)) and ¬(φ ⇒ Eq(mi,mi)) for any i, 1 ≤ i ≤ n.2 The
following theorem shows that once a predicate is obsolete, it can be discarded.

Theorem 2. If there exists a proof [φ0, . . . , φn] that a program p = [cmd1, . . . , cmdn]
computes an almost-universal hash function, then there also exists a proof [φ′0, . . . , φ

′
n]

that p computes an almost-universal hash function where for each i, φi ⇒ φ′i and each
φ′i does not contain any obsolete predicates for [cmdi+1, . . . , cmdn].

The theorem is a consequence of the fact that, in our logic, the rules for creating a
predicate on x following the execution of command x := e only have as preconditions
predicates on the variables in e. As a result, we can always filter out obsolete predicates
after processing each command.

Also, we note that the only commands that can make a predicate Eq(mi,mi) appear
are those of the form x := e in which mi appears in e. As a result, if we find that, for
some integer l, the predicate Eq(ml,ml) is not present in one of the conjunctions of the
current formula (after transforming the formula in disjunctive normal form) and that
the variable ml is no longer present in the rest of the program, then there is no longer
any chance that it will satisfy the conjunction with

∧n
j=1 Eq(mj ,mj) from UNIV (n).

Therefore, we can also safely filter out all other predicates of the form Eq(mi,mi) from
that conjunction.

We also add a heuristic filter to speed up the execution of our method. We make the
hypothesis that the predicate Ind(cn;V ; {c1, . . . , cn−1}) will be present at the end of the
program, which is the case for all our examples, so that we can filter out Ind(ci;V ;V ′)

2 Here, p will usually be the rest of the program after the program point at which the predicate
φ holds.
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if i < n and ci is no longer present in the remainder of the program. In addition to
speeding up the program, filtering out these predicates greatly simplifies the construc-
tion of loop invariants discussed in the next section. If we fail to produce a proof while
using the heuristic filter, we simply attempt again to find a proof without it.

5.2 Finding Loop Invariants

The programs describing the almost-universal hash function usually contains for loops.
It is therefore necessary to have an automatic procedure to detect the formula ψ(i) that
allows us to apply rule (F1). We now show a heuristic that can be used to construct such
an invariant, and illustrate how it works by applying them to HashCBC , described in
Section 3.1. One could easily verify that it also works onHashCBC′ ,HashHMAC and
HashPMAC .

Once we hit a command ”for l = p to q do: [cmdl]”, we express the formula that
holds before the loop is executed in the form ϕ(p−1). The classical method for finding
a stable invariant consists in processing the instructions cmdl contained in the loop to
find the formula ψ(l) such that {ϕ(l− 1)} cmdl {ψ(l)}. If ψ(l) ⇒ ϕ(l), then we have
found a formula such that {ϕ(l − 1)} cmdl {ϕ(l)} and we can apply rule (F1).

Unfortunately, for most loops, this simple process either does not yield a stable in-
variant, or gives a stable invariant too weak to produce a proof. We need a heuristic
to construct stronger stable invariants. The heuristic we describe here is inspired from
widening methods in abstract interpretation. We start with formula ϕ(l − 1), and pro-
cess the program of the loop once to find formula ψ1(l) such that {ϕ(l − 1)} cmdl

{ψ1(l)}. Then, we repeat this starting with formula ψ1(l − 1) to find formula ψ2(l)
such that {ψ1(l − 1)} cmdl {ψ2(l)}. The idea is then to inspect formulas ϕ(l), ψ1(l)
and ψ2(l) for patterns that can be extrapolated. For example, we can try to identify a
predicate γ(l) such that: (i) γ(l) appears in ϕ(l), (ii) γ(l − 1) ∧ γ(l) appears in ψ1(l),
(iii) γ(l − 2) ∧ γ(l − 1) ∧ γ(l) appears in ψ2(l). We then use a new starting formula
ϕ′(l) which is just like ϕ(l), except that the occurrence of γ(l) in ϕ(l) is replaced by∧j=l

j=p−1 γ(j) in ϕ′(l). Note that, by construction, ϕ(p− 1) is equal to ϕ′(p− 1), so we
know that ϕ′(p− 1) is satisfied at the beginning of the loop.3

Example: We now apply this method to HashCBC . After processing command c1 :=
E(m1), we obtain the formula ϕ(1) = (Ind(c1; Var, 	E ; Var− c1) ∧ Eq(m1,m1)
∧ Eq(c1, c1)) ∨ Ind(c1). Parameterizing this in terms of l, we obtain

ϕ(l) = (Eq(ml,ml) ∧ Eq(cl, cl) ∧ Ind(cl; Var, 	E ; Var− cl)) ∨ Ind(cl)

We recall that the two instructions in the loop of HashCBC are the following: zi :=
ci−1 ⊕mi; ci := E(zi). After processing the program of the loop on ϕ(l − 1), we
obtain the following.

ψ1(l) = (Eq(ml−1,ml−1) ∧ Eq(ml,ml) ∧ Eq(cl, cl) ∧ Ind(cl; Var, 	E ; Var − cl))
∨ Ind(cl)

3 We can similarly try to find patterns that appear only after the first iteration of the loop, that is,
γ(l) appears in ψ1(l) and γ(l− 1)∧ γ(l) appears in ψ2(l), in which case

∧j=l
j=p γ(j) is added

in ϕ′(l).
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We get this by applying rules (G1), (X1) and (X2) for the first command and rules (G1),
(B2) and (B3) for the second command. Note that ψ1(l) ⇒ ϕ(l), so we could use ϕ(l)
to apply rule (F1), but this would not yield a proof of HashCBC . We repeat the same
process with ψ1(l − 1) to obtain

ψ2(l) =(Eq(ml−2,ml−2) ∧ Eq(ml−1,ml−1) ∧ Eq(ml,ml)∧
Eq(cl, cl) ∧ Ind(cl; Var, 	E ; Var − cl)) ∨ Ind(cl).

This requires applying the same rules as before, but rule (G1) more often applied for
each command. We find γ(l) = Eq(ml,ml) and use

ϕ′(l) =
((∧l

i=1 Eq(mi,mi)
)
∧ Eq(cl, cl) ∧ Ind(cl; Var, 	E ; Var− cl)

)
∨ Ind(cl)

as our next attempt at finding a stable invariant. We find that ϕ′(l) is a stable invariant
for the loop. So we apply the rule (F1) to obtain that ϕ′(n) holds at the end of the
program, and we easily find that ϕ′(n) ⇒ UNIV (n) for all positive integer n, thereby
proving that HashCBC computes an almost-universal hash function.

5.3 Prototype

We programmed an OCaml prototype of our method for proving that the front end of
MACs are almost-universal hash functions. The program requires about 2000 lines of
code, and can successfully produce proofs of security for all the examples discussed in
this paper in less than one second on a personal workstation. Our prototype is available
on [14].

6 Proving MAC Security

As mentioned in Section 2, we prove the security of MACs in two steps: first we show
that the ‘compressing’ part of the MAC is an almost-universal hash function family,
and then we show that the last section of the MAC, when applied to an almost-universal
hash function, results in a secure MAC. The following shows how a secure MAC can be
constructed from an almost-universal hash function. The proof can be found in [4,8,9],
so we do not repeat them here.

Theorem 3. Let H = {hi}i∈{0,1}η and H′ = {hi}i∈{0,1}η be families of almost-
universal hash function, FE be a family of block ciphers and G be a random oracle.

If h
$← H, hE

$← H′, E , E1, E2 $← FE , G is sampled at random from all functions with

the appropriate domain and range and k, k1, k2
$← {0, 1}η, then the following hold:

– MAC1(m) = E(hi(m)) is a secure MAC with key sk = (i, kE).4

– MAC2(m) = G(k‖hi(m)) is a secure MAC with key sk = (i, k).
– MAC3(m) ={

E1(hi(m
′)) where m′ = pad(m) if m’s length is not a multiple of η

E2(hi(m)) if m’s length is a multiple of η
is a secure MAC with key sk = (i, kE1 , kE2).

4 Here, kE denotes the secret key associated with block cipher E .
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– MAC4(m) ={
E(hE(m′)⊕ k1) where m′ = pad(m) if m’s length is not a multiple of η
E(hE(m)⊕ k2) if m’s length is a multiple of η

is a secure MAC with key sk = (kE , k1, k2)

Combining HashCBC with MAC1 and MAC3 yields the message authentication
codes DMAC and ECBC respectively, usingHashCBC′ withMAC3 andMAC4 yields
FCBC and XCBC, combiningHashPMAC and MAC4 yields a four key construction
of PMAC and using HashHMAC with MAC2 yields HMAC.

7 Conclusion

We presented a Hoare logic that can be used to automatically prove the security of con-
structions for almost-universal hash functions based on block ciphers and compression
functions modeled as random oracles. We can then obtain a secure MAC by combining
with a few operations, such as those presented in Section 6. Our method can be used
to prove the security of DMAC, ECBC, FCBC, XCBC, a two-key variant of HMAC
and a four-key variant of PMAC. Since the final step of the proof for the MACs is not
integrated in the logic, we cannot prove the one key variants of HMAC or PMAC, nor
can we prove CMAC or OMAC, which are one-key variants of XCBC. It is however rel-
atively simple to derive the security of these one-key schemes by hand once the security
of the multiple key variants has been proven. It remains an open problem to integrate
this step into the logic.

It should be possible to extend our logic to prove exact reduction bounds for the
security of the ε-universal hash function. This could be done by keeping track of exact
security for each predicate to obtain a bound on the final invariant. We are also working
on integrating our tool for verifying the security of MACs with the tool for verifying the
security of encryption modes of operation of [15], to get a general tool for producing
security proofs of symmetric modes of operation.
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308 M. Gagné, P. Lafourcade, and Y. Lakhnech

6. Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient
protocols. In: CCS 1993: Proceedings of the 1st ACM Conference on Computer and Com-
munications Security, pp. 62–73. ACM, New York (1993)

7. Black, J., Halevi, S., Krawczyk, H., Krovetz, T., Rogaway, P.: UMAC: Fast and secure mes-
sage authentication. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 216–233.
Springer, Heidelberg (1999)

8. Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages:The three-key construc-
tions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197–215. Springer, Heidel-
berg (2000)

9. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message authenti-
cation. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 384–397. Springer,
Heidelberg (2002)

10. Blanchet, B., Pointcheval, D.: Automated security proofs with sequences of games. In:
Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 537–554. Springer, Heidelberg (2006)

11. Corin, R., den Hartog, J.: A probabilistic hoare-style logic for game-based cryptographic
proofs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part II.
LNCS, vol. 4052, pp. 252–263. Springer, Heidelberg (2006)

12. Courant, J., Daubignard, M., Ene, C., Lafourcade, P., Lahknech, Y.: Towards automated
proofs for asymmetric encryption schemes in the random oracle model. In: Proceedings of
the 15th ACM Conference on Computer and Communications Security, CCS 2008, Alexan-
dria, USA (October 2008)

13. Fournet, C., Kohlweiss, M., Strub, P.: Modular code-based cryptographic verification. In:
Chen, Y., Danezis, G., Shmatikov, V. (eds.) ACM-CCS 2011, pp. 341–350. ACM (2011)
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15. Gagné, M., Lafourcade, P., Lakhnech, Y., Safavi-Naini, R.: Automated security proof for
symmetric encryption modes. In: Datta, A. (ed.) ASIAN 2009. LNCS, vol. 5913, pp. 39–53.
Springer, Heidelberg (2009)

16. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.) CRYPTO
2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

17. Petrank, E., Rackoff, C.: Cbc mac for real-time data sources. Journal of Cryptology 13, 315–
338 (1997)

18. Wegman, M., Carter, J.L.: Universal classes of hash functions. Journal of Computer and
System Sciences 18(2), 143–154 (1919)

19. Wegman, M., Carter, J.L.: New hash functions and their use in authentication and set equality.
Journal of Computer and System Sciences 22(3), 265–279 (1981)

www.it-ebooks.info

http://www.infsec.cs.uni-saarland.de/~gagne/macChecker/macChecker.html
http://www.infsec.cs.uni-saarland.de/~gagne/macChecker/macChecker.html
http://www.it-ebooks.info/


Bounded Memory Protocols
and Progressing Collaborative Systems

Max Kanovich1, Tajana Ban Kirigin2, Vivek Nigam3, and Andre Scedrov4

1 Queen Mary, University of London, UK
mik@dcs.qmul.ac.uk
2 University of Rijeka, HR
bank@math.uniri.hr

3 Federal University of Paraı́ba, João Pessoa, Brazil
vivek@ci.ufpb.br

4 University of Pennsylvania, Philadelphia, USA
scedrov@math.upenn.edu

Abstract. It is well-known that the Dolev-Yao adversary is a powerful adversary.
Besides acting as the network, intercepting, sending, and composing messages,
he can remember as much information as he needs. That is, his memory is un-
bounded. We recently proposed a weaker Dolev-Yao like adversary, which also
acts as the network, but whose memory is bounded. We showed that this Bounded
Memory Dolev-Yao adversary, when given enough memory, can carry out many
existing protocol anomalies. In particular, the known anomalies arise for bounded
memory protocols, where there is only a bounded number of concurrent sessions
and the honest participants of the protocol cannot remember an unbounded num-
ber of facts nor an unbounded number of nonces at a time. This led us to the
question of whether it is possible to infer an upper-bound on the memory re-
quired by the Dolev-Yao adversary to carry out an anomaly from the memory
restrictions of the bounded protocol. This paper answers this question negatively
(Theorem 2). The second contribution of this paper is the formalization of Pro-
gressing Collaborative Systems that may create fresh values, such as nonces. In
this setting there is no unbounded adversary, although bounded memory adver-
saries may be present. We prove the NP-completeness of the reachability problem
for Progressing Collaborative Systems that may create fresh values.

1 Introduction

In the symbolic verification of protocol security, one considers a powerful adversary
model now usually referred to as the Dolev-Yao adversary, which arose from positions
taken by Needham and Schroeder [18] and a model presented by Dolev and Yao [7].
Not only can the Dolev-Yao adversary act as the network, intercepting, sending and
composing messages, but he can also remember as much information as he needs. The
goal in protocol verification is to demonstrate that such a powerful adversary cannot
discover some secret information, when using some protocol(s). Clearly, if it is shown
that such a powerful adversary cannot discover the secret symbolically, then weaker
adversaries will also not be able to discover the secret.

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 309–326, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

www.it-ebooks.info

http://www.it-ebooks.info/


310 M. Kanovich et al.

In [11], we proposed a Bounded Memory Dolev-Yao adversary, which is very simi-
lar to the Dolev-Yao adversary. He also acts as the network, intercepting, sending and
composing messages, but differently from the Dolev-Yao adversary, he can remember
only a bounded number of facts at a given time. So, in order for him to learn some
new information, such as a nonce, he might have to forget some information he previ-
ously learned. Clearly, our Bounded Memory Dolev-Yao adversary is weaker than the
Dolev-Yao adversary, as the former’s memory is bounded, while the latter’s is not.

However, despite being weaker, we demonstrated in [11] that many known anoma-
lies can also be carried out by our Bounded Memory Dolev-Yao adversary. We also
noticed that the protocols for which we could replay the anomaly with our bounded
memory adversary were all bounded memory protocols, where one considers that the
memory of the system is bounded. That is, in concurrent runs the honest participants
of the protocol also cannot remember an unbounded number of facts nor an unbounded
number of nonces at a time. This led us to the question of whether it is possible to
infer an upper bound on the memory of the Dolev-Yao adversary with respect to the
memory restrictions of bounded memory protocols, that is, of the memory used by the
participants.

This paper answers this question negatively. That is, it is not possible to determine
an upper bound on the memory of the Dolev-Yao adversary even if the memory of the
protocol is bounded. From our main result (Theorem 2), we can infer that the Stan-
dard Dolev-Yao intruder cannot be constructively approximated by an infinite sequence
of increasing memory Bounded Memory Intruders. We show this negative result by
proposing a novel undecidability proof for the secrecy problem with the Dolev-Yao
adversary. Our undecidability result strengthens the one given in [3,8], confirming the
hardness of protocol verification. In particular, we show that the secrecy problem is
“very undecidable:” the secrecy problem is undecidable even for bounded memory pro-
tocols and thus a bound on the memory of the Dolev-Yao adversary is not computable
from a bound on the memory used by a protocol. This is accomplished by a novel en-
coding of Turing machines by means of memory bounded protocols.

The second contribution of this paper is the formalization of Progressing Collabo-
rative Systems that may create fresh values. We are in particular interested in Collab-
orative Systems [16] that occur in a closed room, where no other agent can enter and
where all agents have bounded memory. We ignore concerns about an outside intruder,
although inside adversaries may be present, but have bounded memory. We introduced
the notion of progressing in [12] inspired by protocols, namely, by the fact that a proto-
col session is always progressing. That is, once one step of a protocol session is taken,
the same step is no longer repeated. Administrative systems normally also have this
progressing nature: once an item in an activity to-do list is checked, that activity is not
repeated.

However, in [12], we limited ourselves to systems that did not create fresh values,
such as nonces. Combining the progressing condition with the creation of fresh values
turned out to be surprisingly challenging because of a subtle interaction between the
two features. We discuss this in detail in Section 4. This paper extends the formalization
of Progressing in [12] to systems that may create fresh values, based on the machinery
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introduced in [11]. We also prove that the reachability problem for Progressing Systems
that may create fresh values in NP-complete.

This paper is structured as follows:

– Section 2 reviews the specification of bounded memory protocols, the Dolev-Yao
Adversary, and of Bounded Memory Adversaries. It also reviews some of the com-
plexity results for the secrecy problem;

– Section 3 contains the secrecy undecidability proof with memory bounded proto-
cols. This is a novel, stronger undecidability proof, which allows us to infer that
it is not possible to determine an upper bound on the memory of the Dolev-Yao
adversary from the memory bound of the protocol;

– Section 4 contains the formalization of Progressing Collaborative System that may
create nonces. We argue that its precise formalization is only meaningful when
bounding the memory of the participants of the system. We also prove the NP-
completeness of the reachability problem;

– Finally in Sections 5 and 6 we comment on related work and conclude by pointing
out to future work.

2 Bounded Memory Protocols and Adversaries

We formalize bounded memory protocol theories and adversary theories by means of
multiset rewrite rules, similarly as in [3,8]. A set of rewrite rules, or a theory, was
proposed in [3,8] for modeling protocols and the standard Dolev-Yao intruder with
unbounded memory. In order to carefully compare our complexity results, we closely
follow this approach and adapt the theories from [3,8] to formalize bounded memory
protocols and Bounded Memory Adversaries.

Assume fixed a sorted first-order alphabet consisting of constant symbols, c1, c2, . . .,
function symbols, f1, f2, . . ., and predicate symbols, P1, P2, . . . all with specific sorts
(or types). The multi-sorted terms over the signature are expressions formed by applying
functions to arguments of the correct sort. A fact is a ground, atomic formula over multi-
sorted terms. Facts have the form P (t1, . . . , tn) where P is an n-ary predicate symbol,
where t1, . . . , tn are terms, each with its own sort.

The size of a fact is the total number of term and predicate symbols it contains. We
count one for each predicate, function, constant, and variable symbols. We use |F | to
denote the size of a fact F . For example, |P (x, c)| = 3, and |P (f(z, x, n), z)| = 6. We
will normally assume in this paper an upper bound on the size of facts, as in [3,8,16].

A state, or configuration of the system is a finite multiset of grounded facts, i.e.,
facts that do not contain variables. Configurations, intuitively, specify the state of the
world and are modified by actions. In general, an action is a multiset rewrite rule of the
following form:

X1, . . . , Xn −→ ∃x.Y1, . . . , Ym (1)

where the Xis and Yjs are facts. The collectionX1, . . . , Xn is called the pre-condition
of the rule, while Y1, . . . , Ym is called post-condition. We assume that all free vari-
ables are universally quantified. By applying the action for a ground substitution (σ),
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the pre-condition applied to this substitution (X1σ, . . . , Xnσ) is replaced with the post-
condition applied to the same substitution (Y1σ, . . . , Ymσ). In this process, the exis-
tentially quantified variables (x) appearing in the post-condition are replaced by fresh
constants, also called nonces in protocol security literature. The rest of the configuration
remains untouched. Thus, we can apply the actionP (x), Q(y) →A ∃z.R(x, z), Q(y) to
the global configuration V, P (t), Q(s) to get the global configuration V,R(t, c), Q(s),
where the constant c is new.

Given a multiset rewrite systemR, one is often interested in the reachability problem:
Is there a sequence of (0 or more) rules fromR which transforms configurationW into
Z? If this is the case then we say that Z is reachable from W using R.

Balanced Actions and Empty Facts. An important condition for formalizing bounded
protocols is that of balanced actions. Balanced actions were introduced in the context
of collaborative systems [16]. We classify an action as balanced if the number of facts
in its pre-condition is the same as the number of facts in its post-condition. That is,
n = m in Equation 1. If we restrict all actions in a system to be balanced, then the size
of all configurations in a run remains the same as in the initial configuration. Since we
assume facts to have a bounded size, the use of balanced actions imposes a bound on the
storage capacity of the agents, i.e., balanced systems have constant memory. Creating a
new fact by means of a balanced action amounts to inserting that fact into the resulting
configuration by replacing a fact appearing in the enabling configuration. In other words
the memory of the system is only updated. No new memory space is created.

In order to support the creation of new facts in balanced systems, we use empty facts,
written P (∗). Intuitively, an empty fact denotes an available memory slot that could be
filled by some new information. Here ∗ is not a constant, but just used for illustrative
purposes. By using empty facts, one can transform unbalanced systems into balanced
systems simply by adding enough empty facts to the pre-condition or the post-condition
of each rule with so that it becomes balanced. The obtained balanced system can be
considered as equivalent to the original, unbalanced one, provided there is no bound on
the size of configurations.

2.1 Bounded Memory Protocols

A bounded memory protocol, formally defined below, only contains balanced actions
[11]. This means that the number of facts known by the participants at a given time is
bounded. Bounding the memory available for protocol sessions also intuitively bounds
the number of concurrent protocol sessions. This is because for each protocol session,
one needs some free memory slots to remember, for instance, the internal states of the
agents involved in the session. However, this does not mean that there may not be an
unbounded number of protocol sessions in a trace. Once a protocol session is completed,
the memory slots it required can be re-used to initiate a new protocol session.

This is different to the well-founded protocol theories in [3,8] where the rules are not
necessarily balanced and where all protocol sessions are created at the beginning of the
trace before any protocol session starts executing. In well-founded protocol theories, an
unbounded number of protocol sessions can run concurrently and therefore participants
are allowed to remember an unbounded number of facts.
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Definition 1. A theory A is a balanced role theory if there is a finite list of predicate
names called the role states S0, S1, . . . , Sm for somem, such that every rule L→ ∃t.R
in A is balanced and there is exactly one occurrence of a state predicate in L, say Si,
and exactly one occurrence of a state predicate in R, say Sj , such that i < j. We call
the first role state, S0, initial role state, and the last role state Sm final role state. Only
rules with final role states can have an empty fact in the post-condition.

Defining roles in this way, ensures that each application of a rule in A advances the
state forward. Each instance of a role can only result in a finite number of steps in a
trace. The request on empty facts formalizes the fact that one of the participants, either
the initiator or the responder, sends the “last” protocol message. In [11], one can find
several examples of protocols specified as balanced role theories.

In order to allow an unbounded number of protocol sessions in a trace, we allow
protocol roles to be created at any time with the of cost of consuming empty facts P (∗).
At the same time, we allow protocol sessions that have been completed to be forgotten.
Once a final role state has been reached, it can be deleted, creating new empty factsP (∗)
in the process. These empty facts can then be used to create new protocol roles starting
hence a new protocol session. Such theories are called role regeneration theories.

Definition 2. If A1, . . . ,Ak are balanced role theories, a role regeneration theory is a
set of rules that either have the form

Q1(x1) · · ·Qn(xn)P (∗) → Q1(x1) · · ·Qn(xn)S0(x) ,

where Q1(x1) . . .Qn(xn) is a finite list of facts not involving any role states, and S0 is
the initial role state for one of theoriesA1, . . . ,Ak, or the form

Sm → P (∗),

where Sm is the final state for one of theoriesA1, . . . ,Ak .

This definition is a central difference to the setting in [3,8]. In [3,8] one assumed
that all protocol sessions are initialized at the beginning of the trace, that is, all protocol
sessions run concurrently. This means that there is no bound on the memory of the
(honest) participants since they need to remember that they participate in a possibly
unbounded number of protocol sessions. Under the definition above, on the other hand,
this is no longer the case as the explicit use of balanced actions in role theories and role
regeneration theories allows us to bound the memory of the participants, including the
number of concurrent protocols in the system, without bounding the total number of
sessions in a trace.

Definition 3. A pair (P , H) is a bounded memory protocol theory if H is a finite set
of facts (called initial set), and P = R" A1 " · · · " An is a protocol theory where R
is a role regeneration theory involving only facts from H and the initial and final roles
states of A1, . . . ,An, and A1, . . . ,An are balanced role theories. For role theories Ai

andAj , with i �= j, no role state predicate that occurs in Ai can occur in Aj .
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Intuitively, a bounded memory protocol theory specifies a particular scenario to be
model-checked involving some given protocol(s). Besides empty facts, P (∗), the finite
initial set of facts contains all the facts with the information necessary to start pro-
tocol sessions, for instance, shared and private keys, the names of the participants of
the network, as well as any compromised keys. Here, for simplicity, we assume only
symmetric keys, although other types of keys can be also formalized.

2.2 Standard Dolev-Yao and Bounded Memory Dolev-Yao Adversaries

The powerful adversary proposed by Dolev-Yao [7] acts as the network, that is, all
messages communicated are sent through the adversary. He hears everything and learns
messages modulo encryption. More precisely, he is capable of intercepting any message
sent by a protocol participant and then store the received information, decompose it and
decrypt with the keys he possesses. He cannot, however, decrypt messages for which
he does not have the correct key. Moreover, he can also create fresh values, encrypt,
compose messages from the information he has learned. One of his major strengths is
that he can remember as much information as he wants, i.e., his memory is unbounded.

Figure 1a. depicts the rules of such an adversary. The I/O rules specify the fact that
the adversary acts as the network receiving all messages sent (NS) and sending all
messages that are received (NR). The remaining rules are straightforward, specifying
when the adversary may decompose and compose messages. Notice that contrary to the
formalization of the bounded memory protocols, the actions specifying the Dolev-Yao
adversary are not all balanced. In particular, the adversary may always learn new facts,
such as in the actions DECS and GEN, where the adversary learns the contents of an
encrypted message and creates a nonce.

In [11], we proposed a Bounded Memory Dolev-Yao adversary, which has many
capabilities of the Dolev-Yao adversary. He can intercept, send and compose messages,
create nonces, etc. But differently from the Dolev-Yao adversary, he can remember
only a bounded number of facts of a bounded size, at any given time. This is formally
imposed by the balanced adversary theory presented in Figure 1b. In order for him to
store some new information, such as a nonce, he might have to forget some information
he previously learned. This is specified by additional memory maintenance rule.

2.3 Complexity Results for the Secrecy Problem

In an interaction of malicious adversaries with honest participants, one is interested in
secrecy problem, namely, in determining whether the adversary can discover a secret s.
Formally it is an instance of the reachability problem: Is it the case that a configuration
containing M(s), where s is a secret originally owned by an honest participant can be
reached from an initial configuration?

Undecidability of the Secrecy Problem. It is known for some time that the secrecy
problem is undecidable in general [3,8]. The undecidability proof in [3,8] proceeds by
encoding the existential Horn implication problem, which is also proved to be unde-
cidable. However, in that work, one used well-founded protocol theories, where the
memory of the protocol is unbounded. For instance, in well-founded protocol theories,
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I/O Rules:
REC : NS(x)→M(x)
SND : M(x)→ NR(x)

Decomposition Rules:
DCMP :M(〈x, y〉) →M(x)M(y)
DECS : M(k)M(enc(k, x))→

M(k)M(enc(k, x))M(x)

Composition Rules:
COMP :M(x)M(y)→M(〈x, y〉)
USE : M(x)→M(x)M(x)
ENCS : M(k)M(x)→

M(k)M(enc(k, x))
GEN : → ∃n.M(n)

(a) a. Theory for the Standard Dolev-Yao Ad-
versary

I/O Rules:
REC: NS(x)→M(x)
SND: M(x)→ NR(x)

Decomposition Rules:
DCMP:M(〈x, y〉) P (∗)→M(x)M(y)
DEC: M(k)M(enc(k, x)) P (∗)

→M(k)M(x)M(enc(k, x))

Composition Rules:
COMP:M(x)M(y)→M(〈x, y〉) P (∗)
USE: M(x)P (∗)→M(x)M(x)
ENC: M(k)M(x)→M(k)M(enc(k, x))
GEN: P (∗)→ ∃n.M(n)

Memory maintenance rule:
DELM: M(x)→ P (∗)

(b) b. Bounded Memory Dolev-Yao Adversary
Theory

Fig. 1. Theories for the Standard and the Bounded Memory Adversaries

it is allowed for an unbounded number of concurrent protocol sessions to run at the
same time. In fact, all the protocol sessions in a trace are initialized at the beginning
before any session starts. This implies that the participants of the system may remem-
ber an unbounded number of facts, namely, the facts containing the information of the
protocols in which they are participating in.

In Section 3, we strengthen the result in [3,8], by showing that the secrecy problem
is undecidable even if the memory of the protocol is bounded. This is accomplished by
a novel encoding of Turing machines by means of memory bounded protocols.

PSPACE-completeness of the Secrecy problem for the Bounded Memory Dolev-Yao Ad-
versary. Besides proposing the Bounded Memory Dolev-Yao Adversary and demon-
strating that he can carry out known anomalies when given enough memory, we proved
in [11] that the secrecy problem when assuming the Bounded Memory Dolev-Yao Ad-
versary is PSPACE-complete. The key insight for this result was showing how to handle
the fact that a trace may have an exponential number of nonces, which seems to pre-
clude PSPACE membership. We circumvent the problem of requiring too many fresh
values in a trace by reusing obsolete constants instead of creating new values.

The argument goes roughly like this: we assume a balanced system that consists
of a number of honest participants and a Bounded Memory Dolev-Yao Adversary and
an upper bound on the size of all facts. Since all actions of the system are balanced,
including those specifying the adversary (see Figure 1b), the number of facts in any
configuration remains the same as in the initial configuration, namely m. Moreover, as
we assume an upper bound on the size of facts, namely k, then any configuration in a
trace has at most mk symbols. We can then fix a priori a polynomial number of nonce
names, namely, 2mk names, so that whenever one needs a fresh nonce, one can find a
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name in this set of 2mk names that is fresh to the participants. It may well be the case
that some name in this set of nonce names is used many times in a trace. However, for
the participants at that point of the trace, the name used seems fresh as no participant
can remember it.

This idea will be key for our proposal of Progressing systems with nonce generation
in Section 4.

3 Protocol Security Is Very Undecidable: A Bound on the
Adversary Cannot Be Inferred from a Bound on a Protocol

We now detail the sound and faithful encoding of Turing machines using bounded mem-
ory protocols. We show that an attack on the given protocol by an unbounded, standard
Dolev-Yao intruder is possible if and only if the encoded Turing machine terminates.
From that we infer the undecidability of a Dolev-Yao attack even for bounded memory
protocols. Notice that our result works even if we assume a (large enough) bound on
the size of facts, e.g., a bound a bit greater than 30.

3.1 Encoding of Turing Machine Tapes

Without loss of generality, letM be a Turing machine such that

(i) M has only one tape, which is one-way unbounded to the right. The leftmost cell
(numbered by 0) contains the marker $ unerased;

(ii) The initial 3-cell configuration is of the following form, where B stands for the
blank symbol:

$ 〈q1, B〉 B (2)

We write 〈q, ξ〉 to denote that the corresponding cell contains the symbol ξ and
is scanned byM in its state q.

(iii) We assume that all instructions are “move” instructions. The head of M cannot
move to the leftmost cell marked with $.

(iv) Finally,M has only one accepting state, q0.

Encoding of the Tape In our encoding, we need two honest participants only, Alice and
Bob. Assume they share a symmetric key K , not known to any other participant. We
will encode the tape cells separately as follows:

(a) An unscanned cell that contains symbol ξ0 is encoded by a term encrypted with the
keyK

EK(〈t0, ξ0, e0, t1〉),
where t0 and t1 are nonces, and e0 = 1 if the cell is the last cell in a configuration.

(b) The cell that contains symbol ξ and is scanned by M in state q is also encoded by
a term encrypted with the keyK

EK(〈t1, 〈q, ξ〉, 0, t2〉)

where t1 and t2 are nonces.
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Motivation: The nonces t0 and t1 in the terms encoding the tape cell are used for two
purposes:

(a) Firstly, t0 and t1 serve as “timestamps” of a visit made byM in the cell. Whenever
M re-visits this cell, the previous term is updated with fresh nonces indicating a
new visit;

(b) Secondly, as t0 and t1 are unique, they are used to uniquely link cells that are
adjacent to each other.

For example, the initial configuration, Equation (2), with three cells is encoded by
using the sequence of nonces t0, t1, t2, t3 as shown below:

〈EK(〈t0, $, 0, t1〉), EK(〈t1, 〈q1, B〉, 0, t2〉), EK(〈t2, B, 1, t3〉)〉

Notice the role of the nonces t0, t1, t2, t3. For instance, the nonce t1 is used to correctly
encode the fact that the cell 〈q1, B〉 is to the right of the cell with the mark $.

3.2 Encoding Turing Machine’s Actions as a Bounded Memory Protocol

Given a Turing machine M and the encoding of tapes discussed above, we encode its
actions by means of bounded memory protocol called PM. We describe the role of
Alice (initiator) and Bob (responder):

Alice’s Role Assume that Alice is the initiator and her initial state is:

〈EK(〈t0, $, 0, t1〉), EK(〈t1, 〈q, B〉, 0, t2〉), EK(〈t2, B, 1, t3〉), EK(〈t4, B, 1, t5〉)〉

The protocol starts by Alice updating all nonces ti to t′i, and sending the following
updated message to Bob. At this point, she does not need to remember the previous
terms using the nonces ti. Notice that the last term does not share nonces with the first
three. It will be used for extending the tape.

〈EK(〈t′0, $, 0, t′1〉), EK(〈t′1, 〈q, B〉, 0, t′2〉), EK(〈t′2, B, 1, t′3〉), EK(〈t′4, B, 1, t′5〉)〉

That is she erases her memory and is ready to store new facts. In particular, she is
waiting for a message from Bob of the form:

〈EK(〈t0, α0, 0, t1〉), EK(〈t̃1, α1, 0, t̃2〉), EK(〈t2, α2, e2, t3〉), EK(〈t4, B, 1, t5〉)〉

By verifying its integrity with (t1 = t̃1) and (t̃2 = t2), Alice assumes that there is no
intrusion in the channel. If some αi is of the form 〈q0, ξ〉, then Alice sends openly a
secret to Bob, otherwise, Alice sends a neutral message.

Bob’s role The role of Bob is to transform the message received with the help of an
instruction from the given Turing machine M. Bob is expecting to receive a message
(presumably from Alice) of the form:

〈EK(〈t0, ξ0, 0, t1〉), EK(〈t̃1, 〈q, ξ〉, 0, t̃2〉), EK(〈t2, ξ2, e2, t3〉), EK(〈t4, B, 1, t5〉)〉

Bob verifies its integrity by (t1 = t̃1) and (t̃2 = t2), and follows one of three cases:
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(1) (Extending the tape) For e2 = 1, Bob updates nonces ti to t′i, and sends the
following updated message to Alice, which provides a new last cell in the chain of four
cells

〈EK(〈t0, ξ0, 0, t′1〉), EK(〈t′1, 〈q, ξ〉, 0, t′2〉), EK(〈t′2, ξ2, 0, t′3〉), EK(〈t′3, B, 1, t′4〉)〉

(2) (Moving the Head of the Machine to the Right) For an M’s instruction of the
form qξ→ q′ηR, denoting: “if in state q looking at symbol ξ, replace it by η, move the
tape head one cell to the right, and go into state q′”, Bob updates some nonces ti to t′i,
and sends the following updated message to Alice

〈EK(〈t0, ξ0, 0, t′1〉), EK(〈t′1, η, 0, t′2〉), EK(〈t′2, 〈q′, ξ2〉, 0, t3〉), EK(〈t4, B, 1, t5〉)〉

(3) (Moving the Head of the Machine to the Left) For an M’s instruction of the
form qξ→ q′ηL, denoting: “if in state q looking at symbol ξ, replace it by η, move the
tape head one cell to the left, and go into state q′”, Bob updates some nonces ti to t′i,
and sends the following updated message to Alice

〈EK(〈t0, 〈q′, ξ0〉, 0, t′1〉), EK(〈t′1, η, 0, t′2〉), EK(〈t′2, ξ2, 0, t3〉), EK(〈t4, B, 1, t5〉)〉

Remark 1. Both Alice and Bob can input and output only messages of the form

〈EK(〈t0, α0, 0, t1〉), EK(〈t1, α1, 0, t2〉), EK(〈t2, α2, e2, t3〉), EK(〈t4, B, 1, t5〉)〉

where the first three components represent the chain of three cells, and the fourth com-
ponent refers to the last cell in a configuration.

Remark 2. The above protocol is balanced. It can be formalized by a bounded memory
protocol see [13]. In particular, only terms of height fixed in advance are used. Nonces
are only updated, that is, the old nonces are replaced by new nonces. Therefore, Alice
and Bob can forget the old nonces. In fact, Alice and Bob are finite automata, which are
allowed to update nonces only.

3.3 A Man-in-the-Middle Attack by Mallory

Notice that, according to Remark 1, by active eavesdropping Mallory can accumulate
terms of the form

EK(〈t1, α1, e1, t2〉) (3)

if and only if they are components of outputs generated by Alice or by Bob. We now
discuss the following attack on the protocol above:

(1) For the first run, Mallory intercepts the initial message from Alice, stores it,
and resends it to Bob. While Bob responds, Mallory intercepts the message from Bob,
stores it, and resends it to Alice.

(2) For each of the next runs, Mallory first intercepts the initial message from
Alice. Taking non-deterministically terms of the form (3) from his memory, Mallory
then composes a message of the form:

〈EK(〈t0, α0, 0, t1〉), EK(〈t̃1, α1, 0, t̃2〉), EK(〈t2, α2, e2, t3〉), EK(〈t4, B, 1, t5〉)〉
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and sends it to Bob. If Bob accepts this message and responds with a transformed one
as described in the protocol, then Mallory intercepts this new message from Bob, stores
it, and resends it to Alice.

The following lemma shows a certain chain-like structure of the terms accumulated
by the adversary. These chain-like structure are specified by the use of nonces and each
chain corresponds to reachable configurations of the MachineM.

Lemma 1. Suppose that a term of the formEK(〈t, 〈q, ξ〉, 0, t′〉) appears in the intruder
memory by active eavesdropping. Then there is a unique sequence of nonces t0, t1,. . . ,
tn+2 and a chain of terms from the adversary’s memory

EK(〈t0, $, 0, t1〉), EK(〈t1, x1, 0, t2〉), . . . . EK(〈tj−1, xj−1, 0, tj〉),
EK(〈tj , 〈q, xj〉, 0, tj+1〉), EK(〈tj+1, xj+1, 0, tj+2〉), . . . , EK(〈tn, xn, 0, tn+1〉),
EK(〈tn+1, B, 1, tn+2〉)

such that

(a) tj = t, xj = ξ, and tj+1 = t′,
(b) M leads from the empty initial configuration to the configuration where the string

x1x2..xj ..xn, is written in cells 1, 2,..,j,..,n on the tape

$ x1 x2 · · xj · · xn . . .

and the j-th cell is scanned byM in state q.

Proof. By induction on the number of actions performed by Bob to outcome a message
one of the components of which is EK(〈t, 〈q, ξ〉, 0, t′〉).

Theorem 1. There is a Dolev-Yao attack on the above protocol if and only if the ma-
chineM terminates on the empty input.

Proof. We sketch the proof of both directions of the proof.

(a) The direction from a terminating computation to an attack is straightforward by
induction on the length of the computation.

(b) The inverse direction is quite tricky. In the case of a successful attack, a term of
the form EK(〈t̃1, 〈q0, ξ〉, 0, t̃2〉), must appear in the adversary’s memory. Then by
Lemma 1, M leads from the empty initial configuration to a final configuration
where a cell is scanned in state q0.

Notice that in all attacks above the attacker in fact does not need to create/update
fresh nonces, but simply intercept, decompose, compose and copy messages.

Corollary 1. The existence of a Dolev-Yao attack is undecidable even for bounded
memory protocols, PM, where Alice and Bob are finite automata whom are allowed
to update nonces only, all actions by Alice and Bob are balanced, and only terms of
height fixed in advance are used by Alice, Bob, and an adversary (even if the actions of
the adversary are limited to decompose, compose, and copy).
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Proof. Given a non-recursive recursively enumerable set S, and a sequence of Turing
machines Mn such that Mn terminates on the empty input iff n ∈ S, it suffices to
consider the corresponding bounded memory protocols PMn .

Thus an upper bound on the memory of the Dolev-Yao adversary is not computable
from a bound on the memory used by a protocol. Based on peculiarities of our encoding
described in Section 3.2, we can express such a phenomenon in quantitative terms.

Theorem 2. Whatever a total recursive function h we take, we can construct a recur-
sive sequence of bounded memory protocolsQn so that

(a) For any n, there is a Dolev-Yao attack on the bounded memory protocolQn.
(b) However, for any n starting from some n0, any Dolev-Yao adversary the size of

whose memory is bounded by h(n) is not capable of detecting an attack on the
bounded memory protocolQn.

Proof Sketch. Given a total recursive recursive function f , as Qn we take the bounded
memory protocol PMn described in Section 3.2, where Mn is a Turing machine termi-
nating on the empty input with the value f(n).

Roughly, according to Theorem 1, Mallory, whose memory size is bounded by h(n),
can play at most 2O(h(n)) steps. It suffices, therefore, to take the function f such that its
time complexity is Ω(22

h(n)

).
The Theorem above implies that the Standard Dolev-Yao intruder cannot be con-

structively approximated by an infinite sequence of increasing memory Bounded Mem-
ory Intruders.

4 Progressing Collaborative Systems with Fresh Values

We introduced the notion of progressing in [12] in the context of Collaborative Systems
where agents interact in a closed-room setting, and no outside intruder is present. Nev-
ertheless, there may be adversaries inside the system. We are in particular interested
in systems where all agents have bounded memory, even the inside adversaries. Col-
laborative systems can be modelled with multiset rewriting, for instance the multiset
rewriting rules for the bounded memory intruder that may be present in the system is
shown in Figure 1b.

Progressing is inspired by the nature of security protocols, as well as many admin-
istrative and business processes. Namely, once one step of a protocol session is taken,
the same step is not repeated. Similarly, whenever one initiates some administrative
task, one receives a “to-do” list with the activities or tasks that have to be performed or
achieved. Once an item on the list has been “checked”, one does not need to return to
this item anymore. When all the items have been checked, the process ends. Such a pro-
cess is always advancing and it is completed within a bounded number of transactions.
Additionally, such processes often manipulate a bounded number of values. Consider,
for example, the simple process where a bank customer needs a new PIN number: The
bank will assign the customer a new PIN number, which is often a four digit number
and hence bounded. Even when a customer is allowed to chose a PIN number or some
password, it has to satisfy some conditions, e.g., all its characters must be alphanumeric
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and, in practice, the password is bounded since users are never able to use an unbounded
password due to buffer sizes, etc. Consequently, protocols and administrative processes
have a polynomial number of steps with respect to the given inputs (or size of the plan-
ning problem). In other words they can be considered as efficient. That is, one does not
need to perform an exponential number of actions to conclude such processes.

To formally capture this intuition, we defined Progressing in [12] as follows: A se-
quence of actions is progressing if an instance of an action appears at most once. Here
no nonces were allowed, and an instance of an action is obtained by a substitution which
replaces all variables appearing in the pre- and post-condition of the action with con-
stants. Assuming a finite signature, i.e.a finite number of constant symbols, there is a
finite number of instances of any action. This notion of progressing reflects the require-
ment that progressing processes are efficient, as one needs to consider only traces of
polynomial length to check whether a process can be completed or not. For instance, the
Towers of Hanoi problem has no progressing plans, since any solution is of exponential
length, which implies that one and the same action is necessarily used an exponential
number of times. In [12] we show that the progressing reachability problem for systems
that do not create nonces is NP-complete.

In administrative systems, it is often the case that one needs to generate fresh val-
ues. For instance, whenever a new adminstrative process is initiated, one creates a fresh
identifier different to the identifiers of all the existing processes. In this way, one does
not mix up the actions needed for different processes. In [11], we provide further illus-
trative examples for the need of fresh values in adminstrative processes.

However, extending this notion of progressing to systems that can create nonces
turned out to be quite challenging. The problem arises from the fact that if we allow
actions to create fresh values, one may capture processes which require an exponential
number of actions, that is, processes that cannot be efficiently carried out. Let us try
to extend naively the progressing definition above to the case when actions may create
nonces as follows: A sequence of actions that may create fresh values is progressing if
an instance of an action, with the same constants and the same nonces, appears at most
once. Unfortunately, such a definition of progressing is not satisfactory. When a nonce
is created, it is fresh, meaning that it hasn’t appeared in the system as yet. Consequently,
every application of an action that creates a nonce is a new instance of that action. For
instance, we can adapt the encoding of the Towers of Hanoi, so that for each move
creates a new nonce. Thus each action is a different instance, because a different nonce
is used and created. Therefore, the Towers of Hanoi would be according to the naive
definition above progressing, which is clearly not what we want.

Therefore, in order to extend the notion of progressing to the case where actions
may create nonces, we shouldn’t allow unbounded nonce generation. Instead we need
to somehow limit the use of nonces, but how many nonces is enough? This question is
answered for the case when systems are balanced. As discussed in Section 2.3, for the
case of balanced systems: one can simulate any plan that uses an unbounded number of
nonces by fixing a priori a polynomial number of nonce names [11] with respect to the
number of facts in the initial configuration (m) and the upper-bound on the size of facts
(k). In the following sections, we formalize these intuitions.
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4.1 Balanced Progressing with Fresh Values

We extend the notion of progressing for balanced systems that can create fresh values.
Central to our notion will be the definition of when two instances of actions are equiv-
alent (Definition 4). Consider for example the following two instances of an action,
where the tis are terms and njs are nonce names which do not appear in the alphabet
of the language:

X1(t1)X2(t2, t3, n1)X3(n1, n2) → ∃x.X4(t1)X2(t2, x, n3)X5(n1, n3),
X1(t1)X2(t2, t3, n4)X3(n4, n5) → ∃x.X4(t1)X2(t2, x, n6)X5(n4, n6).

These instances only differ in the nonce names used: the same fresh value, n3 in the
former instance and n6 in the latter, appear in same facts exactly at the same places, and
similarly, for the pairs of nonces (n1, n4), and (n2, n5). Inspired by a similar notion in
λ-calculus [4], and α-equivalence among configurations in [11], we regard instances of
actions that differ only in the nonce’s names used, as equivalent.

Definition 4. Two instances of an action, r1 and r2, are equivalent if there is a bijection
σ that maps the set of all nonce names appearing in one instance to the set of all nonce
names appearing in the other instance, such that r1σ = r2.

The two instances given above are equivalent because of the following bijection
{(n1, n4), (n2, n5), (n3, n6)}. It is easy to show that the above relation among instances
of actions is indeed an equivalence relation.

Definition 5. Given a balanced multiset rewrite system R, an initial configuration W
and a polynomial f(m, k), we say that a sequence of actions is progressing if it contains
at most f(m, k) equivalent instances of any action, where m is the number of facts in
the configurationW and k is the upper bound on size of facts.

Progressing reachability problem has a solution if for a given multiset rewrite system
R and configurationsW andZ , there is a progressing sequence of actions fromRwhich
transforms configurationW into Z .

Notice that our new notion of progressing extends progressing from [12], as they
coincide when systems do not allow fresh values. We will, therefore, be able to compare
our complexity results.

Furthermore, as per Definition 5, not every computation could be considered as pro-
gressing. Here a nonce name may only be used by the same action a polynomial number
of times in a computation. Hence, not every reachability problem that has a solution will
have a progressing solution. This is formalized by the the polynomial f , reflecting that
the process is efficient. For example, in any solution of Towers of Hanoi puzzle, one
and the same nonce name has to be updated an exponential number of times by the
only action from the representation of this puzzle in [11]. Therefore this problem has
no progressing solution as per our Definition 5, as expected.

Notice that, if nonces are allowed, we only conceive progressing in balanced systems,
while progressing with no nonces is clear for any in any multiset rewriting system,
even the unbalanced ones. This is because nonce update from [11] was only possible in
balanced systems.
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4.2 Complexity Results for Progressing Systems with Fresh Values

We now investigate the progressing reachability problem when actions can create fresh
values.

Theorem 3. Given a multiset rewrite system R with only balanced actions that can
create fresh values, an initial and a final configurations, an upper-bound, k, on the size
of facts, an alphabet with a finite number of constant and function symbols, and a poly-
nomial f with two parameters, the progressing reachability problem is NP-complete.

Proof. We infer the NP lower bound from the encoding of the 3-SAT problem from
[12], which is well-known to be NP-complete [6].

For the NP upper bound, Assume given an initial configuration with m facts and a
polynomial f with two parameters. Moreover, let n be the number of rules inR, d is the
number of constant and function symbols, k the upper bound on the size of facts and l
the upper bound on the number of different variables appearing in a rule in R. Here we
assume k and l to be much smaller than d and m.

Following [11], we can assume that all nonces are used from a 2mk set of nonce
names, that is fixed a priori. Hence, the number of constants in the system is d+2mk. As
actions are applied, instead of fresh values being created, nonces are updated. Obsolete
nonce names are picked from the fixed set of 2mk nonce names. They are, therefore,
different form any nonce in the configuration and can be considered fresh.

Since the size of facts is bounded, we do not need to consider terms that have a
size greater than k. Therefore we need to consider at most (d + 2mk)k terms. Since in
progressing traces, one is allowed to use only a polynomial number of instances of a
rule, the length of traces is bounded by

f(m, k)× n×
(
(d+ 2mk)k

)l
= f(m, k)× n× (d+ 2mk)kl.

The above bound is therefore polynomial in the size of the configurations, number of
rules and symbols.

Assume that W is the initial configuration and Z is the goal configuration that is
the configuration one wants to reach. Also assume that one can check in polynomial
time whether a configuration is the final one or not. We show below that there is a
polynomial-time deterministic algorithm that checks for valid computations.

We show that we can check in polynomial time, where a plan solves the progressing
problem. Let Si be the configuration at step i, so S0 = W , Qi be the multiset of pairs,
〈r, σ〉, of rules and substitutions used before step i, so Q0 = ∅.

1. Check if Z ⊆ Si−1, then ACCEPT; otherwise continue;
2. Guess an action ri : Xi → Yi, and a substitution σi;
3. Check if Xiσi ∈ Si−1, then continue; otherwise FAIL;
4. Check if the multiplicity of 〈ri, σi〉 in Qi−1 is greater than f(m, k), then FAIL;

otherwise continue;
5. Si = Si−1 ∪ {Y σi} \ {Xσi};
6. Qi = Qi−1 ∪ {〈ri, σi〉};
7. Increment i.
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Since the size of facts is bounded, all steps are done in polynomial time. The only step
that may not be apparent is step 4. However, the set Qi is bounded by the length of the
computation. Therefore, the reachability problem is in NP. �

Although we prove the NP-completeness above for the reachability problem, the
result above can be easily be extended to the other compliance problems detailed in [14].
Finally, for our NP-completeness result, we need to assume a bound on the size of
facts. This condition normally appears in the specification of administrative processes,
where only tokens are used and no function symbols [15]. However, we are currently
investigating ways to relax this condition, following [20].

5 Related Work

This paper strengthens the undecidability proof given in [3,8]. In particular, the proof
in [3,8] uses an encoding with well-founded protocols theories, whereas our proof uses
an encoding with bounded memory protocols. While in bounded memory protocols the
memory of the honest participants is bounded, in well-founded protocols it is possible
for the honest participants to have an unbounded memory. This is in fact the case in
the undecidability proof given in [3,8]. The proof relies on an unbounded number of
protocol sessions. Moreover, all these protocols sessions are created before any ses-
sions starts executing, hence participants require an unbounded memory to remember
in which protocol sessions they are participating. On the other hand, in our proof, Alice
and Bob participate in one protocol session at a time. Whenever one is finished, they
can re-use their memory to participate in the subsequent protocol session. This differ-
ence is crucial, as with our proof, we can infer that there is no way to compute an upper
bound on the memory of the adversary from the memory bounds of the participants,
demonstrating further the hardness of the secrecy problem.

Our NP upper bound for the progressing reachability problem in Theorem 3 is differ-
ent from the NP upper bound obtained [1,20] in the context of protocol security. In their
models, the progressing condition is incorporated syntactically into the rules of the the-
ories. Specifically, they use role predicates of the form Ai contain an index i denoting
the stage in the protocol. The NP-completeness result in [1,20] is obtained by further re-
stricting systems to have only a bounded number of roles. We, on the other hand, bound
the number of instances of actions that can appear in a plan. It would be interesting,
however, to check whether our assumption on the existence of an upper-bound on the
size of facts could be relaxed as in [20].

Harrison et al. present a formal approach to access control [10] and faithfully en-
code a Turing machine in their system. However, in contrast to our encoding, they use
a non-commutative matrix to encode the sequential, non-commutative tape of a Turing
machine. In their proofs, the non-commutative nature of the encoding plays an impor-
tant role. We, on the other hand, encode Turing machine tapes by using commutative
multisets. Specifically, they show that if no restrictions are imposed to the systems, the
reachability problem is undecidable.

Much work on reachability related problems has been done within the Petri nets
community, see e.g., [9]. Specifically, we are interested in the coverability problem
which is closely related to the reachability problem in multiset rewrite systems. To the

www.it-ebooks.info

http://www.it-ebooks.info/


Bounded Memory Protocols and Progressing Collaborative Systems 325

best of our knowledge, no work that captures exactly the balanced condition nor the
progressing with nonce creation has yet been proposed. In these cases, it does not seem
possible to provide direct, faithful reductions between our systems and Petri nets.

6 Conclusions

This paper showed that the memory of the adversary cannot be inferred from the mem-
ory bounds of the participants (Theorem 2). This is accomplished by proposing a novel
undecidability proof by encoding Turing machines by means of bounded memory pro-
tocols. This result confirms the hardness of protocol security. It answers negatively an
open problem left in [11]. Our second contribution was the formalization of progress-
ing for balanced systems that can create fresh values. We believe that this fragment will
provide foundations for a useful class of systems, namely for systems such as admin-
strative processes where the same instance of an action should not be performed an
exponential number of times. Finally, we proved the NP-completeness of the Progress-
ing reachability problem.

There are many directions to investigate from here. For instance, it would be inter-
esting to check whether one can adapt the encoding of the Horn implication problem
given in [3,8] to use bounded memory protocols, instead of well-founded ones. An-
other direction is whether one can improve the NP-completeness proof by relaxing the
assumption on the upper-bound of facts. This was possible in the context of protocol
security as shown in [20].

Together with Carolyn Talcott, we are investigating the use of the computational
tool Maude [5] for the specification and model-checking of regulated processes, such
as administrative processes [15]. In particular, we are investigating whether our NP-
completeness proof can improve Maude’s performance in model-checking Progressing
systems.

Another direction that we are currently investigating is to extend our model with
real times. In particular, systems that can create fresh values and mention real times
are of great interest to protocol security. For instance, many distance authentication
protocols [17,2] rely on timing measures. Thus extending our model with real times
and determining decidable fragments, e.g., balanced systems, is of great interest for the
verification of such protocols. We are also currently implementing these protocols in
Maude.
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Abstract. We present the first universally composable key-management func-
tionality, formalized in the GNUC framework by Hofheinz and Shoup. It allows
the enforcement of a wide range of security policies and can be extended by di-
verse key usage operations with no need to repeat the security proof. We illustrate
its use by proving an implementation of a security token secure with respect to
arbitrary key-usage operations and explore a proof technique that allows the stor-
age of cryptographic keys externally, a novel development in simulation-based
security frameworks.

1 Introduction

Security critical applications often store keys on dedicated hardware security modules
(HSM) or key-management servers to separate highly sensitive cryptographic opera-
tions from more vulnerable parts of the network. Access to such devices is given to
protocol parties by the means of Security APIs, e.g., the RSA PKCS#11 standard [1],
IBM’s CCA [2] and the trusted platform module (TPM) [3] API, all of which protect
keys by providing an API that allows to address keys only indirectly, via pointers which
are called handles. Recent work has tried to define appropriate security notions for APIs
in terms of cryptographic games [4,5]. This approach has two major disadvantages: first,
it is not clear how the security notion will compose with other protocols implemented
by the API. Second, it is difficult to see whether a definition covers the attack model
completely, since the game may be tailored to a specific API. Since security APIs are
foremost used as building blocks in other protocols, composability is crucial. In this
work, we adapt the more general approach to API security of Kremer et al. [5] to a
framework that allows for composition.

Composability can be proven in frameworks for simulation-based security, such as
GNUC [6], a deviation of the Universal Composability (UC) framework [7]. The re-
quirements of a protocol are formalized by abstraction: an ideal functionality computes
the protocol’s inputs and outputs securely, while a ‘secure’ protocol is one that emulates
the ideal functionality. Simulation-based security naturally models the composition of
the API with other protocols, so that proofs of security can be performed in a modular
fashion. We decided to use the GNUC model because it avoids shortcomings of the
original UC framework which have been pointed out over the years.

Contributions. We present, to the best of our knowledge, the first composable defi-
nition of secure key-management in the form of a key-management functionalityFKM.
It assures that keys are transferred correctly from one security token to another, that
the global security policy is respected (even though the keys are distributed on several
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tokens) and that operations which use keys are computed correctly. The latter is achieved
by describing operations unrelated to key-management by so-called key-usage function-
alities. FKM is parametric in the policy and the set of key-usage functionalities, which
can be arbitrary. This facilitates revision of API designs, because changes to operations
that are not part of the key-management or the addition of new functions do not af-
fect the emulation proof. To achieve this extensibility, we investigate what exactly a
“key” means in simulation-based security. Common functionalities in such settings do
not allow two parties to share the same key. In fact, they do not have a concept of keys,
but a concept of “the owner of a functionality” instead. The actual key is kept in the
internal state of a functionality, used for computation, but never output. Dealing with
key-management, we need the capability to export and import keys and we propose an
abstraction of the concept of keys, that we call credentials. The owner of a credential
can not only compute a cryptographic operation, but he can also delegate this capacity
by transmitting the credential. We think this concept is of independent interest, and as
a further contribution, subsequently introduce a general proof method that allows the
substitution of credentials by actual keys when instantiating a functionality.

Limitations. Our key-management functionality is currently tightly coupled with the
employment of a deterministic, symmetric authenticated encryption scheme that is se-
cure against key-dependant messages for key export and import. While practitioners
indeed favour deterministic key-encryption in protocol design and standardization ef-
forts (see, e. g., RFC 3394), it restricts the analysis to security devices providing this
kind of encryption. We have not yet covered asymmetric encryption of keys in FKM

(but we cover asymmetric encryption of user-supplied data), although FKM could be
extended to support this. Second, adaptive corruption of parties, or of keys that pro-
duce an encryption, provokes the well-known commitment problem [8], so we place
limitations on the types of corruptions that the environment may produce.

Related Work. Building on the work of Longley and Rigby [9] and Bond and Ander-
son [10] on API attacks, several recent papers have investigated the security of APIs on
the logical level adapting symbolic techniques for protocol analysis [11,12,13], finding
many new attacks. As discussed before, recent work on appropriate security notions for
APIs in terms of cryptographic games [4,5] lacks composability. Some aspects of the
ideal functionality Fcrypto by Küsters et al. [14] are similar to our key-management
functionality in that they both provide cryptographic primitives to a number of users
and enjoy composability. However, theFcrypto approach aims at abstracting a specified
set of cryptographic operations on client machines to make the analysis of protocols
in the simulation-based security models easier, and addresses neither key-management
nor policies. A full version of this paper with complete proofs is available at [15].

2 Background: GNUC

Hofheinz and Shoup [6] recently proposed the GNUC (“GNUC is Not UC”) framework
as an attempt to address several known shortcomings in UC. These shortcomings are
also addressed to a greater or lesser extent by other altenative frameworks [16,17]: we
chose GNUC because it is similar in spirit to the original UC yet rigorous and well
documented. We now give a short introduction to GNUC and refer the reader to [6] for
additional details.
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2.1 Machines and Interaction

In GNUC a protocol π is modeled as a library of programs, that is, a function from pro-
tocol names to code. This code will be executed by interactive Turing machines. There
are two distinguished machines, the environment and the adversary, that π does not de-
fine code for. All other machines are called protocol machines. Protocol machines can
be divided into two subclasses: regular and ideal. They come to life when they are called
by the environment and are addressed using machine ids. A machine id <pid,sid>
contains two parts: the party id pid, which is of the form <reg,basePID> for reg-
ular protocol machines and <ideal> for ideal protocol machines, and the session id
sid. Session ids are structured as pathnames of the form < α1, . . . , αk >. The last
component αk specifies which protocol is run with which protocol parameters. A ma-
chine can come to life by being called by the environment or by a subroutine call. In
this case, the session id of the caller has to be a prefix of the session id of the subrou-
tine. Two protocol machines, regular or ideal, are peers if they have the same session id.
Programs have to declare which other programs they will call as subroutines, defining
a static call graph which must be acyclic and have a program r with in-degree 0 – then
we say that the protocol is rooted at r.

GNUC imposes the following communication constraints on a regular protocol ma-
chine M : it can only send messages to the adversary, to its ideal peer (i. e., a machine
with party id <ideal> and the same session id), its subroutines and its caller. As a con-
sequence, regular protocol machines cannot talk directly to regular peers , but via the
adversary, modelling an insecure network, or via the ideal peer, who can communicate
with all regular protocol parties and the adversary.

The code of the machines is described by a sequence of steps similarly to [6, § 12].
Each step is a block of the form name [conditions]: P. The label name identi-
fies the step. The logical expression [conditions] is a guard that must be satisfied
to trigger a step. We omit the guard when it is true. A step name in the guard expression
evaluates to true if the corresponding step has been triggered at some previous point. P
is the code (whose semantics we expect to be clear) to be executed whenever the guard
evaluates to true. In particular P may contain accept-clauses that describe the form of
the message that can be input. The accept clause, too, might have logical conditions
that must be satisfied in order to continue the execution of the step. Any message not
triggering any step is processed by sending an error message to A.

2.2 Defining Security via Ideal Functionalities

As in other universal composability frameworks, the security of a protocol is specified
by a so-called ideal functionality, which acts as a third party and is trusted by all partici-
pants. Formally, an ideal functionality is a protocol that defines just one protocol name,
say r. The behavior defined for this protocol name depends on the type of machine:
all regular protocol machines act as “dummy parties” and forward messages received
by their caller (which might be the environment) to their ideal peer. The ideal protocol
machine interacts with the regular parties and the adversary: using the inputs of the
parties, the ideal functionality defines a secure way of computing anything the proto-
col shall compute, explicitly computing the data that is allowed to leak to the attacker.
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For instance, an authenticated channel is specified as a functionality that takes a mes-
sage from Alice and sends it to the attacker, exposing its content to the network, but only
accepting a message from the attacker (the network) if it is the same message Alice sent
in the first place.

Now we can define a second protocol, which is rooted at r, and does not necessarily
define any behaviour for the ideal party, but for the regular protocol machines. The role
of the environment Z is to distinguish whether it is interacting with the ideal system
(dummy users interacting with an ideal functionality) or the real system (users executing
a protocol). We say that a protocol π emulates a functionality F if for all attackers
interacting with π, there exists an attacker, the simulator Sim, interacting with F , such
that no environment can distinguish between interacting with the attacker and the real
protocol π, or the simulation of this attack (generated by Sim) and F . It is actually
not necessary to quantify over all possible adversaries: the most powerful adversary is
the so-called dummy attacker AD that merely acts as a relay forwarding all messages
between the environment and the protocol [6, Theorem 5].

Let Z be a program defining an environment, i. e., a program that satisfies the com-
munication constraints that apply to the environment (e. g., it sends messages only to
regular protocol machines or to the adversary). LetA be a program that satisfies the con-
straints that apply to the adversary (e. g., it sends messages only to protocol machines
(ideal or regular) it previously received a message from). The protocol π together with
A and Z defines a structured system of interactive Turing machines (formally defined
in [6, § 4]) denoted [π,A, Z]. The execution of the system on external input 1η is a ran-
domized process that terminates if Z decides to stop running the protocol and output a
string inΣ∗. The random variable Exec[π,A, Z](η) describes the output ofZ at the end
of this process (or Exec[π,A, Z](η) = ⊥ if it does not terminate). Let Exec[π,A, Z]
denote the family of random variables {Exec[π,A, Z](η)}∞η=1. An environment Z is
well-behaved if the data-flow from Z to the regular protocol participants and the adver-
sary is limited by a polynomial in the security parameter η. We say that Z is rooted at
r, if it only invokes machines with the same session identifier referring to the protocol
name r. We do not define the notion of a poly-time protocol and a bounded adversary
here due to space constraints and refer the reader to the definition in [6, § 6].

Definition 1 (emulation w.r.t. the dummy adversary). Let π and π′ be poly-time pro-
tocols rooted at r. We say that π′ emulates π if there exists an adversary Sim that is
bounded for π, such that for every well-behaved environment Z rooted at r, we have

Exec[π,Sim , Z] ≈ Exec[π′,AD, Z].

where ≈ is the usual notion of computational indistinguishability.

3 An Ideal Key Management Functionality and Its Implementation

The network we want to show secure has the following structure: a set of users which
takes input from the environment, each of which is connected to his security token.
Each security tokens is a network entity, just like the users, but has a secure channel
to the user it belongs to. Cryptographic keys are stored on the token, but are not given
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directly to the user – instead, at creation of a key, the user (and thus the environment)
receives a handle to the key.

We consider such a network secure if it emulates a network in which the users are
communicating with a single entity, the key-management functionality FKM, instead
of their respective security token. It gives the users access to its operations via handles,
too, and is designed to model the “ideal” way of performing key-management. To show
the security of the operations that have nothing to do with key-management, it accesses
several other functionalities which model the security of the respective operations. This
allows us to have a definition that is applicable to many different cases.

In this section we motivate and define our ideal functionality for key management.
We explain first its architecture, then our concept of key usage functionalities which
cover all the usual cryptographic operations we might want to perform with our man-
aged keys. We then describe our notion of security policies for key management, and
finally give an implementation of such a functionality.

3.1 Architecture

Policies. The goal of key-management is to preserve some kind of policy on a global
level. Our policies express two kinds of requirements: usage policies of the form “key A
can only be used for tasks X and Y”, and dependency policies of the form “the security
of key A may depend on the security of keys B and C”. The difficulty lies in enforcing
this policy globally when key-management involves a number of distributed security
tokens that can communicate only via an untrusted network. Our ideal key-management
functionality considers a distributed set of security tokens as a single trusted third party.
It makes sure that every use of a key is compliant with the (global) policy. Therefore,
if a set of well-designed security tokens with a sound local policy emulates the ideal
key-management functionality, they can never reach a state where a key is used for an
operation that is contrary to the policy. The functionality associates some meta-data, an
attribute, to each key. This attribute defines the key’s role, and thus its uses. Existing
industrial standards [1] and recent academic proposals [4,5] are similar in this respect.

Sharing Secrets. A key created on one security token is a priori only available to
users that have access to this token (since it is hidden from the user). Many crypto-
graphic protocols require that the participants share some key, so in order to be able
to run a protocol between two users of different security tokens, we need to be able to
“transfer” keys between devices without revealing them. There are several ways to do
this, e. g., using semantically secure symmetric or asymmetric encryption, but we will
opt for the simplest, key-wrapping (the encryption of one key by another). While it is
possible to define key-management with a more conceptual view of “transferring keys”
and allow the implementation to decide for an option, we think that since key-wrapping
is relevant in practice (it is defined in RFC 3394), the choice for this option allows us to
define the key-management in a more comprehensible way.

Secure Setup. The use of key-wrapping requires some initial shared secret values to
be available before keys can be transferred. We model the setup in the following way: a
subset of users, Room, is assumed to be in a secure environment during a limited setup-
phase. Afterwards, the only secure channel is between a user Ui, and his security token
ST i. The intruder can access all other channels, and corrupt any party at any time, as
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well as corrupt keys, i. e., learn the value of the key stored inside the security token.
This models the real world situation where tokens can be initialised securely but then
may be lost or subject to, e. g., side channel attacks once deployed in the field.

Operations required. These requirements give a set of operations that key-manage-
ment demands: creating keys, changing their attributes, transferring keys and secure
setup. We argue that a reasonable definition of secure key-management has to provide
at least those operations. Furthermore, a user must be able to use the keys for crypto-
graphic operations, e. g., generate a digital signature. This allows the following classi-
fication: the first group of operations defines key-management, the second key-usage.
While key-management operations, for example wrap, might operate on two keys of
possibly different types, key-usage operations are restricted to calling an operation on a
single key and user-supplied data.

3.2 Key-Usage (KU) Functionalities

We now define an abstract notion of a functionality making use of a key which we call
a key usage (KU) functionality. For every KU operation, FKM calls the corresponding
KU functionality, receives the response and outputs it to the user. We define FKM for
arbitrary KU operations, and consider a security token secure, with respect to the im-
plemented KU functionalities, if it emulates the ideal functionality FKM parametrized
by those KU functionalities. This allows us to provide an implementation for secure
key-management independent of which KU functionalities are used.

Credentials. Many existing functionalities, e. g., [7], bind the roles of the parties,
e. g., signer and verifier, to a machine ID. In implementations, however, the privilege
to perform an operation is linked to the knowledge of a key rather than a machine ID.
While for most applications this is not really a restriction, it is for key-management. The
privilege to perform an operation of a KU functionality must be transferable as some
piece of information, which however cannot be the actual key: a signing functionality,
for example, that exposes its keys to the environment is not realizable. Our solution is
to generate a key, but only send out a credential, which is a hard-to-guess pointer that
refers to this key. We actually use the key generation algorithm to generate credentials.
As opposed to the real world, where security tokens map handles to keys, and compute
the results based on the keys, in the ideal world, FKM maps handles to credentials,
and uses those credentials to address KU functionalities, which compute the results.
The implementation of a KU functionality maps credentials to cryptographic keys (see
Definition 2). While credentials are part of the FKM and the KU-functionality, they are
merely devices used for abstracting keys. They are used in the proofs, but disappear in
the reference implementation presented in Section 3.4.

Our approach imposes assumptions on the KU functionalities, as they need to be
implementable in a key-manageable way.

Definition 2 (key-manageable implementation). A key-manageable implementation
Î is defined by (i) a set of commands Cmds that can be partitioned into private and
public commands, as well as key-(and credential-)generation, i. e., C = Cpriv " Cpub "
{new}, and (ii) a set of PPT algorithms implementing those commands, {implC}C∈C,
such that for the key-generation algorithm impl new it holds that
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– for all k, Pr[k′ = k|(k′, public) ← implnew(1
η)] is negligible in η, and,

– Pr[|k1| �= |k2||(k1, p1) ← impl new(1
η); (k2, p2) ← impl new(1

η)] is negligible in η.

Î is a protocol in the sense of [6, §5], i. e., a run-time library that defines only one
protocol name. The session parameter encodes a machine id P . When called on this
machine, the code below is executed. If called on any other machine no message is
accepted. From now on in our code we follow the convention that the response to a
query (Command, sid, . . .) is always of the form (Command•, sid, . . .), or ⊥. The
variable L holds a set of pairs and is initially empty.

new: accept <new> from parentId;
(key , public)← implnew(1

η); (credential , )← implnew(1
η);

L← L ∪ {(credential , key)}; send <new•, credential , public> to parentId
command: accept <C, credential ,m> from parentId;

if (credential , key) ∈ L for some key send <C•, implC(key , m)> to parentId
public_command: accept <C, public,m> from parentId;

send <C•, implC(public,m)> to parentId
corrupt: accept <corrupt , credential> from parentId;

if (credential , key) ∈ L for some key send <corrupt•, key> to parentId
inject: accept <inject,k> from parentId;

(c, <ignore>)← implnew(1
η); L← L ∪ {(c, k)}; send <inject•,c> to parentId

�

The definition requires that each command C can be implemented by an algorithm
implC . If C is private implC takes the key as an argument. Otherwise it only takes
public data (typically the public part of some key, and some user data) as arguments.
In other words, an implementation Î emulating F is, once a key is created, stateless
w.r.t. queries concerning this key. The calls 〈corrupt〉 and 〈inject〉 are necessary
for cases where the adversary learns a key, or is able to insert dishonestly generated
key-material.

Definition 3 (key-manageable functionality). A poly-time functionality F (to be pre-
cise, an ideal protocol [6, § 8.2]) is key-manageable iff it is poly-time, and there is a
set of commands C and implementations, i. e., PPT algorithms ImplF = {implC}C∈C,
defining a key-manageable implementation Î (also poly-time) which emulates F .

3.3 Policies

Since all credentials on different security tokens in the network are abstracted to a cen-
tral storage,FKM can implement a global policy. Every credential in FKM is associated
to an attribute from a set of attributesA and to the KU functionality it belongs to (which
we will call its type). Keys that are used for key-wrapping are marked with the type KW.

Definition 4 (Policy). Given the KU functionalitiesFi, i ∈ {1, . . . , l} and correspond-
ing sets of commands Ci, a policy is a quaternary relation Π ⊂ {F1, . . . ,Fl, KW} ×
∪i∈{1,...,l}Cprivi ∪ {new, wrap, unwrap, attribute change} × A×A.
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FKM is parametrized by a policyΠ . If (F , C, a, a′) ∈ Π and if

– C = new, then FKM allows the creation of a new key for the functionality F with
attribute a.

– F = Fi and C ∈ Cprivi , then FKM will permit sending the commandC to F , if the
key is of type F and has the attribute a.

– F = KW and C = wrap, then FKM allows the wrapping of a key with attribute a′

using a wrapping key with attribute a.
– F = KW and C = unwrap, then FKM allows to unwrapping a wrap with attribute
a′ using a wrapping key with attribute a.

– if C = attribute change, then FKM allows the changing of a key’s attribute
from a to a′.

Note that a′ is only relevant for the commands wrap, unwrap and attribute change.
Because of the last command, a key can have different attributes set for different users
of FKM, corresponding to different security tokens in the real word.

Example 1. To illustrate the definition of policy consider the case of a single KU func-
tionality for encryption Fenc. The set of attributes A is {0, 1}: intuitively a key with

attribute 1 is allowed for wrapping and a key withF Cmd attr1 attr2
KW new 1 *
Fenc new 0 *
KW wrap 1 0
KW unwrap 1 0
Fenc enc 0 *

Fig. 1. Security policy

attribute 0 for encryption. The following table de-
scribes a policy that allows wrapping keys to wrap
encryption keys, but not other wrapping keys, and
allows encryption keys to perform encryption on
user-data, but nothing else – even decryption is dis-
allowed. The policy Π consists of the following 4-
tuples (F ,Cmd,attr1,attr2) defined in Figure 1.

3.4 The Key-Management Functionality and Reference Implementation

We are now in a position to give a full definition of FKM together with an implementa-
tion. We give a description of FKM in the Listings 2 to 7. For book-keeping purposes
FKM maintains a set Kcor of corrupted keys and a wrapping graph W whose vertices
are the credentials. An edge (c1, c2) is created whenever (the key corresponding to) c1
is used to wrap (the key corresponding to) c2.

Structure. FKM acts as a proxy service to the KU functionalities. It is possible to
create keys, which means that FKM asks the KU functionality for the credentials and
stores them, but outputs only a handle referring to the key. This handle can be the
position of the key in memory, or a running number – we just assume that there is a
way to draw them such that they are unique. When a commandC ∈ Cprivi is called with
a handle and a message, FKM substitutes the handle with the associated credential, and
forwards the output to Fi. The response fromFi is forwarded unaltered. All queries are
checked against the policy. The environment may corrupt parties connected to security
tokens, as well as individual keys.

Definition 5 (Parameters to a security token network). We summarize the param-
eters of a security token Network as two tuples, (U ,Uext,ST ,Room) and (F , C, Π).
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Z

U1 . . . Un Uext
1 . . . Uext

m

Fsetup

ST 1 . . . STn

(a) Distributed security tokens in the network

Z

U1 . . . Un Uext
1 . . . Uext

m

ST 1

F1 . . . Fl

FKM

(b) An idealized functionality FKM in the
same network

Fig. 2. Distributed security tokens in the network (left-hand side) and idealized functionalityFKM

in the same network (right-hand side).

The first tuple defines network parameters: U = {U1, . . . , Un} are the party IDs of
the users connected to a security token and Uext = {U ext

1 , . . . , U ext
m } are the party

IDs of external users, i. e., users that do not have access to a security token. ST =
{ST 1, . . . ,STn} are the party IDs of the security tokens accessed by U1, . . . , Un.
Room ⊂ U . The second tuple defines key-usage parameters: F = {F1, . . . ,Fl},
C = {C1, . . . , Cl} are key-manageable functionalities with corresponding sets of com-
mands. Note that KW �∈ {F1, . . . ,Fl}, and that each Ci ∈ C is partitioned into the
private Cprivi and public commands Cpubi , as well as the singleton set consisting of new.
Π is a policy for F (cf. Definition 4) and a membership test on Π can be performed
efficiently.

Network setup. Figure 2 shows the network of distributed users and security to-
kens on the left, and their abstraction FKM on the right. There are two kinds of users:
U1, . . . , Un =: U , each of whom has access to exactly one security token ST i, and
external users U ext

1 , . . . , U ext
m =: Uext, who cannot access any security token. The se-

curity token ST i can only be controlled via the user Ui. The functionality Fsetup in
the real world captures our setup assumptions, which need to be achieved using phys-
ical means. Among other things, Fsetup assures a secure channel between each pair
(Ui, ST i). The necessity of this channel follows from the fact that a) GNUC forbids
direct communication between two regular protocol machines (indirect communication
via A is used to model an insecure channel) and b) U1, . . . , Un can be corrupted by the
environment, while ST 1, . . . ,STn are incorruptible, since security tokens are designed
to be better protected against physical attacks, as well as worms, viruses etc. Although
we assume that the attacker cannot gain full control of the device (party corruption), he
might obtain or inject keys in our model (key corruption).

ST i makes subroutine calls to the functionality Fsetup which subsumes our setup
assumptions. Fsetup provides two things: 1. a secure channel between each pair Ui and
ST i, 2. a secure channel between some pairs ST i and ST j during the setup phase (see
below). ST i receives commands from a machine Ui ∈ U , which is formally defined
in the full version [15], and relays arbitrary commands sent by the environment via
Fsetup. The environment cannot talk directly to ST i, but the attacker can send queries
on behalf of any corrupted user, given that the user has been corrupted previously (by
the environment).
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Setup phase. The setup is implemented by the functionality Fsetup, defined in Ap-
pendix A in the full version of this paper [15]. All users in Room are allowed to share
keys during the setup phase. This secure channel between two security tokens ST is
only used during the setup phase. Once the setup phase is finished, the expression
setup finished evaluates to true and the functionality enters the run phase. During
the run phase, Fsetup provides only a secure channel between a user Ui, which takes
commands from the environment, and his security token ST i.

Implementation. The implementation ST is inspired by [5] and is parametric on the
KU parametersF , C, Π and the implementation functions Impl := {ImplF}F∈F . It is
composable in the following sense: if a device performs the key-management according
to our implementation, it does not matter how many, and which functionalities it enables
access to, as long as those functionalities provide the amount of security the designer
aims to achieve (cf. Corollary 1). In Section 5, we show how to instantiate those KU
functionalities to fully instantiate a “secure” security token, and how FKM facilitates
analysis of this configuration.

Executing commands in Cpriv . If the policy Π permits execution of a command
C ∈ Cpriv , FKM calls the corresponding functionality as a sub-protocol, substituting
the handle by the corresponding credential. Similarly, ST i uses the corresponding key
to compute the output of the implementation function implC of the command C (List-
ings 3.4 and 1). Note that the security token communicates with its respective user via
Fsetup, which forwards messages between ST i and Ui, serving as a secret channel.

command[finish_setup]: accept <C ∈ Cprivi ,h,m> from U ∈ U ;
if Store [U, h]=<Fi,a,c> and <Fi,C,a,∗>∈ Π and Fi �= KW

call Fi with<C,c,m>; accept <C•,r> from Fi; send <C•,r> to U
�

command[finish_setup]: accept <C ∈ Cpriv
i′ ,h,m> from Fsetup;

if Store [Ui, h] =<Fi′ ,a,k> and <Fi′ ,C,a,∗>∈ Π and Fi′ �= KW

send <C•,implC(k,m)> to Fsetup
�

Listing 1. Executing command C on a handle h with datam (FKM above, ST i below).

Creating keys. A user can create keys of type F and attribute a using the command
<new,F,a>. In FKM, the functionalityF is asked for a new credential and some pub-
lic information. The credential is stored with the meta-data at a freshly chosen position
h in the store. Similarly, ST stores an actual key, instead of a credential. Both FKM and
ST output the handle h and the public information given by F , or produced by the key-
generation algorithm.FKM treats wrapping keys differently: it calls the key-generation
function for KW. It is possible to change the attributes of a key in future, if the policy
permits (Listing 5).

new[ready]: accept <new,F ,a> from U ∈ U ;
if <F ,new,a,∗> ∈ Π

if F =KW then (c, public)← implKW
new (1η)

else call F with <new>; accept <new•,c,public> from F
if c ∈ K ∪ Kcor then send <error> to A
else create h; Store[U, h]← <F,a,c>; K := K ∪ {c}; send <new•,h,public> to U

�
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new[ready]: accept <new,F ,a> from Fsetup;
if <F ,new,a,∗> ∈ Π

(k, public)← implFnew(1
η); create h; Store[Ui, h]← <F ,a,k>;

send <new•,h,public> to Fsetup
�

Listing 2. Creating keys of type F , and attribute a (FKM above, ST i below).

Wrapping and Unwrapping. The commands that are important for key-management
are handled by FKM itself. To transfer a key from one security token to another in the
real world, the environment instructs, for instance, U1 to ask for a key to be wrapped
(see Listing 3). A wrapping of a key is the encryption of a key with another key, the
wrapping key. The wrapping key must of course be on both security tokens prior to that.
U1 will receive the wrap from ST 1 and forward it to the environment, which in turn
instructs U2 to unwrap the data it just received from U1. The implementation ST i just
verifies if the wrapping confirms the policy, and then produces a wrapping of c2 under
c1, with additionally authenticated information: the type and the attribute of the key,
plus a user-chosen identifier that is bound to a wrapping in order to identify which key
was wrapped. This could, e. g., be a key digest provided by the KU functionality the key
belongs to. The definition of FKM is parametric in the algorithms wrap, unwrap and
implnew used to produce the wrapping. When a handle to a credential c is corrupted,
the variable key [c] stores the corresponding key, c.f. Listing 6. We use $l to denote a
bitstring of length l drawn from a uniform distribution.

wrap[finish_setup]: accept <wrap,h1,h2,id> from U ∈ U ;
if Store[U, h1]=<KW,a1,c1> and Store[U, h2]=<F2,a2,c2> and <KW,wrap,a1,a2>∈ Π

if ∃w.<c2,<F2,a2,id>,w>∈encs[c1]
send <wrap•,w> to U

else
W ←W ∪ {(c1, c2)};
if c1 ∈ Kcor

for all c3 reachable from c2 inW corrupt c3;
w← wrap<F2,a2,id>(c1, key [c2])

else
w← wrap<F2,a2,id>(c1, $

|c2|)
encs[c1]← encs[c1] ∪{ <c2,<F2,a2,id>,w>}; send <wrap•,w> to U

�

wrap[finish_setup]: accept <wrap,h1,h2,id> from Fsetup;
if Store [Ui, h1]=<KW,a1,k1> and Store [Ui, h2]=<F2,a2,k2>

and <KW,wrap,a1,a2>∈ Π
w← wrap<F2,a2,id>(k1, k2); send <wrap•,w> to Fsetup

�

Listing 3. Wrapping key h2 under key h1 with additional information id (FKM above, ST i

below).

When a wrapped key is unwrapped using an uncorrupted key, FKM checks if the
wrapping was produced before, using the same identifier. Furthermore, FKM checks if
the given attribute and types are correct. If this is the case, it creates another entry in
Store, i. e., a new handle h′ for the user U pointing to the correct credentials, type and
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attribute type of the key. This way, FKM can guarantee the consistency of its database
for uncorrupted keys, see the following Theorem 1. If the key used to unwrap is cor-
rupted, this guarantee cannot be given, but the resulting entry in the store is marked
corrupted. It is possible to inject keys by unwrapping a key that was wrapped outside
the device. Such keys could be generated dishonestly by the adversary, that is, not us-
ing their respective key-generation function. In this keys, the 〈 inject 〉 call imports
cryptographic value of the key onto the KU functionality, which generates a new cre-
dential for this value.

unwrap[finish_setup]: accept <unwrap,h1,w,a2,F2,id> from U ∈ U ;
if Store [U, h1]=<KW,a1,c1> and <KW,unwrap,a1,a2>∈ Π,F2 ∈ F

if c1 ∈ Kcor

c2 ← unwrap<F2,a2,id>(c1, w);
if c2 �= ⊥ and c2 �∈ K

if F2 =KW
create h2; Store [U, h2]←<F2,a2,c2>; key [c2]←c2; Kcor←Kcor ∪ {c2}

else
call F2 with<inject,c2>; accept <inject•,c′>;
if c′ �∈ K ∪ Kcor

create h2;
Store [U, h2]← <F2,a2,c′>; key [c′]← c2; Kcor ← Kcor ∪ {c′};

send <unwrap•,h> to U
else if c2 �= ⊥ ∧ c2 ∈ K ∧ c2 ∈ Kcor

create h2; Store [U, h2]← <F2,a2,c2>; send <unwrap•,h> to U
else // (c2 = ⊥ ∨ c2 ∈ K \ Kcor)

send <error> to A
else if ( c1 /∈ Kcor and ∃!c2.<c2,<F2,a2,id>,w>∈encs[c1])

create h2; Store [U, h2]← <F2,a2,c2>; send <unwrap•,h2> to U
�

unwrap[finish_setup]: accept <unwrap,h1,w,a2,F2,id> from Fsetup

if Store [Ui, h1]=<KW,a1,k1> and F2 ∈ F and <KW,unwrap,a1,a2>∈ Π
and k2 = unwrap<F2,a2,id>(k1, w) �= ⊥

create h2; Store [U, h2]← <F2,a2,k2>; send <unwrap•,h2> to Fsetup
�

Listing 4. Unwrapping w created with attribute a2, F2 and id using the key h1. ∃!x.p(x)
denotes that there exists exactly one x such that p(x) holds (FKM above, ST i below).

There is an improvement that became apparent during the emulation proof (see Sec-
tion 4). When unwrapping with a corrupted key,FKM checks the attribute to be assigned
to the (imported) key against the policy, instead of accepting that a corrupted wrapping-
key might import any wrapping the attacker generated. This prevents, e.g., a corrupted
wrapping-key of low security from creating a high-security wrapping-key by unwrap-
ping dishonestly produced wrappings. This detail enforces a stronger implementation
than the one in [5]: ST validates the attribute given with a wrapping, enforcing that
it is sound according to the policy, instead of blindly trusting the authenticity of the
wrapping mechanism. Hence our implementation is more robust.

Changing attributes of keys. The attributes associated with a key with handle h can
be updated using the command <attr change,h,a′>.
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attr_change[finish_setup]: accept <attr_change,h,a′> from U ∈ U ;
if Store [U, h]=<F ,a,c> and<F ,attr_change,a,a′>∈ Π

Store [U, h]=<F ,a′,c>; send <attr_change•> to U
�

attr_change[finish_setup]: accept <attr_change,h,a′> from Fsetup;
if Store [Ui, h]=<F ,a,k> and <F ,attr_change,a,a′>∈ Π

Store [Ui, h]=<F ,a′,k>; send <attr_change•> to Fsetup
�

Listing 5. Changing the attribute of h to a′ (FKM above, ST i below).

Corruption. Since keys might be used to wrap other keys, we would like to know
how the loss of a key to the adversary affects the security of other keys. When an
environment “corrupts a key” in FKM, the adversary learns the credentials to access the
functionalities. Since corruption can occur indirectly, via the wrapping command, too,
we factored this out into Listing 6. ST implements this corruption by outputting the
actual key to the adversary.

procedure for corrupting a credential c:

Kcor ← Kcor ∪ {c}
for any Store [U, h] =< F, a, c >

if F = KW

key [c]← c; send <corrupt•,h,c> to A
else

call F with<corrupt,c>; accept <corrupt•,k> from F
key [c]← k; send <corrupt•,h,k> to A

�

Listing 6. Corruption procedure used in steps corrupt and wrap

corrupt[finish_setup]: accept <corrupt,h> from U ∈ U ;
if Store [U, h] =< F, a, c >

for all c′ reachable from c in W corrupt c′
�

corrupt[finish_setup]: accept <corrupt,h> from Fsetup;
if Store [Ui, h] =< F, a, k > send <corrupt•,h,k> to A

�

Listing 7. Corrupting h (FKM above, ST i below).

Public key operations. Some cryptographic operations (e. g., digital signatures) al-
low users without access to a security token to perform certain operations (e. g., sig-
nature verification). Those commands do not require knowledge of the credential (in
FKM), or the secret part of the key (in ST ). They can be computed using publicly
available information. In the case where participants in a high-level protocol make use
of, e. g., signature verification, but nothing else, the protocol can be implemented with-
out requiring those parties to have their own security tokens. Note that FKM relays this
call to the underlying KU functionality unaltered, and independent of its store and pol-
icy (see Figure 8). The implementation ST i does not implement this step, since Ui,
U ext
i compute implC(public,m) themselves.
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public_command: accept <C ,public,m> from U ∈ U ∪ Uext;
if C ∈ Ci,pub

call Fi with <C,public,m>; accept <C•,r> from Fi; send <C•,r> to U
�

Listing 8. Computing the public commands C using public andm (FKM, note that ST i does
not implement this step).

Before we give the formal definition of FKM, note that FKM is not an ideal protocol
in the sense of [6, § 8.2], since not every regular protocol machine runs the dummy party
protocol – the party <reg,Fi> relays the communication with the KU functionalities.

Definition 6 (FKM). Given the KU parametersF , C, Π , and polytime algorithmswrap,
unwrap and implnew , let the ideal protocols Fp+1, . . . ,Fl be rooted at prot-Fp+1,
. . . ,prot-Fl. In addition to those protocols names, FKM defines the protocol name
prot-fkm. For prot-fkm, the protocol defines the following behaviour: a regular
protocol machine with machine id <<reg,Fi>,sid> for Fi ∈ {F1, . . . ,Fl} runs the
following code:

ready: accept <ready> from parentId
send <ready> to <ideal,sid> (= FKM)

relay_to: accept <m> from <ideal,sid> (= FKM)
send <m> to <<reg,Fi>,<sid ,<prot−Fi,<>>> (= Fi)

relay_from: accept <m> from <<reg,Fi>,<sid ,<prot−Fi,<>>>
send <m> to <ideal,sid> (= FKM)

�

The ideal party runs the logic for FKM described in Listings 2 to 7.

Remark 1: Credentials for different KU functionalities are distinct. It is nonetheless
possible to encrypt and decrypt arbitrary credentials using <wrap> and <unwrap>.
Suppose a designer wants to prove a Security API secure which uses shared keys for
different operations. One way or another, she would need to prove that those roles do not
interfere. For this case, we suggest providing a functionality that combines the two KU
functionalities, and proving that the implementation of the two operations combined
emulates the combined functionality. It is possible to assign different attributes to keys
of the same KU functionality, and thus restrict their use to certain commands, effectively
providing different roles for credentials to the same KU functionality. This can be done
by specifying two attributes for the two roles and defining a policy that restricts which
operation is permitted for a key of each attribute.

Remark 2: Many commonly used functionalities are not caller-independent, often
the access to critical functions is restricted to a network party that is encoded in the
session identifier. However, we think that it is possible to construct caller-independent
functionalities for many functionalities, if the implementation relies on keys but is oth-
erwise stateless. A general technique for transforming such functionalities into key-
manageable functionalities that preserves existing proofs is work in progress.

Properties. In order to identify some properties we get from the design of FKM, we
introduce the notion of an attribute policy graph:

Definition 7. We define a family of attribute policy graphs (AΠ,F ), one for each KU
functionality F and one for key-wrapping (in which case F = KW) as follows: a is
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a node in AΠ,F if (F , C, a, a′) ∈ Π for some C, a′, and additionally marked new if
(F , new, a, a′) ∈ Π . An edge (a, a′) is in AΠ,F whenever (F , attribute change,
a, a′) ∈ Π .

Example 2. For the policyΠ described in Example 1, the attribute policy graphAΠ,KW

contains one node 1 connected to itself and marked new. Similarly, the attribute policy
graphAΠ,Fenc contains one node 0 connected to itself and marked new.

The following theorem shows that (i) the set of attributes an uncorrupted key can
have in FKM is determined by the attribute policy graph, (ii) second, there are exactly
three ways to corrupt a key, and (iii) KU-functionalities receive the corrupt message
only if a key is corrupted. The proof of these claims can be found in the full version [15].

Theorem 1 ( Properties of FKM). Every instance of FKM with parameters F , C, Π
and session parameters U ,Uext,ST ,Room has the following properties:

(1) At any step of an execution of [FKM,AD, Z], the following holds for FKM: for all
Store[U, h] = 〈F , a, c〉 such that c �∈ Kcor, there is a node a′ marked new in the
attribute policy graph AΠ,F such that a is reachable from a′ in AΠ,F and there
was a step new where Store[U ′, h′] = 〈F , a′, c〉 was added.

(2) At any step of an execution of [FKM,AD, Z], the following holds for FKM: all
c ∈ Kcor were either
(a) directly corrupted: there was a corrupt triggered by a query 〈corrupt, h〉

from U while Store[U,h]= 〈F , a, c〉, or indirectly, that is,
(b) corrupted via wrapping: there is c′ ∈ Kcor such that at some point the wrap

step was triggered by a message 〈 wrap,h′, h, id〉 from U while Store[U,
h′]= 〈KW, a′, c′〉, Store[U,h]= 〈F , a, c〉, or

(c) corrupted via unwrapping (injected): there is c′ ∈ Kcor such that at some point
the unwrap step was triggered by a message 〈 unwrap,h′,w,a,F,id〉
from U while Store[U,h′]= 〈KW, a′, c′〉 and c = unwrap

〈F,a,id〉
c′ (w) for

some a, F and id .
(3) At any step of an execution of [FKM,AD, Z], the following holds: whenever an

ideal machine Fi = 〈ideal, 〈sid, 〈Fi, F 〉〉〉, F = 〈〈reg,F〉, 〈sid〉〉 , accepts
the message 〈corrupt, c〉 for some c such that FKM in session sid has an entry
Store[U, h]= <Fi,a,c>, then c ∈ Kcor in FKM.

4 Proof Overview

We show that, for arbitrary KU parametersF , C, Π , the network πF ,C,Π,Impl, consisting
of the set of users U connected to security tokens ST , the set of external users Uext and
the functionality Fsetup, emulates the key-management functionality FKM. We will
only give a proof sketch here, the complete proof can be found in the full version [15].

Let πF ,C,Π,Impl (in the following: π) denote the network consisting of the programs
π(prot-fkm) and π(prot-fsetup). π(prot-fkm) defines the behaviours for users in
U , Uext and ST . Parties in U ∪ Uext will act according to the convention on machine
corruption defined in [6, § 8.1], while parties in ST will ignore corruption requests
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(security tokens are assumed to be incorruptible). π(prot-fkm) is totally regular, that
is, for other machines, in particular ideal machines, it responds to any message with an
error message to the adversary. The protocol π is a Fsetup-hybrid protocol.

The proof proceeds as follows: making use of the composition theorem, the last
functionality Fl in FKM can be substituted by its key-manageable implementation
ÎL. Then, FKM can simulate Î instead of calling it. Let FKM{Fl/Îl} be the result-
ing functionality. In the next step, calls to this simulation are substituted by calls to
the functions used in Î , implC for each C ∈ Cl. The resulting, partially implemented
functionality FKM{Fl/ImplFl

} saves keys rather than credentials (for Fl). We repeat
the previous steps until FKM does not call any KU functionalities anymore, i. e., we
have FKM{F1/ImplF1

, . . . ,Fn/ImplFn
}. Then we show that the network of dis-

tributed token π emulates the monolithic block FKM{F1/ImplF1
, . . . ,Fn/ImplFn

}
that does not call KU functionalities anymore, using a reduction to the security of the
key-wrapping scheme. This last step requires restricting the set of environments to those
which guarantee that keys are not corrupted after they have been used to wrap. The no-
tion of a guaranteeing environment, and the predicate corrupt-before-wrap are formally
defined in Appendix D [15]. The main result follows from the transitivity of emulation
and two lemmas describing the steps we just mentioned.

Corollary 1. Let F , C, Π be KU parameters such that all F ∈ F are key-manageable.
Let ImplFi

be the functions defining the key-manageable implementation Îi of Fi. If
KW = (impl KWnew,wrap, unwrap) is a secure and correct key-wrapping scheme(See
Definition 12 in Appendix D [15]), then πF ,C,Π,Impl emulates FKM for environments
that guarantee corrupt-before-wrap.

5 Realizing Key-Usage Functionalities for a Static Key-Hierarchy

To demonstrate the use of Corollary 1, we equip the security token with the function-
alities F1 = FRand and F2 = FSIG described below. The resulting security token
STFRand,FSIG is able to encrypt keys and random values and sign user-supplied data. It
is not able to sign keys, as this task is part of the key-management. The first functional-
ity, FRand, is unusual, but demonstrates what can be done within the design of FKM, as
well as it’s limitations. It models how random values can be stored as keys, with equal-
ity tests and corruption, which means here that the adversary learns the value of the
random value. Since our framework requires a strict division between key-management
and usage, they can be transmitted (using wrap) and compared, but not appear else-
where, since other KU functionalities shall not use them. We define FRand as follows:

new: accept <new> from parentId (=:p);
c← {0, 1}η ; L← L∪ {(c, 0)}; send <new•,c,> to p

command: accept <equal,c,n> from p;
if (c, k) ∈ L for some k

if k �∈ Kcor send <equal•,false> to p
else if n = k send <equal•,true> to p

corrupt: accept <corrupt,c> from p;
if (c, 0) ∈ L

k ← {0, 1}η; L← (L \ {(c, 0)}) ∪ {(c, k)}; Kcor = Kcor ∪ {k};
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send <corrupt•, k> to A
inject: accept <inject,n> from P ;

(c,<ignore>)← {0, 1}η ; Kcor ← Kcor ∪ {n}; L← L ∪ {(c, n)};
send <inject•,c> to parentId

�

The two functions impl new and impl equal give the key-manageable implementation:
implnew on input 1η gives output (n, ) for n← {0, 1}η; implequal on input n, n′ gives
output n = n′.
Due to space restrictions, the F Cmd attr1 attr2

KW new > 0 *
�= KW new 0 *

* attribute change a a
KW wrap > 0 attr1 > attr2
KW unwrap > 0 attr1 > attr2
Fi C ∈ Cpriv 0 *

signature functionality FSIG is
presented in the full version [15].
In the following, we will con-
sider FKM for the parameters
F = {FRand,FSIG}, C = {{
equal}, {sign, verify}} and
a static key-hierarchyΠ , which
is defined as the relation that consists of all 4-tuples (F ,Cmd,attr1,attr2) such that
the conditions in one of the lines in the following table holds. Theorem 1 allows im-
mediately to conclude some useful properties on this instantiation of FKM: from (1)
we conclude that all keys with c /∈ Kcor have the attribute they were created with.
This also means that the same credential has the same attribute, no matter which user
accesses it. From (2), we can see that for each corrupted credential c ∈ Kcor, there
was either a query < corrupt, h >, where Store[U,h]=< F , a, c >, or there
exists Store[U,h′]=< KW, a′, c′ >, Store[U,h]=< F , a, c > and a query
<wrap,h′,h,id> was emitted, for c′ ∈ Kcor, or an unwrap query <unwrap,h′,w,
a, F, id> for a c ∈ Kcor was emitted. By the definition of the strict key-hierarchy policy,
in the latter two cases we have that a′ > a. It follows that, for any credential c for F ,
such that Store[U,h]=< F , a, c > for some U, h and a, c �∈ Kcor, as long as every
corruption query < corrupt, h∗ > at U was addressed to a different key of lower or
equal rank key, i. e., Store[U,h∗]=< KW, a∗, c∗ >, c∗ �= c and a∗ ≤ a. By (3),
those credentials have not been corrupted in their respective functionality, i. e., it has
never received a message <corrupt,c>.

6 Conclusions and Outlook

We have presented a provably secure framework for key management in the GNUC
model. In further work, we are currently developing a technique for transforming func-
tionalities that use keys but are not key-manageable into key-manageable functionalities
in the sense of Definition 2. This way, existing proofs could be used to develop a secure
implementation of cryptographic primitives in a plug-and-play manner. Investigating
the restrictions of this approach could teach us more about the modelling of keys in
simulation-based security.
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Abstract. We take a closer look at the Open Protocol for Access Con-
trol, Identification, and Ticketing with privacY (OPACITY). This
Diffie–Hellman-based protocol is supposed to provide a secure and
privacy-friendly key establishment for contactless environments. It is
promoted by the US Department of Defense and meanwhile available
in several standards such as ISO/IEC 24727-6 and ANSI 504-1. To the
best of our knowledge, so far no detailed cryptographic analysis has been
publicly available. Thus, we investigate in how far the common security
properties for authenticated key exchange and impersonation resistance,
as well as privacy-related properties like untraceability and deniability,
are met.

OPACITY is not a single protocol but, in fact, a suite consisting of
two protocols, one called Zero-Key Management (ZKM) and the other
one named Fully Secrecy (FS). Our results indicate that the ZKM version
does not achieve even very basic security guarantees. The FS protocol, on
the other hand, provides a decent level of security for key establishment.
Yet, our results show that the persistent-binding steps, for re-establishing
previous connections, conflict with fundamental privacy properties.

1 Introduction

OPACITY is short for the Open Protocol for Access Control, Identification, and
Ticketing with privacY. It is basically a Diffie–Hellman-based protocol to estab-
lish secure channels in contactless environments. According to Eric Le Saint of
the company ActivIdentity, co-inventor in the patent application [47], the devel-
opment has been sponsored by the US Department of Defense [48]. The inventors
have declared the contributions to OPACITY to be a statutory invention with
the United States Patent and Trademark Office, essentially allowing royalty-
free and public usage of the contribution. The protocol has been registered as
an ISO/IEC 24727-6 authentication protocol [27] and is specified in the draft
ANSI 504-1 national standard (GICS) [24]. Informal yet outdated descriptions
are available through the homepage of the Smart Card Alliance [3].1

1 We stress that none of the authors of the present paper has been involved in the
development of OPACITY, or is employed by ActivIdentity, or is supported by a
non-academic governmental agency for conducting this research.
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1.1 Security Assessment of OPACITY

As Eric Le Saint emphasizes in his description of OPACITY [48], “This protocol
was designed expressly to remove the usage restrictions on contactless transac-
tions while still delivering high performance security and privacy.” Surprisingly,
we are not aware of any profound and public cryptographic analysis of the pro-
tocol, including clear claims about security and privacy goals. The best effort,
in terms of the Smart Card Alliance, seems to be compliance with standards [3]:

“The protocol strictly follows U.S. government and international stan-
dards. It has been assessed for compliance with the NIST standard for key
establishment protocols (SP 800-56A). As a consequence, further protocol
design reviews are unnecessary prior to FIPS 140-2 security certification.”

It is of course not the case —and we do not think that the Smart Card
Alliance statement suggests so— that compliance with SP 800-56A, or certi-
fication according to FIPS 140-2, instantaneously gives strong cryptographic
security guarantees. The NIST document SP 800-56A [41] only provides use-
ful but, nonetheless, high-level recommendations for key-establishment schemes
based on the discrete logarithm problem, and specifies some schemes from ANSI
X9. To the best of our knowledge, it has not been shown formally yet under
which conditions protocols complying with SP 800-56A are also cryptographi-
cally secure (in whatever sense). This is particularly true as OPACITY supports
renegotiation techniques and also states privacy enhancement as an additional
goal. Neither property is discussed in SP 800-56A.

Similarly, even if OPACITY was FIPS 140-2 certified and thus checked by an
accredited authority, this does not necessarily imply strong security guarantees
either. An obvious testimony to this argument are the easy attacks on FIPS
140-2 level 2 certified USB memory tokens where access was always granted for
a fixed string, independently of the password [17,18]. Certification according to
FIPS 140-2, and this is acknowledged in the standard, only intends “to maintain
the security provided by a cryptographic module” in the utilized environment;
the “operator of a cryptographic module is responsible for ensuring that the
security provided by the module is sufficient.” (see [39]).

Hence, we believe that OPACITY deserves a closer cryptographic look. Clearly,
there are many practical protocols which lack such an analysis, or have at least
not been scrutinized publicly. What makes OPACITY a worthwhile object for a
cryptographic analysis is:

– OPACITY is standardized and may thus be deployed extensively in the near
future. This is all the more true as it is a general purpose protocol, suitable,
for instance, for use in access control for buildings, but also for ticketing in
transport systems [48].

– OPACITY does not seem to be deployed broadly yet. It is our firm belief
that protocols should be rigorously analyzed before they are actually utilized,
in order to prevent damage caused by weaknesses discovered after deploy-
ment. Furthermore, patching a popular protocol in use is often intricate and
progresses slowly (see the example of MD5-based certificates [51]).
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– OPACITY still has a decent level of abstract description complexity. While
nonetheless being quite complex underneath, especially taking into account
different execution modes such as renegotiation steps (called persistent bind-
ing for OPACITY), this should be contrasted with similar protocols like
SSL/TLS where conducting cryptographic proofs is tedious; such works often
focus on particular parts or (modified) versions of the protocol [22,38,45,29].

Another point, which we initially thought speaks for OPACITY, is the availabil-
ity of an open source implementation on Source Forge [43]. Unfortunately, as
later confirmed by the developers of OPACITY [49], this implementation seems
to refer to an outdated version. The differences were sufficiently large to deter-
mine us not to investigate the source code on how the cryptographic concepts
are realized; nonetheless, we occasionally consulted the source code in order to
extrapolate, in case some specification details were missing.

1.2 Our Results

OPACITY is a family of Diffie-Hellman key-exchange protocols based on Elliptic
Curve Cryptography. It comes in two versions, called Zero-Key Management
(O-ZKM) and Full Secrecy (O-FS). The first name is due to the fact that the
terminal does not need to maintain registered public keys. As such, the parties in
the O-ZKM protocol run a Diffie–Hellman based key-exchange protocol using an
ephemeral key on the terminal’s side and a static (presumably on-card generated)
key for the card. The experienced reader may immediately spot the weakness
in this approach: since the terminal only uses ephemeral keys, anyone can in
principle impersonate the terminal and successfully initiate a communication
with the card. Jumping ahead, we note that we can neither achieve a weaker
notion of one-way authenticated key exchange [23] with this protocol. Before we
go into further details of the security of the protocols, let us point out that the
second protocol, O-FS, uses long-term keys on both sides and runs two nested
Diffie–Hellman protocols, each one with the static key of the parties and an
ephemeral key from the other party. This at least rules out obvious impersonation
attacks.

Targeted security properties. Obviously, OPACITY aims at establishing a secure
channel between the parties and to provide some form of entity authentication,
especially impersonation resistance against malicious cards. Yet, at the same
time, OPACITY also seems to target privacy properties. There seems to be a
general and rough agreement what we expect from a “secure” key-exchange pro-
tocol, despite technical differences in the actual models [5,14]. We opted for the
common Bellare-Rogaway (BR) model for key exchange but we also consider
key-compromise impersonation resistance and leakage of ephemeral secrets in
the related eCK model [34] in the full version [16].2 We note that cryptographic
analysis of similar key exchange protocols, such as for NIST’s KEA [4,35,32] or

2 Let us mention here that the protocols cannot be proven secure in the eCK model.
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for the ANSI X9.63 specified UM protocols [4,37] cannot be transferred to OPA-
CITY, as these protocols differ in security-relevant details and do not support
renegotiation (and do not touch privacy issues); we comment on the differences
in Section 3.3.

The privacy requirements for OPACITY are, however, less clear than the ones
for key secrecy. This is all the more true as they are never specified in the ac-
companying documents. An earlier version of the OPACITY protocol description
[50] mentions the following two goals for the O-FS protocol:

– “The OPACITY protocol does not divulge any data that allows the correla-
tion of two protocol executions with same ICC [card] during an OPACITY
session.”

– “The OPACITY protocol does not divulge any identifier associated to a
particular ICC or card holder during an OPACITY session.”

The first requirement resembles the well-known notion of untraceability for pro-
tocols. We thus adopt the framework of Ouafi and Phan [44] which can be seen as
a “BR-like” definition of the Juels and Weiss model [30] matching our approach
for the key-agreement part. We do not explore stronger (simulation-based) mod-
els like the one in [36] as the protocols fail to provide security even in these more
basic models.

The second desirable privacy property seems to be weaker in that it allows
linkability in principle, but tries to hide the card’s or the card holder’s identity.
We therefore introduce a notion called identity hiding which also follows the
BR attack model, but instead of preventing the adversary from distinguishing
between two cards —as for untraceability— we only guarantee that one cannot
deduce the card’s certificate (i.e., its identity). Note that, some authors such as
[23], use the term identity hiding to denote the fact that the peer does not learn
the partner’s identity before the execution ends; our notion here coincides with
this idea for the OPACITY protocols.

Basically, identity hiding as defined here is similar to recognizing a person
without knowing the person’s name. By contrast, untraceability is similar to
not being able to tell that a particular person has been seen twice (this is in-
dependent of a person’s name). Clearly, identity hiding gives weaker anonymity
guarantees than untraceability or anonymity of credential systems [9,15]. Even
direct anonymous attestation [10] or cross-domain anonymity as in the case of
the German identity card [6] support linkability only within specified domains
but are otherwise untraceable. Hence, the notion of identity hiding should be
taken with caution.

Another desirable privacy property for OPACITY may be deniability [21],
that is, the inability to use transcripts of communications as proofs towards
third parties. Although not explicitly listed as a goal, it may be advantageous
for a multi-purpose card protocol like OPACITY. There are different approaches
and levels of deniability [8,20,19,23]; in light of what OPACITY can achieve we
focus on a very basic level protecting only against abuse of transcripts between
honest parties (denoted outsider deniability here).
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Table 1. Security properties of the OPACITY protocol

OPACITY-ZKM OPACITY-FS
BR key secrecy (only passive and if modified) �
+ forward secrecy — (only weak)
Impersonation Resistance (only cards) (only cards)
Untraceability — (only w/o persistent binding)
Identity Hiding — �
(Outsider) Deniability (only w/o persistent binding) (only w/o persistent binding)

Finally, the goal of the OPACITY protocols is to establish a key which is
subsequently used to secure communication between the card and the terminal.
As such, one is of course interested in the security of the secure messaging pro-
tocol of OPACITY as well as in the overall composition of the key-agreement
protocol and the secure messaging. Here, we rely on recent results for the secure
composition of BR-secure key-exchange protocols [12,11]. We next discuss and
illustrate exactly which security levels are achieved by OPACITY.

Achieved security properties. Our results are summarized in Table 1. The pro-
tocol O-ZKM cannot achieve BR-security against malicious terminals. Even for
passive adversaries (merely observing executions between honest parties) the
protocol is not secure; it does fulfill BR-security only after a slight modifica-
tion of the protocol. The O-FS protocol achieves BR-security under the Gap
Diffie–Hellman assumption [42] in the random-oracle model, assuming that the
underlying cryptographic primitives are secure.3 As for impersonation resistance,
since the terminal does not authenticate towards the card, we can only hope to
achieve security against malicious cards. This is met for both protocols given
that the underlying message authentication scheme is secure.

As far as privacy is concerned, we show that neither protocol achieves un-
traceability nor even a weakened form of untracebility. For O-ZKM this is quite
clear, as parts of the card’s certificate are sent in clear. For O-FS the certificate
is encrypted, yet we show that it is easy to desynchronize the cards’ states and
hence, due to persistent binding, to mount privacy attacks via desynchronization
attacks. If, on the other hand, we only consider O-FS without renegotiation (and
thus without any accumulated state), untraceability is met. Note that this is not
the case for O-ZKM, that is, even without persistent binding (i.e., renegotiation)
O-ZKM is traceable. For identity hiding, we can show that it is met by O-FS
but not by O-ZKM.4

Concerning (outsider) deniability, we again only give a conditional result:
OPACITY without persistent binding can be proved (outsider) deniable both

3 This apparently innocent assumption about the security of the primitives has a hid-
den layer underneath. OPACITY is not fully specified in the standards and operates
in some arguably doubtful modes, so this assumption must be taken with caution.
We comment on this later.

4 Note that O-ZKM contains steps which indicate that some form of identity hiding
was aimed for: parts of the identity are only sent encrypted. Nevertheless an easy
attack exists which we present in the full version [16].
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for O-FS and O-ZKM. Persistent binding does, however, allow for simple attacks
in many of the existing models for deniability, as well as, in our rather weak
model of outsider deniability. Furthermore, persistent binding opens the door
to physical attacks, for example, by simply comparing the state of the physical
registers containing the persistent binding information of a terminal and card,
one could extract high-confidence proofs that the card and terminal have been
partnered in at least a single session.

An extended abstract. This version is an extended abstract of our results. Due
to space restrictions we had to sacrifice some details. The interested reader is
kindly referred to the full version of this work [16] for more details.

2 Security Model

2.1 Key Secrecy (Authenticated Key Exchange)

We analyze OPACITY with respect to key secrecy in the real-or-random security
model by Bellare and Rogaway [5]. Roughly speaking, an adversary should not
be able to tell apart a genuine session key from a key uniformly sampled from
the key space. The security model defines so-called sessions, describes an attack
model, and shows a winning condition for an adversary.

Our model (described in detail in the full version) follows the one in [5]
closely. The adversary controls the network and can interact with the parties
—(instances of) terminals or cards— through Execute and Send queries: the for-
mer is used to run the protocol between an honest terminal and an honest card,
and the latter enables the adversary to send protocol messages to honest parties.
We assume that the adversary can choose whether an honest terminal should
request to reconnect via persistent binding or not (in the protocol this can be
done quite easily by an active adversary which can alter or add appropriate bits
to the terminal’s first message —see the protocol description in Section 3). As
usual, the adversary can test sessions (via a Test oracle), ask to reveal session
keys, and, for forward-secure versions, corrupt parties (thus receiving the party’s
long-term secret key and state, i.e., the information stored for persistent binding
and, for strong corruption, also the party’s random coins and ephemeral secrets).
For key secrecy it suffices to consider a single Test-query [1], in which the ad-
versary receives either the true session key or a random key, depending on a
random bit b. We also assume that the adversary can register any chosen public
key on behalf of corrupted parties, possibly even keys already registered by hon-
est parties, and receive certificates for such keys from the (trusted) certification
authority. We assume that identities in certificates are unique.

We specify intended partners by partner id’s pid and sessions by session id’s
sid (defined according to the protocol description). Two sessions are partnered
if they have both accepted and output the same session id. We assume that
untampered executions between honest parties generate the same sid and the
same session key. The adversary can only test sessions in which she cannot
trivially deduce the session key. A crucial notion for this security definition is that

www.it-ebooks.info

http://www.it-ebooks.info/


A Cryptographic Analysis of OPACITY 351

of freshness. Informally, an instance Pi is fresh (with respect to authenticated
key-exchange —AKE— security), iff: (i) the adversary has not asked to reveal
the key of that instance, nor of a partnered instance; (ii) the adversary has made
no corruption queries, and (iii) neither Pi nor the intended partner pid output by
Pi is adversarially controlled (in particular, their secret keys were not registered
by the adversary). For the study of forward secrecy we need to adapt the notion
of freshness to allow corruptions under certain restrictions. We refer to the full
version for an introduction to forward secrecy and an analysis of OPACITY with
respect to it.

Eventually, the adversary A outputs a guess b′ for the secret bit b used in
the Test-oracle. The adversary is successful iff: b = b′, and the instance Pi in
the Test-oracle is fresh. We are interested in the advantage of the adversary over
the simple guessing probability of 1/2. We usually consider security relative to
the adversary’s parameters, such as its running time t, the number qe of initiated
executions of protocol instances of Π , and, modeling the key derivation function
as a random oracle, the number qh of random oracle queries of the adversary.
For some of the security notions we also make the number of Test queries explicit
through a parameter qt.

Definition 1 (Key Secrecy). We call a protocol Π, running for security pa-
rameter λ, (t, qe, qh, ε)-secure if no algorithm running in time t, invoking qe
instances of Π and making at most qh queries to the random oracle can win
the above experiment with probability greater than 1

2 + ε. We call the value∣∣Pr[A wins]− 1
2

∣∣ the advantage of the algorithm A, and we denote the maxi-

mum over all (t, qe, qh)-bounded A by Advake
Π (t, qe, qh).

The BR model is a strong security model providing confidentiality of agreed
session keys and their authenticity (i.e., at most one partner shares the derived
keys). Furthermore, one can also show forward secrecy by adjusting the freshness
notion. However, as LaMacchia et al. [34] pointed out, certain attacks, such as
key-compromise impersonation and leakage of ephemeral secrets, are not cov-
ered by the BR model. We discuss these properties and analyze the OPACITY
protocols with respect to them in the full version.

2.2 Impersonation Resistance

The notion of authenticated key exchange ensures that only the intended part-
ner can compute the session key (i.e. an adversary that is not partnered with a
specific partner in some session, cannot compute that session’s key). For some
application scenarios, however, we may also need that the terminal can be sure
of the card’s identity. This could be guaranteed by subsequent use of the com-
puted session keys, but this is application-dependent. Impersonation resistance,
as defined here, gives instead direct guarantees and is closer to the security of
identification schemes. We give a strong definition based on the BR framework,
which includes common properties like passive and active security for identifica-
tion schemes. Still, note that we only consider impersonation by malicious cards
to a terminal (and not that of malicious terminals to a card).
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The attack model for impersonation resistance resembles AKE, but this time
there are no Test-queries. The adversary’s goal is to impersonate an honest card,
without using trivial Man-in-the-Middle relaying attacks or making the terminal
accept a card which has not been issued (resp. certified) by the certification
authority CA. More formally, the terminal must accept in some session sid for
partner id pid, such that (a) pid is not adversarially controlled, and (b) there
is no accepting card session for honest card pid with the same sid (including
also the case that party pid has not been registered with a public key). If this
happens we say that the adversary wins.

Definition 2 (Impersonation Resistance). We call a protocol Π, running
for security parameter λ, (t, qe, qh, ε)-impersonation resistant if no algorithm
running in time t, invoking qe instances of Π and making at most qh queries to
the random oracle can win the above experiment with probability greater than ε.
We call the value Pr[A wins] the advantage of the algorithm A, and we denote
the maximum over all (t, qe, qh)-bounded A by Advir

Π(t, qe, qh).

2.3 Privacy for Key Exchange

Privacy in cryptography comes in many different flavors. The OPACITY docu-
mentation does not clarify exactly which properties the protocol is aiming for.
We consider two reasonable notions, untraceability and identity hiding, and dis-
cuss the latter below. Due to space restrictions, the analysis of OPACITY in
terms of untraceability is deferred to the full version, where we also define deni-
ability for KE and show that, for OPACITY, it does imply untraceability in the
restricted case where the renegotiation mode is not used.

Identity Hiding. Intuitively, an adversary against untraceability should not be
able to link two sessions run by the same card. A weaker notion, called identity
hiding, only stipulates that an adversary is unable to know which card authen-
ticates (though she may know that she has seen this card authenticate before).
Thus, untraceability hides both the identity (i.e., the certificate) of the card and
its history (e.g., its state). By contrast, identity hiding only hides the certificate.

We use the identical security model as for key exchange, but with one ex-
ception: we assume a special card C∗ exists, for which two certified key-pairs
(sk∗0, pk

∗
0, cert∗0), (sk∗1, pk

∗
1, cert∗1) are generated under (potentially different) iden-

tities. The adversary is initially given the certificates and public keys of all honest
parties except for C∗, together with the assignment of the keys and certificates to
the cards. The adversary also receives the two pairs (pk∗0, cert∗0), (pk∗1, cert∗1). At
the start of the game, a bit b is flipped and C∗ is instantiated with (sk∗b , pk

∗
b , cert∗b).

When the Test oracle is queried, it returns the handle for card C∗, allowing the
adversary to access this card by using all the previous oracles, apart from Corrupt.
The adversary must predict the bit b, i.e. it must learn whether card C∗ is asso-
ciated with the left or right key pair. The only restriction is that the partner id
pid output in any of the Test sessions is always an identity of an honest termi-
nal (if the terminal is malicious the adversary trivially decrypts the encrypted
certificate). Furthermore, no Corrupt queries must be issued to terminals.
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Note that in this model the adversary cannot choose the target key pairs
adaptively (having received a list of valid certificates). However, our approach is
equivalent (up to a factor equal to the square of the number of the certificates)
with a model using adaptive selection.

Definition 3 (Identity Hiding). We call a protocol Π, running for security
parameter λ, (t, qe, qt, qh, ε)-identity-hiding if no algorithm A running in time
t, invoking qe instances of Π, including qt Test-sessions, and making at most
qh queries to the random oracle, can win the above experiment with probability
greater than 1

2 + ε. We call the value
∣∣Pr[A wins]− 1

2

∣∣ the advantage of the
algorithm A, and we denote the maximum over all (t, qe, qt, qh)-bounded A by
Advid-hide

Π (t, qe, qt, qh).

3 The OPACITY Protocols

The OPACITY suite contains two key-exchange protocols, one called OPACITY
with Zero-Key Management (O-ZKM), the other OPACITY with Full Secrecy
(O-FS). Both protocols allow a terminal T and a card C to agree upon session
keys skMAC, skEnc, skRMAC (for command authentication, encryption, and response
authentication). Note, however, that though subsumed under the same protocol
suite, the two protocols are nonetheless quite different, the main difference being
that O-ZKM has only one-sided authentication, i.e., the card authenticates to the
terminal but not vice versa. Due to space restrictions, in this extended abstract
we only present a slightly simplified version of O-FS (see Figure 1); both O-ZKM
and the complete O-FS are discussed in detail in the full version. The theorems
presented in this extended abstract apply, however, to the full O-FS-protocol.
We discuss related protocols in Section 3.3.

3.1 Protocol Descriptions

Both protocols (O-ZKM and -FS) consist of two rounds, the first one initial-
ized by the terminal. Our description closely follows the original formulation in
the standards. We make, however, minor changes in notation so as to simplify
the diagram and improve legibility. We also change some variable names to be
more compliant to standard cryptographic descriptions of protocols. We give a
shortened description of the O-FS protocol, without renegotiation, in Figure 1.

From a bird’s-eye view the O-FS protocol works as follows. Both the terminal
and the card hold a certified key pair (pkT , skT ) and (pkC , skC), respectively.
The protocol works over a suitable elliptic curve E ; as such, secret keys are the
discrete logarithms of the corresponding public keys (for some generator G).
Both parties also generate an ephemeral key pair for each session, denoted by
(epkT , eskT ) and (epkC , eskC). The terminal first transmits its public keys pkT
(encapsulated in the certificate) and epkT , together with a control byte CBT for
specifying different modes and for indicating a renegotiation request. The first
Diffie-Hellman key is computed via the static key pkT of the terminal and the
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Terminal T (certT , pkT , skT , pkCA) Card C(certC , pkC , skC , pkCA)

1 (eskT , epkT ) ← KeyGen(1λ)
certT ,epkT ,CBT−−−−−−−−−−−−−−−−−−→

if C.vrf(certT , pkCA) = 0 abort 2

17 epkC := otID extract IDT , pkT from certT 3

18 validate epkC belongs to domain of E initialize control byte CBC 4

19 Z1 ← DHE (skT , epkC)
20 (k1, k2) ← KDF(Z1, len, info(IDT , epkC)) validate pkT belongs to domain of E 5

21 certC ← AES−1
k1

(OpaqueData) (eskC , epkC) ← KeyGen(1λ) 6

22 if C.vrf(certC, pkCA) = 0 abort Z1 ← DHE (eskC, pkT ) 7

23 extract pkC from certC (k1, k2) ← KDF (Z1, len, info(IDT , epkC)) 8

24 delete temporary keys Z1, k1 OpaqueData ← AESk1
(certC) 9

25 Z← DHE (eskT , pkC) otID := epkC 10

Z ← DHE (skC, epkT ) 11

delete temporary keys Z1, k1 12

26

(skcfrm, skMAC, skEnc, skRMAC, nextOtID, nextZ)
← KDF(Z, len, info(

IDT , otID|1..8 , epkT |1..16 , k2
))

(skcfrm, skMAC, skEnc, skRMAC, nextOtID, nextZ)
← KDF(Z, len, info(

IDT , otID|1..8 , epkT |1..16 , k2
))

13

27 delete keys Z, k2, eskT , epkT delete temporary keys Z, k2, eskC, epkC 14

28

check authcrypt =
CMACskcfrm

(

"KC 1 V"‖otID|1..8‖IDT ‖epkT |1..16
)

authcrypt ← CMACskcfrm
(

"KC 1 V"‖otID|1..8‖IDT ‖epkT |1..16
)

15

29 delete skcfrm delete skcfrm 16

OpaqueData, authcrypt, CBC , otID

Fig. 1. The shaded parts describe OPACITY with Full Secrecy without persistent
binding. The complete protocol, as well as a line by line description is provided in the
full version. The unshaded lines should give a high-level overview of the underlying
Diffie-Hellman key exchange.

card’s ephemeral key. Analogously, the second Diffie-Hellman key is derived from
the terminal’s ephemeral key epkT and the card’s long-term key pkC . Both keys
are then used in a cascade of two key-derivation steps to derive the session keys.
The card replies with its encrypted certificate (for privacy reasons), a MAC for
authentication, a control byte for renegotiation, and its ephemeral public key.
Assuming both parties are honest, the terminal can decrypt and validate the
card’s certificate, validate the MAC, and compute the session keys, too. We give
the full protocol and its line-by-line description in the full version.

3.2 Preliminaries

Certificates. OPACITY uses certificates in the card verifiable certificate format
(CVC) which is standardized as part of ISO 7816 — Part 8 [26] (to fully formalize
our analysis, we define certification schemes in the full version of the paper).
Apart from the owner’s public key and an identifier for the certification authority,
certificates contain application-specific data which can be used to identify the
card holder. In OPACITY, this 128-bit field is called GUID and identifies the
holder of the card. O-ZKM encrypts GUID using AES and the derived session key.
O-FS, on the other hand, encrypts the entire certificate under an intermediate
key. The (outdated) source code uses AES in CBC mode with the constant 0-
vector as initialization vector. In O-FS, since the key is derived freshly upon
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every invocation and only used for a single encryption, this should not pose a
security threat. For O-ZKM, on the other hand, the session key is used; this
might compromise security.

Other functionalities used by protocols. The protocols use a key-derivation func-
tion KDF as specified in NIST SP 800-56A (§5.8.1) [41], CMAC for message
authentication as specified in NIST SP 800-38B [40] (CMAC is also used as
PRF in the key-derivation function) and AES-128 (no mode specified). As hash
function, SHA-256 or SHA-512 are deployed. In the analysis below we model
KDF through a random oracle. The injective function info is defined according
to NIST SP 800-56A and prepares the input to the key-derivation function (it
can be thought of the length-encoded concatenation of its input). The input to
info, and therefore to the key-derivation function, contains the terminal’s iden-
tity IDT (not specified in detail, but we assume that this value is globally unique
and also determines the terminal’s certificate certT uniquely) and usually parts
of the ephemeral keys otID = epkC and epkT , like the leftmost 8 or 16 bytes,
otID|1..8 and epkT |1..16, respectively.

Security parameters. OPACITY specifies 6 parameter sets describing the length
of keys and nonces, block-ciphers, and hash functions. The standard set CS2 rec-
ommends to use SHA-256 as hash function, AES-128 for encryption and MACs,
and ECDH-256 for static and ephemeral keys. Nonces are 16 bytes long. By con-
trast, the “very strong security” setting (CS6) uses SHA-512, AES-256, ECDH-
512, and 32-byte nonces. In the first case it is claimed that the resulting channel
strength is 128 bits, and for CS6 the channel strength is supposedly 256.

Persistent binding. Both protocols can be run in a renegotiation mode which
gives a slight performance increase if card and terminal have already successfully
exchanged keys. This mode, called persistent binding, requires both parties to
store intermediate secret values. For lack of space, we refer to the full version
for a complete description of the persistent binding as well as to the analysis of
the security properties in regard to this mode.

3.3 Related DH Key-Agreement Protocols

We only discuss Diffie-Hellman-based key exchange protocols which are very
similar in structure to OPACITY, i.e., pairwise mix static and ephemeral Diffie-
Hellman keys of the partners. These are NSA’s Key Exchange Algorithm (KEA)
and its variants variant KEA+ [35] and KEA+C [32]. Another closely related
approach are the schemes described by ANSI X9.63 called “Unified Model” (UM)
key-agreement protocols. The UM protocols have been analyzed cryptographi-
cally in [37].

Although sharing a similar skeleton —a DH key-agreement protocol using
both static and ephemeral keys— the analyses of KEA, UM and their variants
[35,32,37] can only serve as a very vague starting point for OPACITY; the proto-
cols differ in numerous security-relevant details. One distinctive property of our
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analysis here is also that we investigate low-level details more explicitly. Consid-
ering such details makes the evaluation more delicate and complex but, on the
other hand, gives a more concrete perception of the (in)security of the actual
protocol. This, in particular, also concerns the renegotiation step in OPACITY
which is neither supported by KEA nor by UM. Our analysis for OPACITY
also needs to take additional privacy properties into account. Hence, even if
OPACITY resembles the other schemes, the existing analyses provide rather
weak implications for OPACITY’s overall security (if any at all).

4 Security Analysis of O-FS

The concrete security parameters proposed for O-FS can be found in Section 3;
however, for the sake of generality, our analysis features abstract parameters,
e.g. instead of the concrete bit size of the proposed curve E , defined on the field
K, we write #E (K) (this is, in fact, the size of a prime-order subgroup of points).
Thus, our analysis formally bounds the success probability of adversaries for any
proposed set of parameters.

We note that the protocol itself is not perfectly correct in the sense that two
honest parties may not derive the same session keys, namely, if renegotiation
identifies the wrong previous connection. However, the likelihood of this event,
as we detail in the full version, is in the order of q2e · 2−128 for qe executions for
the recommended parameters, such that we may simply neglect such mismatches
in our analysis. Nonetheless, it would be preferable to specify the behavior for
this case clearly in the protocol description.

4.1 Security Assumptions

We prove O-FS secure under the elliptic curve Gap Diffie–Hellman (GDH) as-
sumption [42] (by default we assume all hard problems are on elliptic curves,
omitting to state this explicitly). Informally, the GDH assumption states that
the CDH problem remains hard even when given access to an oracle DDH(·, ·, ·),
which tells whether three group elements form a Diffie–Hellman tuple or not.
More formally, let 〈G〉 be an (additive) group of prime order q and generator
G ∈ E . The GDH problem is (t, Q, ε)-hard in 〈G〉 if any algorithm A running in
time t and making at most Q queries to DDH can, on input 〈G〉, G, sG, tG, for
random s, t, computes stG with probability at most ε. We write AdvGDH(t, Q)
for (a bound on) the probability of any (t, Q)-bounded A solving the GDH prob-
lem.

We use standard cryptographic notation for the other involved primitives.
The certification scheme Cert = (C.kgen,C.sign,C.vrf) is modeled as a signature

scheme where the signer is a certification authority (CA); Advforge
Cert (t, Q) denotes

the maximal probability of forging a fresh certificate within t steps and after re-
questing at mostQ certificates. We use AdvIND-CPA

AES (t, Q) to denote the maximal
probability of distinguishing AES ciphertexts (in CBC mode) within t steps for
at most Q challenge ciphertexts (see the remark in Section 3.2 about the actual
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encryption mode), and Advforge
CMAC(t, Q) for the maximal probability of forging

a CMAC in t steps after seeing at most Q MACs. Finally, the key-derivation
function (KDF) is modeled as a random oracle.

4.2 Key Secrecy and Impersonation Resistance

For the key-secrecy proof we consider sessions as indicated in Section 2, such that
the session id sid for O-FS is set as sid = (otID|1..8, IDT , epkT |1..16); the partner
id pid is set to the identity IDT on the card’s side resp. to GUID on the terminal’s
side. We observe that session id’s are usually preferred to comprise the entire
communication transcript. The reason is that, roughly, the more information
contained in sid, the “tighter” the binding of session keys to specific executions.
In this sense, our formally more loose (but, according to the protocol, presumably
inevitable) choice for sid’s here ties executions to partners, identified via parts of
the public keys and the ephemeral keys. Indeed, one easy enhancement for the
protocol would be to include the card’s certificate in the key-derivation step, or
at least its entire public key.

The next theorem shows that O-FS is secure as a key agreement protocol, i.e.,
O-FS provides key secrecy.

Theorem 1 (Key Secrecy of O-FS). In the random-oracle model,

Advake
ΠOFS

(t, qe, qh) ≤ Advforge
Cert (t, qe) +

3qe(2qe + qh)

2min{�k2 ,�Z}

+ 2q2e ·AdvGDH(t+O(λ · qe log qe), 2qe + qh)

where λ denotes the security parameter, t the running time of adversary A, and
qe (resp. qh) the number of executions (resp. queries to the random oracle), and
	k2 and 	Z denote the bit lengths of values k2 resp. Z.

Note that key secrecy does not rely on the security of the authenticated en-
cryption (which only enters the impersonation resistance proof), nor the secrecy
of the certificate (which is only used for privacy). At the same time neither step
does harm to key secrecy.

Impersonation Resistance. In this section we show that O-FS achieves imper-
sonation resistance. Recall that this means that a malicious card cannot make
an honest terminal accept, unless it is a pure relay attack and there is a card
session with the same sid.

Theorem 2 (Impersonation Resistance of O-FS). In the random-oracle
model,

Advir
ΠOFS

(t, qe, qh) ≤ 2qe ·Advforge
CMAC(t+O(λ · qe log qe), 0)

+ 4qe ·Advake
ΠOFS

(t, qe, qh)

where λ denotes the security parameter, t the running time of adversary A, and
qe (resp. qh) the number of executions (resp. queries to the random oracle).
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The proof follows (almost) directly from the key secrecy proof, noting that
in order to be able to impersonate one would need to compute a MAC for the
secure key skcfrm.

4.3 Privacy

Though O-FS does not attain untraceability, it does, nevertheless, provide iden-
tity hiding. This holds as long as we assume that the unspecified mode of en-
cryption of certC with AES is secure (see our remark in Section 3.2).

Theorem 3 (Identity-Hiding in O-FS). In the random-oracle model,

Advid-hide
ΠOFS

(t, qe, qt, qh) ≤ 1

2
+ Advforge

Cert (t, qe) +
2qt(2qt + qh)

2�k2

+q2e ·AdvGDH(t+O(λ · qe log qe), 2qe + qh)

+
qeqt

#E (K)
+ qt ·AdvIND-CPA

AES (t+O(qt)) .

where λ denotes the security parameter, t the running time of the adversary, and
qe (resp. qt, qh) the number of executions (resp. Test-sessions and queries to the
random oracle).

5 Security of the Channel Protocol

Here we discuss briefly the security of the secure messaging (used both in ZKM
and FS) and of the composition of the channel with the key agreement step.

Secure Messaging. Once the keys are generated the parties use them to secure
the communication. The description [24] proposes two modes, one for command
and response MACs without confidentiality (using keys skMAC and skRMAC, re-
spectively), and the other one for encrypted data transfer under the key skEnc
used by both parties. If only authenticity is required, then the data is secured
according to ISO 7816-4 [25]; in case encryption is used the protocol basically
follows the encrypt-then-MAC approach, first encrypting the payload.

Alarmingly, according to the standard [24], the terminal can ask the card via
the control byte to only create a single key skEnc = skRMAC = skMAC, operating
in a special mode (ONE SK). Sharing the key among different primitives usually
needs a cautionary treatment. It remains unclear why OPACITY implements
this mode, but it does not seem to be recommendable from a pure security
perspective. In what follows we assume that independent keys are used instead.

Encryption for the encrypt-then-MAC approach in the secure messaging is
not further specified in [24]. The (outdated) implementation relies on AES en-
cryption with a prepended, fixed-length session counter. For authentication the
parties first pad the message (or ciphertext) according to ISO 7816-4, basically
prepending a MAC chaining value of 16 bytes before computing an AES-based
CMAC [7,28] according to SP 800-38B [40]. We omit a formal analysis of secure
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messaging which, except for the single-key mode, follows the common crypto-
graphic approaches. It would be nonetheless interesting to provide such an anal-
ysis, taking into account recent attacks and models for such steps [31,2,45,46].
However, it is beyond our scope here.

Composition. Clearly, a secure key-exchange protocol and secure messaging on
their own may not be enough to ensure the security of the composed proto-
col. Several approaches exist to bridge this gap, ranging from monolithic analy-
sis of the composed protocol, to general-purpose compositional frameworks like
Canetti’s Universal Composition (UC) model [13]. The latter has been success-
fully applied to analyze and construct securely composable key-exchange proto-
cols [14]. However, security of key exchange in the UC model (and comparable
simulation-based frameworks [33]) already imposes strong requirements on the
protocols which are hard to meet.

Since we analyzed O-FS in the game-based BR-model we can apply the recent
result by Brzuska et al. [12] to conclude overall channel security of the key
agreement combined with secure messaging. This holds as long as O-FS provides
a property called public session matching [12], which we discuss in the full version
to be true. Since we do not recommend to use O-ZKM we do not address the
question for this protocol.

6 Conclusion

Our analysis reveals that, from a cryptographic point of view, O-FS achieves a
decent level of key secrecy, but has clear restrictions on privacy guarantees. For
one, privacy could be improved by also encrypting the card’s control byte CBC
for persistent binding, hiding the fact if the card has been used in connection
with that terminal before. Whereas the situation for O-FS is arguable, we do
not recommend O-ZKM for deployment. This is due to its rather weak security
guarantees for (terminal) authentication and the weaker form of identity hiding.

Our analysis also shows common problems in making precise security claims
about real protocols. Like with every cryptographic (or scientific) model we
have to abstract out some details. This can be an impediment in particular
in view of the fact that the protocol can operate in various modes, e.g., for
compatibility reasons. This complexity is the cryptographer’s enemy, discussing
all possibilities is often beyond a reasonable approach. However, omitting some
of these modes is dangerous, as they often admit back doors for attackers. There
are some potential back doors for OPACITY as well, e.g., the single-key mode
ONE SK for secure messaging. This is magnified by the fact that OPACITY is not
fully specified with respect to all relevant details (e.g., which encryption mode
is used for OpaqueData). Also, the binding of sessions to their keys is rather
loose as merely a partial transcript of the execution enters the key derivation
resp. message authentication. In this sense, it should be understood that our
(partly positive) cryptographic analysis has its inherent limitations.

www.it-ebooks.info

http://www.it-ebooks.info/
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Abstract. We introduce a probabilistic framework for the automated
analysis of security protocols. Our framework provides a general method
for expressing properties of cryptographic primitives, modeling an at-
tacker more powerful than conventional Dolev-Yao attackers. It allows
modeling equational properties of cryptographic primitives as well as
property statements about their weaknesses, e.g. primitives leaking par-
tial information about messages or the use of weak random generation al-
gorithms. These properties can be used to automatically find attacks and
estimate their success probability. Existing symbolic methods can neither
model such properties nor find such attacks. We show that the probabil-
ity estimates we obtain are negligibly different from those yielded by a
generalized random oracle model based on sampling terms into bitstrings
while respecting the stipulated properties of cryptographic primitives.

As case studies, we use a prototype implementation of our framework
to model non-trivial properties of RSA encryption and automatically
estimate the probability of off-line guessing attacks on the EKE protocol.

Keywords: Probability, Off-line Guessing, Equational Theories, Ran-
dom Oracle Model.

1 Introduction

Cryptographic protocols play an important role in securing distributed compu-
tation and it is crucial that they work correctly. Symbolic verification approaches
are usually based on the Dolev-Yao model : messages are represented by terms in
a term algebra, cryptography is assumed to be perfect, and properties of crypto-
graphic operators are formalized equationally [1]. This strong abstraction eases
analysis and numerous successful verification tools rely on it [2, 3]. However, it
may not accurately represent an attacker’s capabilities. As a consequence, broad
classes of attacks that rely on weaknesses of cryptographic primitives fall outside
the scope of such methods. In contrast, proving security by reasoning directly
about bitstrings, as in computational approaches [4, 5], yields stronger security
guarantees. However, it requires long, error-prone, hand-written proofs to estab-
lish the security of given protocols using specific cryptographic primitives.

Much research has been devoted to bridging the gap between these two meth-
ods [6]. Below we discuss existing approaches in greater detail.
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Related work. There are two main lines of research that aim to bridge the gap be-
tween symbolic and computational models: (1) obtaining computational sound-
ness results for symbolic methods, and (2) developing techniques that reason
directly with computational models.

The first line of research, developing computational soundness results, was
initiated with Abadi and Rogaway’s seminal paper [7]. They investigated as-
sumptions under which security against a Dolev-Yao attacker (easier to ver-
ify) implies computational security (much stronger). Many such results are now
known, e.g. [8–10]. However, such results require strong assumptions on the secu-
rity of cryptographic primitives. Moreover, messages must be tagged so that their
structure is known to any observer, and extending the results to new primitives
often involves re-doing most of the work.

The second line of research aims to automate computational security proofs,
by formulating security properties in terms of games and obtaining a sequence
of security-preserving transformations between such games. Such methods have
been implemented by tools like CryptoVerif [11], CertiCrypt [12], and Easy-
Crypt [13]. When successful, these tools can prove protocols computationally
correct and provide upper bounds on the probability of an attack. [14, 15] pro-
pose another approach: an automatable, symbolic framework in which it is pos-
sible to express security properties of cryptographic primitives and use them to
prove computational protocol security.

A limitation of all of the above approaches is that they can only be used to
prove security. Failure to obtain a security proof does not imply that an attack
exists. Therefore, their usefulness remains limited when cryptographic primitives
are too weak to meet the assumptions of their methods.

Our applications in this paper focus on off-line guessing attacks. Given the
pervasive use of weak human-picked passwords, off-line guessing attacks are a
major concern in security protocol analysis and have been the subject of much
research. Symbolic [16, 17] and computational approaches [18] have been used,
and computational soundness results [19, 20] relate the two. However, off-line
guessing attacks remain a real threat to protocol security. Password-cracking
software is freely available on the Internet, and is remarkably successful [21].
Furthermore, such attacks often rely on weaknesses of cryptographic primitives
outside the scope of existing automated methods [22, 23].

Contributions. We present a fundamentally new approach to strengthening the
security guarantees provided by automated methods. Our approach is in a sense
dual to current research that aims to bridge the gap between symbolic and
computational models: Rather than assuming strong security properties of cryp-
tographic primitives and using them to prove security, we explicitly describe
weaknesses of cryptographic primitives and random number generation algo-
rithms and use them to find attacks.

We propose a probabilistic framework for security protocol analysis in which
properties of cryptographic primitives can be specified. Besides equational prop-
erties, our framework allows us to express security relevant properties of random
number generation algorithms and relations between the input and the output of
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cryptographic primitives. For instance, it can model a random number genera-
tion algorithm that generates bitstrings representing primes of a certain length,
a hash function that leaks partial information about the original message, or
a cryptosystem whose valid public keys have some recognizable structure. The
specified properties can then be used to find attacks and to estimate their success
probability. Such properties cannot be modeled by existing symbolic methods
and often lead to attacks on real-world implementations.

We model cryptographic functions using a generalized random oracle model.
Given a specification of the cryptographic primitives used and their properties,
symbolic terms are sampled to bitstrings in a way that ensures that the specifi-
cation properties are always satisfied, but otherwise functions behave as random
oracles. Under reasonable assumptions on the specification, we can define such
generalized random oracles and prove that they yield valid probability measures.
Moreover, we show that probabilities in this model can be effectively computed,
and we provide a prototype implementation that calculates these probabilities.
We believe that this model is interesting in its own right. It is a non-trivial gen-
eralization of the standard model of random oracle for hash functions, and it
captures the intuitive idea that cryptographic primitives satisfy stated proper-
ties, which can be exploited by an attacker, but otherwise behave ideally.

We illustrate the usefulness of our framework by representing the redundancy
of RSA keys and using this to model and estimate the success probability of
off-line guessing attacks on variants of the EKE protocol [22]. Although these
attacks are well-known, their analysis was previously outside the scope of sym-
bolic methods. Potential further applications of our approach include reasoning
about differential cryptanalysis or side-channel attacks [24], as well as short-
string authentication and distance-bounding protocols.

Outline. In Section 2 we describe our framework’s syntax and semantics. In Sec-
tion 3 we introduce our generalized random oracle model and show that it yields
a computable probability measure. In Section 4 we show how our framework can
be used to find off-line guessing attacks. In Section 5 we draw conclusions and
discuss future work. Our technical report [25] provides full proofs of all results.

2 Definitions

In this section we introduce the syntax and semantics of our framework.

2.1 Setup Specification

Term algebra. A signature Σ =
⊎

n∈NΣn is a set of function symbols, where Σi

contains the symbols of arity i. Given a set G of generators, we define TΣ(G) as
the smallest set such that G ⊆ TΣ(G), and if f ∈ Σn and t1, . . . , tn ∈ TΣ(G),
then f(t1, . . . , tn) ∈ TΣ(G). If c ∈ Σ0, we write c instead of c(). Unless otherwise
stated, we will consider G = ∅ and write TΣ instead of TΣ(∅). We define the
head of a term t = f(t1, . . . , tn) by head(t) = f . The set sub(t) of subterms of a
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term t is defined as usual. The set psub(t) of proper subterms of t is psub(t) =
sub(t) \ {t}. If f :A→ B and A′ ⊆ A, we write f [A′] for the set {f(a) | a ∈ A′}.

Given a signature Σ, an equational theory ≈ is a congruence relation on TΣ .
We write t ≈ t′ instead of (t, t′) ∈ ≈. We consider an equational theory ≈R

obtained from a subterm convergent rewriting system R, as in [26].

Property statements. We assume fixed a set T of types. Given a signature Σ,
a property statement is a tuple (f, T1, . . . , Tn, T ), written f [T1, . . . , Tn] ⊆ T,
where f ∈ Σn and T1, . . . , Tn, T ∈ T . Property statements represent properties
of function symbols by expressing relations between their inputs and outputs.
If ps = (f [T1, . . . , Tn] ⊆ T ), we define the head symbol of ps by head(ps) = f ,
dom(ps) = T1 × . . .× Tn and ran(ps) = T .

Given a set PS of property statements and f ∈ Σ, we denote by PSf the set
of property statements in PS whose head symbol is f . Note that, in general, we
may have more than one property statement associated to each function symbol.
We write f [T1, . . . , Tn] ⊆PS T instead of (f [T1, . . . , Tn] ⊆ T ) ∈ PS.

Syntax. The syntax of our setup is defined by a four-tuple 〈Σ,≈R, T ,PS 〉, where
Σ is a signature, ≈R is an equational theory on TΣ defined by a convergent
rewriting system R, T is a set of types, and PS is a set of property statements.

We require that Σ0 is infinite and that Σ\Σ0 is finite. Symbols in Σ0 represent
either cryptographically relevant constants (e.g., the constant bitstring 0) or
random data generated by agents or the attacker.

Interpretation functions. Let B = {0, 1}. A type interpretation function is a
function �·� : T → P(B∗) associating each type T ∈ T to a finite and non-empty
set �T �. We extend �·� to tuples by defining �T1 × . . .× Tn� = �T1�× . . .× �Tn�.

A setup specification is a pair S = 〈S, �·�〉, where S = 〈Σ,≈R, T ,PS 〉 defines
the setup’s syntax as in the above paragraph and �·� is a type interpretation
function which consistently defines the behavior of all function symbols: that is,
PSf �= ∅ for all f ∈ Σ and, whenever ps1, ps2 ∈ PSf , we have �dom(ps1)� ∩�dom(ps2)� = ∅. For c ∈ Σ0, this implies that there is a single T ∈ T such that
c ⊆PS T . We denote this unique type T by type(c).

We assume that functions are undefined unless otherwise specified by a prop-
erty statement: That is, if f ∈ Σn and there is no ps ∈ PSf such that (b1, . . . , bn)
∈ �dom(ps)�, then the function represented by f is undefined on the input
(b1, . . . , bn). In light of this, we set the domain of definability of f to be domS(f) =⊎

ps∈PSf
�dom(ps)�. Note that ∅ ⊂ domS(f) ⊆ (B∗)n for all f ∈ Σn.

Example 1. We specify a simple yet realistic setup that includes: a hash func-
tion h that maps any bitstring to a bitstring of length 256; a pairing func-
tion 〈·, ·〉 that, given any pair of bitstrings, returns their labeled concatenation;
and a symmetric encryption scheme {|·|}· that uses a block cipher together with
some reversible padding technique. The corresponding signature ΣDY is given
by ΣDY = ΣDY0 ∪ΣDY1 ∪ΣDY2 , where ΣDY0 is a countably infinite set of constant

symbols, ΣDY1 = {h, π1, π2} and ΣDY2 =
{
{|·|}· , {|·|}

−1
· , 〈·, ·〉

}
.

www.it-ebooks.info

http://www.it-ebooks.info/


Symbolic Probabilistic Analysis of Off-Line Guessing 367

Standard equational properties of these primitives are represented by the
rewriting system RDY containing the rules π1(〈x, y〉) → x, π2(〈x, y〉) → y, and{∣∣∣{|x|}y∣∣∣}−1

y
→ x. It is simple to check that this rewriting system is convergent.

The types we will consider and their interpretations under �·� are as follows.
Weak (e.g., human-chosen) passwords are represented by the type pw. We model
these passwords as 256-bit bitstrings sampled from a small set: thus, �pw� ⊂ B256

and |�pw�| = 224. Symmetric keys are represented by the type sym key, with�sym key� = B256; text represents one block of plaintext, with �text� = B256.
Furthermore, for each n,m ∈ N, we consider the following types: TBn , with�TBn� = Bn; TB(n,m) , with �TB(n,m)� = B(n,m) =

⋃m
i=n Bi; and TBn#m , with�TBn#m� = Bn#m ⊆ Bn+m+�log(n+m)�, representing the set of labeled concate-

nations of two bitstrings of size n and m.
We define PS as the set that contains all property statements of the form

h[TBn ] ⊆ TB256 , π1[TBn#m ] ⊆ TBn , π2[TBn#m ] ⊆ TBm , 〈TBn , TBm〉 ⊆ TBn#m ,

{|TB(256n+1,256(n+1) |}TB256
⊆ TB256(n+1) or {|TB256(n+1) |}−1

TB256
⊆ TB(256n+1,256(n+1)) ,

for n,m ∈ N. Note that all functions are modeled as undefined on all arguments
that fall outside the domains of these property statements. For example, the
encryption of any term is undefined unless the key is a 256-bit bitstring.

Example 2. We use our framework to formalize RSA encryption, taking into
account properties of the key generation algorithm. An RSA public key is a pair
(n, e), where n = p · q is the modulus (with p and q being large primes, typically
of around 512 bits), and the exponent e is coprime to ϕ(n) = (p− 1)(q− 1). The
private key d is the multiplicative inverse of e modulo ϕ(n).

We extend the setup specification of Example 1. We add to the signature the
following five primitives: the unary functions mod, expn, and inv, representing
the extraction of the modulus, the exponent, and the exponent’s multiplicative
inverse, respectively, from an RSA public-private key pair; a binary function
{·}−1

· , representing the RSA decryption function; and a ternary function {·}·,·,
representing RSA encryption. The only rewriting rule that we must add to model

RSA encryption is
{
{m}mod(k),expn(k)

}−1

inv(k)
→ m, where m and k are variables.

The additional types that we will use to model properties of these functions
and their interpretations are as follows: random represents the random values
used to generate an RSA public-private key pair, including two 512-bit prime
numbers and the 1024-bit exponent, with �random� ⊆ B2048; prodprime represents
the product of two 512-bit prime numbers, so that �prodprime� ⊆ B1024, and,
by the prime number theorem, |�prodprime�| ≈ (2512/ log(2512))2 ≈ 21009; odd
represents 1024-bit odd numbers, with �odd� ⊆ B1024 and |�odd�| = 21023.

The additional property statements we include are the following: mod[random]
⊆ prodprime, because the modulo of an RSA public key is the product of two
primes; expn[random] ⊆ odd, because the exponent of an RSA public key is
always odd; inv[random] ⊆ TB1024 , because an RSA private key is a 1024-bit
bitstring (note that we do not allow extracting modulus, exponents, or in-
verses from anything other than a valid value for generating an RSA key pair);
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{TB1024}prodprime,odd ⊆ TB1024 ; and {TB1024}−1
TB1024

⊆ TB1024 . The last two proper-

ties state that encrypting any 1024-bit plaintext with a valid RSA public key
yields a 1024-bit bitstring, and that RSA decryption takes a ciphertext and a
private key which are both 1024-bit bitstrings and outputs a 1024-bit plaintext.
Note that encryption is undefined if the plaintext is not a 1024-bit bitstring, the
modulus is not the product of two primes, or the exponent is even.

One limitation of our method is that, although it is simple to express rela-
tions between the input and output of a cryptographic primitive, more complex
relations between terms are harder to model. For example, modeling the fact
that the ϕ(n) and e are coprime would require modeling the public key as a
single term. An attacker could then extract the modulus and the exponent from
such a key, and it can build such a key from a modulus and an exponent. The
simpler model we present here illustrates the expressiveness of our framework
and is sufficient to model the attacks in our case studies.

2.2 Semantics

Let us fix a setup specification S = 〈〈Σ,≈R, T ,PS 〉, �·�〉.
Term assignments. Let B∗⊥ = B∗ ∪ {⊥}. A term assignment is a function
ω :TΣ → B∗⊥ associating a bitstring to each symbolic term. Let Ω be the set of
all term assignments. We say that ω ∈ Ω satisfies ≈R, and write ω |= ≈R, if,
whenever t ≈R t′, either ω(t) = ω(t′), or ω(t) = ⊥, or ω(t′) = ⊥. We say that
ω satisfies a property statement ps (under �·�), and write ω |=�·� ps if, whenever
(ω(t1), . . . , ω(tn)) ∈ �dom(ps)�, then ω(f(t1, . . . , tn)) ∈ �ran(ps)�, and whenever
(ω(t1), . . . , ω(tn)) /∈ �dom(ps)� for all ps ∈ PSf , then ω(f(t1, . . . , tn)) = ⊥. We
say that ω satisfies PS (under �·�), and write ω |=�·� PS, if ω |=�·� ps for all
ps ∈ PS. We say that ω satisfies S, and write ω |= S, when ω |= ≈R and
ω |=�·� PS. We denote by ΩS the set of all ω ∈ Ω which satisfy S.

Example 3. Functions ω that satisfy our equational theory may be such that
ω(t) = ⊥ and ω(t′) �= ⊥ for terms t and t′ such that t ≈R t′. To see why this

is allowed, recall from Example 1 that {|·|}−1
· represents a symmetric encryption

algorithm in which valid keys always have 256 bits. Let t, k ∈ Σ0, with type(t) =

text, and t′ = {|{|t|}k|}
−1
k . We have t ≈R t′. If ω represents a possible real-

world assignment (of terms to bitstrings), we have ω(t) �= ⊥ (since t represents a
bitstring freshly sampled from B256). Moreover, if ω(k) is not a 256-bit bitstring,
then ω(t′) = ⊥ since our encryption and decryption functions are only defined

for 256-bit keys. Therefore, ω({|{|t|}k|}
−1
k ) = ⊥.

Probabilistic models. Since valid, real-world protocol execution traces are finite,
we are interested in events that depend on finitely many terms. For each finite
set of terms K ⊆ TΣ, let ΛK be the set of functions λ:K → P(B∗⊥) and, for
each λ ∈ ΛK , let Ωλ be the set of all ω ∈ Ω such that ω(t) ∈ λ(t) for all t ∈ K.
Let Λ =

⋃
K∈Pfin(TΣ) ΛK and ΩΛ = {Ωλ | λ ∈ Λ}, where Pfin(X) is the set of

finite subsets of X . Note that ΩΛ is the set of subsets of Ω whose specification

www.it-ebooks.info

http://www.it-ebooks.info/


Symbolic Probabilistic Analysis of Off-Line Guessing 369

depends on only the instantiation of finitely many terms. Thus, we want our
probability measure to be defined in the σ-algebra generated by ΩΛ. Let F be
this σ-algebra; we say that F is the σ-algebra of finitely generated events.

We consider probability spaces (Ω,F , μ), where Ω and F are as defined above
and μ:F → [0, 1] is a probability measure. Note that Ω and F are fixed for
a given S; it is μ that we are interested in studying. If t ∈ TΣ, we write
t̂:Ω → B∗⊥ to denote the random variable on Ω defined by t̂(ω) = ω(t). We
adopt standard (abuses of) notation from probability theory. If C(b1, . . . , bn)
is a condition whose satisfaction depends on the bitstring values b1, . . . , bn,
we write Pμ[C(t̂1, . . . , t̂n)] for μ(

{
ω ∈ Ω | C(t̂1(ω), . . . , t̂n(ω))

}
), provided that{

ω ∈ Ω | C(t̂1(ω), . . . , t̂n(ω))
}
∈ F . If Ω ∈ F , we write Pμ[Ω] instead of μ(Ω).

We say μ satisfies the equational theory ≈R if μ({ω | ω |= ≈R}) = 1, and we
write μ |= ≈R to denote this fact. Analogously, we define the satisfaction of PS
(under �·�) by μ, μ |=�·� PS, by μ(

{
ω | ω |=�·� PS

}
) = 1. We say that μ satis-

fies, or is a model of, the setup specification S, written μ |= S, if μ |= ≈R and
μ |=�·� PS. Note that μ is a model of S if and only if μ(ΩS) = 1.

3 A Generalized Random Oracle Model

In this section we propose an algorithm for sampling the random variables associ-
ated with symbolic terms. Our algorithm interprets functions as random oracles
subject to satisfying our setup specification S = 〈〈Σ, ≈R, T , PS 〉, �·�〉.
3.1 Tentative Term Sampling in the ROM

Term sampling. Suppose that K ⊂ TΣ is a finite set of terms and P is a partition
of K. We define ≈P to be the smallest congruence relation on TΣ such that
≈R ⊆ ≈P and t ≈P t

′ whenever there is p ∈ P such that t, t′ ∈ p. Note that ≈P

may be coarser than both K/≈R and P : For example, if there are a, b ∈ Σ0 and

p ∈ P such that a, b ∈ p, then {|{|M |}a|}
−1
b ≈P M . However, {|{|M |}a|}

−1
b �≈R M

and there is not necessarily a p ∈ P such that M, {|{|M |}a|}
−1
b ∈ p.

The sampling algorithm below builds a function ψROM mapping a finite set
of terms to B∗⊥. We denote by P (ψROM) the partition of dom(ψROM) given by
P (ψROM) =

{
ψ−1
ROM(b) | b ∈ ran(ψROM)

}
. The algorithm is probabilistic: at var-

ious steps, it samples a random bitstring from a finite subset of B∗⊥. We assume
that this sampling is always done with uniform probability distribution. We also
assume fixed some total order ≺ on the set of terms such that, if t ∈ psub(t′),
then t ≺ t′. We say that such an order is subterm-compatible.

Algorithm 1 (Tentative Term Sampling Algorithm)
Input: a finite set of terms K ⊆ TΣ.
Output: a function ψROM: sub[K] → B∗⊥.
1: ψROM ← ∅
2: let t1, . . . , tk be such that t1 ≺ . . . ≺ tk and sub[K] = {t1, . . . , tk}
3: for i from 1 to k
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4: let ti = f(t′1, . . . , t
′
n)

5: if (ψROM(t′1), . . . ψROM(t′n)) /∈ domS(f)
6: ψROM(ti) ← ⊥
7: continue
8: let ps be the unique ps ∈ PSf s.t. (ψROM(t′1), . . ., ψROM(t′n)) ∈ �dom(ps)�
9: if ∃t′∈dom(ψROM). ti ≈P (ψROM)t

′ and ψROM(t′) �= ⊥
10: ψROM(ti) ← ψROM(t′)
11: continue
12: randomly sample b from �ran(ps)�
13: ψROM(ti) ← b
14: return ψROM

Algorithm 1 samples terms in order (lines 2–3), by interpreting each function
symbol as a random oracle with uniform probability distribution (lines 12–13),
and respecting the equational theory in case an equal term has already been
sampled (lines 9–10), as long as its argument values (previously sampled) form
a tuple in its domain of definability (lines 5–6).

We remark that this procedure is only used to define our probability distri-
bution μ: in general, it may not be feasible to decide membership of the sets�dom(ps)� or to sample from �ran(ps)�. In [25] we describe our algorithm for
computing μ.

Problems with the tentative term sampling algorithm. We show that Algorithm 1
does not necessarily yield a probability measure over F as desired.

Given a finite set K ⊆ TΣ and a subterm-compatible order ≺, Algorithm 1
is a probabilistic algorithm, and thus outputs functions ψ: sub[K] → B∗⊥ with
some probability distribution. We would therefore like to define a model μ of S
by defining μ(Ωλ) for each generator Ωλ of F as the probability that executing
Algorithm 1 on input dom(λ) yields as output a function ψROM such that, for
each t ∈ dom(λ), ψROM(t) ∈ λ(t).

Unfortunately, the next example shows that this is not well-defined in gen-
eral. Concretely, we show that there are terms t and t′ such that, letting λb =
{t �→ b, a �→ b} for each b ∈ B∗⊥, the probability of the set

⋃
b∈B∗

⊥
Ωλb

depends

on the input set K and the order relation ≺ considered.

Example 4. Suppose that a, b, k ∈ Σ0 are such that type(a) = TB1024 , type(b) =
TB1024 and type(k) = random. Consider executing Algorithm 1 on the set {t},
with t =

{
{a}mod(k),expn(k)

}−1

b
. Algorithm 1 outputs a function ψ: sub(t) → B∗⊥.

Let us consider the probability that ψ(t) = ψ(a). It is simple to check that both
ψ(t) and ψ(a) are sampled by Algorithm 1 with uniform probability distribution
from B1024. Therefore, the probability that ψ(t) = ψ(a) is 2−1024.

Now, consider executing Algorithm 1 on the set {t, inv(k)}. If t ≺ inv(k), then
the execution of Algorithm 1 will be exactly the same until ψ(s) is sampled for
all terms s ∈ sub(t), and ψ(inv(k)) is only sampled afterwards. Therefore, ψ(s)
is sampled according to the same probability distribution for all s ∈ sub(t), and
the probability that ψ(t) = ψ(a) is still 2−1024. However, if inv(k) ≺ b, we have
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a probability of 2−1024 that ψ(b) = ψ(inv(k)). If ψ(b) = ψ(inv(k)), then we have
ψ(t) = ψ(a) with probability 1. Otherwise, ψ(t) and ψ(a) will still be sampled
from B1024 with uniform probability distribution, and the probability that they
are sampled to the same value is again 2−1024. In this case, we conclude that
P [ψ(a) = ψ(t)] = 2−1024 · (2 − 2−1024) �= 2−1024. Thus, the probability that
ψ(t) = ψ(a) depends on both the input set K and the order ≺.

Despite the example above, the following result shows that, given a fixed finite
set of termsK and a subterm-compatible order≺, Algorithm 1 does yield a prob-
ability distribution on the σ-algebra FK generated by the set {Ωλ | λ ∈ ΛK}. We
remark that FK is the σ-algebra of events that depend only on the instantiation
of terms in the set K.

Theorem 2. There is a unique probability distribution μK,≺:Fsub[K] → [0, 1]
such that, for each λ ∈ ΛK , μK,≺(Ωλ) is the probability that executing Algorithm
1 on input K and using the order ≺ yields a function ψROM such that, for each
t ∈ K, ψROM(t) ∈ λ(t).

3.2 Revised Term Sampling in the ROM

To avoid problems like the one illustrated by Example 4 we need two additional
hypotheses on the setup specification S. We will explicitly distinguish a set of
weak function symbols and consider a revised algorithm that uses this distinc-
tion. This revised algorithm is equivalent to Algorithm 1 when all functions are
treated as weak. We show that, under these hypotheses, we can define a prob-
ability measure from this new sampling algorithm, while also simplifying the
calculation of probabilities.

Weak terms. We assume fixed a set ΣW ⊆ Σ of weak function symbols. We
say that a term t ∈ TΣ is weak if head(t) ∈ ΣW , and denote by TW the set
of weak terms. Intuitively, weak function symbols are those that represent func-
tions whose outputs are sampled from “small” sets, and a probabilistic model
must therefore take into account the possibility of collisions between them. By
contrast, non-weak function symbols are those that represent functions whose
outputs are sampled from large enough sets, so that ignoring the possibility of
collisions changes our probability estimates only negligibly. Theorem 4, stated
below, formalizes this idea.

Example 5. In our running example, we consider the set of weak function sym-
bols ΣW = {h} ∪ {a ∈ Σ0 | a ⊆PS pw}. That is, a term is weak if it is a hash or
if it is derived from a humanly-chosen password. Note that the probability of a
collision in a hash function is in fact rather low, and indeed the security of many
protocols relies on hash functions being collision-resistant. However, modeling
hash functions as weak increases the accuracy of our model while still allowing
us to define a consistent probability distribution.
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Term sampling revisited. If K and K ′ are sets of terms and P is a partition of
K, we let P |K′= {p ∩K ′ | p ∈ P}. Note that P |K′ is a partition of K ∩K ′. We
denote by W (ψROM) the partition P (ψROM) |TW .

Our revised term sampling algorithm, targeted at solving the anomaly de-
scribed in Example 4, is the same as Algorithm 1 with the exception that
we replace the condition ti ≈P (ψROM)t

′ by ti ≈W (ψROM)t
′ in line 9. Note that

this revised sampling algorithm does not necessarily respect congruences, i.e.,
we may have ψROM(t) = ψROM(t′) and ψROM(f(t)) �= ψROM(f(t′)). However,
this only happens if either t or t′ is not weak, in which case the collision
ψROM(t) = ψROM(t′) only occurs with negligible probability.

This revised algorithm yields a probability distribution on F provided that
the setup specification S satisfies two reasonable conditions, described below.

Disjointness. The first condition we require on the specification S is that weak
function symbols do not occur in the rewriting system R.

Intuitively, this disjointness condition implies that the equality of terms de-
pends only on the equalities between their weak subterms. Thus, sampling terms
in a different order does not affect any equalities because terms are sampled only
after all their subterms are sampled. This condition excludes cases like that de-
scribed in Example 4: because inv /∈ ΣW , even if ψROM(b) = ψROM(inv(k)), we

never have
{
{a}mod(k),expn(k)

}−1

b
≈W (ψROM) a. The key idea is that equalities

between non-weak terms may be disregarded, as they occur only with negligible
probability. Ignoring equalities between non-weak terms, besides allowing us to
consistently define a probability measure, also simplifies the calculation of prob-
abilities. In [25] we present a simple algorithm for deciding ≈P (that is, given
terms t and t′, decide whether t ≈P t′), and thus to perform the test in Line 9
of Algorithm 1 and its revised version.

Compatibility. The second condition we require on our setup is compatibility.
Let K be a finite set of terms and P be a partition of K. Recall the definition
of ≈P given in Section 3. We say that P is ≈R-closed if, for all t, t′ ∈ K,
whenever t ≈P t

′ there is p ∈ P such that t, t′ ∈ p; equivalently, P is ≈R-closed
if ≈P |K×K= {(t, t′) | there exists p ∈ P such that t, t′ ∈ p}. We are interested
in partitions of weak terms. Thus, given a finite set K, we denote by PW

R (K)
the set of ≈R-closed partitions of sub[K] ∩ TW .

A selection function for K is a function ι: sub[K] → PS ∪ {⊥} such that, for
each t ∈ sub[K], either ι(t) = ⊥ or head(ι(t)) = head(t). Given ω ∈ Ω, we say
that ω satisfies ι if, for all t = f(t1, . . . , tn) ∈ sub[K], either (ω(t1), . . . , ω(tn)) ∈�dom(ι(t))� and ω(t) ∈ �ran(ι(t))�, or (ω(t1), . . . , ω(tn)) /∈ domS(f) and ι(t) =
ω(t) = ⊥. We denote by I(K) the set of selection functions for K, and by
IS(K) ⊆ I(K) the set of selection functions ι for K such that there is ω ∈ Ω
that satisfies ι. In [25] we show that, given a finite set of terms K, IS(K) is a
finite and computable set.

If K is a finite set of terms, a selection function for K determines which
property statement applies to each term in sub[K]: Indeed, if ω ∈ Ω satisfies
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PS, there exists exactly one selection function ι ∈ I(K) satisfied by ω, which
associates each term f(t1, . . . , tn) to the unique property statement ps ∈ PSf
such that (ω(t1), . . . , ω(tn)) ∈ �dom(ps)�, or ⊥ if no such ps exists.

The compatibility condition is that, if K is a finite set of terms, t ∈ sub[K],
P ∈ PW

R (K), ι ∈ IS(K), and ι(t) �= ⊥, then there is t′ ∈ sub(t) such that
t ≈P |psub(t)

t′ and, whenever t′′ ∈ sub[K] and t ≈P |psub(t)
t′′, either ι(t′′) = ⊥

or �ran(ι(t′))� ⊆ �ran(ι(t′′))�. Intuitively, this condition requires the equational
theory ≈R and the property statements in PS to be compatible. It is a basic
requirement that should be satisfied by any meaningful setup specification. The
following example illustrates this.

Example 6 (Incompatibility between ≈R and PS). Consider a rewriting system R

containing the symmetric decryption rewrite rule
{∣∣∣{|x|}y∣∣∣}−1

y
→ x and the prop-

erty statements {|TB256 |}−1
TB256

⊆ TB128 , {|TB256 |}TB256
⊆ TB256 . Let t′ = {|{|t|}k|}

−1
k ,

where t, k ∈ Σ0 and type(t) = type(k) = TB256 . In this case, we have ι(t) = TB256

and ι(t′) = TB128 for all selection functions ι ∈ IS({t, t′}). We have t ≈R t′,�ran(ι(t))� = TB256 , and �ran(ι(t′))� = TB128 . Because B128 ∩ B256 = ∅, it
follows that there is no ω ∈ Ω that satisfies ≈R and PS. Note that, having
{|TB256 |}−1

TB256
⊆ TB256 instead of {|TB256 |}−1

TB256
⊆ TB128 , we could have type(t) =

B for any non-empty set B ⊆ B256 without violating our compatibility condition.

Example 7. With the choice of ΣW given in Example 5, our running example
(from Examples 1—3) satisfies the disjointness and compatibility conditions.

Probability measure. Under the disjointness and compatibility conditions, the
revised sampling algorithm yields a probability measure μROM. For each total
subterm-compatible order ≺ and each λ ∈ Λ, let μ≺(λ) be the probability that
executing the revised version of Algorithm 1 on input dom(λ) using the order ≺
yields a function ψROM: sub[K] → B∗⊥ such that ψROM(t) ∈ λ(t) for all t ∈ K.

Theorem 3. Suppose that the disjointness and compatibility conditions are sat-
isfied by S and ΣW , and let ≺ and ≺′ be two subterm-compatible orders. If λ, λ′ ∈
Λ are such that Ωλ = Ωλ′ , we have μ≺(λ) = μ≺

′
(λ′). There exists a unique ex-

tension μROM of μ≺ to F that is a probability measure, and μROM(ΩS) = 1.

Theorem 3 implies that μROM is well-defined, as it does not depend on the
choice of the order ≺, and that it is a model of S.

3.3 Comparing Probability Measures

We describe the relationship between the probability measures μK,≺ described
in Theorem 2 and the probability measure μROM described in Theorem 3.

For each f ∈ Σ, let Lf = minps∈PSf
|�ran(ps)�| and L = minf∈Σ\ΣW Lf .

Note that, if non-weak terms are always sampled from “large” sets of bitstrings
whenever they are defined, then L is large as well. Intuitively, Theorem 4 shows
that, in this case, μK,≺ and μROM coincide except on a set whose probability is
“small”. More precisely, fixed K, the probability of this set is O(1/L).
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Theorem 4. For any finite set of terms K, there exists a set Ω(K) such that,
for any subterm-compatible order ≺:

(1) for any λ ∈ ΛK, μK,≺(Ωλ ∩Ω(K)) = μROM(Ωλ ∩Ω(K));

(2) there exists a polynomial function p such that

μK,≺(Ω \Ω(K)) = μROM(Ω \Ω(K)) ≤ |sub[K]|2 · |IS(K)| · (1/L).

Note that the statement of Theorem 4 is stronger than merely bounding the
difference in the probability of sets in ΩΛ. For example, Theorem 4 implies that
the probability of two terms being sampled to the same bitstring as measured
by μK,≺ and μROM also differs by at most |sub[K]|2 · |IS(K)| · (1/L).

Asymptotic interpretation. Suppose that, for each η ∈ N, �·�η is a type interpre-
tation function and Sη = 〈〈Σ,≈R, T ,PS 〉, �·�η〉 is a setup specification which,

together with a set ΣW of weak function symbols, satisfies the disjointness and
compatibility conditions. Assume further that 1/Lη is negligible as a function
of η, where Lf,η = minps∈PSf

�ran(ps)�η and Lη = minf∈Σ\ΣW Lf,η for each

η ∈ N. Note that this condition is equivalent to requiring, for each function

symbol f ∈ Σ \ ΣW and each ps ∈ PSf , that 1/
∣∣∣�ran(ps)�η

∣∣∣ is negligible as

a function of η. Intuitively, this condition requires that non-weak terms, when
defined, are always mapped to bitstrings sampled from large enough sets.

Let μK,≺
η (respectively, μROM,η) be the probability measure given by Theorem

2 (respectively, Theorem 3) when Algorithm 1 (respectively, the revised version
of algorithm 1) is executed using the interpretation function �·�η. Then, the
following is a corollary of Theorem 4.

Corollary 1. Let K be a finite set of terms, and suppose that
∣∣ISη (K)

∣∣ grows
polynomially as a function of η. For any finite set of terms K, there exists a set
Ω(K) such that, for any subterm-compatible order ≺:

(1) for any λ ∈ ΛK, μK,≺
η (Ωλ ∩Ω(K)) = μROM,η(Ωλ ∩Ω(K));

(2) μK,≺
η (Ω \Ω(K)) = μROM,η(Ω \Ω(K)), and both quantities are negligible as

functions of η.

Comparison with the random oracle and ideal cipher models. Algorithm 1 exactly
matches the random oracle model for hash functions. Its only difference with
respect to the ideal-cipher model for symmetric encryption is that two different
bitstrings may be encrypted to the same ciphertext under the same key. However,
if the range of the encryption function is large enough (i.e., larger than any
polynomial function of the security parameter), then the probability of such a
collision is negligible for any (finite) input set. In light of Corollary 1, we thus
conclude that the probability measure μROM differs only negligibly from the
probabilities yielded by the random oracle and the ideal cipher models.
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3.4 Computing Probabilities

In [25] we present an equivalent, algebraic definition of the probability mea-
sure μROM which reduces the problem of computing probabilities of the form
PμROM

[t1 ∈ B1, . . . , tn ∈ Bn, t
′
1 = t′′1 , . . . , t

′
n′ = t′′n′′ ] (with B1, . . . , Bn ⊆ B∗⊥)

to computing the sizes of intersections of sets in {B1, . . . , Bn} ∪ �T �. A full
specification of the interpretations of types is not necessary.

Our prototype implementation computes probabilities of this form for the
cryptographic primitives and respective properties considered in our running
example. The user may, however, need to specify the sizes of intersections of the
sets of bitstrings B1, . . . , Bn with the specified property types.

Let T = {t1, . . . , tn, t′1, t′′1 , . . . , t′n′ , t′n′′}. Since we must consider ≈R-closed
partitions of TW

Σ ∩ sub[T ], the complexity of the computation is exponential in∣∣TW
Σ ∩ sub[T ]

∣∣. However, for the specification considered in our running example,
if T contains no subterms of the form πi(t) for i ∈ {1, 2} and t such that head(t) �=
〈·, ·〉, the complexity is linear in the number of non-weak subterms of T .

4 Off-Line Guessing

Let s be a term representing a bitstring in B ⊂ B∗ that is intended to be secret.
If an attacker can feasibly enumerate all bitstrings in B, he may try to rule out
the possibility that s represents each such bitstring. The attacker’s ultimate aim
is to exclude all but one bitstring in B and thereby learn the secret s even if it
may not be directly deduced by constructing terms and reasoning equationally.
When the attacker does not need to interact with other agents to verify his
guess, this is called an off-line guessing attack. In this section we describe how
properties of cryptographic primitives described by S can be used to find and
estimate the success probability of non-trivial off-line guessing attacks.

4.1 Attacker Model

We will assume fixed an infinite set N ⊆ Σ0 such that Σ0 \N is finite. Symbols
in N represent random data generated by the agents, whereas symbols in Σ0\N
represent cryptographically relevant constants (such as the bitstring 0). We also
assume fixed a countably infinite set V of variables, disjoint from Σ.

We represent an attacker’s knowledge by a frame [27], i.e., a pair (ñ, σ), written
νñ.σ, where ñ ⊆ N is a finite set of names and σ:V � TΣ is a substitution.
Given a frame φ = νñ.σ, we define Tφ = TΣ\ñ(dom(σ)). We say that terms in Tφ
are φ-recipes as they represent the ways in which an attacker can build terms.

Suppose that an attacker whose knowledge is represented by a frame φ = νñ.σ
attempts an off-line guessing attack of a secret s. We require that the set of
bitstrings tried by the attacker is �type(w)� for some w ∈ N that does not occur
in either ñ or σ, and we model the attacker’s guess by w. Letting x /∈ dom(σ) be
a fresh variable, we consider the frames φs = νñw.σs and φw = νñw.σw, where
ñw = ñ∪{w}, σs = σ∪{x �→ s}, and σw = σ∪{x �→ w}. Here, φs represents the
attacker’s knowledge using the right guess, while φw represents his knowledge
when his guess is wrong.
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Guess verifiers. We consider two ways in which an attacker can verify whether
his guess w is correct. First, he can use his guess to construct a pair of terms (t, t′)
that are equal under ≈R if w = s, but different if w �= s. This is equivalent to
φw and φs not being statically equivalent, and is the usual definition of security
against off-line guessing used in symbolic methods [16, 20, 27]. Second, he can
use his guess to construct a term t whose corresponding bitstring satisfies some
given property if w = s, and not necessarily otherwise.

Given a term t and p ∈ N∗, we denote the subterm of t at position p by t|p,
where t|ε = t and, for t = f(t1, . . . , tn), t|i.p = ti|p for i ∈ {1, . . . , n}, where i.p
denotes the sequence of integers obtained by prepending i to the sequence p. The
set eqv(φ, t) of equational verifiers of a term t (under φ) is the set of pairs (t, t′)
such that t, t′ ∈ Tφs , tσs ≈R t

′σs, tσw �≈R t
′σw, and there is no p ∈ N∗ \ {ε} such

that these conditions hold for the pair (t|p, t′|p). These are the pairs of recipes
that an attacker may use to validate his guess using the first strategy.

To model the second attacking strategy, we will consider a set T T of test types
that model the attacker’s ability to test whether a bitstring is in a given set. The
set tv(φ, t) of type verifiers of t (under φ) is the set of pairs (t, TT ) such that
t ∈ Tφs , T ∈ T T , PμROM

[t̂σs ∈ �TT �] = 1, PμROM
[t̂σw ∈ �TT �] �= 1, and there

are no p ∈ N∗ \ {ε}, TT ′ ∈ T T such that these conditions hold for (t|p, TT ′).
Note that to model a realistic attacker one must choose test types such that �T �
is efficiently decidable for all T ∈ T T .

Example 8. We will consider the test types odd, with �odd� corresponding to the
set of 1024-bit bitstrings that represent an odd number, so that |�odd�| = 21023,
and nspf, with �nspf� corresponding to the set of 1024-bit bitstrings representing
numbers with no prime factors smaller than 106. We have |�nspf�| ≈∏

p∈P106
(p−

1)/p ≈ 1/24, where Pi represents the set of prime factors smaller than i. These
test types are used to model off-line guessing attacks in Section 4.2.

Our requirements on the sub-positions of verifiers prevent us from having
infinite sets of spurious verifiers. For instance, let h0(t) = t and hn+1(t) =
h(hn(t)) for each n ∈ N, and let (t, t′) be an equational verifier. Without this
requirement, all pairs (hi(t), hi(t′)) for i ∈ N would be verifiers as well. However,
if an attacker tests the pair (tσw, t

′σw), he cannot obtain more information by
testing the pairs (hi(t)σw , h

i(t′)σw), for i > 0.
In [25] we describe an algorithm for computing equational and type verifiers

for any signature Σ and any convergent rewriting system R.

4.2 Off-Line Guessing Examples on EKE

The EKE (Encrypted Key Exchange) protocol, proposed in [22], is designed to
allow two parties to exchange authenticated information using a weak symmet-
ric key. The authors show that naive versions of the protocol, while possibly
symbolically secure, are nevertheless subject to off-line guessing attacks when
implemented using RSA public keys. These examples illustrate that such attacks
can result from implementation details that, while often trivial, are outside the
scope of traditional symbolic methods.
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We now show how our methods can be used to model and estimate the suc-
cess probability of two such off-line guessing attacks. In both cases it is sufficient
to consider the first step of the protocol. Probability calculations in this sec-
tion rely on the setup specification of our running example and are performed
automatically by our prototype implementation in less than one second.

Example 9. In the first step of this version of the protocol, an agent A samples
a bitstring from �random� represented by a term r ∈ Σ0 such that type(r) =
random, and uses it to compute an RSA public key 〈mod(r), expn(r)〉. Then, A
(symmetrically) encrypts this public key with a password s shared between A
and the intended recipient B. To keep our analysis simple, we assume that the
participants encrypt the modulus and the exponent separately and send them
over the network as a pair of encryptions (instead of the encryption of the pair).
Thus, this first message is represented by the term 〈{|mod(r)|}s , {|expn(r)|}s〉.
See [22] for a full description of the protocol and its variants.

After observing this message in the network, the attacker’s knowledge is given
by φ = νñ.σ, where σ = {x1 �→ 〈{|mod(r)|}s , {|expn(r)|}s〉} and ñ = {r}. The
relevant frames for the analysis of off-line guessing are φs = νñw.σs and φw =
νñw.σw, where ñw = ñ ∪ {w}, σs = σ ∪ {x2 �→ s}, and σw = σ ∪ {x2 �→ w}.

There are no equational verifiers: eqv(φ, s) = ∅. However, while it may be
infeasible to check whether the modulus is the product of two primes, an attacker
can use his guess w to decrypt the pair sent by A and test whether the result is
a 1024-bit modulus without small prime factors and an odd exponent e. Thus,

tv(φ, s) =
{

({|π1(x1)|}−1
x2
, nspf), ({|π2(x1)|}−1

x2
, odd)

}
.

We have ̂π1(x1)σw ∈ B1024. Thus, ̂{|π1(x1)|}−1
x2
σw is sampled from B(769,1024),

and the probability that ̂{|π1(x1)|}−1
x2

has 1024 bits is
∣∣B1024

∣∣ / ∣∣B(769,1024)
∣∣ =

21024/
∣∣∣∑1024

i=769 2i
∣∣∣ ≈ 1/2. The probability that a 1024-bits bitstring is in �nspf�

is approximately 1/24, and the probability that {|π2(x1)|}−1
x2

is odd is 1/2. There-
fore, each wrong guess satisfies the two type verifiers with probability

Pμ

[
̂{|π1(x1)|}−1

x2
σw ∈ �nspf� , ̂{|π2(x1)|}−1

x2
σw ∈ �odd�

]
≈ 1

2
· 1

24
· 1

2
=

1

96
.

Since there are 224 − 1 wrong guesses, we estimate the probability of success
of this off-line guessing attack as described above to be 1

1+(224−1)/96 ≈ 2−17.5,

corresponding to the probability of picking the right guess from those which
satisfy the equational and type verifiers.

Example 10. Consider the same setup as in Example 9, except that only the
exponent of the RSA public key is encrypted in the first message. The authors
of EKE note that the protocol is still vulnerable to off-line guessing attacks: Since
the exponent of an RSA key is always odd, one can decrypt each encryption of a
public key with each guess. For the right guess, decrypting each encryption will
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yield an odd exponent. The probability that a wrong guess achieves this decreases
exponentially with the number of encryptions available to the attacker [22].

To formalize this in our setting, we let φ = νñ.σ be the frame representing the
attacker’s knowledge, where σ = {xi �→ 〈mod(ri), {|expn(ri)|}s〉 | i ∈ {1, . . . , n}}
and ñ = {r1, . . . , rn, s} . The frames φs and φw used are as expected: φs = νñw.σs
and φw = νñw.σw, where ñw = ñ ∪ {w}, σs = σ ∪ {xn+1 �→ s}, and σw =
σ ∪ {xn+1 �→ w}. As before, there are no equational verifiers: eqv(φ, s) = ∅. The

set of type verifiers is given by tv(φ, s) =
{

({|π2(xi)|}−1
xn+1

, odd) | i ∈ {1, . . . , n}
}
.

As in Example 9, we obtain 1/(1 + (224 − 1)/2n+1) = 2n+1/(2n+1 + 224 − 1) as
an estimate for the success probability of this off-line guessing attack.

We remark that when assessing the threat level of off-line guessing attacks one
must consider not only the probability of success, but also the computational
effort involved, i.e., the number of guesses that must be verified. In the attacks
modeled by our method, this number is approximated by G ∗ p, where G is the
size of the space of guesses to be tried and p is the probability that a random
guess satisfies all verifiers. This corresponds to the expected number of guesses
that an attacker must try before finding one that satisfies all verifiers.

5 Conclusion

We presented a symbolic and automatable probabilistic framework for security
protocol analysis. Our framework allows one to express properties of crypto-
graphic primitives which are outside the scope of Dolev-Yao models, thereby
modeling a stronger attacker. We illustrated its usefulness by modeling non-
trivial properties of RSA and using them to analyze off-line guessing attacks on
the EKE protocol which cannot be modeled by existing symbolic methods.

We have proposed a probability distribution based on interpreting functions
as random oracles subject to satisfying the properties of cryptographic primitives
described in our setup. This is a non-trivial generalization of the random ora-
cle model. By using this probability distribution, we can (automatically) reason
about an attack’s success probability. In [28] we provide a prototype implemen-
tation of our methods, which computes probabilities in our formalization of a
Dolev-Yao attacker using RSA asymmetric encryption and terminates in less
than one second for all the examples presented in the paper.

More generally, our approach can be used to analyze a broad range of attacks
and weaknesses of cryptographic primitives that could not previously be analyzed
by symbolic models. These include some forms of cryptanalysis (such as differ-
ential cryptanalysis to AES, DES or hash functions, as in [29]) and side-channel
attacks [24]. Short-string authentication, used in device pairing protocols, and
distance-bounding protocols relying on rapid-bit exchange, are ill-suited for anal-
ysis with existing symbolic methods as their analysis is intrinsically probabilistic.
However, they are amenable to analysis using our framework.

As future work, we plan to integrate this approach with a symbolic protocol
model-checker capable of generating protocol execution traces and the proba-
bilistic queries relevant for deciding whether a trace allows an attack. In the
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case of off-line guessing, this amounts to computing the sets of equational and
type verifiers, a task closely related to that of deciding static equivalence. Since
our probabilistic analysis can be performed automatically (as illustrated by our
prototype), this allows our analysis to be fully automated. We expect that such
an approach will allow us to find numerous new protocol attacks relying on
properties of the cryptographic primitives used.
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Abstract. Most security models for authenticated key exchange (AKE)
do not explicitly model the associated certification system, which includes
the certification authority (CA) and its behaviour. However, there are
several well-known and realistic attacks on AKE protocols which exploit
various forms of malicious key registration and which therefore lie out-
side the scope of these models. We provide the first systematic analysis
of AKE security incorporating certification systems (ASICS). We define
a family of security models that, in addition to allowing different sets
of standard AKE adversary queries, also permit the adversary to regis-
ter arbitrary bitstrings as keys. For this model family we prove generic
results that enable the design and verification of protocols that achieve
security even if some keys have been produced maliciously. Our approach
is applicable to a wide range of models and protocols; as a concrete illus-
tration of its power, we apply it to the CMQV protocol in the natural
strengthening of the eCK model to the ASICS setting.

Keywords: authenticated key exchange (AKE), unknown key share
(UKS) attacks, certification authority (CA), invalid public keys, PKI.

1 Introduction

After public key encryption and digital signatures, authenticated key establish-
ment (AKE) is perhaps the most important public key primitive. From a real-
world perspective, AKE protocols relying on public key techniques are widely
deployed in systems that are used every day by billions of users, including systems
such as TLS, IPsec, SSH, and various single sign-on systems. From a theoretical
perspective, formal, cryptographically sound modelling for AKE protocols began
in the symmetric setting with the seminal work of Bellare and Rogaway [4], and
was later extended to the public key setting [6]. Since then, there has been a large
body of work in this tradition, and many additions and modifications have been
proposed. The most prominent current models in this tradition [3, 12, 25, 33]
strengthen or add to the required security properties, cover different protocol
classes, and strengthen adversary powers.

Despite intensive study over two decades, important elements of AKE proto-
cols have not been sufficiently modelled, preventing our deeper understanding
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of this important primitive and limiting its applicability to real-world protocols.
Specifically, the public key infrastructure (PKI) needed to support the authentic-
ity of public keys in AKE, and the interactions between the certification author-
ity (CA), honest parties, and the adversary, are rarely modelled. Rather, with
exceptions as noted below, in typical AKE models and proofs it is assumed that
all public keys are honestly generated and authentically distributed at the start
of the security game, and that there is a single key per party; certificates are
excluded from the model. The adversary can corrupt parties, learning all their
secrets, but has limited ability to register malicious keys. Roughly speaking, this
modelling approach corresponds to an ideal CA, who zealously generates perfect
key pairs and securely distributes them to the correct parties.

However, CAs in the real world simply do not operate in such rigorous ways.
They have differing strengths of procedures for checking claimed identities1, so
malicious parties might in some cases get arbitrary public keys certified against
identifiers of their choice. The most egregious examples involve CAs who, either
willingly, under coercion, or as a result of security compromises, have issued
certificates for keys and identifiers that they should not have.2 CAs following
best-practices may require that a user requesting a certificate submit a certificate
signing request to the CA. This involves the user self-signing the data that is
to be certified. Various standards [1,2,32] include other approaches to providing
proofs of possession. However, even these basic tests of private key ownership
are not mentioned in industry guidelines issued by the CA/Browser Forum [10,
11]. Furthermore, these procedures all fall short of the proofs of knowledge [31]
required to match what is assumed in typical AKE models. Thus, an attacker
may be able to register another party’s public key under his own identifier, or
register a malformed key which then interacts with properly generated keys in
an unfortunate way.

Critically, there are realistic attacks on AKE protocols which cannot be cap-
tured by AKE security models that omit CA and PKI aspects:

– Kaliski’s unknown key share (UKS) attack [22] on early versions of MQV
exploits the ability of the adversary to dynamically register a public key
(which is valid and for which the adversary does know the secret key).

– The UKS attack on KEA described by Lauter and Mityagin [26, p. 380]
exploits the adversary’s ability to re-register some party’s static public key
as his own public key.

– Blake-Wilson and Menezes [8] introduced the duplicate-signature key selec-
tion (DSKS) attack on signature schemes: after observing a user’s signature

1 For example, issuance of Extended Validation (EV) certificates requires
stronger identity-checking requirements than non-EV certificates, see https://www.

cabforum.org/certificates.html for more details.
2 In June and July 2011, Dutch CA DigiNotar was hacked [18], with the intruder
taking control of all 8 of the CA’s signing servers; at least 531 rogue certificates were
then issued. In August 2011, TURKTRUST CA [17] issued special certificates with
wildcard signing capabilities, allowing impersonation of any domain in the Internet.
This was discovered, by coincidence, only 18 months later.
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σ on a message m, the adversary E is able to compute a signature key pair
(skE , vkE) (or sometimes just a verification key vkE) such that σ is also E’s
signature on the message m. Now, for example, if the Station-to-Station
(STS) protocol is implemented using a signature scheme that is vulnerable
to DSKS attacks, and the adversary can register arbitrary public keys with
the CA, then the protocol is vulnerable to an online UKS attack [8].

– In Lim and Lee small subgroup attacks [27], the adversary extracts infor-
mation about a party’s long-term secret key. Some of these attacks require
registering invalid public keys with the CA before engaging in protocol runs
with honest participants. Of particular note are the Lim–Lee-style attacks
of Menezes and Ustaoglu [29] on the HMQV protocol [23].

We claim that to date there has been no systematic treatment in the literature
of the behaviour of CAs with respect to public keys and identifiers chosen by the
adversary. Our paper sets out to rectify this situation, providing a comprehensive
and self-contained treatment of these features, as well as establishing generic
results to make protocols resilient against such attacks.

Contributions. Our paper has three main contributions.
First, we present in Section 2 a framework for reasoning about the security

of AKE protocols with respect to various CA key registration procedures. This
framework allows us to capture several attacks based on adversarial key registra-
tion, including UKS attacks, small-subgroup attacks, attacks that occur when
the CA does not check if public keys are registered twice, and attacks that occur
when multiple public keys can be registered per identifier.

Second, we provide in Section 3 a generic approach to achieve strong security
guarantees against adversaries that can register arbitrary public keys for certain
types of protocols. In particular, we show how to transform Diffie–Hellman type
AKE protocols that are secure in a model where only honest key registration is
allowed into protocols that are secure even when adversaries can register arbi-
trary valid or invalid public keys. In such cases, security is still guaranteed for
all sessions (that were considered clean or fresh in the base model) except those
in which the peer’s public key is valid but registered by the adversary.

Third, we demonstrate in Section 4 how our methodology can be used to
establish strong security guarantees, even when the adversary can register arbi-
trary public keys, for concrete protocols such as CMQV, NAXOS, and UP, using
CMQV as a running example. We provide in Section 5 recommendations for the
design of protocols that are secure in our models.

Related Work. The original computational model for key exchange of Bellare
and Rogaway [4] has a long-lived key generator, which is used to initialise all
parties’ keys at the start of the game. This is a standard part of most computa-
tional models today. However, in common with several later models [12, 21, 24],
the adversary cannot influence long-term keys: only honestly generated keys are
considered. Starting with the 1995 model of Bellare and Rogaway [5] it was
recognised that the adversary may be able to choose long-term keys for certain
parties, whether public keys or symmetric keys. It is possible to identify three
different methods that have been used to model such an adversary capability.
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1. The adversary can replace long-term keys by providing them as an input to a
corrupt query. This was the method used originally by Bellare and Rogaway [5]
and was subsequently used in the public key setting by others [7, 30].

2. The adversary is allowed to generate arbitrary keys for corrupted parties at
any time during the protocol run [23].

3. An additional query is added specifically to set up a user with a new key cho-
sen by the adversary [14,20,35]. This query is typically called establishparty
and takes as input the user name and its long-term public key.

These methods allow the models to capture the Kaliski attack [22], which requires
the adversary to register a new public key after certain protocol messages have
been obtained. However, none of these currently used methods has the generality
of our model and, in particular, all of them omit the following realistic features:

– registration of multiple public keys per user;
– flexible checking by certification authorities via a verification procedure;
– adversarial choice of public keys per session.

Special mention should also be made of the model of Shoup [33]. Unlike most
popular AKE models today, it uses a simulatability definition of security compar-
ing ideal and real world views. Security is defined to mean that for any real world
adversary there is an ideal world adversary (benign by definition) such that the
transcripts of the two are computationally indistinguishable. Real-world adver-
saries have the ability to assign users to public key certificates. Shoup’s model has
not been widely used and the examples in [33] are not fully worked through. Fur-
thermore, the model cannot represent an adversary who obtains only ephemeral
secret keys without knowing the long-term key of the same user and therefore
cannot capture security properties common in more modern models.

Other works [13, 19] have considered the security of non-interactive key ex-
change (NIKE) in settings where the adversary can register arbitrary public
keys, analogously to our ASICS setting for interactive key exchange. It is an
interesting open problem to examine how the security models and constructions
for NIKE [13,19] can be built upon to achieve security in the ASICS setting.

Critically, all of the approaches mentioned above have only been used to
establish results for a handful of specific protocols. In contrast, we establish
generic results that facilitate the design and verification of AKE protocols, and
that can be applied to a large class of protocols.

2 ASICS Model Family

In this section we define a parameterized AKE security model that allows for
explicit modelling of the certification of public keys. Prominent AKE security
frameworks can be instantiated in this family of models, as well as extensions
that allow dynamic adversarial registration of arbitrary bitstrings as public keys.

Generally speaking, from a user’s point of view, participation in key exchange
encompasses three consecutive phases: First, users set up their individual key
pairs; more precisely, each user invokes a randomized algorithm KeyGen that
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outputs a fresh secret-key/public-key pair (sk, pk). Second, users contact a cer-
tification authority (CA) to get their keys certified: each user provides the CA
with its identifier P̂ and its public key pk, and obtains a certificate C that binds
the identifier to the key. After completing these setup steps, in the third phase,
users can engage in interactive sessions with other users to establish shared keys.
To do so, they usually require knowledge of their own key pair (sk, pk), their
identifier P̂ , and the corresponding certificate C. In addition to that, protocols
may require a priori knowledge of (a subset of) the peer’s public key pk′, peer’s
identifier Q̂, and peer’s certificate C′. As we will see, our execution model is
general enough to cover all these settings. To ease notation, we assume that
public key pk and identifier P̂ can be readily derived from any certificate C; we
use notation C.pk = pk and C.id = P̂ correspondingly.

Our work enables the modeling of different degrees of rigour in the checks
of consistency and ownership of public keys pk presented to the CA. On the
one hand, CAs could be pedantic with such verifications (e.g., require a proof
of knowledge of the secret key corresponding to pk); on the other hand, CAs
could also just accept any given bitstring pk as valid and issue a certificate on
it. The ability to precisely assess the security of key establishment in the face of
different CA behaviours is a key contribution of our new model family.

Definition 1. An ASICS protocol Π consists of a set of domain parameters,
a key generation algorithm KeyGen, a public key verification procedure VP, and
the protocol description π that describes how key exchange protocol messages are
generated and responded to as well as how the session key is derived.

We denote by VP the specific verification procedure on public keys and iden-
tifiers that a considered CA deploys. As different checks on pk and P̂ might
require different levels of interaction between the registering user and the CA,
we model it as a procedure, as opposed to a function. We require that VP is
efficient and has binary output. Furthermore, we require that the CA issues the
requested certificate only if VP outputs value 1; all certification requests where
VP outputs value 0 are rejected. Note that, for simplicity, we only consider
non-interactive verification procedures (i.e., two-message registration protocols)
between the user and the CA. A more general treatment covering interactive
verification procedures as well would introduce additional complexities to our
framework.

Specific key exchange protocols might be insecure for one (liberal) instantia-
tion of VP, and be secure for another (stricter) one. Note that CAs that do not
perform any check on pk and P̂ are modelled by a verification procedure VP
that always outputs 1. A verification procedure that performs few checks may
output 1 for at least all pk ∈ PK, where PK denotes the set of possible public
keys output by KeyGen. Precisely, if the inputs of algorithm KeyGen are security
parameter 1k and randomness r ∈R {0, 1}k, then we define

PK =
{
pk | there exists r ∈ {0, 1}k such that KeyGen(1k; r) = ( · , pk)

}
.
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A verification procedure with high assurance may require a zero-knowledge
argument that the requester knows the secret key corresponding to the public
key, and even that the key was generated verifiably at random. Note that we
allow VP to keep an internal state between invocations; our model hence covers
possible implementations of CAs that reject certification requests with public
keys that have already been registered (e.g., for a different identifier).

2.1 Security Model

At a high level, our model stipulates users that generate one or more keys, ob-
tain certificates for these keys from a CA, and use keys and certificates to run
(potentially concurrent) sessions of the key agreement protocol. Similar to other
security models, the adversary controls all communication in these sessions, cor-
rupts users at will to obtain their secret keys, and arbitrarily reveals established
session keys. Innovative is the adversary’s additional ability to steer the registra-
tion process with the CA: it can obtain from the CA valid certificates for public
keys and identifiers of its choosing (as long as VP evaluates to 1), and provides
users with such certificates.

To keep our model simple and comprehensible, we abstract away any forge-
ability issues of certificates and assume the following ideal functionality: no cer-
tificate will be considered valid unless it has been issued by the CA. We model
this by letting the challenger keep a list C of all CA-issued certificates and by
equipping users with a certificate verification oracle OCV that checks member-
ship in that list; concretely, we assume that OCV (C) = 1 ⇔ C ∈ C. Of course, in
concrete implementations, this oracle is replaced by an explicit local verification
routine; for instance, if certification is implemented via a signature scheme, this
will include its verification procedure.

Sessions and Session State. Users, once they have created their keys and
obtained corresponding certificates, can execute protocol sessions. Within a user,
each such session is uniquely identified by a pair s = (C, i), where C denotes the
certificate used by the user (by himself) in that session, and i is a counter. The
user maintains session-specific variables as indicated in Table 1. Some session
variables are fixed upon session creation, whereas others can be assigned or
updated during protocol execution. Some, such as pcert, status, and key, are
considered to be outputs of the key establishment and might be used in higher-
level protocols or applications. A session s has accepted if sstatus = accepted.

Adversarial Queries. The adversary interacts with users by issuing queries.
The adversary can direct users to establish long-term key pairs and certifi-
cates (kgen, hregister), to initiate protocol sessions (create), and to respond to
protocol messages (send). The adversary may be able to learn long-term keys
(corrupt), session-specific randomness (randomness), or session keys (session-key)
from users. The adversary can also maliciously obtain certificates from the CA
(pkregister, npkregister).
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Table 1. Elements of session state

acert certificate of the actor (the user running this session)
pcert certificate of this session’s peer
role taken role; either I (initiator) or R (responder)
sent concatenation of all messages sent in this session
rcvd concatenation of all messages received in this session
status session status; either active, accepted, or rejected

key key in {0, 1}k established in this session
rand randomness used in this session
data any additional protocol-specific data

Table 2. Overview of query sets. Additionally, there is a test-session query.

QN = {kgen, hregister, create, send} (Normal protocol behaviour)
QS = {corrupt, randomness, session-key} (corruption of Secrets)
QR = {pkregister, npkregister} (adversarial key Registration)

The queries in set QN = {kgen, hregister, create, send}, defined as follows,
model normal operation of the protocol; they are required in any security model.
Initially, the auxiliary variables HK, C, Ch, Cpk, and Cnpk are set to ∅.
– kgen () By running algorithm KeyGen, a fresh key pair (sk, pk) is generated.

Public key pk is returned to the adversary; secret key sk is stored for pro-
cessing potential later queries corresponding to pk. The public key is added
to the set of honestly generated keys: HK ← HK ∪ {pk}.

– hregister(pk, P̂ ) The query requires that pk ∈ HK and that VP outputs 1
on input pk3 and P̂ ; otherwise, it returns ⊥. The public key pk is registered
at the CA for the identifier P̂ . The resulting certificate C is added to the
global set of certificates and to the set of honestly generated certificates:
C ← C ∪ {C} and Ch ← Ch ∪ {C}. The query returns C.

– create (s = (C, i) , r, [C′]) The query requires that C ∈ Ch, that a session
with counter i for certificate C does not already exist, and that r ∈ {I,R};
otherwise, it returns ⊥. A new session s is created for the user with public
key C.pk and identifier C.id. Session variables are initialized as

(sacert, spcert, srole, ssent, srcvd, sstatus, skey) ← (C,⊥, r, ε, ε, active,⊥) .

If the optional certificate C′ is provided, we set spcert ← C′. In addition,
a string in {0, 1}k is sampled uniformly at random and assigned to srand;
we assume that all randomness required during the execution of session s
is deterministically derived from srand. The user also runs the initialization
procedure for the key exchange protocol, which may further initialize its own
(internal) state variable sdata and optionally generate a messageM . If M was
generated, set ssent ←M , and return M . Otherwise, return ⊥.

3 Reasonable implementations of VP output 1 on all keys pk ∈ HK, because HK ⊆
PK.
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– send (s,M) The query requires that session s exists and that sstatus =
active; otherwise, it returns ⊥. The user continues the protocol execution
for this session with incoming message M , which may optionally generate a
response message M ′. Next, srcvd is set to (srcvd ‖M) and, if M ′ is output,
ssent is set to (ssent ‖ M ′). The protocol execution may (re-)assign values
to sstatus and skey, and to the session’s internal state variable sdata. Also, if
the value spcert was not provided to the create query, then protocol execu-
tion may assign a value to spcert. If M ′ was generated, return M ′; otherwise
return ⊥.

The queries in set QS = {corrupt, randomness, session-key} model the corruption
of a user’s secrets. Similar queries are found in other standard AKE models [4,12].

– corrupt (pk) The query requires pk ∈ HK; otherwise, it returns ⊥. This
query returns the secret key sk corresponding to public key pk.

– randomness (s) The query requires that session s exist; otherwise, it re-
turns ⊥. The query returns the randomness srand. This is similar to the
ephemeral key reveal query in the eCK model [25].

– session-key (s) The query requires that session s exist and that sstatus =
accepted; otherwise, it returns ⊥. The query returns the session key skey.

The hregister query introduced above only allows registration of keys pk ∈ HK,
i.e., keys held by honest users. In contrast, the adversary can obtain certifi-
cates on arbitrary (valid) public keys using the following pkregister query. Go-
ing even further, the npkregister query allows registration of objects that are
not even public keys (always assuming that VP outputs 1 on the candidate ob-
ject). These queries will allow modelling Kaliski’s attack on MQV [22] and small
subgroup attacks [27], amongst others. We emphasize that the queries in set
QR = {pkregister, npkregister} have no counterparts in standard definitions of
key exchange security.

– pkregister(pk, P̂ ) The query requires that pk ∈ PK and that VP outputs 1
on input pk and P̂ ; otherwise, it returns ⊥. The public key pk is registered
at the CA for identifier P̂ . The resulting certificate C is added to the global
set of certificates and to the set of certificates generated through pkregister
query: C ← C ∪ {C} and Cpk ← Cpk ∪ {C}. The query returns C.

– npkregister(pk, P̂ ) The query requires that pk �∈ PK and that VP outputs 1
on input pk and P̂ ; otherwise, it returns ⊥. The public key pk is registered at
the CA for the identifier P̂ . The resulting certificate C is added to the global
set of certificates and to the set of certificates generated through npkregister
query: C ← C ∪ {C} and Cnpk ← Cnpk ∪ {C}. The query returns C.

2.2 Security Experiment

Using the above queries, we define a parameterized family of AKE security mod-
els. As is common in BR-style AKE models, we must restrict query usage so
that the adversary cannot trivially win the security experiment. The conditions
under which queries are disallowed are expressed by a freshness condition, which
typically uses a matching condition to formalize intended partner sessions.
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Definition 2 (Matching, freshness, ASICS model). Let Π be an ASICS
protocol. A matching condition M for Π is a binary relation on the set of sessions
of Π. Let Q be a set of queries such that QN ⊆ Q ⊆ QN ∪QS ∪QR. A freshness
condition F for (Π,Q) is a predicate (usually depending on a matching condi-
tionM) that takes a session of Π and a sequence of queries (including arguments
and results) of a security experiment over queries in Q. We call X = (M,Q,F )
an ASICS model for Π.

Definition 3 gives two possible matching conditions. We will later give examples
of freshness conditions, in Example 1 on the following page and in Section 4.

The intricacies of matching definitions in AKE protocols are explored in detail
by Cremers [15]. Two issues are important here. First, there is a strong connec-
tion between the information used in a matching definition and the information
used to compute the session key. Second, some protocols like the two-message
versions of MQV and HMQV allow sessions to compute the same key even if
they perform the same role, whereas other protocols such as NAXOS require the
sessions that compute the same key to perform different roles. In the remainder
of the paper we will use one of the definitions below, depending on the type of
protocol.

Definition 3 (M1-matching, M2-matching). Let s and s′ denote two ses-
sions of an ASICS protocol. We say that session s′ M1-matches (or is M1-
matching) session s if sstatus = s′status = accepted and

(sacert.pk, sacert.id, spcert.pk, spcert.id, ssent, srcvd)

= (s′pcert.pk, s
′
pcert.id, s

′
acert.pk, s

′
acert.id, s

′
rcvd, s

′
sent)

Similarly, we say that session s′ M2-matches (or is M2-matching) session s if
s′ M1-matches session s and srole �= s′role.

The goal of the adversary is to distinguish the session key of a fresh session from
a completely random string. This is modelled through an additional query:

– test-session (s) This query requires that session s exists and that sstatus =
accepted; otherwise, it returns ⊥. A bit b is chosen at random. If b = 1,
then skey is returned. If b = 0, a random element of {0, 1}k is returned.

Definition 4 (ASICSX experiment). Let Π be an ASICS protocol and X =
(M,Q,F ) be an ASICS model. We define experiment ASICSX , between an ad-
versary E and a challenger who implements all users and the CA, as follows:

1. The experiment is initialized with domain parameters for security parame-
ter k.

2. The adversary E can perform any sequence of queries from Q.
3. At some point in the experiment, E issues a test-session query for a session s

that has accepted and satisfies F at the time the query is issued.
4. The adversary may continue with queries from Q, under the condition that

the test session must continue to satisfy F .
5. Finally, E outputs a bit b′ as E’s guess for b.
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Definition 5 (ASICSX advantage). The adversary E wins the security ex-
periment if it correctly outputs the bit b chosen in the test-session query. The
ASICSX -advantage of E is defined as AdvASICSX

Π,E (k) = |2 Pr(b = b′)− 1|.

Definition 6 (ASICS security). Let Π be an ASICS protocol and X = (M,Q,
F ) be an ASICS model. Π is said to be secure in ASICS model X if, for all PPT
adversaries E, it holds that

1. if two users successfully accept in M -matching sessions, then they both com-
pute the same session key, and

2. E has no more than a negligible advantage in winning the ASICSX experi-
ment; that is, there exists a negligible function negl in the security parame-
ter k such that AdvASICSX

Π,E (k) ≤ negl(k).

Remark 1 (Implicit authentication). Note that the ASICS security definition,
like eCK-style security definitions, only provides implicit peer authentication,
meaning that the key could only be known by the peer, not explicit authentica-
tion that the peer actually was active in the session.

Example 1. Let us consider the following ASICS model as a concrete example. Let
X = (M1, Q, F ) be the ASICS model given by Q = QN ∪ {session-key} ∪QR and
F defined as follows. Given a sequence of queries and a session s, F holds if:

– no session-key(s) query has been issued, and
– for all sessions s′ such that s′ M1-matches s, no query session-key(s′) has

been issued, and
– no query pkregister(spcert.pk, spcert.id) has been issued.

The model X is an extension of a BR-like model with a CA that allows registra-
tion of arbitrary keys. If a protocol is secure in X , then it is secure even if the
adversary can register arbitrary bitstrings as public keys, as long as the specific
peer key used in the test session is not an adversary-generated valid public key.

2.3 Capturing Attacks

We illustrate how several attacks exploiting the adversary’s ability to register
valid or invalid public keys can be captured in ASICS models.

Kaliski’s online UKS attack against MQV [22]. Kaliski’s attack against MQV
can be captured in an ASICS model where the adversary can register a specific
valid public key with his own identifier via a pkregister query. As the adversary
knows the secret key corresponding to the registered public key, the attack cannot
be prevented by VP requiring a proof-of-possession of the secret key.

UKS attack against KEA based on public-key re-registration [26, p. 380]. Sup-
pose that public key pk has been honestly registered at the CA for some user
with identifier P̂ via the query hregister(pk, P̂ ). In this UKS attack on the KEA
protocol, the adversary re-registers the public key pk under his own identifier
L̂ �= P̂ by issuing the query pkregister(pk, L̂). The attack is prevented if VP
checks for uniqueness of the public key and outputs 0 when the public key was
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certified before (as observed in [26, p. 381]). Note that the UKS attack can also
be prevented by making the session key derivation depend on users’ identifiers.

UKS attack against KEA+ based on impersonation attack. Lauter and Mitya-
gin [26] produced the KEA+ protocol from the KEA protocol and Protocol 4
in [6] by incorporating the identifiers of the user and its peer in the session key
computation to prevent UKS attacks; however, a similar but previously unre-
ported UKS attack still works on the KEA+ protocol. This UKS attack involves
a type of impersonation attack [34, p. 3]: it requires the adversary to successfully
impersonate a user to the CA who then issues a certificate containing the user’s
identifier, but the adversary’s valid public key. We stress that the attack does
not arise when only one public key per identifier can be registered. See the full
version of this paper [9] for a more detailed description of the attack.

Online UKS attack on STS-MAC based on duplicate-signature key selection
(DSKS) [8]. Suppose that the signature scheme employed in the STS-MAC pro-
tocol is vulnerable to DSKS attacks. The UKS attack on STS-MAC [8, p. 160]
exploits the ability of the adversary to register a valid public key pk under his
own identifier during the run of the protocol. More precisely, the adversary first
intercepts a user’s message containing a signature σ on message m. He then is-
sues a query pkregister(pk, L̂) such that σ is also a valid signature on m under pk.
The query associates pk with the adversary’s identifier L̂. Since the adversary
knows the secret key corresponding to pk, he obtains a certificate from the CA
even if VP requires a proof-of-possession. Countermeasures to such UKS attacks
via modification of the protocol are available [8].

Lim–Lee style attack against HMQV with DSA domain parameters, without val-
idation of ephemeral public keys [28]. Let G = 〈g〉 denote a q-order subgroup of
Z∗p, where q and p are prime and (p − 1)/q is smooth. The attack on two-pass
HMQV [28, p. 5] can be captured in an ASICS model where the adversary is given
access to the queries in the set Q = QN ∪ (QS \ {corrupt})∪ (QR \ {pkregister}).
In particular, the adversary can register invalid public keys via the npkregister
query. This attack can be prevented by countermeasures such as requiring VP to
include a group membership test on the public key submitted for certification, or
by including group membership tests on both ephemeral and long-term public
keys during protocol execution. Small-subgroup attacks may also exist in other
settings, for instance in groups over elliptic curves.

3 Achieving ASICS Security

We provide a modular approach to obtain provable ASICS security for certain
types of protocols. We first show in Theorem 1 how a result from Kudla and Pa-
terson [24, Theorem 2] can be adapted to incorporate adversarial registration of
valid public keys. Then, in Theorem 2, we indicate how to transform protocols to
achieve security in the presence of adversaries that can register arbitrary invalid
public keys. We start by defining an adapted version of strong partnering [24].
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Definition 7 (Strong partnering). Let Π be an ASICS protocol, and let X =
(M,Q,F ) be an ASICS model. We say that Π has strong partnering in the
ASICSX experiment if no PPT adversary, when attacking Π in the ASICSX

experiment, can establish two sessions s and s′ of protocol Π holding the same
session key without being M -matching, with more than negligible probability in
the security parameter k.

Given an ASICS model X = (M,Q,F ), we denote by cNR-X (“computational
No-Reveals” for session keys, following [24]) the reduced computational ASICSX

experiment which is similar to the ASICSX experiment except that the adversary
(a) is not allowed to issue session-key and test-session queries, (b) must pick a
session that has accepted and satisfies F at the end of its execution, and (c)
output the session key for this session. See Kudla and Paterson [24] for a more
detailed description of reduced games.

Definition 8 (cNR-X security). LetΠ be an ASICS protocol andX = (M,Q,F )
be an ASICS model. Π is said to be cNR-X-secure if, for all PPT adversaries E,
it holds that

1. if two users successfully accept in M -matching sessions, then they both com-
pute the same session key, and

2. E has no more than a negligible advantage in winning the cNR-X experiment;
that is, there exists a negligible function negl in the security parameter k such
that AdvcNR-X

Π,E (k) ≤ negl(k), where AdvcNR-X
Π,E (k) is defined as the probability

that E outputs (s, skey) for a session s that has accepted and satisfies F .

Our first theorem deals with the security of DH-type ASICS protocols, which
are a generalization of DH-type AKE protocols of Cremers and Feltz [16] to in-
clude certificates and to explicitly identify session strings. This class of protocols
includes the most prominent modern two-message AKE protocols.

Definition 9 (DH-type ASICS protocol). A DH-type ASICS protocol is an
ASICS protocol of the following form, specified by functions fI , fR, FI , FR, H:

– Domain parameters (G, g, q), where G = 〈g〉 is a group of prime order q
generated by g.

– KeyGen(): Choose a ∈R [0, q − 1]. Set A← ga. Return secret key sk = a and
public key pk = A.

– VP(x, P̂ ) = 1 for all x and all P̂ (i.e., the CAs do not perform any checks).
– The specification of how users respond to create and send queries as well as

how the session key is computed, namely as the hash H of some string which
we call the session string, is given in Figure 1.

Theorem 1. Let X = (M,Q,F ) be an ASICS model with QN ⊆ Q ⊆ QN ∪QS .
Let Y = (M,Q′, F ′) be the ASICS model where Q′ = Q ∪ {pkregister} and F ′

is defined as follows. A session s is said to satisfy F ′ if it satisfies F and no
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Initiator I Responder R
sacert = C, spcert = C′ s′acert = C′, s′pcert = C

sk = a, C.pk = ga, C′.pk = B sk = b, C′.pk = gb, C.pk = A

x← fI(srand, a, C,C′)

X ← gx
X

−−−−−−−−→ y ← fR(s′rand, b, C
′, C)

Y

←−−−−−−−− Y ← gy

ss← FI (x, a, Y, C,C′) ss′ ← FR (y, b,X,C′, C)
if ss = ⊥ then if ss′ = ⊥ then
sstatus ← rejected s′status ← rejected

else else
skey ← H(ss) s′key ← H(ss′)
sstatus ← accepted s′status ← accepted

Fig. 1. Messages for generic DH-type ASICS protocol

pkregister(spcert.pk, spcert.id) query has been issued. Let Π be a DH-type ASICS
protocol. Suppose that

– Π has strong partnering in the ASICSY experiment,
– cNR-X security of the related protocol π (defined in the same way as Π

except that the session key generated in π is the session string of Π (i.e.,
sπkey = ssΠ)) is probabilistic polynomial-time reducible to the hardness of the
computational problem of some relation φ,

– the session string decisional problem in the ASICSY experiment for Π is
polynomial-time reducible to the decisional problem of φ, and

– there is a polynomial-time algorithm that decides whether an arbitrary bit-
string is an element of G,

then the security of Π in ASICS model Y is probabilistic polynomial-time re-
ducible to the hardness of the gap problem of φ, if H is modelled as a random
oracle.

In the cNR-X experiment of Theorem 1 the queries session-key and pkregister
are not allowed, whereas in ASICSY both queries are allowed. Theorem 1 states
that for any DH-type protocol Π , under certain conditions, it holds that security
of the related protocol π in a reduced model (in which public keys can only be
honestly registered) implies security of Π in the stronger non-reduced model
that additionally captures adversarial registration of valid public keys.

The following theorem, which is applicable to a wider range of protocols than
Theorem 1 (e.g., to three-message protocols such as UM [30] or HMQV-C [23]),
allows us to achieve security against adversaries that can obtain certificates from
the CA for invalid public keys by transforming the protocol to include a group
membership test on the peer’s public key. In contrast to Theorem 1, no additional
requirement is imposed on the freshness condition of model Y .

Theorem 2. Let X = (M,Q,F ) be an ASICS model with QN ⊆ Q ⊆ QN ∪
QS ∪ (QR \ {npkregister}).
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Let Π be an ASICS protocol where the domain parameters (G, g, q), the key
generation algorithm KeyGen and the verification procedure VP are as in Defini-
tion 9.

Let f(Π) denote the ASICS protocol derived from Π by adding the following
protocol step for each role of the protocol. Upon creation with (or, via send, receipt
of) the certificate C ′ to be used for the peer of session s, the user running session
s checks whether the public key C′.pk belongs to the group G before continuing
the execution of the protocol. In case the check fails, the protocol execution is
aborted and sstatus is set to rejected.

Suppose that protocol Π is secure in ASICS model X and that there is a
polynomial-time algorithm that decides whether an arbitrary bitstring is an el-
ement of G. Then the transformed protocol f(Π) is secure in ASICS model
Y = (M,Q ∪ {npkregister}, F ).

Combining both theorems, we obtain the following result.

Corollary 1. Let Π be a DH-type ASICS protocol. Let X = (M,Q,F ) and
Y = (M,Q′, F ′) be defined as in Theorem 1, and let the conditions of Theorem 1
hold with respect to protocol Π. Let f(Π) denote the protocol derived from Π as
specified in Theorem 2. Then the transformed protocol f(Π) is secure in ASICS
model Z = (M,Q′′, F ′), where Q′′ = Q′ ∪ {npkregister}, if H is modelled as a
random oracle.

Applying Corollary 1 to a concrete DH-type ASICS protocol that satisfies all the
preconditions, we obtain a protocol that is secure in an ASICS model in which
(a) sessions (including the test session) may use a certificate for the peer that
resulted from an npkregister query, and (b) the certificate of the test session’s
peer was not the result of a pkregister query. The reader is referred to the full
version of this paper [9] for detailed proofs of the above statements.

4 Applications

To illustrate the power of our generic approach, we examine in this section how
to apply our technique to Ustaoglu’s CMQV protocol [35]. CMQV is a modern
DH-type protocol that is comparable in efficiency to HMQV, but enjoys a simpler
security proof in the eCK model.

Our results allow us to analyse CMQV in a model that does not include
session-key, pkregister, and npkregister queries, which simplifies the overall proof.
We verify that CMQV meets the preconditions of Corollary 1, and conclude
that a variant of CMQV with group membership test on the peer’s public key
is ASICS-secure in an eCK-like model. Similarly, our generic approach can be
applied to other DH-type candidates such as NAXOS [25] and UP [36].

CMQV [35] was originally proven secure in the eCK model, where there is
only one public key per identifier. In the ASICS setting, there is no such unique
mapping between user identifiers and public keys. Hence, to be able to prove
CMQV secure in the ASICS model, we need to include the public keys of the
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users in the session string to ensure that they have the same view of these keys
when deriving the session key.

CMQV as a DH-type ASICS protocol. Two-pass CMQV can be stated as a DH-
type ASICS protocol, by instantiating Definition 9 with the following functions.
Let H1 : {0, 1}k × Z∗q → Z∗q , H2 : {0, 1}∗ → Zq, and H : {0, 1}∗ → {0, 1}k be
hash functions. We define fI , fR, FI , FR as:

fI(r, a, C, C′) = H1(r, a)

FI(x, a, Y, C,C′) =

{
⊥ , if Y �∈ G \ {1}
((Y Be)x+da ‖ gx ‖ Y ‖ C.id ‖ A ‖ C′.id ‖ B) , if Y ∈ G \ {1}

fR(r, b, C′, C) = H1(r, b)

FR(y, b,X,C′, C) =

{
⊥ , if X �∈ G \ {1}
((XAd)y+eb ‖ X ‖ gy ‖ C.id ‖ A ‖ C′.id ‖ B) , if X ∈ G \ {1},

where d = H2(X ‖ C.id ‖ C′.id), e = H2(Y ‖ C.id ‖ C′.id), A = C.pk, B = C′.pk;
‖ denotes tagged concatenation to avoid ambiguity with variable-length strings.

We now show, using Corollary 1, that the resulting DH-type CMQV protocol
is a secure ASICS protocol in an ASICS model with leakage queries correspond-
ing to the eCK model.

ASICS model for eCK-like leakage. Define the ASICS model eCK = (M2, Q, F )
for eCK-like leakage [25] as follows. Let Q = QN ∪ QS . Let F be the condition
that a session s satisfies F if, for all sessions s′ such that s′ M2-matches s, none
of the following conditions hold:

– a session-key(s) query has been issued;
– if s′ exists:

• a session-key(s′) query has been issued;
• both corrupt(sacert.pk) and randomness(s) queries have been issued;
• both corrupt(s′acert.pk) and randomness(s′) queries have been issued;

– if s′ does not exist:

• both corrupt(sacert.pk) and randomness(s) queries have been issued;
• a corrupt(spcert.pk) query has been issued.

Theorem 3. Let f(CMQV) be the DH-type ASICS protocol derived from the
CMQV protocol defined above, as specified in Theorem 2. If H1,H2 and H are
modelled as random oracles, G is a group where the gap Diffie–Hellman assump-
tion holds and membership in G is decidable in polynomial time, then f(CMQV)
is secure in ASICS model Z = (M2,QN ∪QS∪QR, F

′), where a session s is said
to satisfy F ′ if it satisfies the freshness condition F from the eCK model and no
pkregister(spcert.pk, spcert.id) query has been issued.

Proof (Sketch). We can readily show that CMQV satisfies the preconditions of
Corollary 1 under the above formulation of the eCK model as an ASICS model:

1. Strong partnering. It is straightforward to see that CMQV has strong part-
nering in the ASICSeCK′ game (where eCK′ is derived from eCK as described
in Theorem 1): since the session key in CMQV is computed via a random

www.it-ebooks.info

http://www.it-ebooks.info/


396 C. Boyd et al.

oracle, the probability that two sessions derive the same session key without
using the same session string input to the random oracle is negligible.

2. cNR-eCK-security of the session string variant of CMQV. This can be shown
by an adaptation of Ustaoglu’s original proof of CMQV. In large part, the
main proof can be followed. However, a few simplifications can be made
because the simulation need not answer session-key queries (so preventing
key replication attacks and simulating sessions where the public key is a
challenge value are easier).

3. Hardness of the session string decision problem. It can be easily seen that this
is polynomial-time reducible to the decisional problem for Diffie–Hellman
triples (U, V,W ) by noting that the first component of the CMQV session
string σ is equal to g(y+eb)(x+da) = gxygadygbexgabde; the DDH values (U, V )
can be injected into either (X,Y ), (A, Y ), (B,X), or (A,B), with W inserted
into the corresponding part of σ, yielding a polynomial-time reduction.

Detailed proofs of each of the above claims can be found in the full version [9].

5 Lessons Learned and Recommendations

As we started our systematic investigation we assumed that certification au-
thorities would need to perform some minimal checks on public keys to obtain
secure KE protocols. Perhaps surprisingly, nearly all of the effort can be shifted
to the protocols; and modern protocols often perform sufficient checks. In par-
ticular, our results provide formal foundations for some of the protocol-specific
observations of Menezes and Ustaoglu [29]: checking that short- and long-term
public keys are in the key space (i.e., in group G for DH-type protocols) is not
superfluous.

Based on these observations, and given M public keys, N users may need to
perform on the order ofM×N such checks in total, even when caching the results.
Reasoning purely about the overall amount of computation time used, one could
consider moving the burden to the CAs. If the CAs only create certificates after
a successful check, the CAs would only perform on the order ofM checks in total.
Depending on the deployment scenario, this might be a preferable alternative.

Similarly, CAs do not necessarily need to check uniqueness of public keys. As
long as the key derivation involves the identifiers in an appropriate way, UKS
attacks such as the one on KEA can be prevented. Even if public keys are
associated with multiple identifiers, secrecy of the corresponding private key is
sufficient to enable ASICS security for the honest user.

In general, our results further justify using as much information as possible in
the key derivation function (KDF). This helps with establishing formal security
proofs and it is also a prudent engineering principle. In particular, we recommend
that in settings where users may have multiple long-term public keys, the input
to the KDF should not only include the identifiers and the message transcript,
but also the specific public keys used in the session.
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We hope our work can serve as a foundation for the development of a range of
protocols specifically designed to incorporate certification systems, offering dif-
ferent tradeoffs between efficiency and trust assumptions of the involved parties.
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Abstract. Recommender systems can help users to find interesting con-
tent, often based on similarity with other users. However, studies have
shown that in some cases familiarity gives comparable results to similar-
ity. Using familiarity has the added bonus of increasing privacy between
users and utilizing a smaller dataset. In this paper, we propose an efficient
privacy-enhanced recommender system that is based on familiarity. It is
built on top of any given social network (without changing its behaviour)
that already has information about the social relations between users.
Using secure multi-party computation techniques and somewhat homo-
morphic encryption the privacy of the users can be ensured, assuming
honest-but-curious participants. Two different solutions are given, one
where all users are online, and another where most users are offline. Ini-
tial results on a prototype and a dataset of 50 familiar users and 1000
items show a recommendation time of four minutes for the solution with
online users and of five minutes for the solution with offline users.

1 Introduction

Recommender systems can help users to find interesting content, for example a
movie to watch, or books to buy. These recommender systems often rely on a
large database of information from a lot of different users. With such a database
the systems then recommend content based on similarity (agreement in rat-
ing behaviour) between users. However, studies [11,12,17,25] have shown that
for taste related domains, such as movies and books, familiarity (social close-
ness between users) gives comparable accuracy to using similarity. Familiarity
captures how well users know each other (and thus their preferences). Using fa-
miliarity instead of similarity removes the information need from unknown users,
thus increasing privacy between users. Since no information from unknown users
is needed, a recommender system based on familiarity also works on a smaller
dataset, leading to a higher efficiency. In this paper we focus on the generation of
recommendations using only familiarity. We leave as future work, a recommender
system that combines both similarity and familiarity.

As a pre-requisite for a familiarity-based recommender system, a familiarity
network needs to be known to the recommendation provider. Since this familiar-
ity information is already present in online social networks, we can leverage these
networks to provide recommendations. Our aim is to build a recommendation
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system on top of existing social networks (utilizing the familiarity relationship
that is present), while preventing the social network from learning the users’
taste preferences (not giving the social network any information that it does not
have already).

While the general tastes (and possibly some specific tastes) of friends are
known, the exact details of a friend’s complete taste are usually not known.
Revealing a specific taste to friends can be embarrassing [21] as it does not
conform to the group norm, or to the societal norm as a whole. For example,
if all friends of a person dislike ‘The Hunger Games’, but that person loves the
book, if the friends find out this could be embarrassing. As such, the privacy
of the user with regards to their taste needs to be protected from both friends
(specific taste) and the online social network (general and specific taste).

To ensure the privacy of the users, we make use of secure multi-party compu-
tation and a somewhat homomorphic encryption scheme. The motivation for a
somewhat homomorphic encryption scheme (we use [4]) is: 1) it allows us to do
a (bounded) number of additions and at least one multiplication on encrypted
data, and 2) the message space is pre-determined by public parameters and is
the same across keypairs. The latter property allows for blinding values under
one key and unblinding under another.

In constructing our solution, next to privacy, we focus on the efficiency of
the solution. Our contribution is the following: First, we look at the privacy
that the weighted average recommendation formula can give to the user and
friends. We observe that weighted average based on user supplied weights does
not provide enough privacy. Based on this, we propose an adjusted formula
that offers more privacy. Second, utilizing this adjusted formula, we construct a
protocol that computes the recommendation for a user, when all his friends are
online. However, users are not guaranteed to be online in a social network. Third,
as users can be offline, we also construct a protocol where the users friends are
offline, and the user works together with the social network server to compute
the recommendations. Not having to wait for all friends to have been online to do
their part in the protocol increases the efficiency of the solution. Both protocols
are secure, assuming honest-but-curious participants.

In this paper, we will use books as our running example for recommendations.
The paper is structured as follows: Section 2 details the state of the art and
related work. Section 3 gives the problem specification and details the adjusted
recommendation formula. Section 4 outlines the cryptographic primitives that
are used. Section 5 details the solution with online friends and the solution with
offline friends. Section 6 analyzes the solutions, both in terms of privacy and
efficiency. And Section 7 gives concluding remarks with regard to the solutions.

2 Related Work

In this section, we show related work in privacy protecting recommender systems
that protect privacy through the use of cryptography and multi-party compu-
tation. In 2002, Canny [5] proposed using additive homomorphic encryption
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to privately compute intermediate values of the collaborative filtering process.
These intermediate values are made public and used in singular value decom-
position and factor analysis, which leads to recommendations. However, the
presented approach suffers from a heavy computational and communication over-
head. Moreover, due to the nature of the used recommender system (singular
value decomposition), users cannot input their familiarity information.

Hoens et al. [14] designed a privacy preserving recommender system for social
networks that computes the weighted average rating for items. It gathers input
from friends and friends of friends and onwards by first defining a group of users
involved in the computation. Then a threshold homomorphic cryptosystem is
set up. This cryptosystem, together with multi-party computation, is used to
compute the weighted average. The weights are defined by the user for his friends,
and by the friends for the friends of friends, and so on. Privacy is achieved
through both cryptographic protocols as well as anonymity through multiple
participants. The downsides of this solution are the requirement that users are
online, the setup of a big group in advance, and the heavy computational load
in the order of hours. Hoens et al. [15] designed a private recommender system
for doctors, where patient ratings are aggregated. In this scenario, there is not
a predefined group of patients and no weights are given to individual ratings or
patients. Hoens et al. offer two solutions, one based on anonymized ratings, and
one based on cryptography and multi-party computation. Again, the timing of
the solution based on cryptography is in the order of hours.

Basu et al. [2] proposed a privacy preserving version of the slope one pre-
dictor, using a threshold additive homomorphic cryptosystem. In their scenario,
different parties hold different parts of the data. In a social network setting, this
means that each friend holds his own data. The parties pre-compute the devia-
tion and cardinality matrices under encryption and make the cardinality matrix
public. Then the prediction for a single item can be computed under encryption
and all parties collaborate to decrypt the result. Their timing information, in the
order of seconds, is based on a prediction for a single user and single book. This
is after pre-computation in the order of hours. There is no support for offline
users, nor for familiarity due to the way predictions are computed.

Erkin et al. [9] proposed a collaborative filtering algorithm based on addi-
tive homomorphic cryptosystems. This algorithm requires a second semi-trusted
server to allow for users to be offline. However, in practical scenarios such a
server is usually not available. The protocol of Erkin et al. does not give weights
to the ratings. Runtime is in the order of minutes for a dataset of 1000 items
and several thousand (variable) users.

Jeckmans et al. [16] proposed to use collaborative servers as a way to allow for
offline users. A user can choose a trusted server, that will preserve the privacy
on his behalf. The trusted server knows the user’s ratings and thus the user has
no privacy from this server. This trusted server can then collaborate with an-
other server to increase the accuracy of the recommendations, without losing the
privacy of its users. However, this is not a desirable solution for every scenario.
In such a distributed setting, it becomes difficult for users to give weights to
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friends, when friends are on different servers. The runtime of the protocol is in
the order of minutes, and does not involve any user interaction, including the
user for which the prediction is made.

3 The Problem Specification

We consider the following problem scenario: With an online social network as
a basis, how can users use/share the taste information from/with their friends,
without leading to undesired disclosure of specific tastes. The following subsec-
tions go into more detail about the entities and their relationship, the suggested
method of using the taste information, and what undesired disclosure is.

3.1 Architecture

The system consists of three entities:

– the user, for whom a prediction has to be generated,
– the online social network, also denoted as the server, acting as a gateway to

access the user’s friends and assisting in the prediction computation, and
– the friends of the user, giving their opinions as input for the book predictions.

Because of the nature of online social networks, not all friends will be online
when the request for book scores is made. Because the user is unlikely to want
to wait until all friends have come online, the online social network acts as an
intermediate for the user’s friends (while not learning information about the
friends’ preferences). As such, we distinguish two scenarios; book recommenda-
tion when the user’s friends are all online, and book recommendation when the
user’s friends are all offline. It is also possible that some friends of the user are
online, while some are offline. For simplicity we take this third scenario to be
equal to book recommendation when the user’s friends are all offline.

3.2 Recommendation Formula

Before predictions can be made, the familiarity between users has to be captured.
Towards this end, the user can score his friends on their familiarity (social close-
ness) and the expected overlap in reading habits. Scoring a friend essentially
gives that friend a weight that determines how heavy his opinion counts towards
a specific book recommendation. Based on the friends’ ratings for books and the
weight for each friend, the recommender system predicts a score for each book.
This helps the user to select the next book to read.

A book prediction is denoted by pu,b, for user u, 1 ≤ u ≤ U , of book b, 1 ≤
b ≤ B, where U is the total number of users and B is the total number of books.
The recommendation formula is as follows:

pu,b =

∑Fu

f=1 qf,b · rf,b · wu,f∑Fu

f=1 qf,b · wu,f

, (1)
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where Fu is the number of friends of a user u, qf,b is 1 if friend f rated book b
and 0 otherwise, rf,b the rating of friend f for book b, and wu,f the weight given
by the user u to friend f . The indication, qf,b, if a book b has been rated a friend
f is either 0 or 1, qf,b ∈ {0, 1}. The range of the prediction, pu,b, is equal to the
range of the ratings given to a book, rf,b. For example, this range can be between
0 and 5 for a 0 to 5 star rating system. The weight given to a friend, wu,f , can be
in the range between 0 and 1 excluding 0, as 0 would indicate no friendship. This
formula has been used in previous research in similarity-based [13], familiarity-
based [11] and trust-based recommendation systems [26].

However, when looking at the inherent privacy this formula can give us, we
notice two things:

1. Due to the fact that the user u learns the predictions pu,b and determines the
weights wu,f , with two prediction requests the user can learn which books
are rated by one friend, i.e. learn qf,b. This is accomplished by changing the
weight wu,f for that specific friend. For example, suppose that the user has
three friends who have rated two books. The first friend rated the first book
with a 5, the second friend rated both books with a 4, and the third friend
rated the second book with a 3. When the user request a prediction with all
weights set to 1, he will receive a prediction of 4.5 for the first book and 3.5
for the second book. Next, the user requests a prediction with the weights
of the first and second friend set to 1, and the weight of the third friend
set to 0.5. He will receive a prediction of 4.5 for the first book and 3.67 for
the second book, thus he learns that the third friend rated the second book.
Given enough runs, the user can learn qf,b for all his friends.

2. Because the user knows pu,b, wu,f , and qf,b, the only unknown values are that
of rf,b. Given enough runs, the user can also compute rf,b and completely
breach the privacy of his friends.

Consequently, when using this formula, we cannot achieve privacy at all. Intu-
itively, the user has too much control, and the friends have no input beyond their
fixed ratings. This asymmetry in the formula leads to an asymmetrical relation-
ship between the user and his friends. As stated by Carley and Krackhardt [6],
friendship is not necessarily symmetric, but tends in the direction of symmetry.
In general, long strong friendships are symmetric, and newly forged friendships
are not symmetric. As such, we aim to bring symmetry to the recommendation
formula and balance out the power in the relationship between the user and his
friends.

Since the weight from the user to his friends is asymmetrical, we propose to
make the weight, and thus the formula, symmetrical. This is accomplished by
taking the average of the weight from the user to his friend and the weight from
the friend to the user. This results in the following formula:

pu,b =

∑Fu

f=1 qf,b · rf,b · (
wu,f+wf,u

2 )∑Fu

f=1 qf,b · (
wu,f+wf,u

2 )
, (2)

where wf,u is the weight given by friend f to user u, with range between 0 and
1 excluding 0. Note that this also requires a bi-directional relationship between
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the friends. When looking back to the two points made before in light of this
adjusted formula, we can say:

1. Since the user can still change the weights that are given to his friends wu,f ,

the user can influence the averaged weight,
wu,f+wf,u

2 . Based on the changed
weights and change in predictions, the user can still determine qf,b as before.

2. When the user knows pu,b, wu,f , and qf,b, the values for rf,b and wf,u remain
unknown. The fact that both the upper and lower part of the prediction
formula remain unknown greatly increases the difficulty of breaching privacy.

To prevent the user from learning qf,b, the user’s influence on the weight can be
removed. However, then this recommender system would lose the user’s control
and reduce the value of the predictions. Instead, we refer to profile aggregation
methods [24], methods that add random ratings [8,20], or methods that add
randomness to the output [22]. These solutions can be applied independent of
our solution and will not be addressed in this paper.

Note that the impact on accuracy of this adjusted formula has not been deter-
mined. As this paper focusses on privacy and efficiency, and a suitable dataset
to test accuracy could not be found, we leave this as future work.

3.3 Security Model

Both the user and his friends are considered to be honest-but-curious; they will
follow the protocol but try to learn the taste of their friends. More specifically,
the user u will try to learn rf,b and wf,u, while the friends of u will try to learn
wu,f .

We also assume that the social network server is honest-but-curious; the server
will follow the protocol, while trying to learn the tastes of users. The server will
try to learn qf,b, rf,b, wu,f , wf,u, and pu,b. We assume that the users do not
collude with the server, as they do not want to impact the privacy of their
friends too much.

4 Cryptographic Primitives

To build our solutions, we make use of the cryptographic primitives described in
this section. The primitives of additive secret sharing and proxy re-encryption
are only used in the solution with offline friends.

4.1 Somewhat Homomorphic Encryption

To protect information during the protocol, we use the somewhat homomorphic
encryption scheme of Brakerski and Vaikuntanathan [4]. Specifically, we use
that this somewhat homomorphic encryption scheme allows both addition and
multiplication of the encrypted messages (though a limited, but configurable
amount), and the fact that the message space is the same across multiple key
pairs (given the same public parameters).
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In the setup phase of the encryption system, the public parameters are cho-
sen. Among others, these are: the message space (which equals Zt for some
prime number t), the encrypted messages (which are represented in the ring
Rq = Zq[x]/〈f(x)〉 of polynomials over Zq for some prime number q, where the
polynomial f(x) is cyclotomic and of degree n), and the degree D of allowed
homomorphism (which indicates the amount of multiplications that can occur
under encryption). The choice of the ring Rq in relation to the prime t and degree
of homomorphism D defines the security of the encryption system.

Each party can, based on these public parameters, create a key pair consisting
of the secret key SK and the public key PK. The secret key is randomly chosen
and the public key is based on the secret key and some randomness. The public
key of user u is denoted by PKu. Given an encryption of m under the public key
PKu, denoted by [m]u, the following homomorphic properties hold (until the
error overflows, typically when the degree D has been reached): [m1]u + m2 =
[m1 +m2]u, [m1]u +[m2]u = [m1 +m2]u, [m1]u ·m2 = [m1 ·m2]u, [m1]u · [m2]u =
[m1 ·m2]u.

This scheme is semantically secure under the polynomial learning with errors
assumption. For more details, we refer to the work of Brakerski and Vaikun-
tanathan [4].

4.2 Encrypted Division

Because the homomorphic encryption system can only encrypt integers, and thus
only operate on integers, division of encrypted values is not straightforward. For
example [5]/[2] �= [2.5] as [2.5] cannot be represented as such. Given that the
message space Zt is known and the range of the predictions pu,b is also known
and significantly smaller, a lookup table can be constructed (and precomputed)
to quickly translate the integers after division into the actual fractions they
represent. The lookup table looks like this: given two integers x and y, with
gcd(x, y) = 1 and x/y as a possible result for pu,b, the index is x · y−1 mod t
and the resulting value x/y. For integers x′ and y′ with gcd(x′, y′) �= 1, the
division result is the same as for x = x′/ gcd(x′, y′) and y = y′/ gcd(x′, y′). We
denote the set of possible integers for x, X , the set of possible integers for y,
Y , and the range of possible predictions pu,b, P . The lookup table then has size
|{x/y | gcd(x, y) = 1, x/y ∈ P, x ∈ X, y ∈ Y }|. The size of the lookup table is
upper bounded by the size of the message space Zt. As such, division can happen
under encryption and after decryption a table lookup retrieves the actual result.

4.3 Additive Secret Sharing

An alternate method to protect information from multiple parties, while still
providing operations on that information, is additive secret sharing [10]. Unlike
encryption, where only the party with the key can decrypt it, anybody with
enough shares can extract the information. Distribution of the shares prevents
extraction of the information, but still allows us to run a protocol to use the
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information. When a party has a value x that it wants to protect, it creates a
random value r ∈R Zk, where k is a security parameter. The party then creates
s = x− r. It can give r to a second party, and s to a third. Together the second
and third party can reconstruct x by x = r + s.

It is also possible to secret share a vector of values, X , of length n. The secret
sharing algorithm is then applied to each element of X individually, resulting in
the two vectors R and S, both of length n. When combined the vectors R and
S sum up to the vector X , xi = ri + si, where 1 ≤ i ≤ n.

4.4 Proxy Re-encryption

To share information between two users of the social network without a direct
connection, we use proxy re-encryption [3]. Proxy re-encryption allows us to send
a (secret) message from one user to his friends through the social network. In
proxy re-encryption, based on the keys of two users a re-encryption key can be
derived. This re-encryption key is then given to the proxy (the social network
server). When given a message encrypted under the key of one user, using the
re-encryption key the proxy can translate the message, to a message encrypted
under the key of the second user. This way an offline user can store his in-
formation on the social network encrypted under his own key. When a friend
requires access to that information, the server can translate the information to
be encrypted under the key of the friend (provided a re-encryption key has been
setup). The friend can then decrypt and use the information left by the offline
user.

We require that the re-encryption scheme is unidirectional.In a unidirectional
scheme the users do not have to share their private keys to create a re-encryption
key. To create a re-encryption key from the user to a friend, only the user’s
private key and the friend’s public key are needed. We further require that the
re-encryption scheme is one-hop only, so that only friends of the user can read
his information. Some examples of schemes that satisfy these requirements are:
Ateniese et al. [1], Libert and Vergnaud [18], and Chow et al. [7]. The proxy re-
encryption scheme can be chosen independent of our protocol and is only used
to give the friends’ information to the user beforehand.

5 Proposed Solutions

In this section we provide the details of the protocols to compute the book rec-
ommendations. A protocol is given when all friends are online, and a protocol
is given when all friends are offline. For convenience, we make some small cos-
metic alterations to the prediction formula 2. We set the value of rf,b to 0 when
qf,b = 0, thus rf,b becomes equal to qf,b · rf,b. We also divide wu,f and wf,u by 2
before running the protocols (without renaming), remove the need to divide by 2
during the protocol.
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User u Server Friends Fu

(PKu, SKu) (PKu) (PKu)
(wu,f , 1 ≤ f ≤ Fu) (Rf , Qf , wf,u)

∀f : 1 ≤ f ≤ Fu

1. [wu,f ]u
[wu,f ]u−−−−−→

[wu,f +wf,u]u = [wu,f ]u + wf,u

∀b : 1 ≤ b ≤ B
2. [nf,b]u = [wu,f + wf,u]u · rf,b

[nf,b]u←−−−−
[nb]u =

∑Fu
f=1[nf,b]u

3. [df,b]u = [wu,f + wf,u]u · qf,b
[df,b]u←−−−−

[db]u =
∑Fu

f=1[df,b]u
4. ξb ∈r Z∗

t

[db · ξb]u = [db]u · ξb
[db·ξb]u←−−−−−

db · ξb
d−1
b · ξ−1

b

[d−1
b · ξ−1

b ]u
[d−1

b
·ξ−1

b
]u−−−−−−−→

[d−1
b ]u = [d−1

b · ξ−1
b ]u · ξb

[pu,b]u = [nb]u · [d−1
b ]u

[pu,b]u←−−−−
5. pu,b

Fig. 1. Book Recommendation Protocol with Online Friends

5.1 Solution with Online Friends

Fig. 1 shows the recommendation protocol for user u with online friends. We
assume that, before the protocol is run, the user u has set up his keys for the
somewhat homomorphic encryption scheme, {PKu, SKu}, and distributed the
public key. The protocol works as follows:

1. Each friend f of the user u computes their weight wu,f +wf,u. To do this, the
user u encrypts wu,f for each friend under his own key, and sends [wu,f ]u to
the corresponding friend f . The friends compute [wu,f +wf,u]u = [wu,f ]u +
wf,u.

2. Given the encrypted weight, each friend computes the impact of his rat-
ings, (wu,f + wf,u) · rf,b, for each book. Recall that rf,b = 0, when the
book is unrated. The friends compute [nf,b]u = [wu,f +wf,u]u ·rf,b, and send
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[nf,b]u to the server. The server sums the values received by the friends into

[nb]u =
∑Fu

f=1[nf,b]u for each book.
3. In similar fashion, the normalization factor db is computed. The friends com-

pute [df,b]u = [wu,f +wf,u]u · qf,b, and send [df,b]u to the server. The server

sums the values received by the friends into [db]u =
∑Fu

f=1[df,b]u for each
book.

4. To compute the predictions pu,b, a division has to be performed. Towards this
end, the server selects random values ξb from the multiplicative domain of
the message space Z∗t and blinds db multiplicatively for each book, [db ·ξb]u =
[db]u · ξb. The resulting values [db · ξb]u are sent to the user u. The user u
decrypts to db · ξb and computes the inverse, d−1

b · ξ−1
b , for each book. These

inverses are encrypted again under the users key, [d−1
b · ξ−1

b ]u, and sent to
the server. The server removes the blinding by multiplying with the random
values ξb again, [d−1

b ]u = [d−1
b · ξ−1

b ]u · ξb. The server then divides nb by
db for each book to determine the predictions, [pu,b]u = [nb]u · [d−1

b ]u. The
encrypted predictions are then sent to the user u.

5. The user u decrypts the received predictions and uses the precomputed di-
vision lookup table to determine the actual predictions.

5.2 Solution with Offline Friends

Usage of Secret Sharing and Proxy Re-encryption. Each friend f of the
user secret shares the rating vector Rf and weight wf,u. The rating vector Rf is
split into the vectors Sf and Tf following the secret sharing method. Similarly,
the weight wf,u is split into xf,u and yf,u. As the secrets will be reconstructed
under encryption, we set the security parameter k of the secret sharing scheme
equal to the message space t of the homomorphic encryption system. The friend
stores Sf and xf,u on the server. The vectors Tf and Qf as well as the value
yf,u will be distributed to the user u using proxy re-encryption. Therefore, these
values are stored under encryption at the server and the re-encryption key to
the user u is computed and also stored on the server.

Protocol. Fig. 2 shows the recommendation protocol for user u with offline
friends. We assume that, before the protocol is run, the required secrets Tf , Qf ,
yf,u, 1 ≤ f ≤ Fu have been distributed and that both the user u and the
server have set up their keys for the somewhat homomorphic encryption scheme,
{PKu, SKu} and {PKs, SKs} respectively, and exchanged public keys. The pro-
tocol works as follows:

1. Both user u and the server compute the weight, wu,f +wf,u, for each friend
under one another’s public key. The weight is computed by wu,f + wf,u =
wu,f +yf,u+xf,u, where u holds wu,f and yf,u, and the server holds xf,u. The
user u computes [wu,f + yf,u]u and sends this to the server, while the server
computes and sends [xf,u]s. This allows the user to compute [wu,f + wf,u]s
and the server to compute [wu,f + wf,u]u.
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User u Server
(PKu, SKu, PKs) (PKu, PKs, SKs)
(Tf , Qf , wu,f , yf,u, 1 ≤ f ≤ Fu) (Sf , xf,u, 1 ≤ f ≤ Fu)

∀f : 1 ≤ f ≤ Fu

1. [wu,f + yf,u]u [xf,u]s
[wu,f+yf,u]u−−−−−−−−−→

[xf,u]s←−−−−
[wu,f + wf,u]s = [xf,u]s + (wu,f + yf,u) [wu,f + wf,u]u = [wu,f + yf,u]u + xf,u

∀b : 1 ≤ b ≤ B
2. [zb]s =

∑Fu
f=1[wu,f + wf,u]s · tf,b [ab]u =

∑Fu
f=1[wu,f + wf,u]u · sf,b

ξ1,b ∈r Zt

[zb + ξ1,b]s = [zb]s + ξ1,b
[−ξ1,b]u

[zb+ξ1,b]s,[−ξ1,b]u−−−−−−−−−−−−→
3. [db]s =

∑Fu
f=1[wu,f + wf,u]s · qf,b zb + ξ1,b

ξ2,b ∈r Z∗
t [zb]u = [−ξ1,b]u + (zb + ξ1,b)

[db · ξ2,b]s = [db]s · ξ2,b [nb]u = [zb]u + [ab]u
[ξ2,b]u

[db·ξ2,b]s,[ξ2,b]u−−−−−−−−−−−→
4. db · ξ2,b

d−1
b · ξ−1

2,b

[d−1
b ]u = [ξ2,b]u · (d−1

b · ξ−1
2,b )

[pu,b]u = [nb]u · [d−1
b ]u

[pu,b]u←−−−−
5. pu,b

Fig. 2. Book Recommendation Protocol with Offline Friends

2. Given the encrypted weights, both the user u and the server can compute the
impact of the secret shared ratings rf,b = tf,b + sf,b for each book. The user

u computes [zb]s =
∑Fu

f=1[wu,f +wf,u]s · tf,b and the server computes [ab]u =∑Fu

f=1[wu,f +wf,u]u · sf,b. Together, this sums up (ignoring encryption for a

moment) to zb +ab =
∑Fu

f=1(wu,f +wf,u) · (tf,b +sf,b) =
∑Fu

f=1(wu,f +wf,u) ·
rf,b = nb. The user u selects random values ξ1,b from the domain of message
space Zt and uses them to blind [zb]s. The resulting encryptions, [zb + ξ1,b]s,
and the encryptions to remove the blinding, [−ξ1,b]u, are sent to the server.
Note that the server can only remove the blinding using encryptions under
the user’s public key.

3. The user u computes the combined weight to normalize the prediction using
[db]s =

∑Fu

f=1[wu,f + wf,u]s · qf,b for each book. These are blinded mul-
tiplicatively with random values ξ2,b, taken from the multiplicative domain
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of the message space Z∗t . The resulting encryptions, [db · ξ2,b]s, and en-
cryptions to remove the blinding after inversion, [ξ2,b]u, are sent to the
server. Meanwhile, the server removes the blinding values ξ1,b and recon-
structs [nb]u = [zb]u + [ab]u.

4. The server decrypts the received encryptions, db · ξ2,b, and inverts them,
resulting in d−1

b · ξ−1
2,b . Under the public key of u, the blinding values ξ2,b

are removed, resulting in the encryptions [d−1
b ]u. The server divides nb by

db under the public key of u, [pu,b]u = [nb]u · [d−1
b ]u, for each book. The

resulting encrypted predictions [pu,b]u are sent to the user u.
5. The user u decrypts the received predictions and uses the precomputed di-

vision lookup table to determine the actual predictions.

6 Analysis of the Solutions

In this section, we first look at the privacy that the two protocols offer in relation
to the security model. Then we look at the complexity (computational and com-
municational) of the protocols. Finally, we look at the performance (runtime) of
the protocols with different sized datasets.

6.1 Privacy

Recall from the security model that all parties are honest-but-curious. The user
u will try to learn rf,b and wf,u. Friends will try to learn wu,f . The server will
try to learn qf,b, rf,b, wu,f , wf,u, and pu,b. Given that the parties are honest-
but-curious, each party should not be able to distinguish between a protocol
execution and a simulation of the protocol based only on the party’s input and
output. However, only the user u has an output in the protocol. As such, for the
server and friends, each message they receive should be indistinguishable from
random messages. For the user, messages may depend on the output pu,b.

Online Friends. In this protocol, the user’s friends only see encrypted values,
encrypted under the key of the user u. Given that the homomorphic encryption
scheme is semantically secure [4], the encrypted values are indistinguishable from
encryptions of random messages. As the friends also get no output from the
protocol, the protocol can easily be simulated and the friends learn nothing
from the protocol.

The server also only sees encrypted values. As the homomorphic encryption
scheme is semantically secure, the encrypted values are indistinguishable from
encryptions of random messages. The server receives no output from the pro-
tocol, and the protocol can easily be simulated. Thus the server learns nothing
from running the protocol.

After the user encrypts and sends wu,f , the user only receives db · ξb and
pu,b for all books. As pu,b is the output of the prediction formula 2, the user
should always learn this and does not constitute a breach of privacy. The other
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value, db, is randomized multiplicatively over the full multiplicative domain by
ξb, and is thus indistinguishable from a value chosen at random from the domain.
Because this can also be easily simulated, the privacy of db is preserved. The only
exception to this is when db = 0, in this case db · ξb is also equal to 0. This only
happens when none of the users friends have given a rating for b, i.e. qf,b = 0
for 1 ≤ f ≤ Fu. This situation is deemed acceptable as qf,b is not required to be
private. By setting d−1

b · ξ−1
b to 0, the protocol can continue without the server

learning anything, resulting in the prediction pu,b = 0.

Offline Friends. In the protocol with offline friends, the privacy of the user
towards his friends is not in danger, as they are not involved in the protocol. In
the other direction, each friend shares some information with both the user and
the server. The user receives through the proxy re-encryption Tf , Qf , and yf,u,
and the server receives Sf and xf,u. Except for Qf , all these values are additive
secret shares and hence indistinguishable from random values [10]. This means
that these values can be used as inputs to the protocol. Given that the proxy
re-encryption scheme is secure, and Qf is not required to be private from the
user u, the privacy of each friend is not breached.

During the protocol, next to encrypted values, the user only receives pu,b. As
the homomorphic encryption scheme is semantically secure, the encrypted values
are indistinguishable from encryptions of random messages. These messages can
thus be simulated. Furthermore, the user receives pu,b, as intended, as output
of the prediction function. Thus from the user’s perspective the protocol can be
completely simulated.

Next to encrypted values, which are indistinguishable from encryptions of
random values, the server only receives zb + ξ1,b and db · ξ2,b. The value of zb
is protected by additive blinding, using ξ1,b, and thus indistinguishable from a
random value and possible to simulate. For db, as in the protocol with online
friends, multiplicative blinding, using ξ2,b, is used. Thus db is indistinguishable
from a random value and can be simulated. Only in the case that db = 0, will
the server learn something about qf,b, which is a violation of the privacy of the
user’s friends. This can be avoided by setting [db · ξ2,b]s to [ξ2,b]s and [ξ2,b]u to
[0]u when db = 0. This is only the case when qf,b = 0, for 1 ≤ f ≤ Fu, which the
user knows. The server will receive ξ2,b instead of 0, which is a random value,
and be unable to decrypt [0]u as it is protected by the user’s key. The resulting
prediction pu,b will then still be 0.

6.2 Complexity

Table 1 shows the complexity of the computational (comp) and communicational
(comm) costs of each step in the protocol with online friends. The costs are given
in big-O notation and for each party. The first step shows a complexity related to
the number of friends for the user u, and constant for each friend. The second and
third step, where the friends contribution is calculated, shows a complexity in
the order of number of books for each friend, and in the order of both the number

www.it-ebooks.info

http://www.it-ebooks.info/


Efficient Privacy-Enhanced Familiarity-Based Recommender System 413

of books and friends for the server. These steps have the largest complexity. The
fourth step shows a complexity in the order of number of books for both the user
and the server. The final step shows a complexity on the order of the number
of books for the user. All steps together it seems that the server has the most
work to do.

Table 1. Complexity of the protocol with online friends, Fu is the number of friends
and B the number of books

User u Server Friend
step comp comm comp comm comp comm

1. O(Fu) O(Fu) O(1) O(1)
2. O(BFu) O(BFu) O(B) O(B)
3. O(BFu) O(BFu) O(B) O(B)
4. O(B) O(B) O(B) O(B)
5. O(B)

Table 2 shows the complexity of the protocol with offline friends. The notation
is the same as the previous table. The first step shows a complexity in the order
of number of friends for both the user u and the server. The second step shows a
complexity related to both the number of books and number of friends for both
the user and the server. This step has the greatest complexity in the protocol.
The third step shows a complexity in the order of number of books and number
of friends for the user, and a complexity in the order of number of books for the
server. The fourth step shows a complexity in the order of the number of books.
The final step shows a complexity in the order of number of books for the user.

Table 2. Complexity of the protocol with offline friends, Fu is the number of friends
and B the number of books

User u Server Friend
step comp comm comp comm comp comm

1. O(Fu) O(Fu) O(Fu) O(Fu)
2. O(BFu) O(B) O(BFu) O(B)
3. O(BFu) O(B) O(B) O(B)
4. O(B) O(B) O(B)
5. O(B)

The complexity of the homomorphic operations on the ciphertexts depends
mainly on the degree of the used polynomials n. However, n also has an impact
on the ring Rq and thus on the security of the encryption scheme. As such,
there exist a trade-off between the complexity (and efficiency) of the individual
homomorphic operations and the security offered to the user. In the performance
section, we shall come back to this trade-off.
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6.3 Performance

To analyze the performance of the two protocols, an implementation of the
somewhat homomorphic encryption scheme has been made in C++ based on
the FLINT library. Based on this implementation a prototype program of the
protocols has been constructed. The prototype is single threaded and computes
the different steps for each party sequentially on the same machine. As such,
network latency is not taken into account. All tests are carried out on an Intel
Xeon at 3GHz, with 2GB of RAM. As input data, a synthetic dataset has been
constructed, as there are no publicly available datasets that have explicit fine-
grained familiarity values. Some datasets have friendship links, but only as a
binary value. The synthetic dataset consists of either 50, 100, or 200 friends that
have each rated 25 books. The total number of books is either 500, 1000, or
2000. Note that it is not possible for 50 friends to rate 2000 books, with only 25
ratings per friend (denoted with n/a). This gives us performance information for
different numbers to observe how the solutions scale. A rating is a score between
1 and 100, and the weights between users, after division by 2, is between 1 and
50.

We set the parameters of the somewhat homomorphic encryption scheme to
the following, based on the suggestions of Naehrig et al. [23]. The message space
t is set to 5000011, to allow for protocol runs with a maximum of 500 friends.
For n we take 4096, resulting in a q of 84 bits and a logarithm of the attacker
runtime of 255 for the decoding attack [19]. Successfully running the decoding
attack breaks the security of the encryption scheme, therefore Naehrig et al. [23]
suggest an attacker runtime for the decoding attack of at least 128, giving an
equivalent of 128 bits security, or an attack complexity of 2128. Table 3 shows the
runtime performance of the prototype implementation with these parameters.

Table 3. Runtime of the prototype with attacker runtime logarithm of 255

online books offline books
friends 500 1000 2000 friends 500 1000 2000
50 113s 236s n/a 50 132s 282s n/a
100 149s 309s 706s 100 182s 387s 1021s
200 222s 456s 988s 200 282s 588s 1477s

As can be seen from the table, the prototype for the protocol with online
friends requires just under 2 minutes for the smallest dataset and over 16 minutes
for the largest dataset. As expected, the prototype for the protocol with offline
friends is slower. This prototype takes a little over 2 minutes for the smallest
dataset and over 24 minutes for the largest dataset. This protocol has the benefit
that friends need not be online, but requires more time to protect the information
of those friends. When looking at the running times for the different datasets,
we see a linear trend with respect to the number of books and a sub linear trend
with respect to the number of friends. When looking at the protocol complexity,
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this is to be expected. Most operations have to be done per book and not per
friend, but computing the impact of each friend on each book is linear in both
(and the slowest step in the protocols).

We can lower the security of the somewhat homomorphic encryption scheme
in order to gain a speed increase of the protocols. This lowered security implies
that it is easier, but still very difficult, to break the semantic security of the
encryption scheme and recover encrypted messages. Should encrypted messages
be recovered, privacy is lost. Towards this end, we take for n 2048, resulting in
a q of 83 bits and a logarithm of the attacker runtime of 75. Table 4 shows the
runtime performance with these parameters offering lowered security, but more
speed.

Table 4. Runtime of the prototype with attacker runtime logarithm of 75

online books offline books
friends 500 1000 2000 friends 500 1000 2000
50 50s 102s n/a 50 59s 120s n/a
100 68s 137s 287s 100 85s 170s 442s
200 104s 209s 441s 200 134s 267s 617s

From the table we can see that these parameters result in runtimes that are
more than 2 times faster than the more secure parameters. As expected, the
running time relations between the different datasets remains the same. The
desired level of security has a large impact on the running time of the protocols,
but it does not change the basic properties of the protocols.

7 Conclusion

In this paper, we proposed an efficient privacy-enhanced familiarity-based recom-
mender system. We proposed an adjusted recommendation formula that provides
more privacy than weighted average with user supplied weights. Furthermore,
two different protocols have been given, one where all friends of the user are
online, and another where friends are offline. In both cases, a bi-directional
friendship is assumed. The privacy of these protocols has been analyzed, and
two edge cases have been found and fixed. The protocols achieve privacy in the
honest-but-curious model.

We have implemented the somewhat homomorphic encryption scheme of Brak-
erski and Vaikuntanathan [4]. Based on this implementation, a prototype of the
two protocols has been built and the efficiency of them has been analyzed. The
prototype is limited to a single machine and single thread, and does not show
the impact of latency. The prototype shows a runtime in the order of minutes
with a linear trend with regards to scaling of the input set. This is a significant
improvement over the work of Hoens et al. [14], the previous privacy-enhanced
recommender systems with user supplied weights, which also assumed honest-
but-curious participants and ran in the order of hours. Furthermore, not all users
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need to be online at some or all stages of the protocol, which is required by most
related work. When we compare our work to the work of Erkin et al. [9], which
assumes honest-but-curious participants and allows for offline users, we can see
the difference in slowdown of the protocol when going from online to offline. The
slowdown caused by our protocol is less than 1.5 times, while the slowdown of
Erkin et al. is more than 6 times.

For future work, we would like to see if the efficiency of the protocols can
be improved further. Furthermore, given our implementation, we would like to
see the influence of somewhat homomorphic encryption, as opposed to additive
homomorphic encryption, on similar problems.
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Abstract. In recent years, services that process user-generated data
have become increasingly popular due to the spreading of social tech-
nologies in online applications. The data being processed by these ser-
vices are mostly considered sensitive personal information, which raises
privacy concerns. Hence, privacy related problems have been addressed
by the research community and privacy-preserving solutions based on
cryptography, like [1–5], have been proposed. Unfortunately, the exist-
ing solutions consider static settings, where the computation is executed
only once for a fixed number of users, while in practice applications have
a dynamic environment, where users come and leave between the execu-
tions. In this work we show that user-data oriented services, which are
privacy-preserving in static settings, leak information in dynamic envi-
ronments. We then present building blocks to be used in the design of
privacy-preserving cryptographic protocols for dynamic settings. We also
present realizations of our ideas in two different attacker models, namely
semi-honest and malicious.

Keywords: Privacy, user-data oriented services, secure multi-party
computation, threshold homomorphic encryption.

1 Introduction

In the past decade, online social networks and personalized e-commerce applica-
tions have become very popular as they offer customized services to people. To pro-
vide customization and personalization the data collected from many users need to
be processed by a service. One of the typical example of such user-data oriented
services are so-called recommender systems [6], which aim to generate personal
recommendations for a particular person from the likings of other similar users
by computing similarity scores based on profile information or user preferences.
Other examples of user-data oriented service that can be named here are reputa-
tion systems [7], collective decision making [8] and social classification [9].

Although user-data oriented services proved themselves to be very useful in
online services, as they increase the user satisfaction and business profit at the
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same time. But the benefits come with a number of privacy risks since such
services heavily depend on the data collected from the users, which is considered
private in many cases, for example in case of services for medical domain. The
user data can be re-purposed, transferred to third parties, sold or lost by the
service provider. In either case, the privacy of the users will be damaged and the
consequences will be unpredictable.

To overcome the above mentioned privacy problem, different measures includ-
ing laws and organizational means have been deployed. These measures are also
supported by the scientific solutions, which aim to guarantee the privacy of user
data, like data perturbation [10] and data anonymization [11]. The recent idea
in the field is to employ secure multiparty computations techniques [12], which
allow service providers to process user data through interactive protocols with-
out disclosing their content. This approach has been applied to a wide range of
applications including recommender systems [1–3], collaborative filtering [4] and
data clustering [5].

Unfortunately, the existing solutions only consider a static environment, where
the number of users involved in the group service does not change in time. Even
though these solutions provide provable privacy protection in static settings,
their sequential invocation with changing number of users leaks information,
damaging the purpose of the privacy-preserving protocol. As almost all of the
popular online services have a dynamic setting with constantly joining and leav-
ing users, we consider the privacy-preserving protocols that do not cope with
the threats of dynamic execution limited to be used in practice. Therefore, in
this paper we aim to provide a solution for privacy-preserving group services in
a dynamic setting based on cryptographic tools.

The groups with dynamic participation have drawn attention in the crypto-
graphic community, especially to solve the problem of key management [13, 14].
There is also prior work in data publishing to protect the privacy of users in case
of continuous publishing of data of dynamic user groups [15–17]. Nevertheless, to
the best of our knowledge, there has been no previous work addressing dynamic
settings for user-data oriented services.

In this paper we focus on dynamic settings for user-data oriented services: we
define the notion of privacy in this setting and propose novel tools to provide
privacy protection to the users of such services. To achieve this, we propose to
select a random sub-group of users and compute the services based on the data
from this random group, while keeping the group secret. We introduce three
different strategies to select this random sub-group, each suitable for a different
group service scenario, and present the protocols implementing each strategy in
two attacker models, namely semi-honest and malicious. For each protocol we
sketch a proof of its correctness and analyze the protocol with respect to number
of rounds, communication and computational complexities. Our protocols use
homomorphic encryption and zero-knowledge proofs, and are designed to be
executed in a constant number of interactive rounds and to be efficient in terms
of computational complexity.
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The rest of this paper is structured as follows. In Section 2 we formalize the
notion of user-data oriented services privacy-preserving in dynamic environment
and introduce a method for providing privacy in dynamic setting we use further.
In Section 4 we describe the cryptographic protocols in two different security
models, while Section 3 contains the cryptographic primitives used for these
protocols. In Section 5 we provide an analysis on the complexity of the proposed
protocols and some discussion on possible optimizations, and we conclude this
paper in Section 6.

2 Proposed Solution

In this section we define user-data oriented services (from now on group services),
the notion of privacy in a dynamic setting and propose a method to provide
privacy protection to the users of such services.

2.1 Definitions

In our settings, a user represents a party that holds a private input — value
selected from predefined field F. All users are numbered and denoted as Ui, their
private data is denoted as di ∈ F. We assume that the the upper bound of the
number of users in the system is N . All other parties that provide computation
resources for a group service are called service parties. We denote one of such
parties as A.

Definition 1 (Group service). A group service is the system that consists of:

– a set of users {Ui≤N}, each of them holding corresponding private input
di ∈ F;

– a predefined number of service parties, including A;
– a predefined function f :

⋃N
k=1 F

k → G, which is symmetric, i.e. for any per-
mutation π and values a1, . . . , aM ∈ F, M ≤ N : f(a1, . . . , aM ) =
f(π(a1, . . . , aM )).

A group service run (execution) is an invocation of the predefined multiparty
computation protocol (MPC) that involves a subset of M users {Uij} ⊆ {Ui≤N},
named participating (or involved) users, and all service parties. During an
execution of MPC the result r = f(di1 , . . . , diM ) ∈ G is computed and
outputted to A.

Described group service is called privacy-preserving in a static setting, if after
its execution party A learns only the value of r, and other parties do not learn
any information about r and di. The notion of dynamic settings is formalized as
follows:

Definition 2 (Group service (t,M)-dynamic execution). A group service
with users {Ui≤N} is executed (t,M)-dynamically when:
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– there exists a fixed subset of users UD ⊂ {Ui≤N}
∣∣UD

∣∣ = M , named dynamic

users, remaining users UD = {Ui≤N} \ UD are named static ones;
– there exists subsets U1, . . . ,Ut ⊂ UD defining dynamic user participation,

such that
⋃t

j=1 Uj = UD and ∀Ui ∈ UD ∃k ∈ [1, t] : Ui /∈ Uk;
– the group service is executed t times, computing results r1, . . . , rt;
– on a k-th group service execution only the users from UD

⋃
Uk are partici-

pating.

Clearly, (t,M)-dynamic execution of the privacy-preserving protocols designed
for a static setting revealsA information on the private data of the dynamic users,
as this information can be inferred from A’s observations (U1, r1), . . . , (Ut, rt).
We define the scenario, when A exploit such information leakage, as the new
group attack. This attack can be illustrated on the following example: assume
that U1 \ U2 = U3, then by comparing r1 and r2 A can reveal information on d3
(or even disclose the value of d3).

To eliminate such an information leakage, we define a upper-bound on the
amount of information on dynamic users’ private values that A can infer from
r1, . . . , rt and U1, . . . ,Ut available to it. More formally, for each Ui ∈ UD we give
a lower-bound for the value of entropy Hi = H(di | (U1, r1), . . . , (Ut, rt)).

Values of Hi cannot be restricted with absolute values, independent from f ,
as the quantity of information, which A can deduce from received computation
results, strongly depends on properties of f used in a specific group service. For
example, if f computes an average of its arguments, then A can learn the exact
values of private input of dynamic users (for some configuration of U1, . . . ,Ut).
In case f computes just the number of its arguments, A cannot infer any infor-
mation about di from received rk.

To restrict the values of Hi in general cases, but using the properties of a
specific f , two strategies can be used:

1. using the entropy of A’s prediction of private users’ input in a static case;
2. using the entropy of A’s prediction of private data of non-dynamic users in

a dynamic case.

The first approach is too strict for practice, therefore in this work we use the
second one and define the privacy in the context of a dynamic group service
execution as follows:

Definition 3 (Privacy-preserving (t,M)-dynamic execution). A (t,M)-
dynamic execution of a group service with users {Ui≤N} and dynamic users
UD ⊂ {Ui≤N} is called privacy-preserving, when after this execution the follow-
ing conditions hold:

– Party A learns only the values of rk and other parties do not learn any
information about rk and di.

– Party A can deduce less (or equal) amount of information on the private

inputs of dynamic users as on static ones: ∀Ui ∈ UD ∃Uj ∈ UD : Hi ≤ Hj.
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Group service is called privacy-preserving in a (t,M)-dynamic setting, if any
(t,M)-dynamic execution of a such group service is privacy-preserving.

2.2 Group Masking Method

Based on the previous definitions, we propose a general method, in which a
group service is made privacy-preserving in (t,M)-dynamic setting and secured
against the new group attack. The method is based on the idea of blurring the
difference between dynamic and static users. We achieve this by adding similar
random behaviour to both types of users. More formally the method is as follows:

Method (Group masking). Assume, that the group service with users {Ui≤N}
is executed (t,M)-dynamically and sets U1, . . . ,Ut ⊂ UD ⊂ {Ui≤N} define the
dynamic user participation in group service runs. On the k-th run, the set
Ũk ⊆ UD

⋃
Uk, named included users, is randomly selected in a way that it

is kept hidden from A. The result rk is computed as rk = f({di | Ui ∈ Ũk}).

It is clear that group masking reduces the amount of information that A can
deduce about users’ private input during the dynamic execution, as it hides from
A which users are participating in the computations. Next, we check whether
and in what conditions this method hides enough information to guarantee the
dynamic privacy-protection.

Note that as the function f is symmetric, then for any x, y, z ∈ F the following
two observations hold:

H(x | r = f(x, y)) = H(y | r = f(x, y)) , (1)

H(x | r1 = f(x, y, z), r2 = f(z)) = H(y | r1 = f(x, y, z), r2 = f(z)) . (2)

Consequently, if Ũ1, . . . , Ũt are generated in a such way that an intersection and a
symmetric difference of any number of Ũk contain at least as many static users as
dynamic ones, then the method above guarantees that a group service execution
is privacy-preserving.

As far as the specific values of Ũk are hidden from A, we can relax the con-
dition above and state the following criteria: a group service dynamic execution
is privacy-preserving, when an intersection and a symmetric difference of any
number of Ũk contains on average more static users than dynamic ones. Next,
we check what conditions should be met to satisfy this criteria.

Let us consider the case, when all Ũk generated by the group masking method
are independent and uniform, in the sense of included users, i.e. on k-th group
service execution all involved users (both static and dynamic) have a same prob-

ability to be included in Ũk.
Let Ũk and Ũl be two sets of included users, both uniform in the sense above.

As the sets are uniform, then the probabilities p = P (Ui ∈ Ũk | Ui ∈ UD
⋃
Uk)

and q = P (Ui ∈ Ũl | Ui ∈ UD
⋃
Ul) are defined. Without loss of generality we

assume that p ≥ q.
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Consider the intersection and the symmetric difference of Ũk and Ũl. It is clear
that on average the following statements hold:∣∣∣(Ũk⋂ Ũl

)⋂
UD

∣∣∣− ∣∣∣(Ũk ⋂ Ũl
)⋂

UD
∣∣∣ = pq

(
N −M −

∣∣∣Uk⋂Ul
∣∣∣) , (3)∣∣∣(Ũk%Ũl)⋂UD

∣∣∣− ∣∣∣(Ũk%Ũl)⋂UD
∣∣∣ = (p+ q − 2pq)

(
N −M −

∣∣∣Uk⋂Ul
∣∣∣)

− p |Uk \ Ul| − q |Ul \ Uk| .
(4)

Note that as |Uk
⋂
Ul| ≤ M , |Uk

⋂
Ul|+ |Uk \ Ul| + |Ul \ Uk| ≤ M and q ≤ p,

then the minimums of Equations (3) and (4) are reached when |Uk
⋂
Ul| = M .

And these minimums are non-negative iff N ≥ 2M , i.e. when the majority of the
users are static.

Consequently, when the majority of the users are static Equations (3) and (4)
are non-negative. That is, the intersection and the symmetric difference of any
two randomly selected (independent and uniform in the sense of included users)

Ũk and Ũl contains on average more (or equal) static users than dynamic ones.

It is clear that then the same property holds for any number of sets Ũk.
To sum up, if the majority of the users are static, then the group service

dynamic execution protected using uniformly and independently selected group
masks is privacy-preserving. Next in this work we will target only the settings
with majority of the static users.

Note that in real-world group services, for example in aforementioned recom-
mender systems, the utility of computed results depends on the number of users
involved in the computation. Hence, applying the group masking method in prac-
tice may cause the quality degradation of group service results, due to decreasing
the number of users involved in each group service execution. To eliminate such
quality fall-of we additionally restrict generated Ũk by introducing lower-bound
of the number of included users:

∀k ∈ [1, t] :
∣∣∣Ũk∣∣∣ ≥ Q(∣∣∣UD

⋃
Uk
∣∣∣) , (5)

where function Q(x) specifies the minimum number of parties (from x available),
which should participate in a group service execution to compute a result with
the level of utility sufficient compared to what can be achieved by involving all x
parties. We assume that Q is publicly known, but we will not specify it, because
its exact value is defined by a concrete group service and a concrete application.

2.3 Approaches to Select Included Users

As it was stated in Section 2.2, in the settings, where the majority of the users
are static, all subsets Ũk can be selected independently and uniformly, in the
sense of included users. Hence, generating of Ũk can be done without knowing
which users are static and which are dynamic, and which users, except involved
in k-th execution, exist in the system. So, for the sake of simplicity, we can
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assume that a group service is executed only once, and that all existing N users
are employed during that execution.

A group service execution using group masking method processes as follows:
a random subgroup U ⊂ {Ui≤N} is selected, and then result r is computed as
r = f({di | Ui ∈ U}) and outputted privately to A. Generating the subgroup
U is equivalent to generating a vector e ∈ {0, 1}N , such that ei = 1 iff Ui ∈ U .
Such a vector e is named a group mask.

To apply the group masking method in practice we propose three different
approaches for generating a group mask:

Approach 1. Vector e is generated uniformly randomly, such that it contains
exactly m ones, where m ≥ Q(N) is publicly known.

Approach 2. Each value ei is generated independently, such that P (ei=1) = p,

where p is publicly known and satisfies P (
∑N

i=1 ei ≥ Q(N)) ≈ 11.
Approach 3. Vector e is generated in two steps: (i) uniformly random m ∈R

[Q(N), N ] is generated; (ii) e is selected uniformly randomly, such that it
contains exactly m ones. In this approach, not only the value of e but also
the value of m should be hidden from A.

Note that for e generated according to Approach 1, the probability P (ei=1) =

m/N and the value
∑N

i=1 ei = m are known, while for e generated according to
Approach 2, only the probability P (ei=1) = p is known. For a vector generated
according to Approach 3 only the lower bound of P (ei=1) is known: P (ei=1) ≥
Q(N)/N , which is exactly equal to what we can be estimated based on limitation
from Equation (5). Hence, we can claim that Approach 3 generates group masks
e, such that a priori knowledge about e is minimum. Approach 2 leaks more
information on e than Approach 3, and Approach 1 leaks more than Approach 2.

As Approaches 1 and 2 generate group masks with the higher a priori knowl-
edge about the result, this approaches provide more information to potential
attackers than Approach 3 and thus they are less secure. Nevertheless, Ap-
proaches 1 and 2 have their own advantages, which make them preferable in
certain scenarios: Approach 2 can be implemented much more efficiently then
Approaches 1 and 3, and thus it introduces a tradeoff between complexity and
privacy. Approach 1 has one advantage over other two approaches — it generate
group masks with pre-defined number of involved users, which is important for
a certain applications, where the values of parameters, say threshold, depend on
the amount of data processed or the amount of user participated.

3 Preliminaries

In this section we briefly introduce the cryptographic primitives employed through-
out the paper, namely threshold homomorphic encryption and non-interactive
zero-knowledge proofs.

1 For example, due to de Moivre–Laplace theorem and the fact that Φ(−4) ≈ 0, p
satisfying the following inequation is suitable: Np+ 1−Q(N)− 4

√
Np(1− p) ≥ 0.
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3.1 Threshold Homomorphic Encryption

For our protocols we rely on homomorphic encryption that allows users to process
private data without disclosing them. We use its threshold version to make the
processing secure even in the case when all except one users are colluding.

A cryptosystem is called additively homomorphic when there exist an oper-
ation ⊗ such that applying ⊗ to encryptions of two messages, say x and y,
produces the cyphertext which decryption yields the sum of these messages:

D(E(x) ⊗ E(y)) = x+ y , (6)

where E and D represent the encryption and decryption functions. The public-
key cryptosystem is called K-out-of-N threshold, when contributions from any
K (from in total N) users are required to compute the decryption of a given
cyphertext.

In this paper we use the threshold Paillier cryptosystem either with a trusted
dealer [18] or without it [19]. Both cryptosystems have the same properties, so
we will not distinguish them further.

In the threshold Paillier cryptosystem the public key of the form pk = (n, g, θ)
is used. Here n is the RSA modulus, computed as a product of two random
safe primes 2p′ + 1 and 2q′ + 1; g is the generator of the field Z∗n2 such that
g = (n + 1)a · bn mod n2 for random a, b ∈ Z∗n; and θ = aβη mod n, where
β is randomly chosen from Z∗n and η = p′q′. The corresponding private key is
sk = βη. This key is shared between all users using the Shamir’s K-out-of-N
secret sharing scheme [20]: each Ui receive ski = f(i) mod nη, where f is a
random polynomial in Znη of degree K − 1, whose first coefficient is sk.

To encrypt a message x ∈ Zn with the public key pk = (n, g, θ), E(x, r) is
computed with a randomly chosen r ∈ Z∗n:

E(x, r) = gxrn mod n2 , (7)

where Δ = N ! is publicly known and precomputed.
To perform a threshold K-out-of-N decryption of a cyphertext c ∈ Z∗n2 con-

tribution of the users from the set S of size K is necessary. Each contributing
Ui ∈ S computes a partial decryption of c:

Di(c) = c2Δski mod n2 . (8)

Partial decryptions are then passed to a party (parties), which would like to
receive a decrypted plaintext, and combined as follows:

D(c) = L
(∏

Ui∈SDi(c)
2μi mod n2

)
· 1

4Δ2θ
mod n ,

where L(x) =
x− 1

n
, μi = Δ ·

∏
Uj∈S
j �=i

j

j − i .
(9)

To secure the decryption protocol against malicious private key share holders,
the zero-knowledge proofs are used: each user, submitting its partial decryption
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Di(c) should also submit a proof to show that this value was computed correctly,
i.e. a proof of correct decryption. These proofs rely on the verification keys V K
and VKi=1,...,N , which should be generated and distributed together with the
public key during the initialization stage. The key V K is a randomly chosen
quadratic residue in Z∗n2 and each VKi is computed as V Ki = VKΔski mod n2.
Afterwards a user can prove that Di(c) was computed correctly by proving that
logV KΔ V Ki = logc4Δ Di(c)

2. We refer the reader to the work [18] for further
details.

Note that if all users behave in a semi-honest fashion, then the decryption pro-
tocol can be simplified to achieve lower computational complexity: each partial
decryption is computed as Di(c) = c4μiΔski mod n2 and the combining function
is computed as D(c) = L(

∏
Ui∈SDi(c) mod n2)/(4Δ2θ) mod n.

It is clear that this encryption function E has the following properties:

E(x, rx) ·E(y, ry) = E(x+ y, rxry) mod n2 , (10)

E(x, r)c = E(xc, rc) mod n2 , (11)

E(x, r1) · rn2 = E(x, r1r2) mod n2 . (12)

Hence E is homomorphic with respect to addition and multiplication by a con-
stant. Moreover, due to the property (12), any party that knows the public key
can build a cyphertext equivalent to the given one. This operation is denoted as
rerandomization: Rand (c) = c · rn mod n2.

The threshold Paillier encryption is semantically secure under the decisional
composite residuosity assumption in the random oracle model. We refer the
reader to the works [18, 21] for further information on encryption properties.

In this work all operations over plaintext values will be performed over Zn,
for encrypted values over Z∗n2 , and for randomness over Z∗n. That is, the field
used for each operation can be easily determined by the context, and thus we
will omit writing mod n and mod n2 for simplifying the notation. Also we use
the notation �x� to denote an encryption E(x, r). omitting the randomness for
simplicity.

3.2 Zero-Knowledge Proofs

Zero-knowledge (ZK) proofs are the protocols between two parties: the prover
and the verifier, during which the prover tries to convince the verifier that a
given statement is true, without leaking any information other than the veracity
of that statement. A lot of ZK proofs have been proposed recently, an overview
of the current development can be found in [22].

In case when a common random string is available to prover and verifier, the
existing ZK proof protocol can be made non-interactive using the method by [23].
One of the advantages of resulting non-interactive zero-knowledge (NIZK) proofs
is that they can be used not only in a two-party settings, but in a multiparty
settings with one prover and many verifiers.

For our protocols, we employ a few NIZK proofs: (i) proof of correct decryption
ΠCD(�x� , d, i), which shows that d = Di(�x�), based on ZK proof introduced
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[18]; (ii) proof of correct multiplication ΠCM (�x� , �y� , �z�), which shows that
z = xy, based on the proof introduced in [24]; (iii) and NIZK proof of knowledge
of a plaintext, which is chosen from in a given set, ΠPK(�x� , S), which shows
that x ∈ S, based on the general technique presented in [22].

4 Protocols

In this section we describe how the Approaches 1–3 introduced in Section 2 can
be employed to protect an existing group service against the new group attack
and to provide a privacy of user data in the dynamic settings.

The group service we consider computes the sum of the users’ private data.
More precisely, for users U1, . . . , UN , each holding corresponding private value
di, this group service evaluates

r = f(d1, . . . , dN ) =

N∑
i=1

di (13)

and outputs the result privately to A. The group masking method is applied to
this group service by modifying its function f to the following:

r = f(d1, . . . , dN ) =

N∑
i=1

diei , (14)

where e is a group mask, which is generated according to Approaches 1–3 and
is kept hidden from A and all parties that can collude with A.

We describe the protocols implementing the considered group service and its
versions that provide protection against the new group attack in the two security
settings:

A. Semi-honest settings, where all parties follow the protocol steps correctly,
but can collect the observation during the protocol execution in attempt to
obtain any information about private values of other parties.

B. Malicious settings, where all parties can additionally deviate from the pro-
tocol.

In both settings parties can collude either to disclose the private data of other
(non-colluding with them) parties or to corrupt the computation result. We as-
sume that the number of users participating in each coalition is upper bounded,
i.e. that there exists a predefined number K ≤ N such, that each coalition
involve at most K − 1 users and any number of service parties.

For each of these settings we provide four protocols: reference implementation
of the considered group service without using the group masking method and
three protocols for the group service protected with a group mask generated ac-
cording to Approaches 1–3. Presented protocols are referenced as Protocol PA

1 ,
where “A” denotes the target security settings and “1” denotes used approach
for generating a group mask (0 denotes the protocol without group masking).
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In the following protocols the first K users carry the major part of the com-
putations, therefore for simplifying further notation we assume, that in each
operation by default only that users are involved, i.e. “all users” should be read
as “users Ui≤K”. Note that at least one of these users is not colluding with
others.

We assume that the Paillier K-out-of-N threshold encryption scheme has
already been set up: its private key has been shared between all users (each
user receives share ski) and its public key pk and verification keys V K and
V Ki=1,...,N are known to all parties. In the following protocols all encryptions
are done using pk.

The described protocols work over channels of two types: broadcasted to Ui≤N

and point-to-point between A and Ui. Protocols are designed under the assump-
tion that each party has access to the random oracle and to the common ran-
dom string. The protocols widely use the well-known subprotocols for threshold
Paillier cryptosystem, like secure multiplication [25] and unbound fan-in multi-
plication subprotocols [25, 26].

4.1 Protocols for Semi-honest Setting

In this section we describe the protocols, which are secure in the semi-honest
settings, where parties can form a coalitions involving at most K − 1 users and
any number of service parties. Following protocols preserve the users’ privacy by
hiding their data from all other users and party A, and A’s privacy by hiding the
computation result from all users. We protect the protocols from the new group
attack by using group masking, where a group mask should be kept hidden from
all parties (as all parties can collude with A).

Reference Protocol. First, we describe the protocol for reference group service
implementation, which just outputs the sum of all users data to A without using
group masking. The protocol is described in Protocol PA

0 .

Input: Each Ui≤N holds his private value di.
Output: Party A receives r =

∑N
i=1 di.

1. Each Ui≤N broadcasts �di�.

2. Each user computes �r� =
�∑N

i=1 di
�
=

∏N
i=1 �di�.

3. All users jointly run decryption of �r� and open r to A.

Protocol PA
0 . GS without group masking, semi-honest setting.

Security and privacy properties of Protocol PA
0 can be verified as follows. On

Steps 1–2 users receive and process only encrypted data. No information can be
extracted from it as the K-out-of-N threshold Paillier cryptosystem is known to
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be semantically secure against K − 1 colluding private key holders. On Step 3
all users do partial decryption of �r� and A (and all colluding users) gets access
to both computation result r and its partial decryptions Di(�r�). Values Di(�r�)
do not leak any information about ski as it was shown in [18], and the value r
is a private output of A and thus is allowed to be learned by A and colluding
users. Hence, no information about private values is leaked during one protocol
execution. However, as the protocol does not use the group masking, it fails to
protect the privacy in the dynamic settings.

Protocol with Group Masking Using Approach 1. Next, we present the
protocol, which can cope with the new group attack. This protocol uses the
proposed group masking method, where the mask is generated according to
Approach 1.

Approach 1 requires the group mask e to have the following property: e ∈R

{0, 1}N and exactly m its components are equal to 1. To generate such vector we
use the multiple-try method, which process as follows: (i) users generate t vectors
βj ∈R {0, 1}N in parallel such, that ∀l ∈ [1, N ] : P (β·,l=1) = m/N ; (ii) users

select as e the first βj , such that its elements sum bj =
∑N

l=1 βj,l is equal to m.
Multiple-try method is applicable for generating a vector e as the rate of

suitable candidates βj , i.e. vectors satisfying
∑N

l=1 βj,l = m, is fixed:

S = P

(
N∑
l=1

βj,l=m

)
=

(
N

m

)
mm(N −m)N−m

NN
≈
√

N

2πm(N −m)
. (15)

Consequently, by executing the sufficient numbers of tries t, we can guarantee
that the method will fail, i.e. will not generate e, only with negligible probability
2−κ, where κ denotes the statistical security parameter (usually is chosen around
80).

In practice, we can note that S ≥ 1/
√

2πm, and though we can use the
following estimation of the value t: t =

⌈
κ
√

2πm ln 2
⌉
≈ �1.74κ

√
m�.

To perform described multiple-try approach in privacy-preserving manner,
we should generate each vector βj jointly random, i.e. in a such way that K
users contribute to it and any subgroup of users together cannot infer, which of
candidates for βj are more likely.

Jointly-random generation of vector β ∈R {0, 1}N is performed in the follow-
ing way: (i) each Ui independently generate vector αi ∈R {0, 1}N ; (ii) generated
vectors are composed into β using exclusive OR (XOR) as β = α1⊕ . . .⊕αK ,
where XOR combination is computed bitwise by employing the unbounded fan-in
XOR subprotocol [25]. Obviously, if XOR subprotocol is secure, then even K − 1
colluding users can not extract any information about β.

The following formula holds for βl as for a XOR-combination of K equally
distributed random values αi,l (see [27] for construction):

P (βl=1) =
1

2
− 1

2
(1− 2P (α·,l=1))K . (16)
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Consequently, to satisfy the property ∀l ∈ [1, N ] : P (βl=1) = m/N , each αi

should be generated following the next element distribution:

q = P (αi,·=1) =
1

2
− 1

2
K
√

1− 2m/N . (17)

Note that the formula above is inapplicable in cases when m > N/2 and K is
even. For that cases we suggest to increment the value of K, i.e. to involve one
more user into the procedure of generation of β.

Protocol for Approach 2, which is based on the described tools, primitives from
Section 3 and aforementioned subprotocols, is given in Protocol PA

1 . Security
and privacy of the protocol rely on the security properties of the underlying
cryptographic primitives. Note that opening of values bj on Step 3 does not leak

any information about e, as m =
∑N

i=1 ei is a priori knowledge.

Input: Each Ui≤N holds his private value di.
Output: Party A receives r =

∑N
i=1 diei.

1. Each Ui generates t random αi,j ∈R {0, 1}N such, that: ∀l ∈ [1, N ], ∀j ∈
[1, t] : P (αi,j,l=1) = q.

2. Users jointly run the unbounded fan-in XOR subprotocol tN times in parallel,
computing for each j ∈ [1, t], l ∈ [1, N ] value �βj,l� =

�
⊕K

i=1 αi,j,l

�
.

3. Users locally compute �bj� =
�∑N

l=1 βj,l
�
=

∏N
l=1 �βj,l�, and jointly run t decryp-

tions in parallel to open values bj to U1.
4. U1 selects minimum j, such that bj = m, and broadcasts �e� = �βj�. This step

fails with probability 2−κ.
5. Each Ui≤N computes �diei� = �ei�

di and broadcasts the result.

6. Users locally compute �r� =
�∑N

i=1 diei
�
=

∏N
i=1 �diei�, and jointly run decryp-

tion to open r to A.

Protocol PA
1 . GS with 1-st group masking, semi-honest setting.

Protocol with Group Masking Using Approach 2. Protocol PA
1 can be

simplified to achieve relaxed requirements of Approach 2, where only the prob-
ability of user participation is fixed, but not the total amount of participating
users.

Resulting protocol is presented in Protocol PA
2 . This protocol utilizes less

computational resources and discloses less information about generated e than
Protocol PA

1 , but is not applicable for several kinds of group services (see Sec-
tion 2 for examples).

The security of Protocol PA
2 can be verified in a same way as for the pre-

vious protocol. The correctness of generated e, i.e. the fact that it follows the
distribution stated in Approach 2 P (ei=1) = p, can be easily verified using
Equation (16).
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Input: Each Ui≤N holds his private value di.
Output: Party A receives r =

∑N
i=1 diei.

1. Each Ui generates αi ∈R {0, 1}N such, that:

∀j ∈ [1, N ] : P (αi,j=1) =
1

2
− 1

2
K
√

1− 2p .

2. Users jointly run the unbounded fan-in XOR subprotocol N times in parallel,
computing for each j ∈ [1, N ] value �ej� =

�
⊕K

i=1 αi,j

�
.

3. Each Ui≤N computes �diei� = �ei�
di and broadcasts the result.

4. Users locally compute �r� =
�∑N

i=1 diei
�
=

∏N
i=1 �diei�, and jointly run decryp-

tion to open r to A.

Protocol PA
2 . GS with 2-nd group masking, semi-honest setting.

Protocol with Group Masking Using Approach 3. Now we present the
protocol that uses Approach 3 for generating a group mask. Approach 3, com-
pared to Approaches 1 and 2, generates masks with minimum constraints, and
hence discloses less information to potential attackers.

Approach 3 requires the group mask e to have the following property: e ∈R

{0, 1}N and
∑N

i=1 ei is uniformly random in [Q(N), N ]. To generate such e, three
steps are executed: (i) uniformly random r ∈R [0, N−Q(N)] is jointly generated
(next N − Q(N) is denoted as σ for notation simplicity); (ii) r is converted to
v ∈ {0, 1}σ, which contains exactly r ones; (iii) v is supplemented by Q(N) ones
and permuted to produce e.

To implement the described protocol steps we need to present two additional
protocols: secure unary conversion and jointly random shuffling.

Secure unary conversion. This protocol transforms encrypted integer �r�, which
is from the interval [0, σ], to encrypted vector �v� : v ∈ {0, 1}σ of the following
form:

v = (1, . . . , 1︸ ︷︷ ︸
r

,

σ−r︷ ︸︸ ︷
0, . . . , 0) .

We implement this protocol using Lagrange polynomial interpolation. Indeed,

each vector element vi can be computed using the function vi(x) = (x
?
≤ i) as

vi = vi(r). Admitted region of vi(x) is Zσ+1, and hence, vi(x) can be evaluated
in all possible σ + 1 points and then represented as a Lagrange polynomial:

vi(x) =

σ∑
j=0

vi(j)

σ∏
l=0
l �=j

x− l
j − l =

σ∑
j=0

αi,jx
j . (18)

Using the observation above, we can describe the secure unary conversion
protocol. First, all users jointly run the prefix multiplication subprotocol [25, 26]
to compute (

�
r2

�
, . . . , �rσ�) from �r�. And then, each user locally computes for
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all i ∈ [1, σ] �vi� = �vi(r)� = �αi,0�∏σ
j=1

�
rj

�αi,j
using the same randomness for

encrypting �αi,0�. The common random string can be used as the source of such
randomness.

The protocol is, obviously, secure, as all computations are done over encrypted
data and the prefix multiplication subprotocol is secure.

Jointly random shuffling. This protocol generates a jointly random permutation
π, applies it to a given vector and rerandomizes the result. This subprotocol is
based on matrix representations of permutations.

Matrix form of permutation π =

(
1 2 3 4 5
3 5 2 4 1

)
is the following full-range matrix

P (π):

P (π) =

⎛⎜⎜⎜⎝
0 0 1 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0
1 0 0 0 0

⎞⎟⎟⎟⎠ . (19)

Applying a permutation to a vector and composing two permutations in the
matrix form are performed using left-multiplication: π(v)T = P (π) · vT and
P (π2◦π1) = P (π1)·P (π2). Moreover, if a permutation matrix and a source vector
are both encrypted, then applying the secure matrix multiplication subprotocol
[25] to them produces rerandomized shuffle, i.e.

�
P (π) · vT

�
= Rand (π(�v�))T .

Now we can describe the jointly random shuffling protocol. This protocol
uses t-speedup method, which aims to decrease computational complexity of the
protocol in t times by executing t additional rounds. For simplicity we assume
t | K. The protocol is as follows:

1. Each user generates random permutation πi.
2. Each group of t users builds an aggregate permutation by sequential combin-

ing permutation matrices P (πi), . . . , P (πi+t): Uj receives �Pi,j−1� from the
previous user in a group (Ui sets �Pi,i−1� = �E�), permutes matrix elements
according to P (πj), rerandomizes the resulting �Pi,j� and broadcasts it.

3. All �Pi� are combined using the unbound fan-in matrix multiplication subpro-
tocol [25, 26]. Resulting permutation matrix P (π) then applied to the given
vector using the secure matrix multiplication.

We can use unbounded fan-in matrices multiplication subprotocol in the pro-
tocol above only in case, when the matrix size/field size ratio is negligible:
N/n ≤ 2−κ. As in practice κ = 80 and n is at least 1024 bit long (accord-
ing to recommendation of [28]), the protocol is applicable for the settings with
N ≤ 2944 users, which is quite mild restriction.

The protocol is secure, because all underlying cryptographic primitives are
known to be secure and the following observations hold. For any coalition A

there is at least one group of users Ui, . . . , Ui+t, which involves Ui+k such that
Ui+k /∈ A. It is clear, that due to the rerandomization used by Ui+k on Step 2 of
the protocol, coalition cannot learn the value of Pi,i+k even in case it knows the
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value Pi,i+k−1. Hence, Pi,i+k is uniformly random and unknown to users from
A, and consequently these users cannot select πi+k+1, . . . , πi+t in a such that
resulting Pi = Pi,i+k · P (πi+k+1) · . . . · P (πi+t) will not be random. And thus,
coalition A (and any other) cannot reveal a combined permutation of at least one
group, and consequently, the combined permutation π. Also, this permutation
cannot be traced by comparing the source and the permuted vectors, because the
permuted vector is rerandomized due to the properties of encrypted permutation
matrix.

In the following protocol we use t = 6 as a tradeoff between round and com-
putational complexities: doubling the number of rounds gives a six-time gain in
the amount of computations. For simplicity we assume K = 0 mod 6.

By combining two described protocols we can obtain the protocol, which im-
plements Approach 3 for group mask generation. We present the protocol in
Protocol PA

3 . The protocol is secure, because all underlying subprotocols and
cryptographic primitives are secure. The protocols’ Steps 1–3 and Steps 4–7
should be executed in parallel to reduce an overall round complexity and execu-
tion time.

Input: Each Ui≤N holds his private value di.
Output: Party A receives r =

∑N
i=1 diei.

1. Users jointly run the bounded random number generation subprotocol [29] and
produce �r� : r ∈ Zσ+1.

2. Users jointly run the prefix multiplication subprotocol and compute
(
�
r2

�
, . . . , �rσ�) from �r�.

3. U1 builds and broadcasts vector �v�:

�vi� =

{
�αi,0� ·

∏σ
j=1

�
rj

�αi,j if i ∈ [1, σ],

�1� if i ∈ [σ + 1, N ].

4. Each Ui generates random N-dimensional permutation πi, and builds P (πi).
5. Each Ui=1 mod 6 sends �Pi� = �P (πi)� to Ui+1.
6. For k ∈ [2, 6] one by one: Ui=k mod 6 receives �Pi−1� from Ui−1, computes �Pi� =

�Pi−1 · P (πi)� = �Pi−1�
P (πi), rerandomizes the result and broadcasts it.

7. Users jointly run the unbound fan-in matrix multiplication subprotocol, comput-
ing combined permutation matrix �P (π)� =

�∏1
i=K Pi

�
.

8. Users jointly run the secure matrix multiplication subprotocol and compute �e� =
�
P (π) · vT

�T
.

9. Each Ui≤N computes �diei� = �ei�
di and broadcasts the result.

10. Users locally compute �r� =
�∑N

i=1 diei
�
=

∏N
i=1 �diei�, and jointly run decryp-

tion to open r to A.

Protocol PA
3 . GS with 3-rd group masking, semi-honest setting.
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4.2 Protocols for Malicious Setting

In this section we describe the protocols, which are secure in the malicious set-
ting, where each party can violate the protocol and can participate in a coalition
involving at most K−1 user. Hence, in this settings we have one additional secu-
rity requirement to thus stated in Section 4.1: the correctness of all computations
done locally by parties should be publicly verified.

We use non-interactive zero-knowledge proofs for verifying correctness of local
operations. When one party sends a proof, all receivers should verify its correct-
ness. We also suppose that on each step of the protocols each party performs
basic consistency checks for each processed values: validating that plaintext in-
deed lays in Zn, randomness in Z∗n, and cypertext in Z∗n2 . We omit these checks
in the protocol descriptions.

We assume that in the case of detecting a protocol violation, the party aborts.
Note that in the following protocols all data received by the users is sent through
the broadcast channel. Hence, malicious parties cannot cause two honest users
to receive different data. And consequently, if any honest user aborts due to a
protocol violation, others will abort simultaneously. Note that if A is malicious,
it can refuse to check the validity of data received from users, and thus an
undetected protocol violation can occur. But as A receives data only on the last
step of Protocols PB

0 –PB
3 , such violation cannot harm the privacy of the users.

Reference Protocol. Similarly to the previous settings, in the malicious set-
tings we first present the protocol for reference group service implementation
without using the group masking. The protocol is described in Protocol PB

0 .

Input: Each Ui≤N holds his private value di.
Output: Party A receives r =

∑N
i=1 di.

1. Each Ui≤N broadcasts �di� together with ΠPK(�di� ,F).

2. Each user computes �r� =
�∑N

i=1 di
�
=

∏N
i=1 �di�.

3. Each Ui runs partial decryption of �r� and sends resulting Di(�r�) together with
ΠCD(�r� , Di(�r�), i) to A. User U1 additionally sends the value �r� to A.

Protocol PB
0 . GS without group masking, malicious setting.

Note that the additional transmission by U1 on Step 2 is unavoidable, as
for the verification of the proof ΠCD(�r� , Di(�r�), i) submitted by Ui, A should
known the value of all parameters, including �r�.

Security, privacy and correctness of Protocol PB
0 can be verified as follows. On

Step 1 no information about di can leak, because K-out-of-N threshold Paillier
cryptosystem is semantically secure even against K − 1 colluding private key
holders, and ΠPK is zero-knowledge. Broadcasted encryption �di� is proven to
be formed correctly by ΠPK(�di� ,F). On Step 2, all computations are done
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over encrypted data and thus are secure. Correctness of these computations are
checked by A on Step 3: if value �r� computed by Ui is not equal to �r� available
to A, then A detects incorrectness of ΠCD(�r� , Di(�r�), i). On Step 3, A learns
Di(�r�) and ΠCD(�r� , Di(�r�), i), which reveals nothing about Ui’s secret key
due to security of threshold Paillier encryption and zero-knowledge of ΠCD.
Correctness of the executed partial decryptions are verified by ΠCD. Hence, the
protocol is secure and privacy-preserving in the malicious static setting.

Protocol with Group Masking Using Approach 1. Approach 1 requires
the value e to have the following properties: e ∈R {0, 1}N and exactly m its
components are equal to 1.

To generate such e, we use an approach based on permutations. Users take
the predefined vector

v = (1, . . . , 1︸ ︷︷ ︸
m

,

N−m︷ ︸︸ ︷
0, . . . , 0)

and randomly permute it to produce e: e = π(v). The permutation is done using
the jointly random shuffling protocol introduced in Section 4.1.

The jointly random shuffling protocol should be adjusted to remain being
secure in the malicious settings. We require each Ui publishing �P (πi)� to pro-
vide NIZK proof of P (πi) correctness, named ΠPMC , which is described below.
Furthermore, we prefer not to use t-speedup method, as it requires to employ
complicated and computational intensive NIZK proofs of correctness of local
rerandomized permutations of N ×N matrices.

Recalling the example of permutation matrix in Equation (19), one can note
that a permutation matrix is a zero-one matrix containing exactly one 1 in each
column and row. As in practice N < n, this condition can be formalized for any
permutation matrix P (πi), which elements are denoted by pkl, as follows: ∀k, l ∈
[1, N ]pkl ∈ {0, 1} and ∀k ∈ [1, N ]

∑N
l=1 pkl =

∑N
l=1 plk = 1. The feasibility of the

first of these properties can be proved using existing technique introduced in [30]
and denoted ΠBZO(�p11� , . . . , �pNN�). To construct the proof for the second

property note: if
∑N

l=1 pkl = 1, then
∏N

l=1 �pkl� =
�∑N

l=1 pkl

�
= E(1, rk) =

grNk mod N2 = ck and only the user, who built an encryptions �pkl� = E(pkl, rkl),

knows the value of rk =
∏N

l=1 rkl. This user can prove his knowledge by proving

the knowledge of N -th root of (ck/g) = rNk mod N2 using ΠRK(
∏N

l=1 �pkl� , N)
introduced in [31].

To sum up, Ui can prove that �P (πi)� is formed correctly using one invocation
of ΠBZO and 2N invocations of ΠRK , all of which can be done in parallel and
non-interactively. We denote this proof as ΠPMC(�P (πi)�). It is straightforward
that ΠPMC is zero-knowledge. The resulting protocol using this primitive is
described in Protocol PB

1 .
Security, privacy and correctness of Protocol PB

1 can be verified as follows.
Correctness of P (πi) broadcasted on Step 1 is verified by ΠPMC , its privacy is
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Input: Each Ui≤N holds his private value di.
Output: Party A receives r =

∑N
i=1 di.

1. Each Ui generates random N-dimensional permutation πi, builds P (πi) and
broadcasts its encryption �P (πi)� together with ΠPMC(�P (πi)�).

2. Users jointly run the unbound fan-in matrix multiplication subprotocol, comput-
ing combined permutation matrix �P (π)� =

�∏1
i=K P (πi)

�
.

3. Each Ui≤N locally multiplies �P (π)� with plaintext vT = (1, . . . , 1︸ ︷︷ ︸
m

,

N−m︷ ︸︸ ︷
0, . . . , 0)T and

obtains �e�T .
4. Each Ui≤N computes �diei� = �ei�

di and broadcasts �di� , �diei� ,ΠPK(�di� ,F)
and ΠCM (�di� , �ei� , �diei�).

5. Each user computes �r� =
�∑N

i=1 diei
�
=

∏N
i=1 �diei�.

6. Each Ui runs partial decryption of �r� and sends resulting Di(�r�) together with
ΠCD(�r� , Di(�r�), i) to A. U1 additionally sends the value �r� to A.

Protocol PB
1 . GS with 1-st group masking, malicious setting.

preserved as ΠPMC is zero-knowledge and threshold Paillier encryption is se-
mantically secure. Computations on Step 2 are secure, privacy-preserving and
correct due to the corresponding properties of the unbound fan-in matrix multi-
plication subprotocol. Computations on Step 3 obviously do not leak any data.
Their correctness is verified on Step 4: if Ui computes the different value of �ei�
than honest Uj, then Uj will not accept ΠCM (�di� , �ei� , �diei�) as valid. Cor-
rectness of �diei� computed on Step 4 is verified using ΠCM (�di� , �ei� , �diei�),
the fact that used �di� is well-formed — by ΠPK(�di� ,F).

Step-by-step verification of security, privacy and correctness of the other steps
of the protocol is skipped here, as it can be done similarity to Protocol PB

0 .

Protocol with Group Masking Using Approach 2. Approach 2 requires
value e to have the following properties: e ∈R {0, 1}N and for all i ∈ [1, N ]
P (ei=1) = p.

To generate ei with respect to the distribution above, we use the following
technique: (i) users jointly generate N uniformly random ri ∈ [0, 2k−1]; (ii) each

ei is computed as ei = ri
?
< �2kp�. The value of k is publicly known and should

be selected in a such way that relative error �2kp�/(2kp)− 1 is negligible.
As ri is a random number from [0, 2k−1], it can be generated as k independent

bits by employing the random bit generation subprotocol [29]. The comparison

(ri
?
< �2kp�) can be done using the bitwise less-than subprotocol from [32], which

compares bit-decomposed number with publicly known constant. To use this
subprotocol we should additionally restrict the value of k: k < logn−logK−κ−1.
In practice κ = 80 and n is 1024 bit length, and thus this restriction is satisfied
when k ≤ 943− logN .
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The protocol based on the described technique and aforementioned subproto-
cols is given in Protocol PB

2 . Its security, privacy and correctness are based on
the corresponding properties of underlying cryptographic primitives and can be
verified in the same way as for the previous protocols.

Input: Each Ui≤N holds his private value di.
Output: Party A receives r =

∑N
i=1 di.

1. Users jointly run the random bit generation subprotocol kN times in parallel and
produce �b1,0� , . . . , �bN,k−1�, where each bi,j ∈ {0, 1}.

2. Users jointly run the bitwise less-than subprotocol N times in parallel, computing

for each i ∈ [1, N ] value �ei� =

�

bi,k−1 . . . bi,0
?
< �2kp�

	

.

3. Each Ui≤N computes �diei� = �ei�
di and broadcasts �di� , �diei� ,ΠPK(�di� ,F)

and ΠCM (�di� , �ei� , �diei�).

4. Each user computes �r� =
�∑N

i=1 diei
�
=

∏N
i=1 �diei�.

5. Each Ui runs partial decryption of �r� and sends resulting Di(�r�) together with
ΠCD(�r� , Di(�r�), i) to A. U1 additionally sends the value �r� to A.

Protocol PB
2 . GS with 2-nd group masking, malicious setting.

Protocol with Group Masking Using Approach 3. Approach 3 requires
value e to have the following properties: e ∈R {0, 1}N and

∑N
i=1 ei is uniformly

random in [P (N), N ].
To generate such e we use the same approach as in Protocol PA

3 : (i) generate
vector v with uniformly random number (greater or equal to Q(N)) of ones,
using secure unary conversion subprotocol; (ii) shuffle v to produce e.

The protocol based on the described technique is stated in Protocol PB
3 . Note

that Steps 1–4 and Steps 5–6 can be executed in parallel to reduce an overall
round complexity and execution time. We leave it to the reader to verify the
security, privacy and correctness of the protocol.

5 Complexity Analysis

In this section we give the complexity of the protocols introduced in Section 4.
We focus on three aspects of the performance of the protocols: number of inter-
active rounds executed, amount of data transferred through the network and the
computational complexity of local operations executed by the parties.

The most computational intensive local operations are exponentiations in the
cyphertext domain. In practice, the complexity of other operations can be con-
sidered as negligible comparing to exponentiation of a cyphertext, and thus, can
be omitted from consideration while estimating the total local workload.

For the sake of simplicity, here we give only the asymptotic approximation
for the number of executed exponentiations and transferred bits. Also we do not
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Input: Each Ui≤N holds his private value di.
Output: Party A receives r =

∑N
i=1 di.

1. Users jointly run the bounded random value generation subprotocol and produce
�r� : r ∈ Zσ+1.

2. Users jointly run the prefix multiplication subprotocol, computing
(
�
r2

�
, . . . , �rσ�) from �r�.

3. Each user computes vector �w�:

∀i ∈ [1, σ] : �wi� = �αi,0� ·
σ∏

j=1

�
rj

�αi,j

using common randomness for encrypting �αi,0�.
4. Users set value �v�:

�v� = (�1� , . . . , �1�︸ ︷︷ ︸
P (N)

)‖ �w�

using common randomness for encrypting �1�.
5. Each Ui generates random N-dimensional permutation πi, builds P (πi) and

broadcasts its encryption �P (πi)� together with ΠPMC(�P (πi)�).
6. Users jointly run the unbound fan-in matrix multiplication subprotocol, comput-

ing combined permutation matrix �P (π)� =
�∏1

i=K P (π1)
�
.

7. Users jointly run the secure matrix multiplication subprotocol and compute �e� =
�
P (π) · vT

�T
.

8. Each Ui≤N computes �diei� = �ei�
di and broadcasts �di� , �diei� ,ΠPK(�di� ,F)

and ΠCM (�di� , �ei� , �diei�).

9. Each user computes �r� =
�∑N

i=1 diei
�
=

∏N
i=1 �diei�.

10. Each Ui runs partial decryption of �r� and sends resulting Di(�r�) together with
ΠCD(�r� , Di(�r�), i) to A. U1 additionally sends the value �r� to A.

Protocol PB
3 . GS with 3-rd group masking, malicious setting.

consider the workload and bandwidth that is required to create, transfer and
verify the NIZK proofs employed through the protocols for the malicious setting,
but consider only the number of invocations of these proofs.

The number of interactive rounds, executed exponentiations in the field Z∗n2

and number of bits transferred through the network during an execution of Pro-
tocols PA

0 –PB
3 are presented in Table 1. The number of invocations of different

NIZK proofs during an execution of Protocols PB
0 –PB

3 are presented in Table 2.

5.1 Possible Optimizations

The presented protocols are constant-round, i.e. the number of interactive rounds
executed during each protocol run is constant and does not depend neither on
system configuration nor on input data. This property is significant as in prac-
tice the round complexity affect on the overall system performance is crucial,
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Table 1. Complexity of the protocols

Number of rounds Number of exponentiations Number of bits transferred

Protocol PA
0 2 O (N) O (N)

Protocol PA
1 10 O

(
K2Nκ

√
m
)

O
(
K2Nκ

√
m
)

Protocol PA
2 8 O

(
K2N

)
O

(
K2N

)
Protocol PA

3 22 O
(
K2N3

)
O

(
K2N2

)
Protocol PB

0 2 O (N) O (N)

Protocol PB
1 9 O

(
K3N3

)
O

(
K2N2

)
Protocol PB

2 12 O
(
K2Nk

)
O (KNk)

Protocol PB
3 21 O

(
K3N3

)
O

(
K2N2

)

Table 2. Number of invocations of NIZK proofs in the protocols

ΠCD ΠCM ΠPK ΠPMC

Protocol PB
0 O (K) 0 O (N) 0

Protocol PB
1 O

(
K2N2

)
O

(
K2N3

)
O (N) O (K)

Protocol PB
2 O (KNk) O (KNk) O (KN) 0

Protocol PB
3 O

(
K2N2

)
O

(
K2N3

)
O (N +Kκ) O (K)

and thus, proposed protocols can be used for settings with many users, with
higher value of K and other parameters. Nevertheless, for the settings where
only few users are involved, or where the security settings are relaxed (in terms
that maximum number of user involved in each coalition K − 1 is smaller),
protocols with lower communicational and computational complexities can be
used: linear or logarithmic-round protocols.

For example, unbounded fan-in XOR subprotocol can be executed in O (logK)
rounds, using the logarithmic-depth arithmetic circuits. Shuffling subprotocol
can be executed in O (K) rounds using mixnets [33].

Also note that presented protocols are designed for the general case ofK ≤ N ,
while for the settings with higher restrictions on maximum number of colluding
users the more efficient solutions can be proposed. For example, when K ≤ N/2,
i.e. when there is no coalition involving the majority of the users, protocols based
on the Shamir secret sharing [20] can be used.

Other possible approach for optimisations, is to reduce the users’ workload by
passing their duties to the separate service parties. It can be done, for example,
by introducing service parties B1, . . . ,BK such, that no more than K−1 of them
are colluding. It is clear, that in this settings Protocols PA

0 –PB
3 can be carried by

these service parties, while users only need to once pass their encrypted private
data.
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6 Conclusion

In this paper we propose a method to provide protection of user data processed
by a group service in dynamic scenarios, which are more realistic than static
ones for a wide range of applications. This method is realized using a set of
cryptographic protocols, which are designed with performance in mind, offering
the powerful privacy-protection tool for group services in two mostly addressed
security settings. The protocols are shown to be correct, secure and privacy-
preserving. The complexity analysis with respect to the versions in two attacker
models clearly shows the advantages and disadvantages of the protocols in terms
of computational and communication costs, and the level of privacy protection.
Our protocols can be further used as building blocks for implementing privacy-
preserving group services in a dynamic setting.

Acknowledgements. We would like to thank Sebastiaan de Hoogh for sug-
gesting the t-speedup method for the shuffling subprotocol in Protocol PA

3 . This
publication was supported by the Dutch national program COMMIT.
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Abstract. Popular consumer review sites, such as Yelp and Tripadvisor,
are based upon massive amounts of voluntarily contributed content. Shar-
ing of data among different review sites can offer certain benefits, such
as more customized service and better-targeted advertisements. However,
business, legal and ethical issues prevent review site providers from shar-
ing data in bulk.

This paper investigates how two parties can privately compare their
review datasets. It presents a technique for two parties to determine
which (or how many) users have contributed to both review sites. This
is achieved based only upon review content, rather than personally iden-
tifying information (PII). The proposed technique relies on extracting
certain key features from textual reviews, while the privacy-preserving
user matching protocol is built using additively homomorphic encryption
and garbled circuit evaluation. Experimental evaluation shows that the
proposed technique offers highly accurate results with reasonable perfor-
mance.

1 Introduction

On-line social networks (OSNs) are a valuable resource for untold masses who
rely on them in both personal or professional aspects of everyday life, including:
sharing personal content [2,4], broadcasting pithy “news” messages to others
with similar interests [7], finding jobs or identifying job candidates [5], planning
travel [6], and assessing businesses (stores, restaurants, services) [8] or products
[1]. A typical OSN provides the framework wherein volunteers contribute virtu-
ally all available content. Within this framework, users generally reveal – often
unwittingly – tremendous amounts of personal information, including habits and
tastes. This information is very valuable for quickly detecting trends and serving
timely targeted advertisements [3].

Community-based review sites form a specific class of OSNs. Well-known ex-
amples are yelp.com, tripadvisor.com and amazon.com. On these sites, users
read and contribute reviews expressing their opinions on different products, ser-
vices and businesses. Users can also discover other groups or individuals with

� Work performed while at University of California, Irvine.
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similar interests. In recent years, such sites have become very popular. For ex-
ample, yelp.com received 78 million unique monthly visitors, on average, in the
second quarter of 2012 [9]. Also, in 2012, yelp.com users have contributed more
than 30 million reviews [9].

The most valuable asset of community-based review sites is user-generated
content. It is perceived to be unbiased and represents the main reason for at-
tracting multitudes of people to sites like yelp.com or tripadvisor.com. While
review sites are happy to let anyone – including casual users without accounts –
read individual reviews, they zealously guard bulk user content. To this end, they
usually employ both technical and legal (e.g., terms of service [10]) measures to
prevent bulk access and large-scale content harvesting.

We believe that sharing user-related information across sites could be benefi-
cial to review sites themselves as well as their users. Various sites have access to
information concerning different aspects of public and private lives of their users.
Knowing which users belong to multiple sites would allow the latter to provide
better service or better-targeted ads, e.g., a travel site could highlight gastro-
nomic destinations for users who contributed to a restaurant review site, or a
product-oriented site might advertise ski gear for users who reviewed mountain
resorts on a travel site.

This paper makes the following contributions:

1. We construct a technique that identifies common users across two review
sites by comparing user-generated content, rather than user names or IDs.
(In general, IDs are problematic because users tend not to use consistent
identifiers across sites. Furthermore, imposing, incentivizing or enforcing con-
sistent identification/naming is very difficult.)

2. We show how to efficiently implement the proposed technique with privacy,
such that one of the two sites learns only which (or how many) users belong
to both, while the other learns nothing. Furthermore, this is achieved with
a high degree of accuracy.

Previous literature [12,43] shows that sets of anonymous reviews can be linked
by merely relying on simple textual features. However, these prior techniques
require at least one of the parties to reveal all of its reviews or their compact
representation. Our work explores new and more sophisticated textual features,
and provides the first privacy-preserving approach for efficiently computing user
similarity.

Our work also helps mitigate so-called review spam [35], which involves cre-
ating fake reviews, with the intent to over-promote or defame a product or a
service. Fake reviews appear as if generated by legitimate users and are therefore
hard to identify. We anticipate that detection of suspected spammers’ accounts
would be a useful service. One way to implement this service is as follows: one
site with the expertise in detecting spammer accounts accumulates a set of con-
firmed spammers along with their content. It then runs our protocols with any
other site that has a set of its own suspected spammers. As a result, the latter
obtains a list of confirmed spammers.
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Organization: Related work is summarized in Section 2. Our review matching
algorithm (without privacy) is introduced in Section 3. Next, cryptographic pre-
liminaries are discussed in Section 4, followed by our privacy-preserving matching
protocols in Sections 5 and 6. Then, protocol performance is assessed in Section 7
and Section 8 concludes the paper. Security analysis can be found in Appendix A.

2 Related Work

Most related work falls into two categories: (1) authorship identification and
(2) privacy-preserving protocols. The former offers a number of results showing
that authorship linkage based on textual (stylometric) features is feasible and
sometimes very effective. The latter yields numerous cryptographic techniques
for privately computing certain set operations and similarity measures.

2.1 Authorship Identification and Linkage

Most prior work on this topic deals with free-style text, such as news reports,
scripts, novels, essays and diaries. This is motivated by the recent increase in
scholastic, academic and regular literary plagiarism.

A number of techniques have been explored to identify common authorship.
For example, Narayanan et al. [43] conducted a large-scale author identifica-
tion study of anonymous blogs using stylometric features. A number of features
were extracted and used in training classifiers that recognized authors based on
their writing style. A set of 100, 000 blog authors was used to evaluate proposed
techniques. Accuracy of up to 80% was obtained.

A more recent result [12] shows how to link reviews authored by the same
person. One de-anonymization technique was based on constructing a Näıve
Bayesian (NB) model [39] for every user and then mapping each set of anony-
mous reviews to the corresponding user with the highest probability. The second
technique was based on the symmetric Kullback-Leibler (KL) divergence dis-
tance function [14]. With KL, the user whose reviews have the shortest distance
to anonymous reviews is labeled as the original author. This demonstrates that
anonymous review sets (at least, for prolific reviewers) by same author can be
linked with very high probability. Moreover, distribution of digram (two-letter)
tokens is very effective in determining similarity among review sets.

There have been other interesting authorship analysis studies. Notably, [32]
proposed a technique that extracts frequent pattern write-prints that distinguish
an author. Accuracy reached 88% using a single anonymous message. The study
in [11] explored author identification and similarity detection by using stylistic
features, based on Karhunen-Loeve transform to obtain write-prints. Accuracy
reached 91% in identifying the author of anonymous text from a set of 100 au-
thors. Results indicate the feasibility of linking bodies of text authored by the
same person. A comprehensive survey of authorship identification and attribu-
tion studies can be found in [48].
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2.2 Privacy-Preserving Protocols

There is extensive literature on secure multi-party computation. Starting from
the seminal work on garbled circuit evaluation [51,28], it has been shown that
any function can be securely evaluated by representing it as a boolean circuit.
Similar results exist for secure evaluation of any function using secret sharing
techniques, e.g., [46], or homomorphic encryption, e.g., [20].

Recent results on garbled circuits provide optimizations that reduce compu-
tation and communication overheads associated with circuit construction and
evaluation. Kolesnikov and Schneider [38] described an optimization that per-
mits XOR gates to be evaluated for free, i.e., without communication normally
associated with such gates and without involving any cryptographic functions.
This optimization is possible when the hash function used for creating garbled
gates is correlation-robust under the definition in [19]. Under similar assump-
tions, Pinkas et al. [45] provided a mechanism for reducing communication com-
plexity of binary gates by 25%: each gate can be specified by encoding only
three outcomes of the gate instead of four. Finally, [37] improved complexity of
certain common operations, such as addition, multiplication, and comparison,
by reducing the number of non-XOR gates.

In recent years, a number of tools have been developed for automatically
creating a secure protocol from its function description written in a high-level
language. Examples include Fairplay [41], VIFF [24] and TASTY [31]. However,
“custom” optimized protocols for specific applications are often much more effi-
cient than such general techniques.

There are also a number of results in privacy-preserving set operations, e.g.,
private set intersection (PSI) [27,36,29,30,34,25] and cardinality-only PSI (PSI-
CA) [21]. The work in [34] introduced a PSI protocol based on oblivious pseudo-
random functions (OPRFs) secure in the malicious model. This protocol incurs
linear complexity in size of combined client/server inputs and it is secure un-
der the One-More Gap Diffie-Hellman assumption. In [21], a very efficient, also
OPRF-based, PSI-CA protocol is constructed offering linear complexity in the
size of server and client inputs. Its security, in the semi-honest model, is based
on the DDH assumption.

As mentioned in Section 1, although PSI and PSI-CA offer functionalities sim-
ilar to those required to determine common authors across multiple review sites,
noisy nature of features extracted from reviews prevents the use of such tools.
Whereas, privacy-preserving protocols in [16] are more relevant to our context
of review matching. In particular, [16] shows how to efficiently and privately ap-
proximate the computation of Jaccard index [49] using minhash techniques [17].
This approach is effective to compare text in order to detect plagiarism or enforce
copyright.

3 Review Matching

Contributors to a review site are referred to, and are known by, their user-names,
unique per site. As mentioned in Section 1, relying solely on user-names to
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determine common users across sites is problematic, since identical user-names
on different sites may not correspond to the same user. Conversely, the same
person may select distinct user-names on different sites. Similarly, relying on
the user’s real identity for matching may not be viable, since users may not be
willing to disclose any personal information.

Let C (client) and S (server) denote two mutually suspicious review sites.
Each site has access to a collection of reviews, partitioned by user. Let UC =
{C1, C2, . . . , Cv} denote the set of users that of C, and US = {S1, S2, . . . , Sw}
– the set of users of S. RCi and RSi refer to the set of reviews authored by
Ci and Si, respectively. C′s goal is to learn privately (i.e., without disclosing
the content of reviews associated with its users) one of the following: Common
Users, denoted as Ψ = UC∩US , or Number of Common Users (|Ψ |). Notation
is summarized in Table 1.

Table 1. Notation

v Number of users at C Ψ̂ Common users computed by the matching algorithm

w Number of users at S er Error rate

UC Users of C rr Recall rate

US Users of S ε Matching threshold

Ψ Common users (UC ∩ US) mr matching user approximation error

Xi Feature vector computed from Ci’s reviews Yj feature vector computed from Sj ’ reviews

Ci user at C Sj user at S

RCi set of reviews authored by Ci RSj set of reviews authored by Sj

In this section, we construct a technique for computing Ψ and |Ψ | without
privacy. We then add privacy features in Sections 5 and 6.

3.1 Matching Process Overview

To find common users, we need to determine similarity between two sets of
reviews. We consider Ci and Sj as corresponding to the same user if their cor-
responding review sets are very similar. One way to assess similarity is to use
a distance function. This works as follows: from each user review set, extract a
number of features and represent them as a vector. Let X = feat(·) be a feature
extraction function that takes as input a set of reviews and returns the associ-
ated feature vector X . Let d = D(·, ·) be a distance function that takes as input
two feature vectors and outputs a value d ≥ 0. Informally, 0 indicates that two
inputs are identical, and the larger the d, the more different they are. We say
that two feature vectors X,Y (and their corresponding review sets) are similar
if D(X,Y ) ≤ ε, for some value ε.

Each protocol party computes a feature vector per user resulting in a set of
feature vectors X = {X1, . . . , Xv} for C and Y = {Y1, . . . , Yw} for S, where
Xi = feat(RCi), and Yi = feat(RSi). Let Xi and Yj be the feature vectors cor-
responding to reviews of users Ci and Sj , respectively. We approximate Com-
mon Users and Number of Common Users as: Matching Users, defined as
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Ψ̂ = {Ci ∈ UC | ∃Sj ∈ US s.t. D(Xi, Yj) ≤ ε} and Number of Match-

ing Users, defined as |Ψ̂ |. Clearly, approximation accuracy depends on specific
properties of the features being considered and on the distance function D.

There are several distance functions that have been shown to provide good
results on textual documents retrieval, including Cosine, Jaccard, and Euclidean
distances [13]. We rely on Euclidean distance. Our experiments (see Section
3.3) confirm that it is a sensible choice for review similarity. Euclidean distance
between vectors X = {x1, . . . , x�} and Y = {y1, . . . , y�} is defined as:

D′(X,Y ) =

√√√√ �∑
i=1

(xi − yi)2

For technical reasons, in the rest of the paper, we consider D to be squared
euclidean distance, i.e., D(X,Y ) = (D′(X,Y ))2. We acknowledge that other
distance functions may offer different, and possibly better, accuracy results. We
leave evaluation of other distance functions to future work.

3.2 Dataset: Training and Testing Settings

To assess accuracy of our review matching technique, we rely on approximately
1 million reviews from 1, 997 users of yelp.com.1 We define two metrics that
capture two performance aspects of review matching process:
1. Recall Ratio (rr) – measures Ψ̂ ’s coverage of Ψ : rr = |Ψ̂ ∩ Ψ |/|Ψ |.
2. Error Ratio (er) – measures how often an element not in Ψ is included in Ψ̂ :

er =
|{(Ci, Sj) s.t. Ci �= Sj and D(Xi, Yj) ≤ ε}|

|{(Ci, Sj) s.t. Ci �= Sj}|

We divide users (along with their reviews) into two distinct sets of nearly the
same size: Tr and Te, used for training and testing purposes, respectively. We
use Tr to determine a set of features and a threshold ε that maximize rr while
keeping er low. We then check how these parameters perform over Te. We em-
phasize that no data from Te is used to select any parameters.

For every user in Tr, we randomly split its reviews into two parts. Let TrC
and TrS represent first and second half of each user’s reviews. Based on TrC
and TrS, we build two sets of feature vectors PTr

C and PTr
S . We then select ε as

follows: First, we compute the distance between all pairs of feature vectors from
PTr
C and PTr

S . Then, we vary rr from (0%-100%] by selecting different values for
ε. For each ε, we measure corresponding er. Finally, we select ε that yields the
best trade-off between rr and er.2

1 Experiments were performed on the same dataset used in [12].
2 Ideally, evaluation of our technique would be performed on two or more datasets
from different sites, which share a correctly identified subset of users. However, we
are not aware of the existence of such a dataset. Therefore, we rely on partitioning
reviews from each user into two sets.
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Fig. 1. Error and recall ratio of Write-Print and Basic-9

3.3 Feature Sets

Proper selection of features is crucial for achieving high accuracy. We now as-
sess different feature sets and determine the combination that offers the best
performance.

Write-Prints and Basic-9 Features. We first examine two standard feature
sets: Basic-9 [18] and Write-Print [11]. The former consists of 9 features that
measure different textual characteristics, e.g., number of unique words used in a
review set and its ratio to the total number of words. These features have been
shown to be effective in identifying authors of anonymous texts [18]. Write-Print
is a set of static and dynamic features that fall into five groups: lexical, syntactic,
structural, content and idiosyncratic. It is highly effective in identifying authors,
as shown in [11]. We use the implementation of both feature sets from JStylo
([42]), a stylometric java-based library.3

Figure 1 shows rr and er values on Tr for various ε values, as described in
Section 3.2, using either Basic-9 or Write-Print. Results in Figure 1 show that,
regardless of ε, features we consider do not allow us to achieve high rr and low
er. Thus, we explore different feature sets.

Character n-gram. n-grams (n consecutive characters in a text fragment) are
a well-known feature that have been extensively used in textual analysis. We
experiment with n-gram feature sets for n = 2 (digrams) and n = 3 (trigrams).
As shown in [12], digrams are very effective in identifying review authors. N-
gram feature vectors for sets of reviews are constructed as follows: each array
element labeled with a given n-gram represents frequency of occurrence of this
n-gram in a user’s review set.

3 JStylo implements a partial set of Write-Print features that amounts to 22 feature
categories.
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Fig. 2. Error and recall ratio of character digram and trigram
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Fig. 3. Error and recall ratio of POS digrams and trigrams

Figure 2 shows rr and er results using digrams and trigrams. Digrams show
better performance compared to Write-Prints and Basic-9 features. For example,
for rr = 95%, er = 5.11 · 10−5 with digrams and 2.01 · 10−4 with trigrams.

Part-Of-Speech (POS) Tagging. Part-Of-Speech (POS) tagging involves
mapping words to parts of speech, e.g., noun or verb. The idea is that differ-
ent individuals write using distinct grammatical structures and choose different
words. We rely on digram and trigram versions of POS tags (2 or 3 consecu-
tive parts of speech tags) and use Stanford POS Maxent Tagger [50] to label
each word with one of 45 possible POS tags. We assign weights to POS features
similarly to character n-grams.

Figure 3 shows performance results of POS features. Clearly, digrams outper-
form trigrams: for example, with rr = 95%, the corresponding er = 7.01 · 10−6

digrams and 6 · 10−3 with trigrams.
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Fig. 4. error and recall ratio of combining character and POS digrams

Combining Character and POS n-grams. Since character and POS digram
feature sets offer good performance, we explore ways to combine them to further
improve matching accuracy. In particular, we use a simple weighted average
technique, i.e.:

Dcombined(X,Y ) = (a)×Dcharacter digram(X,Y ) + (1−a)×DPOS digram(X,Y )

We vary a from 0 to 1 (in 0.1 increments) to determine impact on rr and er.
With our training dataset, values of a between 0.7 and 0.8 lead to er < 10−5.

There are two reasons for limiting er this way: (1) er ≈ 10−5 is relatively high
and could lead to poor approximation of Ψ when v, w are very large4, and (2)
for our dataset, there is no a value that gives better performance over the full
range of rr.

Figure 4 summarizes the experiments. Combining character and POS digram
features yields increased matching accuracy. Since a = 0.7 and a = 0.8 provide
roughly the same performance, we pick a = 0.7. We choose ε that yeilds rr =
95.3% and er = 0% in Tr. We test selected ε on Te and the results are virtually
identical (rr = 95.5% and er = 0%). Note that, when selecting the threshold, we
choose ε such that it maximizes rr, while keeping er = 0% to reduce inaccuracy
of approximating Ψ incurred by larger er values.

When combining character and POS digrams, the resulting feature set size
contains 2, 701 features: the former contribute 676 (262) and the latter – 2025
(452) features. Even both digram types are a subset of Write-Print features, they
perform significantly better than the entire Write-Print feature set; see Figure 1.

3.4 Approximation Error

Though er and rr represent good metrics for determining accuracy of match-
ing algorithms, they do not offer easy-to-interpret information for the number

4 Note that the number of errors grows proportionally to v · w.
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of matching users algorithm. We therefore define matching user approximation
error (mr) as:

mr =
abs(|Ψ̂ | − |Ψ |)

|Ψ |
Since our choice for ε leads to er = 0%, mr mainly depends on rr. Given our

accuracy results, |Ψ̂ | = rr · |Ψ |. Thus, mr = 1 − rr, i.e., mr < 5%. This shows

that our review matching technique closely approximates Ψ with Ψ̂ .

4 Cryptographic Preliminaries

Security Model. We use the standard model for secure two-party computation
in the presence of semi-honest (also known as honest-but-curious) participants.
In this model, participants follow prescribed protocol behavior, while trying to
learn or infer additional information beyond that obtained during normal pro-
tocol execution. A protocol is considered secure in the semi-honest model if the
view of protocol execution for each party is computationally indistinguishable
from the view simulated using that party’s input and output only. This means
that protocol execution does not reveal any additional information to partici-
pants. A more formal definition is as follows:

Definition 1. Suppose participants P1 and P2 run a protocol π that computes
function f(in1, in2) = (out1, out2), where ini and outi denote Pi’s input and out-
put, respectively. Let VIEWπ(Pi) denote Pi’s view during the execution of π. It
is formed by Pi’s input, internal random coin tosses ri, and messages m1, . . .,mt

passed between parties during execution:

VIEWπ(Pi) = (ini, ri,m1, . . .,mt).

We say that π is secure in the semi-honest model, if for each Pi, there exists a
probabilistic polynomial time simulator Si such that

{Si(ini, fi(in1, in2))} ≡ {VIEWπ(Pi), outi},

where “ ≡” denotes computational indistinguishability.

Homomorphic Encryption. Our protocols require existence of a semantically
secure additively homomorphic encryption scheme. In such a scheme, Enc(m1) ·
Enc(m2) = Enc(m1 + m2), and, therefore, Enc(m)a = Enc(a · m). While any
such scheme (e.g., Paillier [44]) would suffice, the construction by Damg̊ard et
al. [23,22] (DGK) is of particular interest here.

DGK was designed to work with small plaintext spaces and has shorter ci-
phertext size than other similar schemes. A DGK public key consists of: (i) a
small (possibly prime) integer u that defines plaintext space, (ii) a k-bit RSA
modulus N = pq where p and q are k/2-bit primes, such that, if vp and vq
are t-bit primes, and uvp|(p − 1) and uvq|(q − 1), and (iii) elements g, h ∈ Z∗N
such that g has order uvpvq and h has order vpvq. Given a message m ∈ Zu,
encryption is performed as: Enc(m) = gmhr mod N , where r←{0, 1}2.5t.
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Homomorphic-Based Comparison. Our protocols rely on privacy-preserving
comparison to determine whether the distance between two feature vectors is
below a threshold. Such a distance (d) is computed in the encrypted domain by
the server, and compared (also in its encrypted form) with threshold ε.

We base our comparison protocol on that of Erkin et al. [26]. It relies on
the observation that d < ε is true iff the l-th bit of a = 2l + d − ε is 1 (for
0 <= d, ε < 2l). Given Enc(d), encryption of a is computed by S as Enc(a) =
Enc(2l) · Enc(d) · Enc(ε)−1. Encryption of the l-th bit of a is then: Enc(al) =
Enc(2−l · (a− (a mod 2l)). Value a is available to S only in encrypted form, and
computing a mod 2l in the encrypted domain requires interaction between C
and S:

S “masks” Enc(a) by selecting a random r and computing Enc(â) =
Enc(a) · Enc(r). Then, S sends Enc(â) to C, who decrypts it and returns
the encryption of c = â mod 2l to S. Next, S “unmasks” Enc(c) by
computing Enc(c) · Enc(r)−1 = Enc(a mod 2l).

5 Privacy-Preserving Computation of Matching List

We now present a protocol for Privacy-Preserving Computation of Matching List
(PPCML). It involves two participants: C and S. At the end, C learns the set
of users in its input that match those in S’s input, while S learns nothing. For
simplicity’s sake, we represent C’s input as a single feature vector, corresponding
to one user, while S’s input is a set of w feature vectors, from w users. This
protocol can be trivially extended to the case where both parties input a set of
feature vectors.

Weighted Average. As discussed in Section 3.3, we use a weighted average
distance function Dcombined with a = 0.7. Dcombined can be also computed as
a square Euclidean distance function between a feature vector for user in C
and a user in S. This is done by updating the weights of the feature vector
by multiplying all digram feature weights by

√
a, and all POS digram feature

weights by
√

1− a.

Scaling. Since our protocol can only process integer vectors, we first need to
scale values in feature vectors from the domain [0, 1] ⊂ R to [0, 10h] ⊂ N by
multiplying all features by 10h for some h. Intuitively, larger h allows for better
precision. However, the number of bits required to represent values in [0, 10h]
– and therefore the cost of our protocol – increases with h. Our experiments
showed that h = 4 provides a reasonable tradeoff between cost and accuracy.
With this scaling, we obtain a scaled ε value that gives exactly the same rr and
er as the non-scaled version in both Tr and Te. Moreover, we determined that
using h > 4 does not improve precision and recall significantly.

Protocol Input:
C: feature vector X = (x1, . . . , x�) and key-pair (pk, sk).
S: Y = {Y1, . . . , Yw} where Ym = (ym,1, . . . , ym,�), for 0 < m ≤ w is a feature

vector.
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Protocol Output:
C: 1, if Euclidean distance between X and any vector in Y is below ε,5 and 0

otherwise.
S: nothing.

Protocol Steps:
1. For i = 1, . . . , 	, C computes {〈Enc(xi),Enc(x2i )〉} and sends results to S.
2. For m = 1, . . . , w and j = 1, . . . , 	, S computes {Enc(y2m,j)}.
3. For m = 1, . . . , w, S computes encrypted square Euclidean distance between
X and Ym as:

Enc(dm) = Enc

(
�∑

i=1

(xi − ym,i)
2

)
=

�∏
i=1

(
Enc(x2i )Enc(y2m,i)Enc(xi)

(−2ym,i)
)

4. For each m = 1, . . . , w, S and C invoke an instance of the privacy-preserving
comparison protocol [26] to determine whether dm<ε

2, i.e., S learns Enc(δm),
where δm = 1 iff dm < ε2.

5. S computes Enc(α) =
∏w

m=1 Enc(δm). Note that α represents the number of
vectors in Y for which square Euclidean distance from X is less than ε2.

6. S returns u = Enc(α)r = Enc(α · r), where r is a random element chosen
uniformly from the message space (except 0).

7. C computes z = Dec(u) = α ·r. If z �= 0, C outputs 1; otherwise it outputs 0.

Although there are techniques for computing square roots using secure multi-
party computation, e.g., [40], their performance is quite below par for our appli-
cation. Fortunately, comparison of Euclidean distance with ε can be performed
without computing any square roots, by comparing ε with the square of Eu-
clidean distance (see Step 4).

In practice, C’s input would contain multiple feature vectors. C can simply
run the protocol multiple times – once per input vector. Security of the protocol
would be unaffected, except that S would learn the upper bound on the number
of vectors in C’s input.

In the rest of paper, we use the term PPCML to refer to the combination of
(possibly) multiple instance of the protocol above, one per feature vector of C.
Security analysis of the protocol sketched out above is provided in Appendix A.

6 Privacy-Preserving Computation of Matching List Size

We now extend PPCML by restricting C′s knowledge to the number of users
that occur in both C and S, i.e., we obtain Privacy-Preserving Computation of
Matching List Size (S-PPCML). In this protocol, each party’s input is a set of
feature vectors. C learns the matching list (set intersection) size while S only
learns the upper bound on the number of C’s users.

5 The protocol implements D(X, Y )
?
< ε instead of D(X,Y )

?

≤ ε as defined in Section

3.1. In our setting, (D(X,Y )
?

≤ ε) = (D(X,Y )
?
< ε′) for ε′ = ε+ 1.
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Protocol Input:
C: set of feature vectors X = {X1, . . . , Xv}, with Xn = (xn,1, . . . , xn,�) and key

pair (pk, sk).
S: set Y = {Y1, . . . , Yw} where Ym = (ym,1, . . . , ym,�) is a feature vector.

Protocol Output:
C: number of feature vectors Xn ∈ X with Euclidean distance less than ε for

at least one vector from Y; i.e., |Ψ̂ |.
S: nothing.

Protocol Steps:
1. For each n = 1, . . ., v and i = 1, . . . , 	, C computes {〈Enc(xn,i),Enc(x2n,i)〉}

and sends them to S.
2. For each m = 1, . . . , w and j = 1, . . . , 	, S computes {Enc(y2m,j)}.
3. For each n = 1, . . . , v and m = 1, . . . , w, S computes encrypted square

Euclidean distance between Xn and Ym as

Enc(dn,m) = Enc

(
�∑

i=1

(xn,i − ym,i)
2

)
=

�∏
i=1

(
Enc(x2n,i)Enc(y

2
m,i)Enc(xn,i)

(−2ym,i)
)

4. For each n = 1, . . . , v and m = 1, . . . , w, S and C interact in a privacy-
preserving manner to compare Enc(dn,m) against ε2; S learns Enc(δn,m),
where δn,m = 1 iff dn,m < ε2.

5. For each n = 1, . . . , v, S computes Enc(αn) =
∏w

m=1 Enc(δnm). Note that αn

represents the number of vectors in Y that fall within ε of Xn.
6. For each n = 1, . . . , v, S and C interact in a privacy-preserving manner

to compare Enc(αn) to 0. Let β be the outcome of this comparison – i.e.,
(βn = 1) iff (αn > 0); S learns Enc(βn).

7. S computes Enc(γ) =
∏v

n=1 Enc(βn) and sends it to C.
8. C decrypts and outputs γ, which corresponds to the number of users it shares

with S.

6.1 Protocol Optimizations: AS-PPCML

We now discuss some optimizations.

Dataset-Dependent Optimizations. The goal of Step 6 in the S-PPCML
protocol is to “combine” multiple matches between a single feature vector from
C and multiple vectors from S into one. According to our experiments, the value
of ε selected in Section 3.3 allows us to keep error rate at 0 (with our dataset)
and matching rate at 95% without performing Step 6. Therefore, removing this
step has virtually no impact on the result of the computation. We refer to this
modified version of the protocol as Approximate S-PPCML (AS-PPCML).

Garbled Circuits. As shown in [15,47], comparison protocols can be imple-
mented more efficiently using garbled circuits, rather than homomorphic en-
cryption. Therefore, we can easily optimize the S-PPCML protocol by replacing
homomorphic-based comparison with one using a garbled circuit.
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For each Xn and Ym from C′s and S′s inputs, respectively, S computes en-
crypted Euclidean distance between the two as in our S-PPCML protocol. Then
S “obfuscates” the result by multiplying it with a random value rn,m. The ob-
fuscated value is returned to C, which inputs it into the comparison circuit. S
inputs ε and rn,m. The circuit adds −rn,m to C’s input in order to “unmask” it,
and compares the result with ε. C only learns the outcome of the comparison,
while S learns nothing.

We implemented this comparison circuit based on the design of efficient cir-
cuits for addition modulo 2N and comparison described in [37].

Other Optimizations. We perform as much computation as possible in the
unencrypted domain. In particular, both S and C compute, in the clear, sum-
mation of the squares of all elements in their feature vectors.

6.2 Optimized Protocol

The protocol below includes all the aforementioned optimizations.

– Protocol Input: C’s input is a set of feature vectors X = {X1, . . . , Xv},
withXn = (xn,1, . . . , xn,�) and key pair (pk, sk). S’s input is Y = {Y1, . . . , Yw}
where Ym = (ym,1, . . . , ym,�) is a feature vector.

– Protocol Output: C’s output is the number of feature vectors Xn ∈ X
that have square Euclidean distance smaller than ε2 with at least one vector
from Y; i.e., |Ψ̂ |.

Protocol steps:
1. For each n = 1, . . ., v and i = 1, . . . , 	, C encrypts {〈Enc(xn,i),Enc(cn) =

Enc(
∑�

i=1 x
2
n,i)〉} and sends results to S.

2. For each m = 1, . . . , w, S computes {Enc(sm) = Enc(
∑�

j=1 y
2
m,j)}.

3. For each n = 1, . . . , v and m = 1, . . . , w, S computes the encrypted square
Euclidean distance between Xn and Ym as

Enc(dn,m) = Enc

(
�∑

i=1

(xn,i − ym,i)
2

)
= Enc(cn) ·Enc(sm) ·

�∏
i=1

(
Enc(xn,i)

(−2ym,i)
)

4. For each n = 1, . . . , v and m = 1, . . . , w, S randomizes the value computed
in the previous step as: Enc(d̂n,m) = Enc(dn,m) · Enc(rn,m), where rn,m is
uniformly selected from the message space. Then, S shuffles these values and
sends them to C.

5. C decrypts all {Enc(d̂n,m)}; C and S evaluate a garbled circuit over input

{Enc(d̂n,m)} for C and {−rn,m}, ε2 for S. The circuit implements functional-

ity (d̂n,m + (−rn,m)) < ε2, where addition is performed modulo 2N for some
N .

6. C outputs γ =
∑v

n=1

∑w
m=1 δn,m.
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7 Implementation and Performance

In this section we provide implementation details for our protocols, and report
on performance measurements. All protocols are implemented in C. Our code is
compiled using GCC 4.2 and relies on the GMP library to implement number-
theoretic cryptographic operations and on OpenSSL for symmetric cryptography.
Tests are run under Ubuntu 8.04 LTS.

Measurements are performed on a machine with two quad-core 2.5 GHz Intel
Xeon CPUs and 16 GB memory. In order to provide results comparable with
the state of the art, we restrict our code to run on a single CPU core. However,
since there is no data dependency in the steps that represent the bulk of the
computation, our protocols scale virtually linearly with the number of available
cores.

We instantiated DGK with a 1024-bit modulus. We also set the security pa-
rameter t = 160 and u = 220, since the largest plaintext value in our dataset does
not require over 19 bits. Our garbled circuit implementation uses the OT proto-
col in [33] for transferring keys corresponding to input wires. It reduces OTM

L to
OTκ

κ. We set the security parameter κ = 80, M = 20 (since we selected u = 220)
and L = 128 (the symmetric key size)6. We assume that the data-independent
part of OT is performed by C and S prior to running AS-PPCML. All perfor-
mance results in this section correspond to the average of 50 runs. Step-3 of
the PPCML protocol is optimized by pushing most of the computation to the
unencrypted domain: S computes

∑
i y

2
n,i and then encrypts the result.

On-Line Computation Complexity
Table 2 illustrates our measurements, where both C and S hold 300 feature
vectors (i.e., v = w = 300). For C, the total cost is dominated by the homomor-
phic comparison, while the most expensive step for S is the computation of the
Euclidean distance.

Table 2. Breakdown of the server- and client-side on-line computation of our PPCML
protocol for v = w = 300

Server

Step-3: Euclidean Distance 518.9 s

Step-4: Comparison 125.15 s

Step-5: Multiplication 179.4 ms

Step-6: Exponentiation 7.386 ms

Total ≈ 10.7 min

Client

Step-4: Comparison 1096.83 s

Step-7: Decryption 39.11 ms

Total ≈ 18.3 min

Tables 3 shows the computation cost of our basic S-PPCML protocol, while
Table 4 shows the breakdown of the computations of the AS-PPCML Protocol.

6 L is dictated by the key size of AES – used to encrypt input wires in the garbled
circuit – rather than by security reasons. In fact, using an 80-bit key would provide
the desired level of security. However, performance-wise there would be virtually no
difference.
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Table 3. Breakdown of the server- and client-side on-line computation of our basic
S-PPCML protocol for v = w = 300

Server

Step-3: Euclidean Distance 518.9 s

Step-4: Comparison 125.15 s

Step-5: Multiplication 179.4 ms

Step-6: Comparison 417.2 ms

Step-7: Multiplication 0.598 ms

Total ≈ 10.7 min

Client

Step-4: Comparison 1096.83 s

Step-6: Comparison 3.66 s

Step-8: Decryption 0.13 ms

Total ≈ 18.3 min

Table 4. Breakdown of the server-side and client-side on-line computation of our AS-
PPCML protocol for v = w = 300

Server

Step-3: Euclidean Distance 518.9 s

Step-4: Randomization 180 ms

Step-7: Comparison 10.8.s

Total ≈ 8.8 min

Client

Step-5-a: Decryptions 11.7 s

Step-5-b: Comparison 11.1 s

Total 22.8 s

The use of a garbled circuit for comparing Euclidean distance with the threshold
has a great impact on the performance of the AS-PPCML protocol. In particular,
total time is reduced by a 1.2x factor for the server and by a 48x for the client.

On-Line Communication Complexity. The on-line communication cost is
proportional to v · w. Let |N | indicate the number of bits corresponding to a
DGK ciphertext. The following exchanges of information contribute to the total
bandwidth (on-line) required by the PPCML protocol:

– The encrypted vectors sent by C to S account for ((2701 + 1) · v) · |N | bits.
– The homomorphic-based comparison – (2 ·M + 3) · w · v · |N | bits.
– The results sent by S to C – v · |N | bits.

Thus, the on-line data exchanged between C and S amounts to (2702 · v + (2 ·
M + 3) · w · v + v) · |N | bits. In our setting, this amounts to 572 MB.

Similarly, the on-line communication cost of the S-PPCML protocol is (2701 ·
v + (2 ·M + 3) ·w · v + (2 ·M + 3) · v + 1) · |N | bits, i.e., 573 MB in our setting.

Finally, the AS-PPCML protocol relies on a garbled circuit for comparison,
which incur on-line communication cost of 2 ·M ·(L+κ) ·w ·v bits. Therefore the
total cost of the AS-PPCML protocol is ((2702·v+w ·v)·|N |+2·M ·(L+κ)·w ·v)
bits, corresponding to 200 MB in our setting.

8 Conclusion

In this paper we have introduced a set of protocols that implement PPCML and
S-PPCML/AS-PPCML functionalities. The first allows two parties representing
two user communities – e.g., two review websites – to privately determine which
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users belong to both communities. The second protocol allows the parties to
privately compute how many users they have in common. Our protocols com-
pare user-generated content rather than user identifiers, such as user-IDs or IP
addresses.

We implement our protocols and measure their performance on commodity
hardware. Our results indicate that the overhead introduced by the privacy-
preserving computation is relatively small. In particular, two parties which hold
300 users each can determine the number of common users in a matter of minutes.

As for the future work, we plan to optimize our protocols for multi-core CPUs.
Parallel implementation of our protocols can provide significant speedup, allow-
ing clusters with hundreds of CPUs to run protocols over sets of millions of
users.
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A Security Analysis

Security of the protocol presented in Section 5 is based on that of security as-
sumptions about our building blocks. In particular, we assume that DGK en-
cryption is semantically secure. This was shown in [23,22] under the RSA setting.

We now outline how to simulate the view of C and S using each party’s inputs
and outputs only. We show that such simulation is indistinguishable from a real
execution of the protocol. This allows us to claim that the protocol is secure in
the honest-but-curious (HbC) model.
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C’s input consists of a feature vector and a private key, while its output
is a single bit b. Given these values, the simulator constructs messages to C as
follows: during the comparison protocol (Step 4) the simulator sends encryptions
of random values to C. Since DGK is semantically secure, C cannot detect it.
Then, if b = 0 the simulator returns to C u = Enc(0) and u = Enc(r) (for a
random r) otherwise. Since the outcome of decryption is distributed identically
to that what C expects, simulation cannot be detected.
S’s input is a database consisting of w feature vectors; S has no output. The

simulator encrypts two random values per each element of the feature vector
and sends them to S. Since DGK is semantically secure, S cannot detect that
the message from the simulator represents encryption of random values. During
privacy-preserving comparison, the simulator sends encryption of random values
to S (Step 4). S, however, cannot decide with any non-negligible probability that
these values are indeed random.

An analogous argument extends to the protocols in Section 6. However, secu-
rity of these protocols relies on two additional assumptions: (1) oblivious transfer
used is for garbled circuit evaluation is secure; and (2) garbled circuit evaluation
is secure.

Assumption (1) holds if the hash function used to instantiate the oblivious
transfer protocol in [33] is either correlation-robust, or modeled as a random
oracle. Also, [33] requires the use of a secure pseudorandom generator. With
respect to (2), security of garbled circuits with “free-XOR” was proven under
the assumption that the hash function is correlation-robust under the definition
of [19], or is instantiated as a random oracle.
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Abstract. We study ballot independence for election schemes:

– We formally define ballot independence as a cryptographic game and
prove that ballot secrecy implies ballot independence.

– We introduce a notion of controlled malleability and show that it is
sufficient for ballot independence. We also show that non-malleable
ballots are sufficient, but not necessary, for ballot independence.

– We prove that ballot independence is sufficient for ballot secrecy
under practical assumptions.

Our results show that ballot independence is necessary in election schemes
satisfying ballot secrecy. Furthermore, our sufficient conditions enable
simpler proofs of ballot secrecy.

1 Introduction

Voters should be able to express their free will in elections without fear of retri-
bution; this property is known as privacy. Cryptographic formulations of privacy
depend on the specific setting and ballot secrecy1 [2–4] has emerged as a de facto
standard privacy requirement of election schemes.

– Ballot secrecy. A voter’s vote is not revealed to anyone.

Ballot secrecy provides privacy in an intimidation-free environment and stronger
properties such as receipt-freeness and coercion resistance [5] provide privacy
in environments where intimidation may occur. Bernhard et al. [6–8] propose
a cryptographic formalisation of ballot secrecy. However, we show that their
definition allows election schemes that reveal voters’ votes to be proven secure
and we strengthen the definition to prevent this issue.

Ballot independence [4, 9] is seemingly related to ballot secrecy.

– Ballot independence. Observing another voter’s interaction with the election
system does not allow a voter to cast a meaningfully related vote.

� The full version of this paper is available as an IACR Cryptology ePrint [1].
1 The terms privacy and ballot secrecy occasionally appear as synonyms in the liter-
ature and we favour ballot secrecy because it avoids confusion with other privacy
notions, such as receipt-freeness and coercion resistance, for example.
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Indeed, Cortier and Smyth [4, 10, 11] attribute a class of ballot secrecy attacks
to the absence of ballot independence. However, ballot independence has not
been formally defined and its relationship with ballot secrecy is unknown. We
provide a definition of ballot independence and show that ballot secrecy and
ballot independence coincide in practical settings.

In traditional paper-based elections, physical mechanisms can be used to
achieve privacy, for instance, ballots are completed in isolation inside polling
booths, placed into locked ballot boxes, and mixed with other ballots before
tallying. (See Schneier [12] for a detailed, informal security analysis of Papal
elections.) By comparison, the provision of ballot secrecy is more difficult in
end-to-end verifiable election schemes, since ballots are posted on publicly read-
able bulletin boards. Nonetheless, ballot secrecy is a de facto standard property
of election schemes and, hence, must be satisfied. The aforementioned physical
mechanisms also provide an assurance of ballot independence in paper-based
elections, however, the motivation for election schemes satisfying ballot inde-
pendence is unclear, indeed, Bulens, Giry & Pereira [13, §3.2] question whether
ballot independence is a desirable property of election schemes and highlight
the investigation of voting schemes which allow the submission of related votes
whilst preserving ballot secrecy as an interesting research direction. Moreover,
in the context of the Helios [14, 15] election scheme, Desmedt & Chaidos [16]
present a protocol which allows Bob to cast the same vote as Alice, with Alice’s
cooperation, and claim that Bob cannot learn Alice’s vote. In this paper, we
study the relationship between ballot secrecy and ballot independence and show
that the two properties coincide in practical settings.

Contribution and Outline. In Section 3 we show that the definition of ballot
secrecy by Bernhard et al. allows election schemes that reveal voters’ votes to be
proven secure and we present a stronger definition of ballot secrecy to prevent
this issue. In Section 4 we propose a definition of ballot independence and give
sufficient conditions to achieve this notion, including a definition of controlled-
malleable encryption. In Section 5 we prove that ballot secrecy implies ballot
independence, thereby providing an argument to end the ballot independence
debate: ballot independence is a necessary property of election schemes (assum-
ing ballot secrecy is required). In addition, we critique (Section 5.1) the results
by Desmedt & Chaidos and argue that their security results do not support
their claims. In Section 6 we present a practical class of election schemes (which
includes Helios) for which ballot secrecy and ballot independence coincide.

Related work. The concept of independence was introduced by Chor et al. [17]
and studied in the context of election schemes by Gennaro [9]. Cortier and
Smyth [4, 10, 11] have discovered attacks on ballot secrecy in several election
schemes and considered the relationship to independence [4, Section 7]; their
evidence suggests ballot secrecy implies ballot independence in homomorphic
voting systems such as Helios. However, Cortier & Smyth did not make any
formal claims, because ballot independence had not been formally defined. By
comparison, in this paper, we present a formal definition of ballot independence
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and prove that ballot secrecy implies ballot independence. Bernhard, Pereira &
Warinschi [7] show that a non-malleable encryption scheme is sufficient to build
an election scheme satisfying ballot secrecy and our work generalises their result.

2 Preliminaries

We adopt standard notation for the application of probabilistic algorithms: if
A is a probabilistic algorithm, then A(x1, . . . , xn; r) is the result of running A
on input x1, . . . , xn and coins r. We let y ← A(x1, . . . , xn) denote picking r at
random and assigning the output of A(x1, . . . , xn; r) to the variable y. If S is
a finite set, then x ← S assigns a uniformly chosen element of S to x. If α is
neither a probabilistic algorithm nor a set, then x ← α assigns α to x. Vectors
are denoted using boldface, for example, x. We extend set membership notation
to vectors: we write x ∈ x (respectively, x �∈ x) if x is an element (respectively,
x is not an element) of the vector x.

2.1 Non-malleable Encryption

Let us recall the standard syntax for asymmetric encryption schemes.

Definition 1 (Asymmetric encryption scheme). An asymmetric encryp-
tion scheme is a triple of efficient algorithms (Gen,Enc,Dec) such that:

– The key generation algorithm Gen takes a security parameter 1n as input
and outputs a key pair (pk , sk), where pk is a public key and sk is a private
key.

– The encryption algorithm Enc takes a public key pk and message m as input,
and outputs a ciphertext c.

– The decryption algorithm Dec takes a private key sk and ciphertext c as
input, and outputs a message m or the special symbol ⊥ denoting failure.

Moreover, the scheme must be correct: for all (pk , sk) ← Gen(1n), we have for
all messages m and ciphertexts c ← Encpk (m), that Decsk (c) = m with over-
whelming probability.

Non-malleability [18–20] is a standard computational security model used
to evaluate the suitability of encryption schemes. Intuitively, if an encryption
scheme satisfies non-malleability, then an adversary is unable to construct a
ciphertext “meaningfully related” to a challenge ciphertext, thereby capturing
the idea that ciphertexts are tamper-proof. Formally, Definition 2 recalls the
non-malleability game proposed by Bellare et al. [19].

Definition 2 (Non-malleable encryption). Let Π = (Gen,Enc,Dec) be an
asymmetric encryption scheme, A = (A1, A2) be an adversary, and

NM-CPAA,Π(n) := |SuccCPA
A,Π (n)− SuccCPA

A,Π,$(n)|
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where SuccCPA
A,Π (n) and SuccCPA

A,Π,$(n) are defined below, and n is a security pa-
rameter.

SuccCPA
A,Π (n) = Pr [(pk , sk) ← Gen(1n); (M, s) ← A1(pk );

x←M ; y ← Encpk (x); (R,y) ← A2(M, s, y);

x← Decsk (y) : y �∈ y ∧ ⊥ �∈ x ∧ R(x,x)]

SuccCPA
A,Π,$(n) = Pr [(pk , sk) ← Gen(1n); (M, s) ← A1(pk );

x, x′ ←M ; y ← Encpk (x); (R,y) ← A2(M, s, y);

x← Decsk (y) : y �∈ y ∧ ⊥ �∈ x ∧ R(x′,x)]

In the above games we insist that the message space is valid (that is, |x| = |x′|
for any x, x′ ← M given non-zero probability in the message space) and sam-
plable in polynomial time, and the relation R is computable in polynomial time.
We say Π satisfies NM-CPA if for all probabilistic polynomial-time adversaries
A and security parameters n, there exists a negligible function negl such that
NM-CPAA,Π(n) ≤ negl(n).

3 Election Schemes and Ballot Secrecy

Based upon Bernhard et al. [6–8], we define a syntax for election schemes as
follows.

Definition 3 (Election scheme). An election scheme is a tuple of efficient
algorithms (Setup,Vote,BB,Tally) such that:

– The setup algorithm Setup takes a security parameter 1n as input and out-
puts a bulletin board bb, vote space m, public key pk , and private key sk,
where bb is a multiset and m is a set.

– The vote algorithm Vote takes a public key pk and vote v ∈ m as input, and
outputs a ballot b.

– The bulletin board algorithm BB takes a bulletin board bb and ballot b as
input, where bb is a multiset. It outputs bb∪{b} if successful (i.e., b is added
to bb) or bb to denote failure (i.e., b is not added).

– The tally algorithm Tally takes a private key sk and bulletin board bb as
input, where bb is a multiset. It outputs a multiset v representing the election
result if successful or the empty set ∅ to denote failure, and auxiliary data
aux .

Moreover, the scheme must satisfy the following correctness property: for all
parameters (bb0,m, pk , sk) ← Setup(1n), votes v ∈ m, multisets bb, ballots
b ← Votepk (v), bulletin boards bb′ ← BB(bb, b) and tallying data (v, aux ) ←
Tallysk (bb) and (v′, aux ′) ← Tallysk (bb′), we have with overwhelming probability
that bb′ = bb ∪ {b} and if v �= ∅, then v′ = v ∪ {v} and |v| = |bb|, otherwise,
v′ = ∅.
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In comparison with earlier presentations by Bernhard et al., Definition 3 is
stricter, since we explicitly define the bulletin board and election result as mul-
tisets. Moreover, the correctness condition, asserting that the election result
corresponds to the multiset of votes cast, is new. Although the correctness con-
dition restricts the applicability of our definition – for example, we cannot model
schemes with weighted votes nor schemes which only reveal the winning candi-
date (as opposed to the number of votes for each candidate) – we believe it
is useful for simplicity. In addition, there are some minor differences in error
handling and we merge some functionality into a single function2.

We demonstrate the applicability of our definition by recalling the construc-
tion (Definition 4) for election schemes proposed by Bernhard et al. [6, 7]. We
stress that more sophisticated schemes can also be captured – for example, Bern-
hard et al. [6–8] model Helios – but the following scheme is sufficient for our
purposes.

Definition 4 (Enc2Vote). Given an asymmetric encryption scheme Π = (Gen,
Enc,Dec), we define the election scheme Enc2Vote(Π) as follows.

– Setup takes a security parameter 1n as input and outputs (∅,m, pk , sk), where
(pk , sk) ← Gen(1n) and m is the encryption scheme’s message space.

– Vote takes a public key pk and vote v ∈ m as input, and outputs Encpk (v).
– BB takes a bulletin board bb and ballot b as input, where bb is a multiset.

If b ∈ bb, then the algorithm outputs bb (denoting failure), otherwise, the
algorithm outputs bb ∪ {b}.

– Tally takes as input a private key sk and a bulletin board bb, where bb is a
multiset. It outputs the multiset {Decsk (b) | b ∈ bb} and auxiliary data ⊥.

Intuitively, given an asymmetric encryption scheme Π satisfying NM-CPA, the
construction Enc2Vote(Π) derives ballot secrecy from Π until tallying and the
Tally algorithm maintains ballot secrecy by returning the number of votes for
each candidate as an unordered multiset of votes3.

Ballot Secrecy. Ballot secrecy is a de facto standard property of election
schemes and, based upon Bernhard et al. [6–8], we formalise a cryptographic
game for ballot secrecy (Definition 5). We will describe the differences between

2 In essence, the tally algorithm defined by Bernhard et al. outputs a tally τ and an
additional algorithm is used to compute the election result v from τ . We combine the
functionality of these two algorithms into a single function but distinguish between
the result v and auxiliary data aux , which is typically used to store signatures of
knowledge proving that the election result has been correctly computed from the
bulletin board.

3 Definition 4 rectifies a mistake in the presentation by Bernhard, Pereira & Warin-
schi [7] which outputs a vector of votes (rather than a multiset) ordered by the time
at which each vote was cast and therefore does not provide ballot secrecy, since there
is a mapping between the order in which votes were cast and the votes. (Bernhard et
al. [6] avoid this problem in a similar fashion.)
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our formalisation and earlier presentations after our definition. Informally, our
game proceeds as follows. First, the challenger executes the setup algorithm to
construct a bulletin board bb0, a vote space m, a public key pk , and a private
key sk ; the challenger also initialises a bulletin board bb1 as a copy of bb0 and
selects a random bit β. Secondly, the adversary executes the algorithm A1. The
algorithm A1 has access to an oracle O as follows: O(v0, v1) allows the adversary
to honestly cast a vote v0 ∈ m on bulletin board bb0 and honestly cast a vote
v1 ∈ m on bulletin board bb1, where the votes are cast using ballots constructed
by the Vote algorithm; O(b) allows the adversary to cast a ballot b, where b
is constructed by the adversary and might be rejected by the bulletin board;
and O() returns the bulletin board bbβ. Thirdly, the challenger computes the
election result v as follows: if the honestly cast votes on the bulletin board bb0
correspond to the honestly cast votes on the bulletin board bb1, then the chal-
lenger reveals the election result for bbβ , otherwise, the challenger reveals the
election result for bb0, thereby preventing the adversary from trivially revealing
β when the honestly cast votes differ. (The distinction between bb0 and bb1 is
trivial when the honestly cast votes differ, because the adversary can test for the
presence of honestly cast votes in the election result.) Formally, we introduce
the multisets L0 and L1 to record the honestly cast votes on bulletin boards bb0
and bb1, and model the correspondence between bulletin boards as an equality
test on L0 and L1, that is, we compute (v, aux ) ← Tallysk (bbα) such that α = β,
if L0 = L1, and α = 0, otherwise. Finally, the adversary executes the algorithm
A2 on the election result v and any state information s provided by A1. The
election scheme satisfies ballot secrecy if the adversary has less than a negligible
advantage over guessing the bulletin board she interacted with.

Definition 5 (IND-SEC: Ballot secrecy). Let Γ = (Setup,Vote,BB,Tally) be
an election scheme, A = (A1, A2) be an adversary, and IND-SECA,Γ (n) be the
quantity defined below, where n is the security parameter.

2 · Pr [L0 ← ∅;L1 ← ∅; (bb0,m, pk , sk) ← Setup(1n); bb1 ← bb0; β ← {0, 1};
s← AO1 (m, pk); (v, aux ) ← Tallysk (bbα) : A2(bbβ , v, aux , s) = β]− 1

In the above game, L0 and L1 are multisets, the oracle O is defined below, and
the bit α is defined as follows: if L0 = L1, then α = β, otherwise, α = 0.

– O(v0, v1) executes L0 ← L0 ∪ {v0};L1 ← L1 ∪ {v1}; b0 ← Votepk (v0); b1 ←
Votepk (v1); bb0 ← BB(bb0, b0); bb1 ← BB(bb1, b1), if v0, v1 ∈ m.

– O(b) assigns bb′β ← bbβ, executes bbβ ← BB(bbβ , b) and if bbβ �= bb′β, then
executes bb1−β ← BB(bb1−β , b).

– O() outputs bbβ.

We say Γ satisfies ballot secrecy if for all probabilistic polynomial-time adver-
saries A and security parameters n, there exists a negligible function negl such
that IND-SECA,Γ (n) ≤ negl(n).

Our game captures a setting where an adversary can cast ballots on behalf of
a subset of voters, whom we call dishonest voters, and controls the distribution
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of votes cast by the remaining voters, whom we call honest voters, but honest
voters always cast ballots constructed by the Vote algorithm. Furthermore, at
the end of the election, the adversary obtains the election result. Intuitively, if
the adversary loses the game, then the adversary is unable to distinguish between
the bulletin boards bb0 and bb1, hence, the adversary cannot distinguish between
an honest ballot b0 ∈ bb0 and an honest ballot b1 ∈ bb1, therefore, voters’ votes
cannot be revealed. On the other hand, if the adversary wins the game, then
there exists a strategy to distinguish honestly cast ballots. We stress that a
unanimous election result will always reveal all voters’ votes and we tolerate this
factor in our game by challenging the adversary to guess the bit β, rather than
the distribution of votes.

Comparing IND-SEC and earlier definitions. In comparison with earlier defini-
tions by Bernhard et al. [6–8], Definition 5 permits α ∈ {0, 1}, whereas, earlier
presentations implicitly4 insist α = 0. It follows that Definition 5 allows the
adversary to access auxiliary data generated by tallying bbβ , whereas, earlier
definitions only allow the adversary to access the auxiliary data generated by
tallying bb0. Accordingly, earlier definitions implicitly assume that auxiliary data
cannot be used to violate ballot secrecy, indeed, this corresponds to the descrip-
tion by Bernhard et al. [6, §2.2]: “[ballot secrecy] is satisfied if an adversary
[...] cannot learn anything about the votes of [...] honest voters beyond what can
be inferred from the election result.” Unfortunately, however, it is possible that
the auxiliary data can reveal voters’ votes. For example, a variant of Enc2Vote
(Definition 4) could define auxiliary data that maps ballots to decrypted ballots,
thereby violating ballot secrecy; indeed, as highlighted in Footnote 3, Bernhard,
Pereira & Warinschi [7] provided such a mapping in their variant of Enc2Vote.
As discussed, we permit α ∈ {0, 1}, rather than α = 0, thereby strengthening
Definition 5 in comparison with earlier definitions and, thus, overcoming the
limitations of previous works.

4 Ballot Independence

Intuitively, if an election scheme satisfies ballot independence, then an adversary
is unable to construct a ballot that will be accepted by the election’s bulletin
board and be meaningfully related to a non-adversarial ballot from the bul-
letin board [4, Section 7.2], thereby capturing the notion that accepted ballots
are tamper-proof. Building upon inspiration from non-malleable encryption, we
formalise ballot independence as a non-malleability game.

4.1 Non-malleability Game

The concept of non-malleability and first formalisation is due to Dolev, Dwork
& Naor [18,20]. Bellare et al. [19] build upon these results to introduce NM-CPA

4 Earlier presentations do not explicitly define a bit α, however, they always tally bb0
and this implicitly corresponds to α = 0 in Definition 5.
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(Definition 2) and based upon NM-CPA, we formalise ballot independence (Def-
inition 6) as a pair of cryptographic games: SuccBB

A,Π and SuccBB
A,Π,$. The first

three steps of both games are identical. First, the challenger sets up the keys,
vote space, and bulletin board. Secondly, the adversary gets the vote space m,
the public key pk and the board bb as input and must return a distribution M
on the vote space. The adversary may also read the board and submit ballots
of his own. Thirdly, the challenger samples a vote v from M . At this point the
two games diverge: in SuccBB

A,Π , the challenger constructs a ballot Votepk (v) and

adds it to the bulletin board; whereas, in SuccBB
A,Π,$, the challenger samples a

second vote v′ from M , constructs a ballot Votepk (v′) and adds it to the bulletin
board. Fourthly, the adversary must compute a relation R which is intended to
distinguish the election results produced by the two games. Finally, the chal-
lenger tallies the election and evaluates the relation R on the vote v and, after
removing the challenge vote, the election result. The adversary’s advantage is the
difference between the probabilities that his relation is satisfied in each game.

Definition 6 (NM-BB: Ballot independence). Let Γ = (Setup,Vote,BB,
Tally) be an election scheme, A = (A1, A2) be an adversary, and

NM-BBA,Γ (n) := |SuccBB
A,Π(n)− SuccBB

A,Π,$(n)|

where SuccBB
A,Π(n) and SuccBB

A,Π,$(n) are defined below, and n is the security
parameter.

SuccBB
A,Π(n) = Pr [(bb,m, pk , sk) ← Setup(1n); (M, s) ← AO1 (m, pk);

v ←M ; b← Votepk (v); bb← BB(bb, b); R← AO2 (s);

(v, aux ) ← Tallysk (bb) : R(v, v\{v})]

SuccBB
A,Π,$(n) = Pr [(bb,m, pk , sk) ← Setup(1n); (M, s) ← AO1 (m, pk);

v, v′ ←M ; b← Votepk (v′); bb← BB(bb, b); R← AO2 (s);

(v, aux ) ← Tallysk (bb) : R(v, v\{v′})]

In the above games we let O be defined as follows: O(b) executes bb← BB(bb, b)
and O() outputs bb. Moreover, we insist the vote space sampling algorithm M
and the relation R are computable in polynomial time, and for all v ← M we
have v ∈ m. We say Γ satisfies NM-BB (or ballot independence) if for all prob-
abilistic polynomial-time adversaries A and security parameters n, there exists
a negligible function negl such that NM-BBA,Γ (n) ≤ negl(n).

Intuitively, if an adversary wins the game, then the adversary is able to construct
a relation R which holds for a challenge ballot b ← Votepk (v) but fails for
b ← Votepk (v′). However, we must avoid crediting the adversary for trivial and
unavoidable relations which hold iff the challenge vote appears in the election
result, hence, we remove the challenge vote from the election result. By contrast,
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if the adversary can derive a ballot containing the challenge vote and the bulletin
board accepts such a ballot, then the adversary can win the game. For example,
suppose an election scheme allows the bulletin board to accept duplicate ballots
and witness that an adversary can win the game as follows, namely, the adversary
selects M as a uniform distribution on m, calls O(b) with the challenge ballot
b, and defines a relation R(v, v) that holds iff v ∈ v. In this setting, R(v, {v})
always holds at the end of SuccBB

A,Π , whereas, R(v, {v′}) holds with probability

1/m at the end of SuccBB
A,Π,$, since v′ is sampled independently from v. Finally, if

an adversary loses the game, then the adversary is unable to construct a suitable
relation, hence, there is no ballot which the bulletin board will accept such that
the ballot is related to Votepk (v) but not Votepk (v′), therefore, the adversary
cannot cast a ballot which is meaningfully related to an honest voter’s ballot.

Comparing NM-BB and NM-CPA. The main distinction between the notion
of non-malleability (Definition 2) and our definition of ballot independence is:
NM-CPA universally quantifies over ciphertexts, whereas, NM-BB quantifies over
ballots accepted by the bulletin board. It follows that non-malleability for en-
cryption is intuitively stronger than ballot independence, since non-malleability
for encryption insists that the adversary cannot construct ciphertexts meaning-
fully related to the challenge ciphertext, whereas, ballot independence tolerates
meaningfully related ballots, assuming that they are rejected by the bulletin
board algorithm BB. For example, suppose an adversary A includes the chal-
lenge ciphertext in the vector y and observe that this adversary cannot win
NM-CPAA,Π(n), due to the constraint y �∈ y; by comparison, suppose an ad-
versary B copies the challenge ballot b and observe that this adversary can win
NM-BBB,Γ (n). Nonetheless, for ballot independence, the bulletin board must
not contain meaningfully related ballots and, hence, checking for meaningfully
related ballots is a prerequisite of the bulletin board algorithm BB.

Non-malleable Ballots are Sufficient. Non-malleability for encryption pre-
vents the adversary from constructing a ciphertext meaningfully related to the
challenge ciphertext and, hence, it follows that non-malleable ballots are suffi-
cient for ballot independence. Indeed, we can derive non-malleable ballots in our
Enc2Vote construction using encryption schemes satisfying NM-CPA.

Proposition 7. Given an encryption scheme Π satisfying NM-CPA, the election
scheme Enc2Vote(Π) satisfies ballot independence.

In Proposition 7, it is sufficient for the bulletin board algorithm, defined by
Enc2Vote(Π), to reject ballots that already appear on the bulletin board since
non-malleability prevents the adversary from creating ballots meaningfully re-
lated to honest voters’ votes (except for exact copies). The proof is essentially
the same as that of [7, Theorem 4.2].
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4.2 Indistinguishability Game

Our non-malleability game (NM-BB) captures an intuitive notion of ballot inde-
pendence, however, the definition is relatively complex and security proofs in this
setting are relatively difficult. Bellare & Sahai [21] observed similar complexities
with definitions of non-malleability for encryption and show that NM-CPA is
equivalent to a simpler, indistinguishability-based notion. In a similar direction,
we introduce an indisinguishability game IND-BB for ballot independence and,
based upon Bellare & Sahai’s proof, show that our games NM-BB and IND-BB
are equivalent.

We model ballot independence as an indistinguishability game between an
adversary and a challenger (Definition 8). Informally, the game proceeds as fol-
lows. First, the challenger initialises the bulletin board bb, defines the vote space
m, and constructs a key pair (pk , sk). Secondly, the adversary executes the algo-
rithm A1 on the public key pk and vote space m, and outputs the triple (v0, v1, s),
where v0, v1 ∈ m and s is some state information. Thirdly, the challenger ran-
domly selects a bit β, computes a challenge ballot b, and updates the bulletin
board with b. Fourthly, the adversary executes the algorithm A2 which outputs
some state t. Next, the challenger computes the election result v. Finally, the
adversary executes the algorithm A3 on the input t and v\{vβ}. The election
scheme satisfies ballot independence if the adversary has less than a negligible
advantage over guessing the bit β.

Definition 8 (IND-BB: Ballot independence). Let Γ = (Setup,Vote,BB,
Tally) be an election scheme, A = (A1, A2, A3) be an adversary, n be the security
parameter and IND-BBA,Γ (n) the cryptographic game defined below.

2 · Pr [(bb,m, pk , sk) ← Setup(1n); (v0, v1, s) ← AO1 (m, pk ); β ← {0, 1};
b← Votepk (vβ); bb← BB(bb, b); t← AO2 (s); (v, aux ) ← Tallysk (bb) :

A3(t, v\{vβ}) = β]− 1

In the above game we let O be defined as follows:

– O(b) executes bb← BB(bb, b)
– O() outputs bb

Moreover, we insist that v0, v1 ∈ m. We say Γ satisfies IND-BB (or ballot in-
dependence) if for all probabilistic polynomial-time adversaries A and security
parameters n, there exists a negligible function negl such that IND-BBA,Γ (n) ≤
negl(n).

Intuitively, if an adversary wins the game, then the adversary is able to dis-
tinguish between challenge ballots b ← Votepk (v0) and b ← Votepk (v1). As per
our NM-BB game, we avoid trivial and unavoidable distinctions by removing the
challenge vote from the election result.

Our ballot independence games are based on standard security models for
encryption: NM-BB is based on non-malleability whereas IND-BB game is based
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on indistinguishability. Bellare and Sahai [21] have shown that non-malleability
is equivalent to a notion of indistinguishability for encryption and we adapt their
proof to show that NM-BB and IND-BB are equivalent.

Theorem 9 (NM-BB = IND-BB). Given an election scheme Γ , we have Γ
satisfies NM-BB if and only if Γ satisfies IND-BB.

Theorem 9 relates the advantage of an adversary casting a vote meaningfully
related to an honest voter’s vote to an advantage in guessing the honest voter’s
vote, in a setting where the election result does not contain the honest voter’s
vote. The proof of Theorem 9 can be found in the full version of our paper [1].

4.3 Controlled Malleability Is Sufficient

Recall that ballot independence tolerates meaningfully related ballots, assuming
they are rejected by the bulletin board. It follows intuitively that we can weaken
the requirement for an NM-CPA encryption scheme in Proposition 7, assuming we
modify Enc2Vote’s bulletin board algorithm to reject ballots meaningfully related
to existing ballots on the bulletin board. We start with a simple example. Given
an encryption scheme satisfying NM-CPA, we can derive a new encryption scheme
by prepending a random bit to all ciphertexts and removing this bit before
decryption. This new encryption scheme does not satisfy NM-CPA, however, we
can derive an election scheme satisfying ballot independence using Enc2Vote if
we modify Enc2Vote’s bulletin board algorithm as follows: given a bulletin board
bb and ballot b, reject b if it is identical to any ballot already on bb up to the
first bit. This example shows that non-malleable ballots are not necessary for
ballot independence. Let us now formalise a notion of controlled malleability5 ,
denoted NM-CPA/R (pronounced “NM-CPA modulo R”), which we will show is
sufficient for ballot independence.

Definition 10 (Controlled malleability). Let Π = (Gen,Enc,Dec) be an
asymmetric encryption scheme and R be an efficiently computable equivalence
relation on Π’s ciphertext space. We say that Π satisfies NM-CPA/R (or con-
trolled malleability) if for all efficient adversaries A the following probability is
negligible

Pr
[
(pk , sk) ← Gen(1n);β ← {0, 1} : Achalβ ,dec(pk) = β

]
where the oracles chal and dec are defined as follows and each oracle may be
called once, in any order.

– chalβ takes two messages m0 and m1 of equal length as input, computes
c∗ ← Encpk(mβ), and outputs c∗.

– dec takes a vector c of ciphertexts as input. If chalβ has previously output
a ciphertext c∗ such that R(c, c∗) holds for some c ∈ c, then output ⊥,
otherwise, output Decsk(c).

5 The term is taken from Kohlweiss et al. [22] who introduce controlled malleability
for zero-knowledge proofs.
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Our definition generalises non-malleability for encryption, in particular, NM-CPA
= NM-CPA/R, when R is the identity. Moreover, we note that our definition
could be adapted to a notion of CCA2/R by allowing arbitrarily many decryption
queries. The construction Enc2Vote can be generalised to asymmetric encryption
schemes satisfying controlled malleability as follows.

Definition 11 (Enc2Vote/R). Suppose Π = (Gen,Enc,Dec) is an asymmetric
encryption scheme and R is an efficiently computable equivalence relation on
Π’s ciphertext space, we define Enc2Vote/R(Π) = (Setup,Vote,BB,Tally) as
follows. Let the Setup, Vote and Tally algorithms be given by Enc2Vote(Π). The
BB algorithm takes bb and b as input, where bb is a multiset. If there exists
b′ ∈ bb such that R(b, b′), then BB outputs bb, otherwise, BB outputs bb ∪ {b}.

Assuming that the relation R does not relate fresh, honestly generated cipher-
texts in Π ’s ciphertext space to other values (Definition 12), we can ensure
that Enc2Vote/R(Π) satisfies the correctness condition of election schemes and,
hence, Enc2Vote/R(Π) is an election scheme satisfying ballot independence by
(Proposition 13).

Definition 12 (Sparse relation). Let Π = (Gen,Enc,Dec) be an asymmetric
encryption scheme and R be an efficiently computable equivalence relation on Π’s
ciphertext space. We say R is a sparse relation if for all (pk, sk) ← Gen, c and
m, we have c′ ← Enc(m, pk) yields R(c, c′) = 0 with overwhelming probability.

Proposition 13. Suppose Π is an asymmetric encryption scheme and R is an
efficiently computable and sparse equivalence relation on Π’s ciphertext space
such that Π satisfies NM-CPA/R. We have Enc2Vote/R(Π) satisfies ballot in-
dependence.

The proof of Proposition 13 is similar to the proof of [7, Theorem 4.2].

Design Paradigms and Discussion. We derive the following design paradigms
from our results: 1) use non-malleable ballots (Section 4.1), or 2) identify and
reject related ballots using controlled malleability. The latter paradigm is par-
ticularly useful when ballots contain malleable data such as voter identities or
pseudonyms, since we can tolerate malleability and provide provable security.
Moreover, it facilitates more realistic models of election schemes in comparison
with earlier work, for example, Bernhard et al. [6–8] abstractly model Helios
ballots as non-malleable ciphertexts, whereas, in practice, Helios ballots embed
non-malleable ciphertexts in malleable JavaScript Object Notation (JSON) data
structures (this is particularly relevant, since Smyth & Cortier [23, §4.1] have
shown that the JSON structures introduces vulnerabilities).

5 Ballot Secrecy Implies Ballot Independence

In this paper, all election schemes satisfy correctness: the bulletin board al-
gorithm BB adds honestly constructed ballots to the bulletin board, the tally
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algorithm Tally includes honest votes in the election result, and the number of
votes in an election result corresponds to the number of ballots (that is, each
ballot contains one vote). In this setting, an election scheme satisfying ballot
secrecy also satisfies ballot independence.

Theorem 14 (Ballot secrecy implies ballot independence). Given an
election scheme Γ satisfying ballot secrecy, we have Γ satisfies ballot indepen-
dence.

Proof (Proof sketch). The proof is by a standard reduction argument: given a
successful IND-BB adversary, we construct an adversary against IND-SEC. The
single challenge query on (v0, v1) becomes a pair of vote queries Vote(v0, v1) and
Vote(v1, v0), and oracle queries O(b) become ballot queries. When we obtain the
election outcome from the IND-SEC game, we remove v0 and v1 since this is
the distribution that the IND-BB adversary expects. Finally, we show that the
advantage translates between games. ��

Theorem 14 relates an advantage in guessing an honest voter’s vote in a setting
where the election result does not contain the honest voter’s vote to an advantage
in the ballot secrecy game where the election result does include the honest
voter’s vote. It follows, by Theorem 9, that an advantage in casting a vote
meaningfully related to an honest voter’s vote translates into an advantage in
guessing an honest voter’s vote, hence, we have shown that ballot independence
is necessary for ballot secrecy in election schemes defined by Definition 3. The
proof of Theorem 14 can be found in the full version of our paper [1].

5.1 Critique of Desmedt and Chaidos’s Helios Variant

Intuitively, Theorem 14 contradicts the results by Desmedt & Chaidos [16], who
claim to provide a variant of the Helios election scheme which allows Bob to
cast the same vote as Alice, with Alice’s cooperation, whilst preventing Bob
from learning Alice’s vote. In their protocol, Bob selects Alice’s ballot from the
bulletin board and communicates with Alice to generate a new ballot that is
guaranteed to contain the same vote as Alice’s. Desmedt & Chaidos’s security
claim is true before the election result is announced, since Bob gains no advantage
in guessing Alice’s vote. However, after the election result is announced, the claim
is false. We can informally contradict this claim – using results by Cortier &
Smyth [4,10,11] – in an election with voters Alice, Bob and Charlie: if Bob casts
the same vote as Alice, then Bob can learn Alice’s vote by observing the election
result and checking which candidate obtained at least two votes (that is, Bob
can learn Alice’s vote when the election result is not unanimous). We believe
the erroneous claim by Desmedt & Chaidos is due to an invalid inference from
their computational security result. Indeed, although the result [16, Theorem 1]
is correct, their model does not support their claims for real world security:
Desmedt & Chaidos consider a passive adversary that cannot observe the election
result, whereas, we believe a practical notion of security must consider an active
adversary who can cast ballots and observe the election result, since this captures
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the capabilities of an attacker in the real world. Nonetheless, a weaker notion
of ballot secrecy may be satisfiable in Desmedt & Chaidos’s variant of Helios,
assuming Alice never cooperates with the adversary. Clearly, no claims can be
made about Bob’s knowledge of Alice’s vote in this setting. We have shown
Desmedt & Chaidos our results and Chaidos agrees with our findings [24].

5.2 Discussion

We have shown that election schemes satisfying ballot secrecy must also satisfy
ballot independence. However, we must concede that alternative formalisms of
election schemes may permit different results. Indeed, Cortier & Smyth [4, Sec-
tion 7.1] present a result to the contrary using anonymous channels, which are
implicitly excluded from our model. Moreover, our model also excludes settings
where the adversary cannot control a majority of voters and places some restric-
tions on the election result, namely, the election result is captured as a multiset
which reveals the number of votes for each candidate. In this setting, an election
result can be computed from a partial election result if the votes of the remaining
voters are known. This property is implicitly used in our proof of Theorem 14.
On the other hand, some practical election schemes do not have this property.
For example, consider an election scheme which announces the winning candi-
date, but does not provide a breakdown of the votes for each candidate [25–28].
It follows that knowledge of a partial election result can only be used to derive
the election result if the adversary controls a majority of voters. Similarly, given
an election result and knowledge of a minority of votes, a partial election result
which excludes the known votes cannot be derived. In this setting, we believe
election schemes can satisfy ballot secrecy but not ballot independence, since
casting a minority of related ballots is not sufficient to reveal a voter’s vote.
Formal treatment of this case and consideration of whether such schemes are
practical is a possible direction for future work.

6 Sufficient Conditions for Ballot Secrecy

The main distinctions between our ballot secrecy (IND-SEC) and ballot indepen-
dence (IND-BB) games are as follows.

1. The challenger in our ballot independence game explicitly defines a challenge
ballot and adds the ballot to the bulletin board, whereas, the challenger in
our ballot secrecy game provides the adversary with an oracle OB(·, ·).

The two formulations are similar, indeed, the challenger’s computation b ←
Votepk (vβ); bb ← BB(bb, b) is similar to an oracle call OB(v0, v1). Moreover, a
hybrid argument will show that it does not matter if we give the adversary only
one challenge ballot or many oracle calls.

2. The adversary in our ballot secrecy game has access to the auxiliary data
produced during tallying, but the adversary in our ballot independence game
does not.
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The second point distinguishes our two games; Theorem 14 shows that ballot
secrecy is stronger than independence and Footnote 3 gives a case where it is
strictly stronger: the presentation of the Enc2Vote construction by Bernhard,
Pereira & Warinschi provides ballot independence, but the auxiliary data maps
voters to votes, thereby violating ballot secrecy. Nonetheless, by restricting the
adversary’s access to auxiliary data we can show that the two games are equiv-
alent (Theorem 15) and, hence, in the absence of auxiliary data, ballot inde-
pendence is a sufficient condition for ballot secrecy, in particular, Enc2Vote and
Enc2Vote/R are constructions for election schemes satisfying ballot secrecy.

Theorem 15 (NM-BB = IND-SEC, without auxiliary data). Suppose Γ =
(Setup,Vote,BB,Tally) is an election scheme such that there exists a constant
symbol ⊥ and for all parameters (bb0,m, pk , sk) ← Setup(1n), multiesets bb and
tallying data (v, aux ) ← Tallysk (bb), we have aux =⊥. It follows that Γ satisfies
ballot secrecy if and only if Γ satisfies ballot independence.

A proof of Theorem 15 can be found in the full version of this paper [1]. In
essence, the proof uses a standard hybrid argument to show that it is sufficient
to consider a variant of the IND-SEC game in which the adversary is restricted
to a single oracle call O(v0, v1) and shows that an adversary in this game can
be used to construct a successful adversary against IND-BB.

Intuitively, we can generalise Theorem 15 to election schemes in which the
auxiliary data can be simulated. Since the auxiliary data output by election
schemes typically consists of signatures of knowledge proving that the election
result has been correctly computed from the bulletin board, we expect many
practical election schemes will satisfy zero-knowledge auxiliary data, indeed,
Helios outputs partial ElGamal decryptions [29, 30] and proofs demonstrating
knowledge of discrete logarithms [31–33] which can be simulated. In this con-
text, we believe ballot secrecy and ballot independence coincide (Remark 16).
Unfortunately, formalising zero-knowledge is a complex issue – in particular,
the simulator needs some extra capabilities compared to the election officials
(otherwise the officials could publish simulated proofs!) – to which there is no
general solution and, hence, there is no general proof of Remark 16. Nonethe-
less, we believe Remark 16 can be shown to hold for particular formalisations of
zero-knowledge, for instance, a proof could be constructed in the programmable
random oracle model (the proof would essentially be that of Theorem 15 with
the simulator being run at the appropriate point; we briefly comment on this in
the proof of Theorem 15) and, hence, a proof of ballot secrecy can be reduced
to a proof of ballot independence.

Remark 16 (NM-BB = IND-SEC for zero-knowledge auxiliary data). Given an
election scheme Γ satisfying zero-knowledge auxiliary data (informally, zero-
knowledge auxiliary data means that the auxiliary data can be simulated given
the result), we have Γ satisfies ballot secrecy if and only if Γ satisfies ballot
independence.

Remark 16 suggests that ballot independence is a sufficient condition for bal-
lot secrecy in election schemes where auxiliary data can be simulated. Coupled
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with earlier results [8], this should facilitate a proof of ballot secrecy in Helios.
(Bernhard et al. [6] provide a proof of ballot secrecy in a variant of Helios which
uses the Naor & Yung transformation [34] to derive non-malleable ballots and
Bernhard, Pereira & Warinschi [8] prove that Helios satisfies ballot secrecy in
the special case of referendums, however, a full proof of ballot secrecy in Helios
is not currently known.)

7 Conclusion

We have formalised ballot independence in a variant of the model for election
schemes proposed by Bernhard et al. Our main results are as follows. Ballot
secrecy implies ballot independence; the converse holds too if there is no auxil-
iary data. Moreover, we have argued that ballot independence and ballot secrecy
coincide if auxiliary data is “zero knowledge;” since auxiliary data typically con-
sists of zero knowledge proofs, this assumption is realistic and holds for election
schemes such as Helios, for instance. Furthermore, we provide some sufficient
conditions for ballot independence and, hence, ballot secrecy: we show that non-
malleable ballots are sufficient but not necessary for independence and secrecy,
and introduce a weaker notion of controlled-malleable encryption which we show
is sufficient, moreover, this notion is better suited to modelling the way ballots
are handled in practice (for example, by Helios). In addition, we show that the
notion of ballot secrecy proposed by Bernhard et al. does not capture attacks
which rely on auxiliary data and we adopt a stronger definition. Furthermore,
we show that the variant of Helios proposed by Desmedt & Chaidos does not
satisfy ballot secrecy.
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Abstract. We propose a new encryption primitive, commitment con-
sistent encryption (CCE), and instances of this primitive that enable
building the first universally verifiable voting schemes with a perfectly
private audit trail (PPAT) and practical complexity. That is:

– the audit trail that is published for verifying elections guarantees
everlasting privacy, and

– the computational load required from the participants is only in-
creased by a small constant factor compared to traditional voting
schemes, and is optimal in the sense of Cramer, Gennaro and Schoen-
makers [16].

These properties make it possible to introduce election verifiability in
large scale elections as a pure benefit, that is, without loss of privacy
compared to a non-verifiable scheme and at a similar level of efficiency.

We propose different approaches for constructing voting schemes with
PPAT from CCE, as well as two efficient CCE constructions: one is tai-
lored for elections with a small number of candidates, while the second
is suitable for elections with complex ballots.

1 Introduction

Elections enable a set of voters to express their opinion regarding one or more
questions, and to build an aggregate outcome from these personal opinions.
While very simple elections mechanisms, like hand raising, can be very conve-
nient to organize, various properties are usually required from voting schemes
nowadays, which are not guaranteed by a hand raising process.

Vote privacy is probably the most important property that has been added
on top of correctness/verifiability (guaranteed by the hand raising process), and
became mandatory for public elections in most countries during the 19th century,
as a way to prevent coercion and bribery [36].

Elections guaranteeing the privacy of the votes while preserving the correct-
ness of the outcome are unfortunately much harder to organize in a trustworthy
way: as usual, correctness and privacy guarantees tend to conflict.

As a result, most voting schemes used today enforce privacy at the expense
of the correctness properties: in traditional paper-based scheme, it is most of
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the time impossible for a voter to convince himself that his vote is included in
the urns that are tallied (he has to trust election officers on that), and the same
happens with the commonly deployed non verifiable electronic voting schemes,
which also make it impossible for the voters to verify what is counted by the
computers, if there is anything counted at all.

As a way to solve this problem, universally verifiable voting systems were pro-
posed in the seminal works of Benaloh et al. [7, 13], works that have been followed
by a considerable body of research during the last 25 years (see [12, 15, 16, 18, 22,
27, 32, 34, 35] for instance). Universally verifiable elections are realized by includ-
ing in the voting process the production of an audit trail (which can be electronic,
made of paper, or both) that makes it possible for voters to check that their vote
was recorded properly and that the election outcome is consistent with all the
votes submitted by legitimate voters (formal definitions appear in [30, 29] for in-
stance.)

The adoption of universally verifiable technologies is however complicated if
the audit trail that is provided in order to guarantee the correctness of an election
in turn weakens the privacy of the votes: this raises questions about the relative
importance of the correctness improvement resulting from the audit trail versus
the potential decrease of privacy that results from that same audit trail, as well
as about the consequences of any (even partial) failure with respect to one of
these properties. These are sensitive problems, and the balance between these
requirements will typically depend on the specifics of each election (stakes, voter
population, culture, . . . ).

This compromise between correctness and privacy needs to be made in the
vast majority of the verifiable voting schemes that have been proposed [7, 16,
18, 22, 27, 34, 35] (we discuss the few exceptions in Section 1.2) including those
that have been used in real-world elections. The public audit trail of all those
voting systems indeed includes information that could reveal individual votes if
a computationally secure cryptosystem is broken, which will eventually happen
in a hard to predict future, either because of the increase of power of computing
devices, or because of a cryptanalytic breakthrough that can happen at any time.

For instance, Helios [3] publishes encrypted votes, which may eventually reveal
those votes if the encryption scheme that is used is broken. This in part motivated
the decision of the IACR to only display aliases instead of voter names on their
election bulletin board: in case of broken encryption, the election bulletin board
would then only reveal the content of encrypted votes but not their author (the
voting server is still aware of the link between aliases and voters, though, and
these aliases circulate in cleartext emails). Such a procedure however impairs
eligibility verifiability, as it becomes infeasible for the voters to verify whether
the ballots present on the bulletin board have been submitted by legitimate
voters or are the result of ballot stuffing by the organizers [29, 4].

In a similar way, Scantegrity II [11] publishes a Q table containing the confir-
mation codes that have been unveiled during the voting phase, and, as soon as
there are few dozen of voters, the content of this table will determine uniquely
the value of the seed used to build the original P table, which in turn reveals
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the votes corresponding to all voter receipts. This may be enough to defeat the
purpose of the introduction of privacy in voting systems, since voters may be
coerced just by fear of a future loss of privacy.

1.1 Contributions

We address this problem by proposing a new primitive, commitment consistent
encryption (CCE), that can be plugged in voting schemes as a replacement for
traditional encryption. The use of this primitive makes it possible to obtain
verifiable elections with a perfectly private audit trail (PPAT), that is, an audit
trail that preserves the privacy of the votes even when facing a computationally
unbounded adversary. As a result, adding a PPAT on top of a traditional voting
scheme provides the benefits of universally verifiable voting technologies without
interfering with the privacy properties of the original system.

As an important example of application, we investigate the use of CCE for
building single-pass [8] voting schemes with PPAT. Single-pass voting schemes
support a voting process that executes asynchronously and in a single step, which
makes them well-suited for large scale elections: voters just produce their ballot
and send it to the authorities. The reception of the ballots and the tally are then
orchestrated by a set of authorities, who are also in charge of publishing the elec-
tion audit trail. The correctness of this audit trail ensures the correctness of the
election outcome even if all authorities are corrupted. Still, the privacy of the votes
relies on the number of corrupted authorities to be lower than a certain threshold.

With this application in mind, we design two efficient CCE encryption sche-
mes. The first of our schemes is additively homomorphic and is particularly
suitable for elections based on homomorphic tallying. It is however limited to
elections that have a small election outcome space (e.g., elections in which the
outcome is simply the sum of votes received by the candidates). Our second
scheme is suitable for elections with mixnet-based tallying, in which all ballots
are decrypted after shuffling, which allows supporting arbitrary ballot formats.
We eventually propose a third scheme that is flexible enough to be used in both
contexts but is much less efficient and complicated to use.

Our first two schemes admit simple distributed and threshold key generation
procedures: all computations happen in prime order groups and the standard
threshold key generation techniques available in such groups apply [24]. This is
particularly important, especially in terms of round complexity, as the trustees
of an election will often not be able to setup specific software for running key
generation: for instance, the Helios voting system used by IACR relies on n-out-
of-n distributed key generation just to keep the key generation ceremony simple
(traditional threshold key generation would require more than one single round).

These two CCE schemes are also very efficient, making them usable in Java-
Script applications like Helios for instance: based on the performance on the
JSBN cryptographic library, the preparation of any vote that can be encoded on
256 bits requires less than a second.

Based on these schemes, we obtain the first universally verifiable voting pro-
tocols with PPAT and optimal efficiency (in the sense of [16]):
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– the ballot size and the voter computational load do not depend on the num-
ber of voters nor on the number of authorities and

– the workload of the tallying authorities grows linearly with the number of
voters and candidates.

Furthermore, our schemes do not rely on expensive cut-and-choose techniques:
the number of exponentiations to be performed is independent of the security
parameter.

1.2 Related Works

Very few voting protocols offer a perfectly private audit trail, and they all require
either an amount of work by the voters that grows linearly with the number of
trustees, or the use of specific communication channels, or are inefficient.

A first class of voting schemes that can offer a PPAT is based on blind sig-
natures [22]. Here, ballots are blindly signed by an authority, then unblinded
by the voters who eventually publish their authority signed ballot through an
anonymous channel. The vote privacy issue is here taken care of by the anony-
mous channel and the audit trail only contains anonymous information. Setting
up a perfectly anonymous channel can however be very challenging in a large
scale election.

A second approach was proposed by Cramer, Franklin, Schoenmakers and
Yung [15]. Here, a verifiable secret sharing scheme is used by the voters to dis-
tribute the information needed to tally their vote. The shares are then distributed
to the authorities either through private channels or protected by encryption.
The computational load of the voters then grows linearly with the number of
authorities, which motivated the consecutive proposal by Cramer, Gennaro and
Schoenmakers of a scheme that offers a computationally private audit trail but
a work load for the voters that is independent of the number of authorities [16].

In the same spirit as the work of Cramer et al. [15], Moran and Naor proposed
a voting scheme with everlasting privacy [33]. Here again, the privacy of the votes
is protected through secret sharing and the complexity of the ballot preparation
task grows linearly with the number of authorities.

As far as we know, our solutions are the first to offer a PPAT while being
based on the third approach of e-voting, that is, the tallying of threshold en-
crypted ballots [7, 13, 16, 27]. In a contemporary work, Demirel, van de Graaf
and Araújo [20, 19] explore a similar problem and propose a solution based on
the combination of Pedersen commitments and Paillier encryption proposed of
Moran and Naor [33]. As acknowledged by these authors, this solution is not
practical: it relies on cut-and-choose zero-knowledge (ZK) proofs, which makes
it slower than ours by approximately 4 orders of magnitude for comparable
security levels, and requires the execution of sophisticated MPC protocols for
distributed key generation by the trustees.

In terms of modeling, symbolic techniques also have been recently proposed
to model everlasting privacy [4].
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Two Flavors of Verifiability. Just like privacy, verifiability is a property that
comes in computational and perfect flavors. The huge majority of schemes offer
the computational variant, typically by relying on zero-knowledge proofs that
only are computationally sound. The solutions we propose share this feature.

We believe that the balance between computational and perfect verifiability is
however very different of the one we have for privacy. First, to have any impact,
an attack on the verifiability must be mounted on-the-fly during the election: a
falsified proof of verifiability proposed after 20 years will not convince anyone,
while a loss of privacy after 20 years might be a practical concern. Second,
the adoption of verifiable protocols is often conditioned by improvements on
traditional non-verifiable systems. So, having the possibility to bring verifiability
without weakening privacy (by publishing ciphertexts) might be a core decision
factor. Similar considerations motivated the design of Scantegrity: its practical
adoption is expected to have been facilitated by the absence of need to decrease
the usability of the paper ballots [11].

Coercion resistance. The historical motivation for introducing secret ballots was
the prevention of bribery or coercion. The schemes we propose address the con-
cern of a voter who fears that the audit data of an election could reveal their
vote. This concern is certainly the most ubiquitous and hard to prevent through
law enforcement or by voter education: it does not require any visible step by
a coercer who just needs to look at available data. We do not focus on specific
coercion resistance procedures in our simple application examples, as coercion
prevention is a much broader problem than what can be addressed at a proto-
col level, especially when vote-by-mail is authorized or when nothing prevents
bringing camera phones in a voting booth. Our schemes are however compatible
with most existing approaches, e.g., revoting as first used in Estonia or coercion
detection [25].

Roadmap. The rest of this paper is organized as follows. Section 2 introduces
our new encryption primitives, CC and CCVA encryption. Section 3 discusses
security properties that these encryption primitives need to satisfy for use in
voting applications. Section 4 defines two efficient CCVA schemes and explains
how they can be plugged in classical voting schemes. We finally analyse the
efficiency of our solutions in Section 5.

2 Commitment Consistent Encryption

We introduce a new encryption primitive, commitment consistent encryption
(CCE). A CCE primitive is a traditional public key encryption scheme that
offers an extra feature: from any CCE ciphertext, it is possible to derive a com-
mitment on the encrypted message, and the private key can also be used to
obtain an opening on that commitment. In the context of elections, we expect
voters to CC encrypt their vote, which will allow authorities to compute the tally
in a traditional way (e.g., by decrypting the homomorphic sum of the cipher-
texts). Furthermore, when receiving a CC ciphertext, the authorities can use a
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DeriveCom algorithm to derive commitments from CC ciphertexts and post that
commitment on the bulletin board. This provides a PPAT if the commitments
are perfectly hiding. In order to offer universal verifiability, the authorities can
also make use of an Open algorithm that makes it possible to derive openings of
commitments on the election tally.

For simplicity, we make our whole treatment in the single-key setting. The
extension to the full threshold setting is orthogonal to our concerns and can be
made using traditional techniques. In the following, an efficient algorithm runs
in PPT, and a negligible function decreases faster than any inverse polynomial.
An overwhelming function is close to 1 up to a negligible function.

Definition 1 (CC Encryption). A commitment consistent encryption scheme
Π is a tuple of efficient algorithms (Gen,Enc,Dec,DeriveCom,Open,Verify) de-
fined as follow :
Gen(1n): Given a security parameter n, output a triple (pp, pk, sk), respectively

the public parameters, the public key and the secret key.
Enc(pk,m): Output a ciphertext c which is an encryption using the public key

pk of a message m chosen in the plaintext space M defined by pp.
Dec(sk, c): From a ciphertext c, output a message m using the secret key sk.
DeriveCom(pk, c): Output a commitment d from a ciphertext c using pk.
Open(sk, c): Output an auxiliary value a using the secret key sk. This auxiliary

value can be considered as part of an opening for a commitment.
Verify(pk, d,m, a): From a message m, a commitment d with respect to key pk

and an auxiliary value a, output a bit. This algorithm checks the validity of
the opening (m, a) with respect to d and pk.

It is implicit that pp is given to each algorithm apart from Gen.

Correctness. We expect CCE schemes to satisfy the following correctness prop-
erties. For any (pp, pk, sk) ← Gen(1n), any message m ∈ M and any ciphertext
c← Enc(pk,m), it holds with overwhelming probability in n that Dec(sk, c) = m
and Verify(pk,DeriveCom(pk, c),Dec(sk, c),Open(sk, c)) = 1. For the sake of sim-
plicity we will often shorten the expression above as Verify(pk, c).

The security properties that we can expect from a CCE scheme and for the
derived commitments are the traditional ones and we will discuss later those
that are appropriate for our applications.

The CCE definition does not guarantee that it is unfeasible to produce ci-
phertexts that look just like honestly computed CCE ciphertexts but are not
consistent, which might be an issue for verifiable decryption. For instance, an
attacker might be able to produce a ciphertext such that the DeriveCom function
will provide a commitment that cannot be opened, which might be a problem if
some parties are required to provide a decryption. In order to solve this problem,
we introduce the concept of validity augmentation (VA) for CCE schemes.

From an operational point of view, a validity augmentation of a CCE scheme
adds three algorithms: Expand, Strip and Valid. Expand augments the public key
for the needs of the other algorithms. Valid takes an augmented CCE cipher-
text cva that contains a CCE ciphertext along with some proofs of validity, and
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runs a verification procedure on those proofs to make sure that it is possible
to extract from the ciphertext a commitment and an encryption of an opening
for that commitment. Eventually, Strip removes those proofs to provide some
homomorphic properties such as additivity on the encrypted messages.

Definition 2 (Validity augmentation). A scheme ΠVA := (VA.Gen,VA.Enc,
VA.Dec,VA.DeriveCom,VA.Open,VA.Verify,Expand, Strip,Valid) is a validity aug-
mentation of the CCE scheme Π := (Gen,Enc,Dec,DeriveCom,Open,Verify) if
ΠVA is a CCE scheme equipped with three additional efficient algorithms Expand,
Strip and Valid that satisfy the following conditions.

Augmentation. VA.Gen runs Gen to get (pp, pk, sk) and outputs an updated
triple (ppva, pkva, skva) := (pp,Expand(pk), sk).

Validity. Valid(pkva, cva) = 1 for every honestly generated ciphertext and keys
and, for any PPT adversary A, the following probability is negligible in n:

Pr [Valid(pkva, cva) = 1 ∧ ¬Verify(pk, Strip(pkva, cva)) = 1

| cva ← A(ppva, pkva); (ppva, pkva, skva) ← VA.Gen(1n)]

This condition guarantees that decryption and opening succeed.
Consistency. The distributions of Strip(pkva,VA.Enc(pkva,m)) and Enc(pk,m)

are the same for all m, that is, we can strip a VA ciphertext into a nor-
mal one. Furthermore, the decryption, opening and verification of ΠVA are
consistent with those of Π: for every ciphertext and generated keys, it must
hold that VA.Dec(skva, cva) = Dec(sk, Strip(pkva, cva)), VA.Open(skva, cva) =
Open(sk, Strip(pkva, cva)) and VA.Verify(pkva, cva)=Verify(pk, Strip(pkva, cva)).

We refer to the result of the augmentation of a CCE scheme as a CCVA
encryption scheme or simply a CCVAE scheme.

3 Voting with a Perfectly Private Audit Trail

In the spirit of [8], we now propose a “minivoting” scheme, that we use to
describe how a validity augmented CCE scheme can be used to submit ballots
in an election. We then describe the security guarantees that CCE schemes need
to provide for their application in voting with PPAT.

The minivoting scheme we consider follows a classic workflow. First, a setup
phase takes place, during which two clean bulletin boards PB and SB are
created and elections keys are generated and appropriately published. The board
PB contains the public audit trail, while SB is kept secret by the authorities
and used to compute the tally. Voters then produce their ballots by encrypting
their votes and send these ballots to the election authorities. The ballots are
processed by these authorities, and the bulletin boards are updated accordingly.
At the end of the voting phase, a tallying protocol is executed and the election
outcome is published.
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Definition 3 (Minivoting scheme)
Let Π be a CCVA encryption scheme, and let ρ be a result function that takes a
set of valid votes and produces the corresponding election outcome. From these,
we build a minivoting scheme Enc2Vote(Π, ρ) as follows.
Setup(1n) runs the key generation algorithm Gen of Π on the same input, ob-

taining a triple (pp, pk, sk). It also initializes a public and a secret bulletin
board, PB and SB, to ⊥.

Vote(pk, v) is executed by voters to prepare their ballot: it encrypts a vote v with
pk using Π, obtaining a ballot b.

ProcessBallot(pk, b,PB,SB) is executed by the authorities every time a ballot
is received. It rejects b if it is already present in SB. Otherwise, it runs
Valid(pk, b) and rejects b if it fails. If all these steps succeed, it appends b on
SB and DeriveCom(pk, b) on PB.

Tally(sk,PB,SB) decrypts all ballots on SB, obtaining a vector of votes v,
and publishes ρ(v) on PB.

A minivoting scheme does not require any proof of the validity of the ballots
(e.g., that they would encrypt 0 or 1 in an approval voting system), nor publishes
any specific information regarding a proof of correctness of the tally, which will
be needed for universal verifiability. For modularity, we address these concerns
separately: the structure of these proofs of correctness will indeed be dependent
of the result function ρ.

We now focus on the privacy of the votes that is offered in such a minivoting
scheme, which we capture through the following experiment, slightly adapted
from [8] to allow a distinction between the private and public bulletin boards.

The Vote Privacy experiment VotePrivBA,Π,ρ (n)
1. The challenger picks a bit β ← {0, 1} uniformly at random. He also runs the

Setup algorithm of the voting scheme on input 1n and obtains the resulting
triple (pp, pk, sk) and empty bulletin boards PBβ and SBβ . He then sends
pp, pk to A and creates two other empty bulletin boards PB1−β and SB1−β .
A is allowed to see the board Bβ , where B is a parameter of the experiment.

2. A can then perform two types of queries:
Vote(v0, v1) On such a query, the challenger executes Vote(pk, vi), obtaining

a ballot bi, and then runs ProcessBallot(pk, bi,SBi), for i ∈ {0, 1}.
Ballot(b) On such a query, the challenger executes ProcessBallot(pk, b,SBβ)

and, if it succeeds, also runs ProcessBallot(pk, b,SB1−β).
3. The challenger computes the tally t0 := Tally(sk,SB0) and appends t0 on

PBβ and SBβ .
4. A outputs a bit β′. If β = β′ then the output of the experiment is 1 and we

say that A wins.

Definition 4 (Perfectly Private Audit Trail). A minivoting scheme
Enc2Vote(Π, ρ) has a perfectly private audit trail (PPAT) if, for every adversary
A, Pr[VotePrivPB

A,Π,ρ(n) = 1] = 1
2 .
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Since this definition does not place any bound on the computational power of
the adversary, the everlasting privacy of the votes is guaranteed against people
who only see the PB board.

In some contexts (e.g., when using groups of unknown order), it is useful to
relax the above definition by accepting statistical indistinguishability and toler-
ating a negligible advantage over 1

2 . Independently of this, the private bulletin
board, only seen by the authorities, should provide computational ballot privacy.

Definition 5 (Ballot Privacy [8]). A minivoting scheme Enc2Vote(Π, ρ) has
ballot privacy if, for every PPT adversary A, there is a negligible function ε
such that, Pr[VotePrivSB

A,Π,ρ(n) = 1] = 1
2 + ε(n).

Security. The following two theorems define security properties of a CCVAE
scheme that guarantee the PPAT and ballot privacy of the corresponding miniv-
oting scheme.

Theorem 1. Let Π be a CCVA encryption scheme, and let ρ be a result func-
tion. If the output of DeriveCom is perfectly hiding, then the minivoting scheme
Enc2Vote(Π, ρ) has a perfectly private audit trail.

Proof. The view of the adversary is the VotePrivPB
A,Π,ρ experiment and this view

is independent of β: PB only contains perfectly hiding commitments and then
a tally that is always computed from SB0, which is independent of β. ��

Theorem 2 ([9]). Let Π be an NM-CPA CCVAE scheme, and let ρ be a result
function. Then the minivoting scheme Enc2Vote(Π, ρ) has ballot privacy.

The NM-CPA security property [21] is easy to reach from an IND-CPA en-
cryption scheme, as shown in [9]: it is enough to augment each ciphertext with
a sigma proof of knowledge of the message and randomness used to build this
ciphertext. We observe that this sigma proof not only guarantees the knowledge
of the plaintext and randomness, but also that the ciphertext is well-formed. We
can then define a validity augmentation in a straightforward way: Expand adds
the oracle H to the public key, Strip removes the sigma proof from the cipher-
text, and Valid returns “1” only if the proof is valid. The validity condition holds
thanks to the completeness and the soundness of the proof. The consistency of
the augmentation is straightforward by inspection of Definition 2.

A first example of CCVAE scheme, called PPATP, based on Paillier encryption
and Pedersen commitments following a suggestion by Moran and Naor [33] is
available in the full version of this paper [17]. The full version also contains a
generalized version of this construction with security proofs.

4 Efficient CCVAE Schemes

This section describes two efficient and usable constructions of CCVAE schemes.
The first scheme, PPATS, allows using traditional ballot validity proof techniques
and completing the tally through the homomorphic addition of encrypted votes.
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The decryption process however involves a stage of exhaustive search of the
plaintext (just as the exponential ElGamal scheme used in many applications),
which restricts the use of this scheme to elections in which this kind of exhaus-
tive search can be done, e.g., when the outcome is simply a count of the number
of votes that each candidate received. The second scheme, PPATC, is tailored for
mixnet based tallying procedures: the ciphertexts are not additively homomor-
phic but the decryption procedure is efficient regardless of the message. In both
tally procedures we show explicitly how the process does not affect the PPAT as
well as the ballot privacy of voting schemes provided by our CCVAE schemes.

Computational Setting. Our two efficient CCVAE schemes rely on the exis-
tence of a bilinear group generator that, on input 1n, produces a description of
bilinear groups Λsxdh = (q,G1,G2,GT , e, g, h) where G1, G2 and GT are groups
of prime order q, with |q| = n, e is an efficient and non-degenerating bilinear map
e : G1 × G2 → GT and g, h are generators of G1 and G2 respectively (we refer
the reader unfamiliar with those objects to [23]). We expect that these groups
are chosen in such a way that there is no known efficient mapping between G1

and G2 in either direction. This is necessary, as the security of our schemes relies
on the hardness on the DDH problem in both of these groups. This setting, often
called the SXDH setting, is usually considered as the choice that offers the high-
est level of flexibility and performance for high security parameters. Common
concrete choices include the use of BLS and BN curves [5, 6].

Note that all our schemes could be adapted easily to the symmetric pairing
settings, typically by relying on the hardness of the DLIN problem instead of
DDH [10]. The choice we made provides more efficient protocols and also makes
it possible to compute in smaller fields for equivalent security levels.

4.1 CCVA Encryption for Elections with Simple Ballots

The PPATS scheme makes use of two compatible homomorphic ingredients: El-
Gamal encryption and the TC2 perfectly hiding commitment scheme proposed
by Abe et al. [1], which is binding in the Λsxdh setting. The resulting CCE scheme
is compatible with sigma protocols, and the definition of a validity augmentation
is then simple.

The PPATS CCVAE scheme:
VA.GenS(1n): Generate Λsxdh = (q,G1,G2,GT , e, g, h) for |q| = n together with

the following additional public random generators g1 = gx1 in G1 and
h1 ∈ G2. The triple (ppS, pkS, skS) is defined as ((Λsxdh, h1), g1, x1). The
augmented key pkvaS = Expand(pkS) is computed by adding the descrip-
tion of an efficient hash function H with range Zq, resulting in the triple
(ppvaS = ppS, pk

va
S , sk

va
S = skS).

VA.EncS(pkvaS ,m ; r, s): Compute the CCE ciphertext c = EncS(pkS,m; r, s) as
(d, c1, c2) = (hrhm1 , g

s, grgs1) for random r, s ∈R Zq and m ∈ Zq. Then com-
pute the validity proof as follows. Compute c′ = (huht1, g

v, gugv1) for random
t, u, v in Zq. Then compute σcc = (νcc, z) where νcc = H(ppvaS , pk

va
S , c, c

′)
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and z = (zm, zr, zs) = (t + νccm,u + νccr, v + νccs). Output the ciphertext
cva = (c, σcc).

VA.DecS(skvaS , c
va): Parse cva as (d, c1, c2, σcc) and return m, the discrete loga-

rithm of e(cx1
1 /c2, h)·e(g, d) in basis e(g, h1).

VA.DeriveComS(pkvaS , c
va): Parse cva as (d, c1, c2, σcc) and return d.

VA.OpenS(skvaS , c
va): Parse cva as (d, c1, c2, σcc), then compute and output the

ElGamal decryption a = c2/c
x1
1 , i.e., gr (consisting of the TC2 auxiliary

value with respect to d).
VA.VerifyS(pkvaS , d,m, a): Return 1 only if e(a, h) = e(g, d/hm1 ).
ValidS(pkva, cva): Parse cva as (c, σcc) = (d, c1, c2, νcc, z) and output 1 only if the

proof σcc checks, that is, if νcc = H(ppvaS , pk
va
S , c, c

′) where c′ = EncS(pkS , z) ·
c−νcc (with componentwise operation).

The algorithm StripS returns c from cva in the obvious way. Applying StripS to
PPATS ciphertexts leads to a homomorphic CCE scheme.

Theorem 3. The PPATS scheme is an NM-CPA secure CCVAE scheme in the
random oracle model in the Λsxdh setting.

Proof (Sketch – See full version for details [17]). We first observe that the sound-
ness of the ValidS algorithm results from the one of the σcc proof, which shows
that PPATS is a CCVAE scheme. The NM-CPA security of PPATS results from
the observation that a PPATS ciphertext is made of a CCE ciphertext c that is
IND-CPA secure, augmented with the sigma proof of knowledge of the corre-
sponding plaintext and randomness. ��

Proving vote validity. Some voting schemes require the voters to prove the va-
lidity of the votes published on PB. Such proofs, which must be perfectly ZK to
preserve PPAT, can be easily computed here for the Pedersen-like commitments
posted on PB using standard techniques [14].

Elections with Homomorphic Tallying from PPATS. We can now use this
scheme to build a voting scheme PPATSVote based on Enc2Vote(PPATS, ρS) but
from which we modify the Tally algorithm as follows.
1. Stripping : Once the polls are closed, the authorities run ValidS and StripS

on the CCVAE ciphertexts stored on SB, obtaining CCE homomorphic
ciphertexts.

2. Aggregation: The authorities multiply those ciphertexts, obtaining one re-
sulting CCE ciphertext c.

3. Decryption: The authorities compute v = DecS(skS, c) the result of the elec-
tion. To prove the correctness of the decryption, they also run OpenS on c,
obtaining an auxiliary value a. Finally the authorities append (v, a) on PB.

Theorem 4. The PPATSVote scheme offers a PPAT and ballot privacy in the
Λsxdh setting in the random oracle model.

Proof. The PPATSVote scheme is equivalent to the Enc2Vote(PPATS, ρS) scheme
except that it also discloses the auxiliary value a on PB. This value is fully de-
termined by the commitment on the outcome and by the outcome itself, which

www.it-ebooks.info

http://www.it-ebooks.info/
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implies that it does not provide any extra information to an unbounded adver-
sary, and the PPAT property offered by Enc2Vote(PPATS, ρS) is then preserved.
The trustees having access to SB also see the decryption factors produced by
Dec. They are however indistinguishable of random group elements under DDH,
as for standard ElGamal decryption, and therefore do not help breaking ballot
privacy. ��

Audit Procedure. The audit procedure consists in the following steps:
1. Run all the verification procedures on the commitments displayed on PB.

If the verification procedure fails for any commitment, abort.
2. Multiply all the commitments, obtaining a commitment on the election out-

come.
3. Verify that the announced outcome v and auxiliary value a are indeed an

opening of the election outcome commitment. Abort if it is not the case.

The first step guarantees the validity of the votes posted, while the second and
last step guarantee that the tally matches the posted votes. The binding property
of the commitment scheme guarantees that the only opening that the authorities
will ever be able to provide comes from a honest tallying process. We emphasize
that this last verification is very efficient: it only requires the verification of an
opening of one constant-size commitment—no ZK proof is needed here, contrary
to traditional approaches.

As far as eligibility may be concerned, the bulletin board can also associate a
name with each commitment recorded on PB without affecting the PPAT. This
offers to any observers the possibility to verify that the posted votes have been
submitted by valid voters (e.g., by interrogating those voters in case of doubt).

Verifiability/Accountability. Verifiability makes it possible to check whether votes
have been recorded and tallied properly. In order to decide what action must be
taken if a verification fails, it is sometimes useful to have a stronger property:
accountability. This property was highlighted by Küsters et al. [30] and applied
to the Bingo voting scheme and then to several variants of the Helios voting
system [31].

While plugging the PPATS scheme into Helios would not have any noticeable
impact on the verifiability analysis of Helios proposed by Kremer et al. [29], the
distinction between the private and public board and between perfect and com-
putational privacy has more impact on the accountability analyses of Küsters
et al. [31]. In particular, while the ballot validity test is fully public in Helios,
replacing ElGamal encryption with the PPATS scheme adds a step during which
authorities could decide to reject a ciphertext because de σcc proof would be
invalid, which could not be verified from the content of PB since neither σcc
nor the corresponding statement appear on that board. As a result, it will not be
possible to determine whether the authorities or the voter are cheating without
disclosing to a judge information that only offer conditional privacy. Different
strategies for improving the accountability in the case of Helios have been ex-
plored in [3, 31]. A rigorous cryptographic analysis of verifiability/accountability
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of a fully-fledged voting system is an open problem (note that all current works
on Helios [29, 31] abstracted the cryptographic aspects and, as result, overlooked
the recently found attacks on the verifiability of Helios [9]), and is out of our
scope.

4.2 CCVA Encryption for Elections with Complex Ballots

The PPATS scheme is appropriate for elections with simple ballots. In some
elections, it is however useful to be able to encode complex votes in a single
ciphertext. This happens for instance in elections with a very large number of
candidates or with complex tallying rules that make the homomorphic aggrega-
tion approach impractical, or in elections where arbitrary write-ins need to be
supported. For those elections, a tallying approach based on verifiable mixnets is
usually adopted, which is the motivation for our definition of the PPATC scheme
below. This scheme has an efficiency comparable to the previous one but of-
fers efficient decryption procedures for arbitrary plaintext. The corresponding
CCE scheme is however not additively homomorphic any more, but this is not
a problem in a mixnet setting since ballots are individually decrypted. ElGamal
encryption is a core ingredient of this scheme, together with the Λsxdh-secure
and perfectly hiding commitment scheme of Abe et al [2].

The PPATC CCVAE scheme:

VA.GenC(1n): Generate Λsxdh = (q,G1,G2,GT , e, g, h) for |q| = n together with
the following additional public rabdom generators g1 = gx1 , g2 = gx2 in G1

and h1 ∈ G2. The triple (ppC, pkC, skC) is defined as ((Λsxdh, h1), (g1, g2),
(x1, x2)). The augmented key pkvaC = Expand(pkC) is computed by adding to
pkC the description of an efficient hash function H with range Zq, resulting
in the triple (ppvaC = ppC, pk

va
C , sk

va
C = skC).

VA.EncC(pkvaC ,m ; r, r1, r2): Compute c = EncC(pkC,m; r, r1, r2), the CCE ci-
phertext (c1, c2, c3, d1, d2) = (gr1 , gr2 , gr1g

r2
2 , h

rhr11 ,mg
r1
1 ) for m ∈ G1 and

random r, r1, r2 ∈R Zq. Then compute the following validity proof. Se-
lect random s, s1, s2 ∈R Zq and compute the elements c′ = (c′1, c

′
2, c

′
3, d

′
1)

as (gs1 , gs2 , gs1g
s2
2 , h

shs11 ). Compute νcc = H(ppvaC , pk
va
C , c, c

′) and then f =
s + νccr, f1 = s1 + νccr1, f2 = s2 + νccr2. Set σcc = (νcc, f, f1, f2). The
ciphertext cva is made of (c, σcc).

VA.DecC(skvaC , c
va): Parse cva as (c1, c2, c3, d1, d2, σcc) and return d2/c

x1
1 .

VA.DeriveComC(pkvaC , c
va): Parse cva as (c1, c2, c3, d1, d2, σcc) and return (d1, d2).

VA.OpenC(skvaC , c
va): Parse cva as (c1, c2, c3, d1, d2, σcc), and return a = c3/c

x2
2 .

VA.VerifyC(pkvaC , d1, d2,m, a): Return 1 if e(g, d1) = e(a, h)e(d2/m, h1) and 0
otherwise.

ValidC(pkva, cva): Parse cva as (c1, c2, c3, d1, d2, νcc, f, f1, f2) and test whether all
elements of the ciphertext are properly encoded. Compute c′1 = gf1/cνcc1 ,

c′2 = gf2/cνcc2 , c′3 = gf1 g
f2
2 /c

νcc
3 and d′1 = hfhf11 /d

νcc
1 and return 1 only if

νcc = H(ppvaC , pk
va
C , c1, c2, c3, d1, d2, c

′
1, c

′
2, c

′
3, d

′
1, d

′
2).

The algorithm StripC returns c from cva in the obvious way. Applying StripC to
a PPATC ciphertext leads to a CCE ciphertext that is homomorphic with respect
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to the curve group law in G1, which is sufficient for obtaining the randomization
properties needed for mixing. The use of the PPATC scheme also requires the
existence of an efficient mapping between the votes and G1. This can be realized
easily in most cases. For instance, most pairing friendly curves of the form y2 =
x3 + b on Fq have q chosen in such a way that any message y in Zq can be

mapped on a point ((y2 − b) 1
3 , y) [6].

Theorem 5. The PPATC scheme is an NM-CPA secure CCVAE scheme in the
random oracle model in the Λsxdh setting.

The proof is similar to the one of Theorem 3.

A Verifiable Shuffle for Voting Systems with PPAT. We now would
like to shuffle the PPATC ciphertexts and publish openings of the corresponding
anonymized commitments. Since our scheme is randomizable, this does not raise
any specific concern.

We also need to make the shuffle verifiable, that is, to provide a proof of shuffle,
which needs to preserve the information theoretic privacy of PB. Various perfect
(or statistical) ZK proof of shuffles can be used for that purpose [26, 28, 37]: these
guarantee that a simulator can produce a proof of shuffle just from the inputs
and output of that shuffle that is indistinguishable from a real proof, even by an
unbounded adversary.

In our context, we need to verifiably shuffle, with a single permutation, both
the CCE ciphertexts and the extracted commitments to keep track of their con-
cordance. The commitment consistent shuffle approach proposed by Terelius and
Wikström [38, 37] seems particularly natural for that purpose. This approach
splits the proof of shuffle in two stages. First a perfectly hiding commitment on
the permutation matrix used in the shuffle is computed and made public. This is
the most computationally intensive part of the protocol and, interestingly, it is
independent of the actual values that we need to shuffle and of the randomization
factors that will be applied on the ciphertexts. Then, a much cheaper proof is
produced that shows that the shuffle performed on the ciphertexts is consistent
with the commitment on that permutation matrix. In our case, that proof can
be computed both for the PPATC ciphertexts on SB and for the corresponding
commitments on PB.

We sketch the resulting tallying protocol below.

1. Stripping : The authorities run ValidC and StripC on the ciphertexts stored on
SB, obtaining a vector v of l ciphertexts and a vector d of commitments.

2. Permutation Commitment : The authorities select a random permutation π
and compute a commitment u on that permutation, together with a validity
proof Pπ.

3. Shuffle: The authorities select random vectors r, r1, r2 from Zl
q and compute

a vector of ciphertexts v′ where v′i = vπ−1(i) · EncC(pkC, 1, rπ−1(i), r1π−1(i),
r2π−1(i)) (1 represents the neutral element in G1). The last two components
of v′ are posted on PB and denoted d′.
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4. Proof of shuffle: The authorities compute two commitment consistent proofs
of shuffle with respect to the committed permutation π: Pv that shows that
v′ is indeed a shuffle of v and Pd that shows that d′ is a shuffle on d. Pv is
posted on SB and Pd is posted on PB.

5. Decryption of openings : The authorities verify the proofs, then decrypt all
the ciphertexts in v′ and run Open on these ciphertext in order to obtain
the auxiliary values for the corresponding commitment. The plaintexts and
auxiliary values are published on PB.

Of course, the three middle stages of this procedure, corresponding to the
verifiable shuffling, should be repeated by several independent authorities.

The tally audit procedure for an observer consists in the following stages.

1. Verify the proof of permutation commitment Pπ and abort if it fails.
2. Verify the proof of shuffle Pd and abort if it fails.
3. Verify that the authorities published valid openings for the shuffled commit-

ments d′ and abort otherwise.

The fact that this whole procedure preserves the PPAT follows from the fact
that all the commitments are perfectly hiding and that all the proofs can be
made perfect zero-knowledge.

5 Conclusion

We proposed a new cryptographic primitive, CCVA encryption, that enables
the systematic design of voting schemes with a perfectly private audit trail.
We further proposed CCVA schemes that are suitable for the organization of
large-scale elections.

The PPATP scheme mentioned in section 3 and detailed in the full version
of the paper [17] is fully generic and can be used with all classical tallying
techniques. Its key generation algorithm is fairly sophisticated, though, and this
scheme is also quite inefficient compared to our other schemes. We address then
two other CCVAE schemes, PPATS and PPATC, that are much more efficient
and simple to use though less flexible. They still can be used for the two most
widely used vote tallying techniques: homomorphic aggregation and mixnets.

Efficiency measures. Table 1 gives an evaluation of the computational workload
that our three schemes require, at comparable security levels, for computing a
CCVA ciphertext and a validity proof in the case of a 0/1 vote (details appear
in the full version of the paper [17].)

The first four numbers on each line count the number of exponentiations to be
performed in each group – fractional values appear when non-full exponents are
used. The last column, giving total costs, results from the following estimations.
We associate a unit cost to the multiplication of two 256-bit integers and assume
that this cost grows quadratically with the length of the operands. We target a
security level equivalent to 2048-bit RSA modulus N . We select G1 to be taken
on Fp for a 256-bit long prime p and G2 to be taken on Fp2 . The cost of a
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Table 1. Ciphertext computation workload

Scheme Z∗
P Z∗

N2 G1 G2 Total Cost

PPATP (0/1 vote) 5.375 4 0 0 4202496
PPATP (256-bit vote) 3.375 4 0 0 3809280
PPATS (0/1 vote) 0 0 6 6 115200
PPATC (256-bit vote) 0 0 9 4 96000

point addition is evaluated to 16 multiplications in the underlying field, and the
cost of a point duplication to 7 multiplications. In order to perform EC point
multiplication and modular exponentiation, we consider the simple square and
multiply algorithm.

As expected, this table shows very important differences between PPATP and
the other two schemes: computing a PPATP ciphertext is roughly 40 times more
expensive than computing a PPATC ciphertext. The cost of the PPATS and
PPATC schemes is low enough to make it possible to use these schemes even on
fairly slow platforms. For instance, considering the computation of a ciphertext
in JavaScript in a browser using the JSBN library, which allows computing a
point multiplication in a 256-bit prime order group in less than 30ms in the
Chrome web browser, the computation of a PPATC ciphertext that can encode
a 256-bit vote would take less than a second.

The costs of computing a PPATS and a PPATC ciphertexts are similar. The as-
sociated tallying techniques are very different though, being much more complex
for PPATC. A mixnet based technique also reveals much more information than
a technique based on the homomorphic aggregation of ballots. As a result, we
would recommend using the PPATS scheme as long as the ballot format allows
it, even if the resulting ballot preparation cost is higher than the one that would
be obtained by using PPATC.
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Abstract. Protecting privacy against bribery/coercion is a necessary
requirement in electronic services, like e-voting, e-auction and e-health.
Domain-specific privacy properties have been proposed to capture this.
We generalise these properties as enforced privacy : a system enforces
a user’s privacy even when the user collaborates with the adversary.
In addition, we account for the influence of third parties on a user’s
privacy. Third parties can help to break privacy by collaborating with the
adversary, or can help to protect privacy by cooperating with the target
user. We propose independency of privacy to capture the negative privacy
impact that third parties can have, and coalition privacy to capture their
positive privacy impact. We formally define these privacy notions in the
applied pi calculus and build a hierarchy showing their relations.

1 Introduction

Privacy is of great importance to electronic services such as e-voting, e-auction,
and e-health. A large amount of research has been done in this area, for example,
using statistical methods. In the literature, an important focus is privacy in
communication protocols, since most electronic services use the Internet. To
capture privacy in protocols, a wide variety of privacy properties have been
proposed, such as anonymity, untraceability, quantified privacy, etc. (e.g., see [1–
5]). We focus on a subset of such properties – non-quantified (binary) data
privacy, i.e., properties that are either satisfied or not (as opposed to providing
a quantitative answer).

Classical data privacy assumes that users want to keep their privacy [1, 3,
4]. However, a user may want to reveal information to the adversary due to
bribery or coercion. Systems providing electronic services need to protect against
such threats (e.g., [6–9]). This was first achieved in voting: a system in which a
voter could not undo his privacy after voting (preventing vote selling) [6], and
later, a system in which a voter, coerced to communicate continuously with the
adversary, cannot undo his privacy [8]. These ideas were lifted to an e-auction
system [7] and an e-health system [9]. Following this development of stronger
systems, domain-specific formalisations of privacy properties against bribery and
coercion were proposed in the literature: receipt-freeness and coercion-resistance
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in e-voting [10], e-auction [11], and e-health [12]. In order to address these privacy
concerns domain-independently, we propose a generic notion of enforced privacy:
a user’s privacy is preserved even if the user collaborates with the adversary by
sharing information.

Our notions of (enforced) data privacy focus only on one target user – ig-
noring the privacy impact of other users. However, a third party may help to
break user privacy (collaboration), e.g., revealing your vote may enable the ad-
versary to deduce another voter’s vote. On the other hand, a third party can
help maintain privacy (coalition), e.g., a non-coerced voter (who votes as the
adversary desires) can swap receipts with a coerced voter, providing the coerced
voter “proof” of compliance while being free to vote as he pleases. Accounting
for the privacy effect of third parties is particularly necessary in domains where
many non-trusted roles are involved. For example, pharmacists in e-health may
be able to help reveal prescription behaviour of doctors. In order to ensure doctor
prescribing-privacy, an e-health system must prevent this [9, 13]. This require-
ment has been expressed and formalised in e-health [12] and e-voting [14]. In this
paper, we generalise these formalisations as independency of privacy: the help
of a set of third parties does not enable the adversary to break a target user’s
privacy. To capture the converse situation – the privacy effect of third parties
helping the target user by sharing information with the target user, we propose a
new notion of coalition privacy: a target user’s privacy is preserved with the help
of a set of third parties sharing information with the target user. In particular,
we use this notion to also capture the situation where third parties are involved
but no information is shared between the target user and third parties. In this
case, the mere existence of the third parties can help to create a situation where
privacy is preserved.

In addition to identifying these (new) privacy notions, this paper contributes
on formalising them in a new formal framework and formally prove their re-
lations. Cryptographic protocols are well known to be error-prone and formal
approaches have shown to be efficient in addressing this problem, e.g., see [15, 16].
Thus, formalising privacy notions is a necessary step to verify the privacy claims
of a protocol. Our framework is based on the applied pi calculus as it provides
an intuitive way for modelling privacy properties and cryptographic protocols.
In addition, it is supported by the ProVerif [17] tool, which allows us to verify
many privacy properties automatically [18, 19].

We present a formal framework which allows us to give domain-independent
formalisations. We define a standard form of protocols which is able to represent
any protocol. To formally define enforced privacy properties and independency of
privacy properties, we model collaboration between users and the adversary. The
collaboration allows us to precisely specify which information is shared and how
it is shared, thus provides the necessary flexibility for modelling various types of
collaboration. To model coalition privacy properties, we propose the notion of
coalition in our framework to formally capture the behaviour and shared infor-
mation among a target user and a set of third parties. In our framework, the foun-
dational property data-privacy, is formalised in a classical way as strong secrecy:
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Table 1. Privacy notions

target user third parties
collaborates some defending

with adversary all neutral some attacking some defending some attacking

no priv ipriv cpriv cipriv
yes epriv iepriv cepriv ciepriv

equivalence of two processes where a variable is instantiated differently [20].
Based on this property, we formalise enforced-privacy, independency-of-privacy
and independency-of-enforced-privacy using the formalisation of collaboration.
Using the formalisation of coalition, four corresponding coalition privacy prop-
erties are formalised. Finally, we formally discuss how the formalised privacy
properties are related in a privacy hierarchy. In addition, we show that many
existing formalisations are instances of properties in our hierarchy.

2 Privacy Notions

With respect to the classical Dolev-Yao adversary [21]1, we distinguish between
two classes of privacy-affecting behaviour: the target user (collaborating with the
adversary or not), and the behaviour of third parties. Third parties may be neutral,
collaborating with the adversary (attacking), or collaborating with the
target user (defending) – thus we also consider the situation where some are at-
tacking and some are defending. A target user who collaborates with the adversary
is not under the adversary’s direct control, contrary to a compromised user who
genuinely shares initial private information with the adversary. A neutral third
party, like an honest user, follows the protocol specification exactly. Thus, such a
third party neither actively helps nor actively harms the target user’s privacy. A
defending third party helps the target user to preserve his privacy. An attacking
third party communicates with the adversary to break the target user’s privacy.
Note that we do not consider a third party that attacks and defends the target
user simultaneously. Given this classification, a target user will find himself one of
the following four situations w.r.t. third parties: 1) all are neutral; 2) some are at-
tacking; 3) some are defending; and 4) some are attacking, some are defending. In
the latter three cases, the remaining third parties (if any) are considered neutral.
Combining the various behaviours of the third parties with those of the target user
gives rise to eight privacy properties (see Tab. 1).

Motivation examples for each property are as follows – data-privacy (priv): the
adversary cannot link the contents of an encrypted email to the user; enforced-
privacy (epriv): a voter should not be able to prove to a vote-buyer how he

1 Note that the Dolev-Yao adversary is not assumed to fully control authenticated
users. Bribed or coerced users cannot be modelled as part of the adversary, as they are
not trusted by the adversary. In addition, it is necessary to model which information
and how users share the information, especially those obtained from channels hidden
from the adversary.
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voted; independency-of-privacy (ipriv): in e-health the adversary cannot link a
doctor to his prescriptions, despite the help of a pharmacist; independency-of-
enforced-privacy (iepriv): the adversary should not be able to link a doctor to his
prescriptions (to prevent bribes), even when both the pharmacist and the doctor
are helping him; coalition-privacy (cpriv): in location-based services, the user’s
real location is hidden amongst the locations of the helping users; coalition-
enforced-privacy (cepriv): in anonymous routing, a sender remains anonymous if
he synchronises with a group of senders, even if he seems to collaborate; coalition-
independency-of-privacy (cipriv): the adversary cannot link an RFID chip to its
identity, even though some malicious readers are helping the adversary, provided
other RFID tags behave exactly as the target one; coalition-independency-of-
enforced-privacy (ciepriv): in electronic road pricing, other users may hide a user’s
route from the adversary, even if the user seems to collaborate and malicious
routers relay information on passing cars to the adversary.

The examples above illustrate that similar privacy concerns arise in many
different domains – e-voting, e-health, location-based services, RFID, etc. So
far, attempts at formalising privacy have usually been domain-specific (e.g., [22,
2, 10, 3, 4, 23, 11, 12, 24]). We advocate a domain-independent approach to
privacy, and develop a formal framework to achieve this in Sect. 3.

3 Formal Framework

3.1 The Applied Pi Calculus

The applied pi calculus [25] assumes an infinite set of names to model data and
communication channels, an infinite set of variables and a finite set of function
symbols each with an associated arity to capture cryptographic primitives. A
constant is defined as a function symbol with arity zero. Terms are defined as
either names, or variables or function symbols applied on other terms to capture
communicated messages. We denote the variables in a term N as Var(N). In
addition, the applied pi calculus assumes a set of base types (e.g., the universal
type Data) and a type system (sort system) for terms generated by the base
set. Terms are assumed to be well-typed and syntactic substitutions preserve
types. Processes (see Fig. 1) are defined to model protocols. A name is bound
if it is under restriction. A variable is bound by restrictions or inputs. Names
and variables are free if they are not delimited by restrictions or by inputs.
The sets of free names, free variables, bound names and bound variables of a
process A are denoted as fn(A), fv(A), bn(A) and bv(A), respectively. A term
is ground when it does not contain variables. A process is closed if it does
not contain free variables. {M /x} is a substitution which replaces variable x
with term M . A context C[ ] is defined as a process with a hole, which may be
filled with any process. An evaluation context is a context whose hole is not
under a replication, a conditional, an input or an output. Finally, we use νñ to
abbreviate the process generating a list of names (i.e., νn1 · · · νnn) and use νñ/ni
to abbreviate process νn1 · · · νni−1.νni+1. · · · .νnn (erasing νni from process νñ).
Several equivalence relations on processes are defined in the applied pi calculus.

www.it-ebooks.info

http://www.it-ebooks.info/


Enforcing Privacy in the Presence of Others 503

P,Q,R ::= plain processes A,B,C ::= extended processes
0 null process P plain process
P | Q parallel composition A | B parallel composition
!P replication νn.A name restriction
νn.P name restriction νx.A variable restriction
if M =E N then {M /x} active substitution
P else Q conditional
in(v, x).P message input
out(v,M).P message output

Fig. 1. Applied pi processes

We mainly use labelled bisimilarity ≈� [25]. Two processes are labelled bisimilar
if the adversary cannot distinguish them.

3.2 Well-Formed Protocols

For the simplicity of formalisation, we define a standard form of a protocol,
inspired by Arapinis et al. [3], and any protocol can be written in this form.

Definition 1 (well-formed protocols). A protocol with p roles is well-formed
if it is a closed plain process Pw of the form:

Pw = νc̃.(genkey |!R1 | · · · |!Rp)
Ri = νidi.νdatai.init i.!(νsi.νsdatai.sinit i.main i) (∀i ∈ {1, · · · , p})

1. Pw is canonical [3]: names and variables in the process never appear both
bound and free, and each name and variable is bound at most once;

2. data is typed, channels are ground, private channels are never sent on any
channel;

3. νc̃, νdatai and νsdatai may be null;
4. init i and sinit i are sequential processes;
5. genkey, init i, sinit i and main i can be any process (possibly null) such that

Pw is a closed plain process.

In process Pw , c̃ are channel names; genkey is a sub-process in which shared data
(e.g., keys shared between two roles) are generated and distributed; Ri (1 ≤ i ≤
p) is a role. To distinguish instances taking the same role Ri, each instance is
dynamically associated with a distinct identity νidi; datai is private data of an
instance; init i models the initialisation of an instance; (νsi.νsdatai.sinit i.main i)
models a session of an instance. To distinguish sessions of the same instance, each
session is dynamically associated to a distinct identity (νsi); sdatai is private
data of a session; sinit i models the initialisation of a session; maini models the
behaviour of a session.

Note that this standard form does not limit the type of protocols we consider.
A role may include a number of sub-roles so that a user may take more than one
part in a protocol. The identities do not have to be used in the process. All of
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νc̃, νdatai and νsdatai may be null and genkey , init i, sinit i and main i can be
any process (possibly null) such that Pw is a closed plain process. Any process
can be written in a canonical form by α-conversion [3]. Thus, any protocol can
be written as a well-formed protocol.

3.3 Data-Privacy

We formally define the property data-privacy that acts as the foundation upon
which other properties are built. To do so, we need to make explicit which data
is protected. Thus, the property data-privacy always specifies the target data. In
process Pw , the target data τ can be expressed as a bound name (complicated
target data can be reduced to bound names) which belongs to a role (the target
role Ri), i.e., τ ∈ bn(Ri). For the sake of simplicity, we (re)write the role Ri in
the form of Ri = νidi.ντ.R̂i , where R̂i is a plain process which has two variables
id i and τ . By α-conversion we can always transform Ri into the above form.

Intuitively, data-privacy w.r.t. τ of protocol Pw , is the inability of the ad-
versary to link an honest user taking role Ri to his instantiation of the target
data τ . An honest user taking role Ri is modelled as process Ri. R̂i{id/id , t/τ}
denotes an instance of the target user in which the target user instantiates the
target data with t where t denotes any data which can be used to replace the
target data. The data-privacy can be modelled as strong secrecy [20] of the tar-
get data: the adversary cannot distinguish an execution of Ri where τ = t1 from
an execution where τ = t2, for t1 �= t2.

Definition 2. A well-formed protocol Pw satisfies data-privacy (priv) w.r.t. data
τ (τ ∈ bn(Ri)), if CPw [R̂i{id/id i , t1/τ}] ≈� CPw [R̂i{id/id i , t2/τ}].

In the above definition, id is a constant, t1 and t2 are free names. Since Ri =
νidi.ντ.R̂i , process R̂i{id/id i , t1/τ} is an instance of role Ri where the identity
is id and the target data is t1. The evaluation context CPw [ ] models neutral third
parties. Thus, CPw [R̂i{id/id i , t1/τ}] is an instance of the protocol Pw , similarly
for CPw [R̂i{id/id i , t2/τ}]. The only difference between these two instances is the
instantiation of the target data τ . Thus, this definition captures data-privacy
by using the relation ≈�: the adversary cannot distinguish a user process with
different target data.

3.4 Modelling Collaboration with the Adversary

In order to define enforced privacy properties where the target user collaborates
with the adversary and independency privacy properties where a set of third
parties collaborate with the adversary, we need to model collaboration of users
(a target user/third parties) with the adversary.

The process of a set of users is modelled as processes of each user in parallel.
Since a user process is modelled as a role in a well-formed protocol and each user
process can be any role, the set of users of a protocol Pw is formally defined as
a plain process RU = Ru1 | · · · | Rum , ∀i ∈ {1, . . . ,m},Rui ∈ {R1, . . . ,Rp}.
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Inspired by the formal definition of coercion in [10], the collaboration between
a set of users and the adversary is formalised as a transformation of the process
of the set of users. Note that a user may not always share all his information,
e.g., a bribed user in a social network may reveal his relation with another user,
but not his password. A way to express partly information sharing is to specify
which terms of a process are shared and how they are shared. Since the process of
a set of users is canonical in a well-formed protocol, bound names and variables
are different in each user process. Thus, we can express information of a set
of users as a set of terms appearing in the process of the set of users. Terms
appearing in a plain process RU are Term(RU ).

Term(0) = ∅ Term(P | Q) = Term(P ) ∪ Term(Q)
Term(!P ) = Term(P ) Term(νn.P ) = {n} ∪ Term(P )
Term(in(v, x).P ) = {x} ∪ Term(P ) Term(out(v,M).P ) = {M} ∪ Term(P )
Term(if M =E N then P else Q) = Term(P ) ∪ Term(Q)

Thus, a collaboration can be specified as a specification defined as follows.

Definition 3 (collaboration specification). A collaboration specification of
a process RU is a tuple 〈Ψ ,Φ, cout , cin〉. Ψ ⊆ Term(RU ) denotes the set of terms
sent to the adversary each of which is of base type, Φ ⊆ Term(RU ) represents
terms to be replaced by information provided by the adversary, cout is a fresh
channel for sending information to the adversary, and cin is a fresh channel for
reading information from the adversary, i.e., cout , cin /∈ fn(RU ) ∪ bn(RU ).

Given a plain process RU and a collaboration specification 〈Ψ ,Φ, cout , cin〉 of

the process, the transformation of RU is given by R
〈Ψ ,Φ,cout ,cin〉
U .

Definition 4 (collaboration behaviour). Let RU be a plain process, and
〈Ψ ,Φ, cout , cin〉 be a collaboration specification of RU . Collaboration behaviour
of RU according to 〈Ψ ,Φ, cout , cin〉 is defined as:

• 0 〈Ψ ,Φ,cout ,cin〉 =̂ 0,

• (P | Q)〈Ψ ,Φ,cout ,cin〉 =̂ P 〈Ψ ,Φ,cout ,cin〉 | Q 〈Ψ ,Φ,cout ,cin〉,
• (!P)〈Ψ ,Φ,cout ,cin〉 =̂ !P 〈Ψ ,Φ,cout ,cin〉,

• (νn.P)〈Ψ ,Φ,cout ,cin〉 =̂

{
νn.out(cout , n).P 〈Ψ ,Φ,cout ,cin〉 if n ∈ Ψ ,

νn.P 〈Ψ ,Φ,cout ,cin〉 otherwise,

• (in(v , x ).P)〈Ψ ,Φ,cout ,cin〉 =̂

{
in(v, x).out(cout , x).P 〈Ψ ,Φ,cout ,cin〉 if x ∈ Ψ ,

in(v, x).P 〈Ψ ,Φ,cout ,cin〉 otherwise,

• (out(v ,M ).P)〈Ψ ,Φ,cout ,cin〉 =̂

⎧⎨⎩ in(cin , x).out(v, x).P 〈Ψ ,Φ,cout ,cin〉 if M ∈ Φ
∧cin �= ⊥, where x is a fresh variable,

out(v,M).P 〈Ψ ,Φ,cout ,cin〉 otherwise,
• (if M =E N then P else Q)〈Ψ ,Φ,cout ,cin〉 =̂⎧⎨⎩ in(cin , x).if x = true then P 〈Ψ ,Φ,cout ,cin〉else Q 〈Ψ ,Φ,cout ,cin〉 if cin �= ⊥,

where x is a fresh variable and true is a constant,
if M =E N then P 〈Ψ ,Φ,cout ,cin〉 else Q 〈Ψ ,Φ,cout ,cin〉 otherwise.
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Note that we use cin = ⊥ to denote that the adversary neither prepares informa-
tion for the coerced users nor controls the conditional evaluations of the users.
We only specify user behaviour in a collaboration with the adversary. The ad-
versary’s behaviour may be omitted, as in the applied pi calculus the adversary
is considered as the environment and does not need to be explicitly modelled.
Our approach to reasoning about the adversary’s behaviour in a collaboration
(e.g., enforcing a voter to cast a particular vote) follows the line of the definition
of coercion-resistance in [10]. Namely, a context C[ ] = νcout .νcin( | Q) models
a specific way of collaboration of the adversary, where Q models the adversary’s
behaviour in the context. In this way, we separate the adversary’s behaviour of
distinguishing two processes, which is modelled by the environment, from the
behaviour of collaborating with users which is modelled by the context.

3.5 Modelling User Coalitions

To define coalition privacy properties, we need to formally define a coalition
between a target user and a set of defending third parties. The notion collabora-
tion from the previous section cannot be adopted directly, as it does not specify
the adversary’s behaviour, whereas a coalition must specify the behaviour of all
involved users.

Given a set of users RU = Ru1 | · · · | Rum , a coalition of the users specifies
communication between (potentially) each pair of users. For every communica-
tion, a coalition specification needs to make explicit who the sender and receiver
are (unlike collaboration). Similar to the specification of collaboration, a coali-
tion specification makes explicit which data is sent on which channel. To make
the behaviour of both communicating parties explicit, we need to specify how
the term in a communication is referred to in the receiver’s process. A commu-
nication in a coalition is specified as a tuple 〈Rui ,Ruj ,M, c, y〉 where Rui ,Ruj ∈
{Ru1 , . . . ,Rum} (Rui �= Ruj ) are the sender and receiver process, respectively;
M ∈ Term(Rui) is the data sent in the communication; c �∈ fn(RU ) ∪ bn(RU )
is a fresh channel used in the communication; y �∈ fv(RU ) ∪ bv(RU ) is the vari-
able used by the receiver to refer to the term M . A coalition specifies a set of
communications of this type (denoted as Θ). For the simplicity of modelling, we
assume that for each communication, the coalition uses a distinct channel and
distinct variable, i.e., ∀ 〈Rui ,Ruj ,M, c, y〉 ∈ Θ and 〈R′ui

,R′uj
,M ′, c′, y′〉 ∈ Θ we

have c �= c′ ∧ y �= y′.
A coalition specifies a set of terms which are communicated by the originating

user process and are replaced in the coalition. In addition, a coalition needs to
define how a term is replaced. In a collaboration, the adversary is assumed to be
able to compute and prepare this, but in a coalition, no user can compute and
prepare information for other users. Thus, this ability has to be explicitly speci-
fied in a coalition as a set of substitutions Δ = {{N /M } |M ∈ Term(RU )}. The
new term N are calculated from a set of terms N1, . . . , Nn which are generated
by the user, read in by the original process, or read in from coalition members.
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A successful coalition requires that there are no such situations where N cannot
be calculated in the user process when M needs to be replaced.

Moreover, in a coalition, we allow the coalition to decide values of conditional
evaluations (similar to collaboration, where the adversary decides this). Since
no user in a coalition has the ability to specify the values of evaluations, these
need to be assigned specifically. In addition, to add more flexibility, we allow a
coalition to specify which evaluations are decided by the coalition and which are
not. The evaluations of a plain user process RU is Eval(RU ). The assignments of
evaluations are specified as a set Π ⊆ {(e, b) | e ∈ Eval(RU ) ∧ b ∈ {true, false}}.

Eval(0) = ∅ Eval(P | Q) = Eval(P ) ∪ Eval(Q)
Eval(!P ) = Eval(P ) Eval(νn.P ) = Eval(P )
Eval(in(v, x).P ) = Eval(P ) Eval(out(v,M).P ) = Eval(P )
Eval(if M =E N then P else Q) = {M =E N} ∪ Eval(P ) ∪ Eval(Q)

Definition 5 (coalition specification). A coalition2 of a set of users RU is
specified as a tuple 〈Θ ,Δ,Π 〉 where Θ is a set of communication, Δ is a set of
substitutions and Π is an assignment for a set of evaluations.

With the above setting, given a set of users RU and a coalition specification
〈Θ ,Δ,Π 〉 on users, the behaviour of a user in the coalition is modelled as a
coalition transformation of the user’s original process, as defined in Def. 6.

In the definition, process in(c1, y
′
1).!out(c

′
1, y

′
1) | · · · | in(c�, y

′
�).!out(c

′
�, y

′
�)

models the receiving behaviour of process R in the coalition. The coalition spec-
ifies which channel is use to receive data. The received data on a channel are
referred to as a distinct fresh variable. The received data is sent out over a dis-
tinct private channel. The association of channels and variables is modelled in ξ.
This sending behaviour is used for the process R〈Γ ,Δ,Π 〉 to read the data when it
is needed. Process R〈Γ ,Δ,Π 〉 models the sending behaviour, substitution of terms,
assignments of evaluations. F captures the variables which are in {y1, . . . , y�}
and has not been read in yet.

Definition 6 (coalition behaviour). Let RU = Ru1 | · · · | Rum be a plain
process of a set of users, 〈Θ ,Δ,Π 〉 be a coalition specification of process RU ,
R ∈ {Ru1 , · · · ,Rum} be a plain user process, the transformation of the process
R in the coalition is given by R〈Θ,Δ,Π 〉:

R〈Θ,Δ,Π 〉 = νη.(R〈Γ ,Δ,Π 〉 | in(c1, y
′
1).!out(c′1, y

′
1) | · · · | in(c�, y

′
�).!out(c

′
�, y

′
�))

where Γ = {〈R,Ruj ,M, c, y〉 | 〈R,Ruj ,M, c, y〉 ∈ Θ}, η = {c′1, . . . , c′�}, c′1,
. . ., c′� are fresh, {c1, . . . , c�} = {c | 〈Rui ,R,M, c, y〉 ∈ Θ}, y′1, . . . , y′� are fresh
variables, ξ = {(c1, y′1, c′1), . . . , (c�, y

′
�, c

′
�)} defines the association of channels

and variables in process in(c1, y
′
1).!out(c′1, y

′
1) | · · · | in(c�, y

′
�).!out(c

′
�, y

′
�), and

R〈Γ ,Δ,Π 〉 is given by:

2 This model does not include the coalition strategies in which the target users and
defending third parties are able to generate new data, initiate new sessions, estab-
lishing new secrets, etc.
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• 0
〈Γ ,Δ,Π 〉
F =̂ 0,

• (P | Q)
〈Γ ,Δ,Π 〉
F =̂ P

〈Γ ,Δ,Π 〉
F | Q 〈Γ ,Δ,Π 〉

F ,

• (!P)
〈Γ ,Δ,Π 〉
F =̂ !P

〈Γ ,Δ,Π 〉
F ,

• (νn.P)
〈Γ ,Δ,Π 〉
F =̂

⎧⎪⎨⎪⎩
νn.out(c1, n). . . . .out(c�, n).P

〈Γ ,Δ,Π 〉
F

if {c1, . . . , c�} = {c | 〈R,Ruj , n, c, y〉 ∈ Γ} ,
νn.P

〈Γ ,Δ,Π 〉
F otherwise,

• (in(v , x ).P)
〈Γ ,Δ,Π 〉
F =̂

⎧⎪⎨⎪⎩
in(v, x).out(c1, x). . . . .out(c�, x).P

〈Γ ,Δ,Π 〉
F

if {c1, . . . , c�} = {c | 〈R,Ruj , x, c, y〉 ∈ Γ} ,
in(v, x).P

〈Γ ,Δ,Π 〉
F otherwise,

• (out(v ,M ).P)
〈Γ ,Δ,Π 〉
F =̂

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
in(c′1, y1). · · · .in(c′�, y�).out(v,N).P

〈Γ ,Δ,Π 〉
F\{y1 ,...,y�}

if {N /M } ∈ Δ, {y1, . . . , y�} ⊆ F ∪ Var(N),
∀i ∈ {1, . . . , 	},

〈Ri,R, ciM, yi〉 ∈ Θ ∧ (ci, y
′
i, c

′
i) ∈ ξ,

out(v,M).P
〈Γ ,Δ,Π 〉
F otherwise,

• (if M =E N then P else Q)
〈Γ ,Δ,Π 〉
F =̂⎧⎪⎨⎪⎩

P
〈Γ ,Δ,Π 〉
F if (M =E N, true) ∈ Π ,

Q
〈Γ ,Δ,Π 〉
F if (M =E N, false) ∈ Π ,

if M =E N then P
〈Γ ,Δ,Π 〉
F else Q

〈Γ ,Δ,Π 〉
F otherwise.

with F initially equals to {y1, . . . , y� | 〈Rui ,R,M, c, y〉 ∈ Θ}.

Given a set of users RU and a coalition specification 〈Θ ,Δ,Π 〉 for them, the

coalition is now modelled as R
〈Θ,Δ,Π 〉
U = νΩ .(R

〈Θ,Δ,Π 〉
u1 | · · · | R〈Θ,Δ,Π 〉

um ) where
Ω = {c | 〈Rui ,Ruj ,M, c, y〉 ∈ Θ}.

4 Formalising the Privacy Notions

4.1 Enforced-Privacy

Enforced-privacy is the adversary’s unlinkability of a target user to his data even
when the user collaborates with the adversary. Different collaborations impact
privacy differently, so when we say a protocol satisfies enforced-privacy, it always
refers to a specific collaboration specification.

Similar as in receipt-freeness and coercion-resistance [10], when a protocol
Pw satisfies enforced-privacy w.r.t. a target data τ (which belongs to role Ri)
and a collaboration specification 〈Ψ ,Φ, cout , cin〉 defined on process R̂i (where
Ri = νidi.ντ.R̂i), there exists a process Pf for the target user to execute, such
that the adversary cannot distinguish between real collaboration with τ = t1
and fake collaboration (by means of process Pf ) with τ = t2.

3

3 In the epistemic notion of coercion-resistance, enforced-privacy can be defined as
the existence of a counter-strategy for the target user to achieve his own goal, but
the adversary cannot distinguish it from the target user following the adversary’s
instructions [26].
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Definition 7. A well-formed protocol Pw satisfies enforced-privacy (epriv) w.r.t.
target data τ and collaboration specification 〈Ψ ,Φ, cout , cin〉, if there exists a
closed plain process Pf , such that for any context C[ ] = νcout .νcin .( | Q) satis-

fying bn(Pw ) ∩ fn(C[ ]) = ∅ and CPw [C[R̂
〈Ψ ,Φ,cout ,cin〉
i {id/id i , t/τ}]] ≈�

CPw [R̂
〈Ψ ,∅,c′out ,⊥〉
i {id/id i , t1/τ}], we have

1. C[Pf ]\(c
′
out ,·) ≈� R̂i{id/id i , t2/τ},

2. CPw [C[R̂
〈Ψ ,Φ,cout ,cin〉
i {id/id i , t/τ}]] ≈� CPw [C[Pf ]],

where τ ∈ bn(Ri), Ri = νidi.ντ.R̂i , 〈Ψ ,Φ, cout , cin〉 is defined on R̂i , t is a free

name representing a piece of data, and C[Pf ]
\(c′out ,·) = νc′out .(C[Pf ] |!in(c′out , x)).

The process R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ} models the behaviour of the collaborat-

ing target user. The behaviour of the adversary in the collaboration is implicitly
modelled as Q in the context C[ ] = νcout .νcin .( | Q). Thus a specific collab-

oration is modelled as C[R̂
〈Ψ ,Φ,cout ,cin 〉
i {id/id i , t/τ}]. Note that sometimes the

target data in the collaboration is not decided by {t/τ}, but by the context C[ ].

The target data is actually instantiated by CPw [C[R̂
〈Ψ ,Φ,cout ,cin〉
i {id/id i , t/τ}]]

≈� CPw [R̂
〈Ψ ,∅,c′out ,⊥〉
i {id/id i , t1/τ}]. The first equivalence shows that even if the

context C[ ] is able to decide the target data, the target user can still actually
instantiate the target data with t2 by executing the process Pf . The second
equivalence shows that the adversary cannot distinguish the target user follow-

ing the collaboration in process R̂
〈Ψ ,Φ,cout ,cin〉
i {id/id i , t/τ} from executing the

process Pf , in the context of the adversary collaboration C[ ].

4.2 Independency-of-Privacy

Next, we account for attacking third parties. As different sets of third parties
may differently influence the target user’s privacy, and since different collab-
oration amongst the same third parties leads to different privacy properties,
independency-of-privacy is defined with respect to a set of third parties and a
collaboration specification between them and the adversary.

Definition 8 (third parties). Given a well-formed protocol Pw and an in-
stance of the target user R̂i{id/id , t/τ}, a set of third parties is defined as a set
of users RU = Ru1 | · · · | Rum where ∀i ∈ {1, · · · ,m},Rui �= R̂i{id/id , t/τ}.
We use RT to denote a set of attacking third parties and RD to denote a set of
defending third parties.

The collaboration between a set of attacking third parties RT and the ad-
versary is expressed as a collaboration specification 〈Ψ t ,Φt , ctout , c

t
in〉 defined

on process RT . The behaviour of the third parties in the collaboration is mod-

elled as R
〈Ψt ,Φt ,ctout ,c

t
in〉

T . Inspired by the domain-specific formal definitions, vote-
independence [14] in e-voting and independency-of-prescribing-privacy [12] in
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e-health, independency-of-privacy is defined as follows: a well-formed proto-
col Pw satisfies independency-of-privacy w.r.t. (RT , 〈Ψ t ,Φt , ctout , c

t
in〉) and τ ∈

bn(Ri), if the adversary cannot distinguish the honest target user executing role
Ri with τ = t1 from the same user with τ = t2, even when the set of third par-
ties RT collaborates with the adversary according to collaboration specification
〈Ψ t ,Φt , ctout , c

t
in〉.

Definition 9. Awell-formed protocol Pw satisfies independency-of-privacy (ipriv)
w.r.t. data τ and attacking third parties (RT , 〈Ψ t ,Φt , ctout , c

t
in〉) if

CPw [R̂i{id/id i , t1/τ} |R〈Ψ
t ,Φt ,ctout ,c

t
in〉

T ] ≈� CPw [R̂i{id/id i , t2/τ} |R〈Ψ
t ,Φt ,ctout ,c

t
in〉

T ],

where 〈Ψ t ,Φt , ctout , c
t
in〉 is a collaboration specification of process RT .

If the equivalence holds, then despite this collaboration, adversary cannot distin-
guish R̂i{id/id i , t1/τ} in which the target user uses τ = t1 from R̂i{id/id i , t2/τ}
in which the target user uses τ = t2.

4.3 Independency-of-Enforced-Privacy

We define independency-of-enforced-privacy (iepriv) based on epriv in a simi-
lar fashion as ipriv. More precisely, iepriv of a protocol Pw is defined w.r.t.
target data τ ∈ bn(Ri), a collaboration specification 〈Ψ ,Φ, cout , cin〉 defined
on process R̂i with Ri = νidi.ντ.R̂i , and a set of attacking third parties to-
gether with a collaboration specification defined on the third parties processes
(RT , 〈Ψ t ,Φt , ctout , c

t
in〉). A well-formed protocol Pw satisfies iepriv w.r.t. τ ,

〈Ψ ,Φ, cout , cin〉, and (RT , 〈Ψ t ,Φt , ctout , c
t
in〉), if there exists a closed plain pro-

cess Pf for the target user to execute, such that, despite the help of third parties
RT according to 〈Ψ t ,Φt , ctout , c

t
in〉, the adversary cannot distinguish between

the target user collaborating with τ = t1, and him really using τ = t2 but
faking collaboration for τ = t1 by Pf .

Definition 10. A well-formed protocol Pw satisfies independency-of-enforced-
privacy (iepriv) w.r.t. τ , 〈Ψ ,Φ, cout , cin〉, and (RT , 〈Ψ t ,Φt , ctout , c

t
in〉), if there

exists a closed plain process Pf , such that for any C[ ] = νcout .νcin .( | Q)

satisfying bn(Pw ) ∩ fn(C[ ]) = ∅ and CPw [C[R̂
〈Ψ ,Φ,cout ,cin〉
i {id/id i , t/τ}] | RT ] ≈�

CPw [R̂
〈Ψ ,∅,c′out ,⊥〉
i {id/id i , t1/τ} | RT ], we have

1. C[Pf ]
\(c′out ,·) ≈� R̂i{id/id i , t2/τ},

2. CPw [C[R̂
〈Ψ ,Φ,cout ,cin〉
i {id/id i , t/τ}] | R〈Ψ

t ,Φt ,ctout ,c
t
in〉

T ]

≈� CPw [C[Pf ] | R〈Ψ
t ,Φt ,ctout ,c

t
in〉

T ],

where 〈Ψ ,Φ, cout , cin〉 is a collaboration specification for target user process R̂i ,
and 〈Ψ t ,Φt , ctout , c

t
in〉 is a collaboration specification of third party process RT .

This formalisation adds third parties collaboration R
〈Ψt ,Φt ,ctout ,c

t
in〉

T to Def. 7.

4.4 Coalition Privacy Properties

Corresponding to each privacy property defined above, we define coalition pri-
vacy properties which take into account defending third parties.
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Definition 11 (defensive coalition). Given an instance of the target user
R̂i{id/id , t/τ}, a set of defending third parties RD, and a coalition specifica-
tion 〈Θ ,Δ,Π 〉 defined on (R̂i{id/id , t/τ} | RD), the coalition is modelled as
νΩ .(R̂i{id/id , t/τ} | RD)〈Θ,Δ,Π 〉, where Ω = {c | 〈Rui ,Ruj ,M, c, y〉 ∈ Θ}.
The target user’s behaviour in the coalition is R̂i{id/id , t/τ}

〈Θ,Δ,Π 〉
=

νη.((R̂i{id/id , t/τ})〈Γ ,Δ,Π 〉|Pγ), where η is a set of fresh channels {c′i, . . . , c′�},
Γ = {〈R̂i{id/id , t/τ},Ruj ,M, c, y〉 | 〈R̂i{id/id , t/τ},Ruj ,M, c, y〉 ∈ Θ}, and
Pγ = in(c1, y

′
1).!out(c′1, y

′
1) | · · · | in(c�, y

′
�).!out(c

′
�, y

′
�) with {y′1, . . . , y′�} being

fresh variables, and {(c1, . . . , c�} = {c | 〈Rui , R̂i{id/id , t/τ},M, c, y〉 ∈ Θ}. The
third parties’ behaviour in the coalition is R

〈Θ,Δ,Π 〉
D .

Coalition-Privacy. Intuitively, coalition-privacy means that a target user’s
privacy is preserved due to the cooperation of a set of defending third par-
ties. A well-formed protocol Pw satisfies coalition-privacy w.r.t. τ ∈ bn(Ri) and
(RD, 〈Θ ,Δ,Π 〉) (〈Θ ,Δ,Π 〉 is defined on R̂i | RD, where Ri = νidi.ντ.R̂i), if
the adversary cannot distinguish an honest user in role Ri using τ = t1 from the
user actually using τ = t2 while helped by a set of defending third parties.

Definition 12. A well-formed protocol Pw satisfies coalition-privacy (cpriv)
w.r.t. data τ and coalition (RD, 〈Θ ,Δ,Π 〉) if CPw [R̂i{id/id i , t1/τ} | RD] ≈�

CPw [νΩ .(R̂i{id/id i , t2/τ} | RD)〈Θ,Δ,Π 〉], where 〈Θ ,Δ,Π 〉 is a coalition specifi-
cation defined on R̂i{id/id i , t2/τ} | RD.

In the definition, the coalition is modelled as νΩ .(R̂i{id/id i , t2/τ} | RD)〈Θ,Δ,Π 〉,
where the target user instantiates the target data with t2. The equivalence shows
that the adversary cannot distinguish the target user instantiating the target data
with t2 in the coalition from the target user instantiating the target data with t1. In
this way, coalition-privacy ensures the target user’s privacy when there exists a set
of third parties cooperating with him following a pre-defined coalition specification.

Coalition-Enforced-Privacy. Taking into account defending third parties, we
define coalition-enforced-privacy based on enforced-privacy. As before, coalition-
enforced-privacy specifies a target data τ and a collaboration specification of the
target user 〈Ψ ,Φ, cout , cin〉. As in coalition-privacy, coalition-enforced-privacy
specifies a set of defending third parties RD and a coalition specification 〈Θ ,Δ,Π 〉.
In coalition-enforced-privacy, the target user both cooperates with the adversary
and defending third parties. Similar to enforced-privacy, we assume that the tar-
get user lies to the adversary if possible. We do not assume that the target user
lies to the defending third parties, as they help the target user maintain privacy.

Intuitively, coalition-enforced-privacy means that a target user is able to lie
to the adversary about his target data when helped by defending third par-
ties – the adversary cannot tell whether the user lied. This property is mod-
elled as the combination of coalition-privacy and enforced-privacy: a protocol
Pw satisfies coalition-enforced-privacy w.r.t τ ∈ bn(Ri), 〈Ψ ,Φ, cout , cin〉 and
(RD, 〈Θ ,Δ,Π 〉), for 〈Ψ ,Φ, cout , cin〉 a collaboration specification defined on R̂i

with Ri = νidi.ντ.R̂i , and 〈Θ ,Δ,Π 〉 a coalition specification defined on the
target user and RD, if there exists a process Pf , such that the adversary cannot
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distinguish between genuine collaboration with τ = t1 and faking collaboration
using Pf with the help of the coalition for τ = t2.

Definition 13. A well-formed protocol Pw satisfies coalition-enforced-privacy
(cepriv) w.r.t. data τ , 〈Ψ ,Φ, cout , cin〉 and (RD, 〈Θ ,Δ,Π 〉), if there exists a
closed plain process Pf , such that for any C[ ] = νcout .νcin .( | Q) satis-

fying bn(Pw ) ∩ fn(C[ ]) = ∅ and CPw [C[R̂
〈Ψ ,Φ,cout ,cin〉
i {id/id i , t/τ}] | RD] ≈�

CPw [R̂
〈Ψ ,∅,c′out ,⊥〉
i {id/id i , t1/τ} | RD], we have

1. νΩ .(νη.(C[Pf ]
\(c′out ,·) | Pγ) | R〈Θ,Δ,Π 〉

D ) ≈� νΩ .(R̂i{id/id i , t2/τ} | RD)〈Θ,Δ,Π 〉,

2. CPw [C[R̂
〈Ψ ,Φ,cout ,cin〉
i {id/id i , t/τ}] | RD]

≈� CPw [νΩ .(νη.(C[Pf ] | Pγ) | R〈Θ,Δ,Π 〉
D )],

where Ω, η, Pγ are defined in Def. 11, 〈Ψ ,Φ, cout , cin〉 is defined on R̂i , 〈Θ ,Δ,Π 〉
is a coalition specification defined on R̂i{id/id i , t2/τ} | RD.

The collaboration between the target user and the adversary instantiating the

target data with t1 is modelled by CPw [C[R̂
〈Ψ ,Φ,cout ,cin〉
i {id/id i , t/τ}] | RD] ≈�

CPw [R̂
〈Ψ ,∅,c′out ,⊥〉
i {id/id i , t1/τ} | RD]. The target user’s actual behaviour of in-

stantiating the target data with t2 in process Pf is modelled as the first equiv-
alence. The second equivalence shows that the adversary cannot distinguish the
target user following the collaboration with the adversary from the target user
lying to the adversary with the help of defending third parties.

Coalition-Independency-of-Privacy. Similarly, we define the privacy notion
of coalition-independency-of-privacy with respect to a target data τ , a set of at-
tacking third parties with a collaboration specification (RT , 〈Ψ t ,Φt , ctout , c

t
in〉),

and a set of defending third parties RD with a coalition specification 〈Θ ,Δ,Π 〉.
Note that we require that there is no intersection between attacking third parties
and defending third parties, i.e., RT ∩RD = ∅, as we assume a third party can-
not be both attacking and defending at the same time. A well-formed protocol
Pw satisfies coalition-independency-of-privacy w.r.t. τ , (RT , 〈Ψ t ,Φt , ctout , c

t
in〉)

and (RD, 〈Θ ,Δ,Π 〉), if the adversary, even with the collaboration of a set of
attacking third parties, cannot distinguish the target user instantiating τ = t1
from the target user actually instantiating τ = t2 in the coalition with the help
of defending third parties.

Definition 14. A well-formed protocol Pw satisfies coalition-independency-of-
privacy (cipriv) w.r.t. data τ , (RT , 〈Ψ t ,Φt , ctout , c

t
in〉), and (RD, 〈Θ ,Δ,Π 〉), if

CPw [R̂i{id/id i , t1/τ} | RD | R〈Ψ
t ,Φt ,ctout ,c

t
in〉

T ]

≈� CPw [νΩ .((R̂i{id/id i , t2/τ} | RD)〈Θ,Δ,Π 〉) | R〈Ψ
t ,Φt ,ctout ,c

t
in〉

T ],

where 〈Ψ t ,Φt , ctout , c
t
in〉 is a collaboration specification of process RT , 〈Θ ,Δ,Π 〉

is a coalition specification defined on R̂i{id/id i , t2/τ} | RD.
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Coalition-Independency-of-Enforced-Privacy. Finally, we consider the case
combining all situations together: the target user collaborates with the adversary
following 〈Ψ ,Φ, cout , cin〉, a set of attacking third parties RT collaborate with
the adversary following 〈Ψ t ,Φt , ctout , c

t
in〉, and a set of defending third parties

RD and a coalition 〈Θ ,Δ,Π 〉). We formally define the property as follows.

Definition 15. A well-formed protocol Pw satisfies coalition-independency-of-
enforced-privacy (ciepriv) w.r.t. τ , 〈Ψ ,Φ, cout , cin〉, (RT , 〈Ψ t ,Φt , ctout , c

t
in〉),

(RD, 〈Θ ,Δ,Π 〉), if there exists a closed plain process Pf such that for any context
C[ ] = νcout .νcin .( | Q) satisfying bn(Pw ) ∩ fn(C[ ]) = ∅ and

CPw [C[R̂
〈Ψ ,Φ,cout ,cin〉
i {id/id i , t/τ}] | RT | RD] ≈� CPw [R̂

〈Ψ ,∅,c′out ,⊥〉
i {id/id i , t1/τ} |

RT | RD], we have

1. νΩ .(νη.(C[Pf ]
\(c′out ,·) | Pγ) |R〈Θ,Δ,Π 〉

D ) ≈� νΩ .((R̂i{id/id i , t2/τ}|RD)〈Θ,Δ,Π 〉),

2. CPw [C[R̂
〈Ψ ,Φ,cout ,cin〉
i {id/id i , t/τ}] | RD | R〈Ψ

t ,Φt ,ctout ,c
t
in 〉

T ]

≈� CPw [νΩ .(νη.(C[Pf ] | Pγ) |R〈Θ,Δ,Π 〉
D ) | R〈Ψ

t ,Φt ,ctout ,c
t
in〉

T ],

where Ω, η, Pγ are defined in Def. 11, 〈Ψ ,Φ, cout , cin〉 is a collaboration speci-

fication defined on R̂i , 〈Ψ t ,Φt , ctout , c
t
in〉 is a collaboration specification defined

on RT , 〈Θ ,Δ,Π 〉 is a coalition specification defined on R̂i{id/id i , t2/τ} | RD.

Remark. As certain coalitions may fail to maintain privacy, the coalition privacy
properties can be generalised by requiring the existence of a successful coalition.
The general version of coalition privacy properties allows us to reason about the
existence of a coalition such that a user’s privacy is preserved. How to find such
a coalition is an interesting topic for studying coalition privacy properties. Each
property defined in the above can be instantiated in many different forms by
specifying the parameters of the property (such as target data, collaboration,
coalition). Furthermore, only the target user is allowed to lie to the adversary –
we do not consider lying third parties. Properties, ipriv, iepriv, cipriv and ciepriv,
can be extended by allowing third parties to lie. For details, see [27].

5 Relations between the Privacy Notions

We show the relations between the privacy properties in Fig. 2: ρ specifies a
collaboration of the target user with the adversary, θ specifies a set of attacking
third parties and their collaboration with the adversary, and δ specifies a set of
defending third parties and their coalition with the target user.

The left diamond in Fig. 2 shows the relations between privacy properties
which do not consider defending third parties while the right diamond shows
the relations between privacy properties which consider defending third parties.
In the left diamond, eprivρ and iprivθ are stronger than priv, meaning that if
a protocol satisfies eprivρ or iprivθ, then the protocol satisfies priv. Intuitively,
if the adversary cannot break privacy with the help from the target user (in
eprivρ) or from a set of attacking third parties (in iprivθ), the adversary can-
not break privacy without any help (in priv). Similarly, if the adversary cannot
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break privacy with the help from both target user and attacking third parties
(in ieprivρ,θ), the adversary cannot break privacy with the help from only one
of them (in eprivρ and iprivθ). Thus, ieprivρ,θ is stronger than both enforced-
privacyρ and iprivθ. This is described as Thm. 1. Similar reasoning holds in
the right diamond as described in Thm. 2. Each privacy property in the left
diamond has a weaker corresponding property in the right diamond, mean-
ing that if a protocol satisfies a privacy property in the left diamond, there
exists a coalition such that the property satisfies the corresponding coalition
privacy property in the right diamond. Intuitively, if a protocol preserves pri-
vacy of a target user without any help from third parties, the protocol can still
preserve his privacy with the help from others. This is described as Thm. 3.

Fig. 2. Relations of the privacy notions
ieprivρ,θ

cieprivρ,θ,δ

eprivρ iprivθ

ceprivρ,δ ciprivθ,δ

priv

cprivδ

∃δ

∃δ ∃δ

∃δ

Theorem 1. (1) ∀θ, ieprivρ,θ
=⇒ eprivρ, (2) ∀ρ, ieprivρ,θ =⇒
iprivθ, (3) ∀ρ, eprivρ =⇒ priv,
and (4) ∀θ, iprivθ =⇒ priv.

Theorem 2. (1) ∀θ, cieprivρ,θ,δ
=⇒ ceprivρ,δ, (2) ∀ρ, cieprivρ,θ,δ
=⇒ ciprivθ,δ, (3) ∀ρ, ceprivρ,δ =⇒
cprivδ, and (4) ∀θ, ciprivθ,δ =⇒
cprivδ.

Theorem 3. (1) cieprivρ,θ =⇒
∃δ, cieprivρ,θ,δ, (2) eprivρ =⇒
∃δ,ceprivρ,δ, (3) iprivθ =⇒ ∃δ,
ciprivθ,δ, and (4) priv =⇒ ∃δ, cprivδ.

6 Discussion

Privacy notions modelled as strong secrecy can be captured by data-privacy.
For instance, anonymity [3] is data-privacy where the target data is a user’s
identity. Various domain-specific properties, which capture privacy in domains
where data-privacy is too strong to be satisfied, can be instantiated by cpriv. For
instance, bidding-privacy [11] in sealed-bid e-auctions is defined as the adversary
cannot determine a bidder’s bidding-price, assuming the existence of a winning
bid. This can be instantiated as cpriv where the target data is a bid, the defending
third party is the winning bidder and the coalition specification is 〈∅, ∅, ∅〉. Vote-
privacy [22] is defined as the adversary cannot determine a voter’s vote with the
existence of a counter-balancing voter. This can be instantiated as cpriv where
the target data is a vote, the defending third party is the counter-balancing voter
and the coalition specification is 〈∅,Δ, ∅〉 where Δ specifies how to replace the
counter-balancing voter’s vote.

Enforced privacy notions like receipt-freeness or coercion-resistance can be
captured by either epriv or cepriv. Receipt-freeness [10] in voting can be instan-
tiated by cepriv, where the target data and the coalition are the same as in vote-
privacy, and the collaboration specification is 〈Ψ , ∅, cout ,⊥〉 where Ψ contains
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all private terms generated and read-in in the target voter process. Similarly,
coercion-resistance [10] in voting is an instance of coalition-enforced-privacy.

The two independency of privacy properties, independency-of-prescribing-
privacyand independence-vote-privacy, are instances of cipriv. For example, the
property independence-vote-privacy [14] can be considered as an instance of cipriv,
where the target data and the coalition are the same as in vote-privacy, the set of
attacking third parties is a third voter, and the collaboration specification of the
third voter is 〈Ψ ,Φ, cout , cin〉 where Ψ are all generated and read-in terms and Φ
are all communicated terms in the third voter process. For details, see [27].

7 Conclusion and Future Work

In this paper, we have identified (enforced) privacy notions in the presence of
third parties. We formalised the collaboration of users, including the target user
and attacking third parties, with the adversary and the coalition among users
(the target user with defending third parties) in a generic way. The identified
privacy notions are formally defined in the applied pi calculus. We presented
the relations among the properties as a privacy hierarchy. We also showed that
various existing privacy properties in the literature can be instantiated as one
of the properties in the hierarchy.

We have already mentioned a few interesting research directions in the paper,
for example, how to find a coalition and synthesise strategy for the coalition to
satisfy some coalition privacy properties for a protocol, and how to extend our
privacy hierarchy to capture situations where a third party is coerced but has
a strategy to lie to the adversary. One important future work is to apply our
privacy notions to real-world applications such as online social networks.
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Abstract. The number of malicious software (malware) is growing out of
control. Syntactic signature based detection cannot cope with such growth and
manual construction of malware signature databases needs to be replaced by com-
puter learning based approaches. Currently, a single modern signature capturing
the semantics of a malicious behavior can be used to replace an arbitrarily large
number of old-fashioned syntactical signatures. However teaching computers to
learn such behaviors is a challenge. Existing work relies on dynamic analysis
to extract malicious behaviors, but such technique does not guarantee the cover-
age of all behaviors. To sidestep this limitation we show how to learn malware
signatures using static reachability analysis. The idea is to model binary pro-
grams using pushdown systems (that can be used to model the stack operations
occurring during the binary code execution), use reachability analysis to extract
behaviors in the form of trees, and use subtrees that are common among the trees
extracted from a training set of malware files as signatures. To detect malware we
propose to use a tree automaton to compactly store malicious behavior trees and
check if any of the subtrees extracted from the file under analysis is malicious.
Experimental data shows that our approach can be used to learn signatures from
a training set of malware files and use them to detect a test set of malware that is
10 times the size of the training set.

1 Introduction

Malware (malicious software) is software developed to damage the system that executes
it, e.g.: virus, trojans, rootkits, etc. A malware variant performs the same damage as an-
other known malware, but its code, its syntactical representation, is different. Malware
can be grouped into families, sets of malware sharing a common trait. Security reports
acknowledge a steady increase in the number of new malware. For instance, in 2010 the
number of newly unique variants of malware was 286 million [13] and recent numbers
confirm the trend [21]. Such numbers challenge current malware detection technology
and because variants can be automatically generated the problem tends to get worse.
Research confirms the unsuitability of current malware detectors [14,24]. The problem
is the low-level of the techniques used.

The basic detection technique is signature matching, it consists in the inspection of
the binary code and search for patterns in the form of binary sequences [27]. Such pat-
terns, malware signatures in the jargon and syntactic signatures throughout this paper,
are manually introduced in a database by experts. As it is possible to automatically gen-
erate an unbounded number of variants, such databases would have to grow arbitrarily,
not to mention it takes about two months to manually update them [14].

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 517–535, 2013.
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An alternative to signature detection is dynamic analysis, which runs malware in a
virtual machine. Therefore, it is possible to check the program behavior, for instance
to detect calls to system functions or changes in sensitive files, but as the execution
duration must be limited in time it is difficult to trigger the malicious behaviors, since
these may be hidden behind user interaction or require delays.

To overcome the problems of the previous techniques, a precise notion of malicious
behavior was introduced. Such is the outcome of the recent use of model-checking
techniques to perform virus detection [3,9,11,16,17,18,26,24,25,22]. Such techniques
allow to check the behavior (not the syntax) of the program without executing it. A
malicious behavior is a pattern written as a logical formula that specifies at a semantic
level how the syntactic instructions in the binary executable perform damage during
execution. As the malicious behavior is the same in all the variants of a malware, such
patterns can be used as modern (semantic) signatures which can be efficiently stored.

The prime example of a malicious behavior is self-replication [27]. A typical instance
of such behavior is a program that copies its own binary representation into another

l1 : push m
l2 : mov ebx 0
l3 : push ebx
l4 : call GetModuleFileName
l5 : push m
l6 : call CopyFile

Fig. 1. Malware assembly fragment

file, as exemplified in the assembly fragment of
Fig. 1. The attacker program discovers and stores
its file path into a memory address m by call-
ing the GetModuleFileName function with 0 as
first parameter and m as second parameter. Later
such file name is used to infect another file by
calling CopyFile with m as first parameter. Such
malicious behaviors can naturally be defined in
terms of system functions calls and data flow
relationships.

System functions are the mediators between programs and their environment (user
data, network access,. . . ), and as those functions can be given a fixed semantics, and
are defined in an Application Programming Interface (API), they can be used as a com-
mon denominator between programs, i.e. if the syntactical representation of programs
is different but both interact in the same way with the environment, the programs are
semantically equivalent from an observer perspective.

A data flow expresses that a value outputted at a certain time instant of program
execution by a function is used as an input by another function at a following instant.
For example when a parameter is outputted by a system call and is used as an input of
another. Such data flow relations allow us to characterize combined behaviors purported
by the related system calls. For instance, in the example of Fig. 1 it is the data flow
evidenced by the variablem, defined at the invocation of GetModuleFileName and used
at the invocation of CopyFile that establishes the self-replication behavior.

The malicious behaviors can be described naturally by trees expressing data flows
among system calls made at runtime. Due to code branches during execution it is pos-
sible to have several flows departing from the same system call, thus a tree structure is
particularly suitable to represent malicious behaviors. Plus, as such behaviors are de-
scribed independently of the functionality of the code that makes the calls, system call
data flow based signatures are more robust against code obfuscations. Thus, a remaining
challenge is to learn such trees from malware binary executables.
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Recent work [2,10,14] shows that we can teach computers to learn malicious behav-
ior specifications. Given a set of malware, the problem of extracting malicious behavior
signatures consists in the extraction of the behaviors included in the set and use statisti-
cal machinery to choose the ones that are more likely to appear. However the approaches
rely on dynamic analysis of executables which do not fully cover all behaviors. To over-
come these limitations, in this paper we show how to use static reachability analysis to
extract malicious behaviors, thus covering the whole behaviors of a program at once
and within a limited time.

Our Approach. We address such challenge in the following way: given the set of known
malware binary executables, we extract its malicious behaviors in the form of edge la-
beled trees with two kinds of nodes. One kind represents the knowledge that a system
function is called, the other kind of nodes represents which values were passed as pa-
rameters in the call (because some data flows between functions are only malicious
when the calls were made with a specific parameter e.g. the 0 passed to GetModule-
FileName in the self-replication behavior). Tree labels describe either a relation among
system calls or the number of the parameter instantiated. For example, the malicious be-
havior displayed in Fig. 1 can be displayed in the tree shown in Fig. 2. The tree captures
the self-replication behavior.

GetModuleFileName

CopyFile0

1 2 � 1

Fig. 2. Self-replication behavior

The edge on the left means that the GetModuleFile-
Name function is called with 0 as first parameter (thus
it will output the path to the malware file that called it)
while the edge on the right captures the data flow be-
tween the two system calls i.e. the second parameter
of a call to GetModuleFileName is an output and it is
used as an input in the first parameter of a call to CopyFile. Thus, such tree describes
the following behavior: GetModuleFileName is called with 0 as first parameter and its
second parameter will be used as input in the first parameter of a subsequent call to
CopyFile.

The first step in the tree extraction process is to model the malware binaries, which
involves modeling (recursive) procedure calling and return, and parameter passing
that are implemented using a stack. For this aim, we model each of the files using a
pushdown system (PDS), an automaton that mimics the binary code execution as a
state transition system. With this model one is able to rigorously define the behavior
of the program and use the decidable and efficient state reachability analysis of PDSs
to calculate all the states and the contents of the stack that can occur during execution.
Therefore, if malware performs a system call with certain parameters, the reachability
analysis will reveal it even if the call is obfuscated, e.g.: jump to function address. The
same happens if the call is made using indirect addressing because the analysis will
reveal that during execution the entry point of the system call is reached. Our approach
also works against bitwise manipulation of parameters, because we assume the system
functions are not changed by the attacker, thus when the executions reaches the entry
point of the system function, parameters must not be obfuscated, for instance in the
example above even if the value of m is obfuscated, at the entry point of the call the
value must be m to purport the self-replication behavior.
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From the reachability analysis of each PDS, we obtain a multi-automaton (MA),
a finite automaton encoding the possibly infinite reachable configurations (states and
stack contents)[8,12]. As the number of system functions is finite, we cut the finite
automaton to represent only the states corresponding to system function entry points
and stacks limited to the finite number of parameters passed to the function.

We analyze all data flows using the MAs to build trees, written as system call de-
pendency trees (SCDTs), representing such flows. The extracted trees correspond to a
superset of the data flows present in the malware because the PDS model is an overap-
proximation of the behaviors in the binary program. This means, that when a data flow
is found using our approach, there exists an execution path in the model evidencing
such data flow, but such execution path may not be possible in the binary program due
to approximation errors.

From the trees (SCDTs) extracted from the set of known malware binary executables
we use a data-mining algorithm to compute the most frequent subtrees. We assume
such correspond to malicious behaviors and we will term them malicious system call
dependency trees (MalSCDTs). The usage of such data-mining algorithm allows to
compute behaviors, which we use as signatures that are general and implementation
details independent, therefore robust.

To store and recognize MalSCDTs we infer an automaton, termed HELTA, rec-
ognizing trees containing MalSCDTs as subtrees. This allows to efficiently store the
malware signatures and recognize behaviors if they are hidden inside another behavior.
The overview of the learning process from the malware files to the database of semantic
signatures is depicted in Figure 3.

malware model PDS reachability MA extract SCDTs
freq. subtrees MalSCDT infer HELTA

Fig. 3. Learning malicious behaviors

To evaluate the efficiency of the computed malicious behaviors, we show they can
be applied to efficiently detect malware. To perform malware detection on a binary
executable, we extract trees using the same procedure used in the learning process (de-
scribed above), but applied to a single file. We check whether the automaton storing
malicious behaviors accepts any subtree of the extracted trees (SCDTs). If that is the
case the executable contains a malicious behavior and is classified as malware. The
depiction of such process is shown in Figure 4.

binary model PDS reachability MA extract SCDTs subtrees yes/no? recognize HELTA

Fig. 4. Malware detection

We implemented a tool that extracts the behaviors and selects the malicious candi-
dates using an algorithm for the frequent subgraph problem1. With such tool we were

1 A tree is a special case of a graph.
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able to infer some signatures not inferred using previous approaches [2,10,14] because
our signatures track calls to functions of the Win32 API instead of calls to the Native
API. It is a fact that it is always possible to use the previous approaches to find Native
API level signatures equivalent to the ones we infer, therefore we do not claim our tool
can express more behaviors, instead we claim that our approach is complementary to
such works. It allows to express behaviors at different API levels and to extract more
abstract/readable (Win32 API level) signatures.

We obtained promising results, and we were able to detect 983 malware files us-
ing the malicious trees inferred from 193 malware files, with a 0% false positive rate
(thus showing our approach learns malicious behaviors that do not appear in benign
programs). This number of detected malware is larger than the 16 files reported in [10]
and in line with the 912 files detected in [14]. Our false positive detection rate is better
(5% reported in [2]).

Outline. In Section 2 we show how to model binary executables as PDSs. Malware
signatures are defined as labeled trees in Section 3. We present an algorithm to infer
malware specifications in Section 4, and we show how to use tree automata to perform
malware detection in Section 5. Experimental data shows our approach can be used to
detect malware as detailed in Section 6. The related work is summarized in Section 7
and in Section 8 we present conclusions and future work.

2 Binary Code Modeling

Malware detection is performed directly in the executable encoding of the software
(binary code containing machine instructions and data). By modeling the operational
semantics of binary code, we are able to analyze it without relying on execution. This
section introduces the modeling framework and how we model executable files.

2.1 Pushdown Systems

A pushdown system (PDS) is a triple P = (P, Γ,Δ) where P is a finite set of control
points, Γ is a finite alphabet of stack symbols, and Δ ⊆ (P × Γ ) × (P × Γ ∗) is
a finite set of transition rules. A configuration 〈p, ω〉 of P is an element of P × Γ ∗.
We write 〈p, γ〉 ↪→ 〈q, ω〉 instead of ((p, γ), (q, ω)) ∈ Δ. The immediate successor
relation �P⊆ (P × Γ ∗) × (P × Γ ∗) is defined as follows: if 〈p, γ〉 ↪→ 〈q, ω〉, then
〈p, γω′〉 �P 〈q, ωω′〉 for every ω′ ∈ Γ ∗. The reachability relation⇒ is defined as the
reflexive and transitive closure of the immediate successor relation.

Given a set of configurations C, post(C) is defined as the set of immediate succes-
sors of the elements in C. The reflexive and transitive closure of post is denoted as
post∗(C) = {c′ ∈ P × Γ ∗ | ∃c ∈ C, c ⇒ c′} . Analogously pre(C) is defined as the
set of immediate predecessors of elements in C. Its reflexive and transitive closure is
denoted as pre∗(C) = {c ∈ P × Γ ∗ | ∃c′ ∈ C, c⇒ c′}.
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Given a pushdown system P = (P, Γ,Δ), a P-multi-automaton, P −MA or MA
when P is clear from context, is a tuple A = (Γ,Q, δ, P, F ), where Q is a finite set
of states, δ ⊆ Q × Γ × Q is a transition relation, P ⊆ Q is the set of initial states
corresponding to the control points of P , and F ⊆ Q is a set of final states.

The transition relation for MA is the smallest relation→⊆ Q× Γ ∗ ×Q satisfying:

– q
γ−→ q′ if (q, γ, q′) ∈ δ

– q
ωγ−−→ q′ if q

ω−→ q′′ and q′′
γ−→ q′

A accepts (recognizes) a configuration 〈p, w〉 if p
w−→ q for some q ∈ F . The set of

configurations recognized by a MA A is called regular and is designated by Conf(A).
The post∗ and pre∗ of regular configurations can be efficiently computed:

Theorem 1. [8,12] For a pushdown system P = (P, Γ,Δ) and MA A, there exist
MAs Apost∗ and Apre∗ recognizing post∗(Conf(A)) and pre∗(Conf(A)) respec-
tively. These can be constructed in polynomial time and space.

2.2 Modeling Binary Programs with PDSs

We use the approach detailed in [24, Section 2] to model each executable program P.
The approach relies on the assumption that there exists an oracle O computing a PDS
P = (P, Γ,Δ) from the binary program, where P corresponds to the control points of
the program, Γ corresponds to the approximate set of values pushed to the stack, and
Δ models the different instructions of the program. The obtained PDS mimics the runs
of program P.

In addition to the approach of [24], let API be the set of all Application Programming
Interface function names available in the program. We assume the oracle O approxi-
mates the set PAPI ⊆ P of control points of a program that correspond to instruction
addresses that at program runtime are translated (dynamically linked) by the operating
system into system function entry points, the number of parameters of such functions
and the type of each parameter. We consider a simple type system: τ ::= in | out (in
for input parameter, and out for output) containing the atomic value out used to denote
a parameter that is modified after function execution and in to denote the parameter is
not changed by the function.

We assume, O computes a function $λ : PAPI → API that identifies program
control points corresponding to system calls with an unique function name, a function
$τ : PAPI × N → 2τ such that $τ (p, n) is the set2 of possible types of the n-th pa-
rameter of the system call that has p as entry point, and a function $ar : PAPI → N

defining the number of parameters for each system call in PAPI For example, if we
consider the program of Fig. 1, we obtain PAPI = {lg, lc} since these two points
correspond to system call entry points, $λ(lg) = GetModuleF ileName since lg cor-
responds to the entry point of the function GetModuleFileName. $ar(lg) = 3 since
GetModuleFileName has three parameters, and $τ (lg, 2) = {out} since the second pa-
rameter of the GetModuleFileName function is defined as an output, and analogously
$τ (lg, 1) = $τ (lg, 3) = {in}, since these correspond to input parameters.

2 The API defines parameters that are both input and output.
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3 Malicious Behavior Specifications

As already mentioned, malicious behaviors, data flow relationships between system
function calls, will be expressed as trees where nodes represent system functions or
parameter values and edges specify the data flow or the number of the parameter to
which the value was passed. We will now formally introduce the notion of edge labeled
trees.

3.1 Edge Labeled Trees

An unranked alphabet is a finite set F of symbols. Given an unranked alphabet F , let
a set of colors C be an alphabet of unary symbols and disjoint from F , and X be a set
of variables disjoint from F . The set T (F , C,X ) of colored terms over the unranked
alphabet F , colors C and variables X it is the smallest set of terms such that:

– F ⊆ T (F , C,X ),
– X ⊆ T (F , C,X ), and
– f(c1(t1), . . . , cn(tn)) ∈ T (F , C,X ), for n ≥ 1, ci ∈ C, ti ∈ T (F , C,X ).

f

ba

c1 c2

Fig. 5. Example

If X = ∅ then T (F , C,X ) is written as T (F , C), and its el-
ements are designated as ground terms. Each element of the set
of terms can be represented by an edge labeled tree. For exam-
ple, let F = {f}, C = {c1, c2}, and X = ∅. The colored tree
f(c1(a), c2(b)) ∈ T (F , C) can be represented by the edge labeled
tree of Fig. 5.

Let Xn be a set of n variables. A term E ∈ T (F , C,Xn) is called an environment
and the expressionE[t1, . . . , tn] for t1, . . . , tn ∈ T (F , C) denotes the term in T (F , C)
obtained from E by replacing the variable xi by ti for each 1 ≤ i ≤ n.

A subtree t′ of a tree t in T (L, C), written as t′ � t, is a term such that there exists
an environmentE in T (L, C, {x}) where x appears only once and t = E[t′].

The tree f(c1(a), c2(b)) represents the same behavior as tree f(c2(b), c1(a)). Thus,
to efficiently compare edge labeled trees, and to avoid missing malicious behaviors due
to tree representation, we define a canonical representation of edge labeled trees. We
assume that F and C are totally ordered.

A term is in canonical form if it is a constant (leaf) or if it is a function (tree node)
where each argument is in canonical form and arguments are sorted without repetitions
by term order.

Let c ∈ C and t ∈ F(C, T ) such that F , C, and T are respectively ordered by
<F , <C , and <T , and t is in canonical form. We assume a subtree insertion operation
(insert_subtree) where insert_subtree(c(t), t′) adds c(t) as a child to the root of t′ in
the correct place to maintain a canonical representation of the tree, overwriting if the
subtree c(t) already exists.

3.2 System Call Dependency Trees

We will represent malware behaviors as trees encoding data flow relationships between
system function calls. Tree nodes represent either system functions or parameter values.
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Edge colors label the characteristics of the data flow between functions, e.g. 2 � 1
labeling an edge from function f and f ′ means that at some point f is called with some
value v as second parameter, which is of type out, and afterwards f ′ is called with v as
first parameter, which in turn is of type in. Moreover, when an edge connects a node
labeled with function f and a child node with some value v, meaning the function was
called with parameter v, it will be labeled with the number of the parameter, thus to
represent a call was made with 0 as first parameter to function f , we add 1 as a label of
the edge from node f to node 0.

Definition 1. Formally, let F be the set of all system call function names (the union
of all possibly API function names returned by the oracle of Section 2) and values
passed as function parameters (a subset of the union of all Γ sets calculated by the
oracle). In addition, let C be a set of colors containing all the possible parameter
numbers and data flows, i.e.: C = {1, . . . ,maxf∈API($ar(f))} ∪ {x � y | x, y ∈
{1, . . . ,maxf∈API($ar(f))}} A System Call Dependency Tree, written as SCDT, is de-
fined as a ground term of the set T (F , C).

Example. Let F = {0,GetModuleFileName,CopyFile} and C = {1, 2 � 1}, the be-
havior of Fig. 2 can be described by t = GetModuleFileName

(
1(0), 2 � 1(CopyFile)

)
.

4 Mining Malware Specifications

In this section we show how to compute the SCDTs corresponding to malware behav-
iors that we will use as malware specifications. Given a finite set of programsP1, . . . ,Pq

known to be malicious in advance we compute PDSs P1, . . . ,Pq that model these mali-
cious programs. Then, for each PDS Pi we compute a set of trees TSi that contains the
data flows represented as SCDTs for the program Pi. From the computed set of trees
for each program, TS1, . . . ,TSq, we calculate the common subtrees, the ones that are
most probable to appear in malware, that we use as malware specifications.

To compute the sets of trees TSi we proceed as follows: For each program Pi mod-
eled as a PDS Pi we compute the finite automaton encoding the set of reachable con-
figurations from the initial state using the reachability analysis algorithm from [12].
As there may be an infinite number of configurations and we are only interested in the
configurations whose control points correspond to a system function entry point with
some finite number of elements in the stack (only the parameters of the function un-
der consideration are important), we build another automaton recognizing such finite
set of configurations. For each of such configurations, understood as possible data flow
origins, we repeat the process to calculate the reachable configurations, understood as
possible data flow destinations. Then, if a data flow between configurations is found,
i.e. the value passed as a parameter to an origin configuration has type out and the
same value passed as a parameter of type in to a destination configuration, we build a
SCDT with the origin function as root node and an edge to a node corresponding to the
destination function.

To calculate the common subtrees we use the algorithm [30] computing frequent
subgraph, to compute frequent subtrees.
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4.1 System Call Targeted Reachability Analysis

To compute the data flows for a malware pushdown system model P = (P, Γ,Δ),
we first calculate the reachability of P using the algorithms presented in [12]. From
P we build the (MA) automaton A that recognizes the post∗(〈pi, ε〉), i.e. the set of
reachable configurations from the initial configuration 〈pi, ε〉, where pi is a designated
initial control point and ε denotes the empty stack.

MA Trimming. To compute data flows between system call related control points
po, pd ∈ PAPI with parameter numbers $ar(po) = m and $ar(pd) = n we need to
consider only the topm+1 and n+1 elements of the stack reached at control points po
and pd because, in assembly, parameters are passed to functions through the stack. Be-
fore invoking a function the parameters are pushed in reverse order into the stack, and
after the return address is pushed. Thus, if a function receivesm parameters, then at its
entry point, for instance po, the top m + 1 elements of the stack correspond to the pa-
rameters plus the return address. Thus we only need to consider the topm+ 1 elements
of the stack reached at control point po. This is the reason why we can analyze the
possibly infinite number of configurations encoded in the reachability resulting finite
automaton, we only inspect a finite subset. To abbreviate the algorithm that computes
SCDT we define such subset of configurations in terms of a new automaton obtained
by cutting the MA resulting from the reachability analysis.

Definition 2. Given a MA A recognizing the reachable configurations of a PDS P =
(P, Γ,Δ) we define the trim automaton A† as the automaton recognizing the configu-
rations in the set: {〈p, w〉 ∈ PAPI × Γ ∗ | |w| = $ar(p) + 1 ∧ ∃w′ ∈ Γ ∗s.t. 〈p, ww′〉
is accepted by A}

Intuitively, we cut the automaton and keep only configurations where control points
p correspond to system function entry points, and the stacks are bounded by the number
of parameters of the function plus one to take into account the return address. The trim
operation will be written as Ψ , thusA† = Ψ(A). It is trivial to prove that theConf(A†)
is a finite language, in fact the number of configurations corresponding to valid system
call function entry point, and its finite number of parameters is at most:
O(|PAPI | · |Γ | ·maxp∈PAPI ($ar(p))).

4.2 Extracting SCDTs
Algorithms 1 and 2 detail our approach to extract behaviors. We assume a maximum
tree height h ∈ N is given as input. We write ω[n] to denote the n-th element of some
word ω ∈ Γ ∗.

Algorithm 1. ExtractSCDT
1 forall the Pi do
2 TSi ←− ∅;

3 A†
i ←− Ψ(post∗(〈pi, ε〉));

4 forall the 〈po, ωo〉 ∈ Conf(A†
i ) do

5 TSi ←− TSi∪{BuildSCDT(〈po, ωo〉,h)};
6 end
7 end
8 return TS;

The Algorithm 1 iterates over the
modelsP1, . . . ,Pq (line 1). For each
it initializes the set of resulting trees
to the empty set (line 2) and com-
putes the configurations correspond-
ing to system calls that are reachable
from the given initial configuration
〈pi, ε〉 (line 3). The initial configu-
ration is built using the binary ex-
ecutable entry point and an empty
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stack. Then, for every configuration corresponding to a system call entry point 〈po, ωo〉
recognized by the trim automaton (line 4) it calls BuildSCDT to build a SCDT tree of
height at most h with the function of entry point po as root (line 5).

The BuildSCDT procedure is displayed in Algorithm 2, it is used to recursively
build a tree. First, the tree to be returned is initialized to be the origin system call entry
point po (line 1). When the maximum desired tree height is not reached (line 2), we
calculate what are the system calls reached from 〈po, ωo〉 (line 3) and check for flows to
any system call related configuration 〈pd, ωd〉 (line 4). If a data flow is found between
two configurations (line 5), i.e. there are parameter numbersn andm such that the value
passed to system call at control point po is the same as the value passed in position m
of system call at a control point pd, and there is in fact a flow (line 6) i.e. the parameter
n of the function corresponding to the entry point po is of type out and the parameter
m of the function corresponding to the entry point pd is of type in, we add a new child
with label n � m to the recursively computed tree for the destination system call pd
(line 7).

Algorithm 2. BuildSCDT
1 tree = �λ(po);
2 if h > 0 then
3 A† ←− Ψ(post∗(〈po, ωo〉));

4 forall the 〈pd, ωd〉 ∈ Conf(A†) \ {〈po, ωo〉} do
5 forall the (n,m) s.t. 1 ≤ n ≤ �ar(po) ∧ 1 ≤ m ≤ �ar(pd) do
6 if wo[n] = wd[m] ∧ �τ (po, n) = out ∧ �τ (pd,m) = in then
7 tree ←− insert_subtree (n � m(BuildSCDT(〈pd, ωd〉 , h− 1)), tree);
8 end
9 end

10 end
11 end
12 forall the n ∈ {1, .., �ar(po)} do
13 tree ←− insert_subtree (n(wo[n]), tree);
14 end
15 return tree;

To add the edges representing the values passed as parameters in the call of po we
iterate over the possible number of parameters of the origin system call entry point (line
12) and add an edge with the number of parameter n and the value passed in the stack
ωo[n] (line 13). When the maximum desired tree height is reached, the algorithm returns
only a tree with po as root and the values passed as parameters in the call.

4.3 Computing Malicious Behavior Trees

After extracting SCDTs for each of the inputed malware programs, one has to compute
which are the ones that correspond to malicious behaviors. The SCDTs that correspond
to malicious behaviors will be named malicious trees. To choose the malicious trees
we compute the most frequent subtrees in the set TS of trees extracted from the set of
malware used to train our detector. For that we need the notion of support set, the set of
trees containing some given subtree, and the notion of tree support that gives the ratio
of trees containing the subtree to the whole set of trees.

Given a finite set of trees TS ⊆ T (F , C) and a tree t ∈ TS, the support set of a tree
t is defined as Tt = {t′ | t � t′, t′ ∈ TS}. The tree support of a tree t in the set TS is
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calculated as sup(t) = |Tt|
|TS| . For a fixed threshold k the set of frequent trees of T is the

set of trees with tree support greater than k.

Definition 3. For a set of system call dependency trees trees TS ⊆ T (F , C) and a
given threshold k, a malicious behavior tree is a tree t ∈ TS s.t. sup(t) ≥ k. The set of
malicious behavior trees will be called MalSCDT.

To compute frequent subtrees we specialize the frequent subgraph algorithm pre-
sented in [30] to the case of trees. The algorithm receives a set of trees and a support
value k ∈ [0, 1] and outputs all the subtrees with support at least k. The graph algo-
rithm works by defining a lexicographical order among the trees and mapping each to
a canonical representation using a code based on the depth-first search tree generated
by the traversal. Using such lexicographical order the subtree search space can be effi-
ciently explored avoiding duplicate computations.

5 Malware Detection

We show in this section how the malicious behaviors trees that we computed using
our techniques can be used to efficiently detect malware. To decide whether a given
program P is malware or not, we apply again the technique described in Section 4 to
compute the SCDTs for the program P being analyzed. Then we check whether such
trees correspond to malicious behaviors, i.e. whether such trees contain subtrees that
correspond to malicious behaviors.

GetModuleFileName

ExitProcessCopyFile0

1
2 � 1

1 � 1

Fig. 6. Behaviors extracted from P

To efficiently perform this task, we use tree au-
tomata. The advantage of using tree automata is
that we can build the minimal automaton that rec-
ognizes the set of malicious signatures, to obtain
a compact and efficient database. Plus, malware
detection, using membership in automata, can be
done efficiently. However, we need to adapt tree
automata to suite malware detection, that is, to de-
fine automata that can recognize edge labeled trees. Furthermore, we cannot use stan-
dard tree automata because the trees that can be generated from the program P to be
analyzed may have arbitrary arities (since we do not know a priori the behaviors of P).
For example the behavior of the program P can be described by the tree of Fig. 6 that
contains the self-replication malicious behavior of Fig. 2. However, if we use a binary
tree automaton H to recognize the tree of Fig. 2, H will not recognize the tree of Fig.
6, because P contains the malicious behaviors and extra behaviors. To overcome this
problem we will use unranked tree automata (a.k.a. hedge automata), since the trees
that can be obtained by analysing program P might have arbitrary arity.

In this section, we show how to use hedge automata for malware detection. First, we
give the formal definition of hedge automata. Then, we show how we can infer a hedge
automaton to recognize malicious behaviors that may be contained in some tree. And
we conclude by explaining how to use it to detect malware.
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5.1 Tree Automata for Edge Labeled Trees

Definition 4. An hedge edge labeled tree automaton (HELTA) over T (F , C) is a tuple
H = (QH,F , C,A, ΔH) where QH is a finite set of states, A ⊆ QH is the set of final
states, andΔH is a finite set of rewriting rules defined as f(R) → q for f ∈ F , q ∈ QH,
and R ⊆

[
C(QH)

]∗
is a regular word language over C(QH) i.e. the language encoding

all the possible children of the tree node f .
We define a move relation −→H between ground terms in T (F ∪ QH, C) as follows:

Let t, t′ ∈ T (F ∪ QH, C), the move relation −→H is defined by: t −→H t′ iff there
exists an environment E ∈ T (F ∪ QH, C, {x}), a rule r = f(R) → q ∈ ΔH such
that t = E[f(c1(q1), . . . , cn(qn)))], and c1(q1) . . . cn(qn) ∈ R, and t′ = E[q]. We
write

∗−→H to denote the reflexive and transitive closure of −→H. Given an HELTA H =
(QH,F , C,A, ΔH) and an edge labeled tree t, we say that t is accepted by a state q if
t
∗−→H q, t is accepted by H if ∃q ∈ A s.t. t

∗−→H q.

Intuitively, given an input term t, a run of H on t according to the move relation−→H

can be done in a bottom-up manner as follows: first, we assign nondeterministically a
state q to each leaf labeled with symbol f if there is inΔH a rule of the form f(R) → q
such that ε ∈ R. Then, for each node labeled with a symbol f , and having the terms
c1(t1), . . . , c1(tn) as children, we must collect the states q1, . . . , qn assigned to all its
children, i.e., such that ci(ti)

∗−→H qi , for 1 ≤ i ≤ n, and then associate a state q to the
node itself if there exists in ΔH a rule r = f(R) → q such that q1 . . . qn ∈ R. A term t
is accepted if H reaches the root of t in a final state.

5.2 Inferring Tree Automata from Malicious Behavior Trees

In this section we show how to infer an HELTA recognizing trees containing the in-
ferred malicious behaviors. Thus, if t is a malicious behavior, and t′ is a behavior of
a program P that is under analysis, such that t′ contains the behavior described by t,
the automaton must recognize it. As an example assume t ∈ MalSCDT is a tree of
the form f(c1(a), c2(b))), s.t. a, b ∈ F and E ∈ T (F , C, {x}) is an environment, then
the automaton must recognize trees t′ of the form: E[f(c11(t

1
1), . . . , c

1
m1

(t1m1
), c1(a(e1)),

c21(t
2
1), . . . , c

2
m2

(t2m2
), c2(b(e2)), c

3
1(t

3
1), . . . , c

3
m3

(t3m3
))] meaning the tree is embedded in

other tree, i.e. t is a subtree of t′ and it may have extra behaviors cji (t
j
i ) and also extra

subtrees e1, e2 ∈ T (F , C) as child of the leafs a and b.
Let t ∈ MalSCDT, we define the operation Ω : MalSCDT → T (F , C) that

transforms a malicious tree into the set of all system call dependency trees containing
the malicious behavior t. Ω is defined inductively as:

(1) Ω(a) = {a(t) | t ∈ T (F , C)}, if a ∈ F is a leaf,
(2) Ω(f(c1(t1), . . . , cn(tn))) = {f(c11(t

1
1), . . . , c1n1

(t1n1
), c1(Ω(t1)), c21(t21), . . . ,

c2n2
(t2n2

), . . . , cn1 (tn1 ), . . . , cnnn
(tnnn

), cn(Ω(tn)), cn+1
1 (tn+1

1 ), . . . , cn+1
nn+1

(tn+1
nn+1

)) |
cji ∈ C and tji ∈ T (F , C)}, otherwise.

The first rule asserts that after the leaves of the malicious behavior t there may be
other behaviors, while the second asserts that in the nodes of the tree t′ there may be
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extra behaviors, for instance the edge to ExitProcess in Fig. 6. Then, if t is a malicious
behavior tree, we would like to compute an HELTA that recognizes all the trees t′ s.t.
∃t′′ ∈ Ω(t) and t′ = E[t′′] for an environmentE ∈ T (F , C, {x}).

Let MalSCDT be a finite set of malicious trees, by definition each t ∈ MalSCDT
is a term of T (F , C). We infer an HELTA H = (QH,F , C,A, ΔH) recognizing trees
containing malicious behaviors. WhereQH = {qt | t� t′ and t′ ∈MalSCDT} ∪ {qt |
t ∈ F} i.e. contains a state for each subtree of the trees to accept, plus a state for each
possible symbol of the alphabet that will be reached when a subtree with such symbol
as root is not recognized. The final states are defined as the states that correspond to
recognizing a malicious tree A = {qt | t ∈MalSCDT}. And ΔH is defined by rules:

R1 For all f ∈ F , f([C(QH)]∗) → qf ∈ ΔH

R2 For all t = f(c1(t1), . . . , cn(tn)) such that t� t′ and t′ ∈MalSCDT, f(
[
C(QH)

]∗
c1(qt1)

[
C(QH)

]∗
. . .

[
C(QH)

]∗
cn(qtn)

[
C(QH)

]∗
)→ qf(c1(t1),...,cn(tn)) ∈ ΔH

R3 For all final state qt ∈ A and all f ∈ F , f(
[
C(QH)

]∗
, qt,

[
C(QH)

]∗
) → qt ∈ ΔH

Intuitively, for f ∈ F , states qf recognize all the terms whose roots are f . This
is ensured by R1. In the rules [C(QH)]∗ allows to recognize terms t in (1) and cji (t

j
i )

in (2). For a subtree ti of a malicious behavior t in every MalSCDT, qti recognizes
Ω(qti). This is ensured by rules R2, which guarantees that a malicious tree containing
extra behaviors is recognized. R3 guarantees that a tree containing a malicious behavior
as subtree is recognized, i.e. R3 ensures that if t is a malicious behavior and E ∈
T (F , C, {x}) is an environment, then qt recognizes E[t′] for every t′ in Ω(t).

In the following we assert that if a tree t′ contains a subtree t′′ that contains a mali-
cious behavior t, then the inferred automaton will recognize it (even if there are extra
behaviors). Proof should follow by induction.

Theorem 2. Given a term t ∈MalSCDT, and t′ ∈ T (F , C). If there ∃t′′ ∈ Ω(t) and
an environmentE ∈ T (F , C, {x}) and t′ = E[t′′], then t′

∗−→H qt.

5.3 Malware Detection

The detection phase works as follows. Given a program P to analyze we build a PDS
modelP using the approach described in Section 2, then we extract the set of behaviors
TS contained in P using the approach in Section 4. Then we use the automaton H to
search if any of the trees in TS can be matched by the automaton. If that is the case the
program P is deemed malware.

Example. Suppose the tree in Fig. 6 was extracted and the tree in Fig. 2 is the only ma-
licious behavior in MalSCDT, which in turn is defined using C = {1, 2 � 1} andF =
{0,CopyFile,ExitProcess,GetModuleFileName}. We define an automatonH where the
set of states is QH = {q0, qExitProcess, qCopyFile, qGetModuleFileName(1(0),2�1(CopyFile))}, the
accepting set is A = {qGetModuleFileName(1(0),2�1(CopyFile))}, and ΔH contains rules pro-
cessing the leaves: 0([C(QH)]∗) −→H q0, ExitProcess([C(QH)]∗) −→H qExitProcess, and
CopyFile([C(QH)]∗) −→H qCopyFile. And a rule GetModuleFileName([C(QH)]∗, 1(q0),
[C(QH)]∗, 2 � 1(qCopyFile), [C(QH)]∗) −→H qGetModuleFileName(1(0),2�1(CopyFile)) process-
ing the whole malicious behavior of Fig. 2.

www.it-ebooks.info

http://www.it-ebooks.info/


530 H.D. Macedo and T. Touili

6 Experiments

To evaluate our approach, we implemented a tool prototype that was tested on a dataset
of real malware and benign programs. The input dataset of malware contains 1176 mal-
ware instances (Virus, Backdoors, Trojans, Worms,. . . ) collected from virus reposito-
ries as VX Heavens and a disjoint dataset of 250 benign files collected from a Windows
XP fresh operating system installation. We arbitrarily split the malware dataset into
a training and test group. The train dataset was used to infer the malicious trees that
were used in the detection of the samples of the test group. We were able to detect 983
malware files using the malicious trees inferred from 193 malware files, and show that
benign programs are benign, thus a 0% false positive rate.

6.1 Inferring Malicious Behaviors

To infer malicious behaviors, we transformed each of the 193 malware binary files
into a PDS model using the approach described in Section 2. To implement the oracle
O, we use the PoMMaDe tool [25] that uses Jakstab [19] and IDA Pro [15]. Jakstab
performs static analysis of the binary program. However, it does not allow to extract API
functions information, so IDA Pro is used to obtain such information, thus obtaining
$ar and $λ. The $τ function was obtained by querying the available information in the
MSDN website.

We apply Algorithm 1 to the PDS models to extract SCDTs for each of the malware
instances. The current results were obtained with an h value of 2. In practice, to avoid
the overapproximation of malicious trees, in the generation of SCDTs for the detection
phase we consider the condition in line 6 of Algorithm 2, wo[n] = wd[m] true only
when we know the value outputted by the oracle is precise.

Table 1. Training dataset

Name #

Backdoor.Win32.Agent 26
Worm.Win32.AutoRun 13
Email-Worm.Win32.Bagle 19
Email-Worm.Win32.Batzback 4
Backdoor.Win32.Bifrose 46
Backdoor.Win32.Hupigon 5
Email-Worm.Win32.Kelino 7
Trojan-PSW.Win32.LdPinch 13
Email-Worm.Win32.Mydoom 26
Email-Worm.Win32.Nihilit 7
Backdoor.Win32.SdBot 14
Backdoor.Win32.Small 13
Total 193

To compute the MalSCDT we encode the extracted
SCDT as graphs and try to calculate the most frequent
subgraphs. We use the gSpan [30] tool for that, it com-
putes frequent subgraph structures using a depth-first tree
search over a canonical labeling of graph edges relying
on the linear ordering property of the labeling to prune
the search space. The tool has been applied in various do-
mains as active chemical compound structure mining and
its performance is competitive among other tools [29]. The
tool supports only undirected graphs, therefore a mismatch
with the trees (that can be seen as rooted, acyclic direct graphs) used in this work. The
mismatch is overcome via a direction tag in the graph labels.

For the 193 files extracted SCDTs we have run the gSpan tool with support 0.6%.
This is a tunable value for which we chose the one that allows better detection results.
With this value we obtained 1026 subtrees (MalSCDTs), and best detection results.
From the inferred malicious trees output from gSpan, we build a tree automaton recog-
nizing such trees.

The training dataset contains 12 families of malware summarized in Table 1. In av-
erage, our tool extracts 7 SCDTs in 30 seconds for each malware file. To store the 1026
discovered MalSCDTs the automaton file used 24Kb of memory.
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6.2 Detecting Malware

Malware detection is reduced to generating SCDTs and checking whether they are rec-
ognized by the inferred automaton. Thus, to perform detection on an input binary file,
we model it as PDS using the approach described in Section 2 and extract SCDTs using
the approach detailed in Section 4.2. If any subtree of the extracted tree is recognized
by the automaton recognizing the malicious behaviors, we decide the binary sample
is malware. We implemented such procedure in our tool and were able to detect 983
malware samples from 330 different families.

In Table 2 we show the range of malware families and number of samples that our
tool detects as malware. In average, our tool extracts 64 SCDTs in 2.15 seconds for each
file (this value may be largely improved given that runtime efficiency was not a main
goal of the prototype design). The discrepancy in the number of trees generated (com-
pared to the training set) is justified by an implementation choice regarding the oracle
approximation of the set of values pushed to the stack. In the generation of SCDTs for
the detection phase we consider the condition in line 6 of Algorithm 2, wo[n] = wd[m]
true even if the values are approximated. Such cases were discarded in the generation
of SCDTs in the inference step where it holds only when the oracle outputs precise
values. The automaton tree recognition execution time is negligible (< 0.08 secs) in
all cases. To check the robustness of the detector, we applied it to a set of 250 benign
programs. Our tool was able to classify such programs as benign, obtaining a 0% false
positive rate. In 88% of the cases the tool extracts SCDTs and at least in 44% of the files
there is a call to a function involved in malicious behavior (e.g. GetModuleFileName,
ShellExecute,. . . ), but no tree was recognized as malicious. This value is in line with
the values detailed in [10,14] and better than the 5% reported in [2].

7 Related Work

Malicious behaviors have been defined in different ways. The foundational approaches
via computable functions [1], based in Kleene’s recursion theorem [4,5,6], or the neat
definition using MALog [20] capture the essence of such behaviors, but are too abstract
to be used in practice or require the full specification of software functionality. Our
work is close to the approaches using model checking and temporal logic formulas
as malicious behavior specification [24,25]. In such works specifications have to be
designed by hand while we are able to learn them automatically. Some of the trees we
infer describe malicious behaviors encoded in such formulas.

Regarding semantic signature inference there are the works [10,14] where the ex-
traction of behaviors is based on dynamic analysis of executables. From the execution
traces collected, data flow dependencies among system calls are recovered by compar-
ing parameters and type information. The outcome are dependence graphs where the
nodes are labeled by system function names and the edges capture the dependencies
between the system calls. Another dynamic analysis based approach is the one of [2]
where trees, alike ours, express the same kind of data flows between nodes represent-
ing system calls. Both approaches are limited by the drawbacks of dynamic analysis.
For instance, time limitations, limited system call tracing or an overhead up to 90×
slower during execution [23]. Plus, from the dataset made publicly available in [2], we
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Table 2. Test dataset name family and number of samples (#) detected

Name #

Backdoor.Win32.AF 1
Backdoor.Win32.Afbot 1
Backdoor.Win32.Afcore 6
Backdoor.Win32.Agent 66
Backdoor.Win32.Agobot 47
Backdoor.Win32.Alcodor 1
Backdoor.Win32.Antilam 9
Backdoor.Win32.Apdoor 6
Backdoor.Win32.Assasin 3
Backdoor.Win32.Asylum 8
Backdoor.Win32.Avstral 2
Backdoor.Win32.BLA 2
Backdoor.Win32.BNLite 1
Backdoor.Win32.BO2K 6
Backdoor.Win32.Bancodor 1
Backdoor.Win32.Bandok 1
Backdoor.Win32.Banito 4
Backdoor.Win32.Beastdoor 6
Backdoor.Win32.Bifrose 5
Backdoor.Win32.BoomRaster 1
Backdoor.Win32.Breplibot 6
Backdoor.Win32.Bushtrommel 2
Backdoor.Win32.ByShell 1
Backdoor.Win32.Cabrotor 1
Backdoor.Win32.Cafeini 1
Backdoor.Win32.Cheng 1
Backdoor.Win32.Cigivip 1
Backdoor.Win32.Cmjspy 8
Backdoor.Win32.Cocoazul 2
Backdoor.Win32.Codbot 4
Backdoor.Win32.Coldfusion 3
Backdoor.Win32.CommInet 3
Backdoor.Win32.Coredoor 1
Backdoor.Win32.Crunch 1
Backdoor.Win32.DKangel 2
Backdoor.Win32.DRA 4
Backdoor.Win32.DSNX 3
Backdoor.Win32.DarkFtp 3
Backdoor.Win32.DarkMoon 1
Backdoor.Win32.Delf 31
Backdoor.Win32.Dindang 1
Backdoor.Win32.DragonIrc 1
Backdoor.Win32.Dumador 3
Backdoor.Win32.Expir 1
Backdoor.Win32.HacDef 2
Backdoor.Win32.Hackarmy 3
Backdoor.Win32.Hupigon 4
Backdoor.Win32.IRCBot 6
Backdoor.Win32.Ierk 1
Backdoor.Win32.Jacktron 1
Backdoor.Win32.Jeemp 1
Backdoor.Win32.Katherdoor 7
Backdoor.Win32.Katien 2
Backdoor.Win32.Ketch 4
Backdoor.Win32.Kidterror 1
Backdoor.Win32.Konik 1
Backdoor.Win32.Krepper 2
Backdoor.Win32.Labrus 1
Backdoor.Win32.LanFiltrator 2
Backdoor.Win32.LanaFTP 1
Backdoor.Win32.Laocoon 1
Backdoor.Win32.Latinus 5
Backdoor.Win32.Lemerul 1
Backdoor.Win32.Lesbot 1
Backdoor.Win32.Levelone 2
Backdoor.Win32.Liondoor 1
Backdoor.Win32.Lithium 3
Backdoor.Win32.Litmus 1
Backdoor.Win32.LittleBusters 1
Backdoor.Win32.LittleWitch 1
Backdoor.Win32.Livup 1
Backdoor.Win32.Lixy 1
Backdoor.Win32.Lurker 1
Backdoor.Win32.Lyusane 1
Backdoor.Win32.MSNMaker 1
Backdoor.Win32.MServ 1
Backdoor.Win32.MainServer 1
Backdoor.Win32.Matrix 3
Backdoor.Win32.Medbot 1
Backdoor.Win32.Mellpon 2
Backdoor.Win32.Metarage 1
Backdoor.Win32.Mhtserv 1
Backdoor.Win32.Micronet 1
Backdoor.Win32.MiniCommander 1

Name #

Backdoor.Win32.MoonPie 1
Backdoor.Win32.Mowalker 1
Backdoor.Win32.Mtexer 2
Backdoor.Win32.Mydons 1
Backdoor.Win32.Ncx 1
Backdoor.Win32.NerTe 3
Backdoor.Win32.NetControl 2
Backdoor.Win32.NetShadow 1
Backdoor.Win32.NetSpy 8
Backdoor.Win32.Netbus 2
Backdoor.Win32.Netdex 2
Backdoor.Win32.Netpocalipse 1
Backdoor.Win32.Neurotic 2
Backdoor.Win32.Nuclear 3
Backdoor.Win32.Nucledor 2
Backdoor.Win32.Nyrobot 1
Backdoor.Win32.Optix 9
Backdoor.Win32.PPCore 1
Backdoor.Win32.PPdoor 2
Backdoor.Win32.Pacak 1
Backdoor.Win32.Padodor 5
Backdoor.Win32.PcClient 12
Backdoor.Win32.PeepViewer 1
Backdoor.Win32.Peers 2
Backdoor.Win32.Penrox 1
Backdoor.Win32.Pepbot 1
Backdoor.Win32.Pingdoor 1
Backdoor.Win32.Pipes 1
Backdoor.Win32.Plunix 1
Backdoor.Win32.Pornu 1
Backdoor.Win32.Probot 1
Backdoor.Win32.Proxydor 2
Backdoor.Win32.Psychward 5
Backdoor.Win32.Ptakks 1
Backdoor.Win32.Puddy 1
Backdoor.Win32.R3C 1
Backdoor.Win32.RAT 2
Backdoor.Win32.RDR 1
Backdoor.Win32.Rbot 8
Backdoor.Win32.Redkod 4
Backdoor.Win32.Revenge 1
Backdoor.Win32.Rirc 1
Backdoor.Win32.Robobot 1
Backdoor.Win32.Ronater 1
Backdoor.Win32.Rootcip 1
Backdoor.Win32.Roron 1
Backdoor.Win32.RtKit 4
Backdoor.Win32.Ruledor 4
Backdoor.Win32.SPing 3
Backdoor.Win32.SatanCrew 1
Backdoor.Win32.Sbot 2
Backdoor.Win32.SdBot 63
Backdoor.Win32.Seed 3
Backdoor.Win32.Serman 1
Backdoor.Win32.ShBot 1
Backdoor.Win32.Shakdos 1
Backdoor.Win32.Shox 1
Backdoor.Win32.SilverFTP 1
Backdoor.Win32.Sinf 1
Backdoor.Win32.Sinit 4
Backdoor.Win32.SkyDance 1
Backdoor.Win32.Small 22
Backdoor.Win32.Sporkbot 1
Backdoor.Win32.SpyBoter 9
Backdoor.Win32.Stang 1
Backdoor.Win32.Stats 1
Backdoor.Win32.Stigmador 1
Backdoor.Win32.SubSeven 1
Backdoor.Win32.Sumatrix 1
Backdoor.Win32.Suslix 1
Backdoor.Win32.Symes 1
Backdoor.Win32.Sysinst 1
Backdoor.Win32.System33 1
Backdoor.Win32.Sytr 1
Backdoor.Win32.TDS 3
Backdoor.Win32.Takit 1
Backdoor.Win32.Tasmer 1
Backdoor.Win32.Telemot 1
Backdoor.Win32.TheThing 3
Backdoor.Win32.Thunk 1
Backdoor.Win32.Tonerok 3
Backdoor.Win32.URCS 2
Backdoor.Win32.Undernet 1
Backdoor.Win32.Unwind 1

Name #

Backdoor.Win32.UpRootKit 1
Backdoor.Win32.Ursus 1
Backdoor.Win32.Utilma 1
Backdoor.Win32.VB 2
Backdoor.Win32.VHM 1
Backdoor.Win32.Vatos 1
Backdoor.Win32.Verify 1
Backdoor.Win32.WMFA 1
Backdoor.Win32.WRT 1
Backdoor.Win32.WbeCheck 3
Backdoor.Win32.Webdor 6
Backdoor.Win32.Whisper 1
Backdoor.Win32.Wilba 1
Backdoor.Win32.Winker 5
Backdoor.Win32.WinterLove 7
Backdoor.Win32.Wisdoor 7
Backdoor.Win32.Wollf 4
Backdoor.Win32.XBot 1
Backdoor.Win32.XConsole 1
Backdoor.Win32.XLog 2
Backdoor.Win32.Xdoor 2
Backdoor.Win32.Y2KCount 1
Backdoor.Win32.Ythac 1
Backdoor.Win32.Zerg 1
Backdoor.Win32.Zombam 1
Backdoor.Win32.Zomby 1
Constructor.Win32.Delf 1
Constructor.Win32.ETVM 2
Constructor.Win32.EvilTool 1
Constructor.Win32.MS04-032 1
Constructor.Win32.MS05-009 1
Constructor.Win32.SPL 1
Constructor.Win32.SS 2
Constructor.Win32.VCL 1
DoS.Win32.Aspcode 1
DoS.Win32.Ataker 1
DoS.Win32.DStorm 1
DoS.Win32.Igemper 1
DoS.Win32.SQLStorm 1
Email-Worm.Win32.Anar 2
Email-Worm.Win32.Android 1
Email-Worm.Win32.Animan 1
Email-Worm.Win32.Anpir 1
Email-Worm.Win32.Ardurk 2
Email-Worm.Win32.Asid 1
Email-Worm.Win32.Assarm 1
Email-Worm.Win32.Atak 1
Email-Worm.Win32.Avron 2
Email-Worm.Win32.Bagle 3
Email-Worm.Win32.Bagz 5
Email-Worm.Win32.Banof 1
Email-Worm.Win32.Bater 1
Email-Worm.Win32.Batzback 3
Email-Worm.Win32.Blebla 1
Email-Worm.Win32.Bumdoc 2
Email-Worm.Win32.Charch 1
Email-Worm.Win32.Cholera 1
Email-Worm.Win32.Coronex 3
Email-Worm.Win32.Cult 1
Email-Worm.Win32.Delf 4
Email-Worm.Win32.Desos 1
Email-Worm.Win32.Donghe 3
Email-Worm.Win32.Drefir 1
Email-Worm.Win32.Duksten 2
Email-Worm.Win32.Dumaru 10
Email-Worm.Win32.Energy 1
Email-Worm.Win32.Entangle 1
Email-Worm.Win32.Epon 1
Email-Worm.Win32.Eyeveg 3
Email-Worm.Win32.Fix2001 1
Email-Worm.Win32.Frethem 2
Email-Worm.Win32.Frubee 1
Email-Worm.Win32.GOPworm 1
Email-Worm.Win32.Gift 2
Email-Worm.Win32.Gismor 1
Email-Worm.Win32.Gizer 2
Email-Worm.Win32.Gunsan 2
Email-Worm.Win32.Haltura 1
Email-Worm.Win32.Hanged 1
Email-Worm.Win32.Happy 1
Email-Worm.Win32.Ivalid 1
Email-Worm.Win32.Jeans 1
Email-Worm.Win32.Kadra 1
Email-Worm.Win32.Keco 3

Name #

Email-Worm.Win32.Kelino 6
Email-Worm.Win32.Kergez 1
Email-Worm.Win32.Kipis 2
Email-Worm.Win32.Kirbster 1
Email-Worm.Win32.Klez 9
Email-Worm.Win32.Lacrow 2
Email-Worm.Win32.Lara 1
Email-Worm.Win32.Lentin 10
Email-Worm.Win32.Locksky 2
Email-Worm.Win32.Lohack 3
Email-Worm.Win32.LovGate 3
Email-Worm.Win32.Mescan 1
Email-Worm.Win32.Mimail 1
Email-Worm.Win32.Miti 1
Email-Worm.Win32.Modnar 1
Email-Worm.Win32.Mydoom 8
Email-Worm.Win32.NWWF 1
Email-Worm.Win32.Navidad 1
Email-Worm.Win32.NetSky 2
Email-Worm.Win32.NetSup 1
Email-Worm.Win32.Netav 1
Email-Worm.Win32.Newapt 6
Email-Worm.Win32.Nihilit 1
Email-Worm.Win32.Nirky 1
Email-Worm.Win32.Paroc 1
Email-Worm.Win32.Parrot 1
Email-Worm.Win32.Pepex 2
Email-Worm.Win32.Pikis 2
Email-Worm.Win32.Plage 1
Email-Worm.Win32.Plexus 1
Email-Worm.Win32.Pnguin 1
Email-Worm.Win32.Poo 1
Email-Worm.Win32.Postman 1
Email-Worm.Win32.Qizy 1
Email-Worm.Win32.Rammer 1
Email-Worm.Win32.Rapita 1
Email-Worm.Win32.Rayman 1
Email-Worm.Win32.Repah 2
Email-Worm.Win32.Ronoper 20
Email-Worm.Win32.Roron 23
Email-Worm.Win32.Sabak 1
Email-Worm.Win32.Savage 2
Email-Worm.Win32.Scaline 1
Email-Worm.Win32.Scrambler 1
Email-Worm.Win32.Seliz 1
Email-Worm.Win32.Sharpei 1
Email-Worm.Win32.Silly 1
Email-Worm.Win32.Sircam 1
Email-Worm.Win32.Skudex 2
Email-Worm.Win32.Sonic 4
Email-Worm.Win32.Stator 1
Email-Worm.Win32.Stopin 3
Email-Worm.Win32.Sunder 1
Email-Worm.Win32.Svoy 2
Email-Worm.Win32.Swen 1
Email-Worm.Win32.Tanatos 3
Email-Worm.Win32.Taripox 2
Email-Worm.Win32.Totilix 1
Email-Worm.Win32.Trilissa 4
Email-Worm.Win32.Trood 2
Email-Worm.Win32.Unis 1
Email-Worm.Win32.Urbe 3
Email-Worm.Win32.Valha 1
Email-Worm.Win32.Volag 1
Email-Worm.Win32.Vorgon 2
Email-Worm.Win32.Warezov 1
Email-Worm.Win32.Winevar 1
Email-Worm.Win32.Wozer 1
Email-Worm.Win32.Xanax 2
Email-Worm.Win32.Yanz 1
Email-Worm.Win32.Yenik 1
Email-Worm.Win32.Zircon 4
Exploit.Win32.Agent 3
Exploit.Win32.AntiRAR 1
Exploit.Win32.CAN 1
Exploit.Win32.CVE-2006-1359 1
Exploit.Win32.CrobFTP 1
Exploit.Win32.DCom 3
Exploit.Win32.DameWare 1
Net-Worm.Win32.Muma 1
Trojan-PSW.Win32.LdPinch 16
Worm.Win32.AutoRun 34

Total 983
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notice the signatures involve only functions from the Native API library. Our approach
has the advantage of being API independent, thus the level of analysis may be tuned,
plus Win32 API function based signatures should be shorter as each high level function
should be translated into a set of calls to the Native API functions.

In [7] the authors propose to learn behaviors of binary files by extracting program
control-flow graphs using dynamic analysis. Such graphs contain assembly instructions
that correspond to control flow information e.g. jmp, but that introduces more possi-
bilities to circumvent such signatures by rewriting the code. From the graphs, trees are
computed and the union of all such trees is used to infer an automaton that is used in
detection. Our inference does not output all the trees, only the most frequent, improving
the learning process and generalizing from the training dataset.

An alternative to semantic signatures are works based on machine learning approaches
as [28], which shows that by mining “n−grams” (a sequence of n bits), it is possible to
distinguish malware from benign program. In our approach, the distinguishing features
(malicious behaviors) can be seen as traces of program execution, thus having a meaning
that can be more easily understood.

8 Conclusion

In this work, we have shown how to combine static reachability analysis techniques to
infer malware semantic signatures in the form of malicious trees, which describe the
data flows among system calls. Our experiments show that the approach can be used
to automatically infer specifications of malicious behaviors and detect several malware
samples from an a priori given smaller set of malware. We were able to detect 983
malware files using the malicious trees inferred from 193 malware files, and applied the
detector to 250 benign files obtaining a 0% false positive rate.

As future work we envisage the improvement of the binary modeling techniques,
for example enriching the function parameter type system to allow better approxima-
tions. The usage of more advanced mining techniques, e.g. structural leap mining used
in [14], can be used to improve the learning approach. In another direction, given the
relation between modal formulas and tree models a comparison between our approach
and the approach in [24] concerning expressiveness and complexity is envisaged. Fi-
nally, a complexity study with respect to the depth of the trees extraction (parameter h
in Algorithm 1) and size of the HELTA would be another alternative direction.

Summing up, the reachability analysis of PDS models of executables can play a
major role in the malware specification inference domain. The ability to precisely an-
alyze stack behavior enables the extraction of executables system call data flows and
overcomes typical obfuscated calls to such routines.
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Abstract. Identifying attack paths in enterprise network is strategically
necessary and critical for security defense. However, there has been in-
sufficient efforts in studying how to identify an attack path that goes
through unknown security holes. In this paper, we define such attack
paths as zero-day attack paths, and propose a prototype system named
Patrol to identify them at runtime. Using system calls, Patrol builds a
network-wide system object dependency graph that captures dependency
relations between OS objects, and identifies suspicious intrusion prop-
agation paths in it as candidate zero-day attack paths through forward
and backward tracking from intrusion symptoms. Patrol further identifies
highly suspicious candidates among these paths, by recognizing indica-
tors of unknown vulnerability exploitations along the paths through rule-
based checking. Our evaluation shows that Patrol can work accurately
and effectively at runtime with an acceptable performance overhead.

1 Introduction

1.1 Zero-Day Attack Paths

When deploying enterprise network security defense, it is important to consider
multi-step attacks. Given that today’s network is usually under basic protection
from security deployments like firewall and IDS, it’s not easy for attackers to
directly break into their final target. Instead, determined attackers patiently
compromise other intermediate hosts as stepping-stones. That is, attackers often
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Fig. 1. An example attack scenario

have to go through an attack path be-
fore they achieve their goal. An attack
path is a sequence of vulnerability ex-
ploits on compromised hosts. It’s nec-
essary and critical to find the attack
paths hidden in the network.

Suppose that a host is compro-
mised by a local or remote exploit.
If this exploit is enabled by a known
vulnerability, it’s not zero-day. If this
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exploit is enabled by an unknown vulnerability, it is zero-day. If an attack path
includes one or more zero-day exploits, it is a zero-day attack path.

Fig. 1 illustrates an example attack scenario including three steps. Step 1, a
brute-force key guessing attack is used to exploit CVE-2008-0166 on SSH Server
to gain root privilege. Step 2, the export table on NFS Server is inappropriately
configured to allow any user to share files through a public directory (/exports),
so two crafted trojan-horses are uploaded to this directory. The trojan-horses
contain exploit code of CVE-2009-2692 and CVE-2011-4089. Step 3, once a
trojan-horse file is mounted and installed by an innocent user like Workstation
1 or 2, arbitrary code is executed to create a hidden channel. Hence, two attack
paths exist: p1{CVE-2008-0166, NFS misconfiguration, CVE-2009-2692} and
p2{CVE-2008-0166, NFS misconfiguration, CVE-2011-4089}. Let’s assume the
time now is August 1, 2009, then CVE-2008-0166 becomes the only known
vulnerability. If the attackers are still able to exploit all the vulnerabilities in
this scenario, then p1 and p2 both become zero-day attack paths.

Zero-day exploit problem is so important and challenging. Zero-day attack
path problem is beyond zero-day exploit problem. This paper aims to take the
first steps to address the zero-day attack path problem.

1.2 Possible Solutions

The literature is explored for possible solutions of zero-day attack path problem.
However, we find that no existing technique can well address this problem due
to the unknown nature of zero-day attack path.

Attack graph [1–3]. By considering vulnerabilities in combination (not merely
in isolation), attack graph can generate attack paths that show exploit sequences
to specific attack goals. But, this notion has been primarily applied to model
causality dependencies among known vulnerabilities. Unknown vulnerabilities
are not captured and zero-day attack paths will accordingly be missing in attack
graph. Notable exceptions are recent research [4] [5], which have pioneered the
attack graph based analysis and modeling of zero-day vulnerabilities. However,
a solution to identify zero-day attack paths at runtime is further expected.

Penetration test [6–8]. This solution uses real exploits to reveal some specu-
lated attack paths. It requires huge knowledge and operation input from human
intelligence. Hence, the cost is usually too expensive. Besides, the attack paths
in their discovery are largely known ones, because it’s very difficult to exploit
unknown vulnerabilities in penetration tests.

Alert correlation [9] [10]. This solution correlates isolated alerts to form poten-
tial attack paths. Although it has potentials to be automatic and inexpensive, it
may induce high false rates. The false rates are twofold: 1) The correlation itself
is inaccurate because it attempts to integrate possibly different contexts into a
unified “story”; 2) The alerts that the correlation largely depends on genetically
inherit false rates from security sensors like IDS. When the two folds of false
rates are combined together, the accuracy of the whole solution gets worse.

Techniques to detect zero-day exploits may help the identification of zero-day
attack path, such as anomaly detection [11–18] and specification-based detection
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[19] [20]. By profiling normal behavior and detecting deviations, these techniques
are capable of detecting novel exploits. However, they are hard to cope with
false positives. Besides, the identification of novel exploits doesn’t mean the
identification of zero-day attack paths. As pointed above, IDS alert correlation
needs to be involved and thus introduces one more fold of false rates.

1.3 Key Insights and Our Approach

This paper leverages a different strategy to identify the zero-day attack paths.
Instead of first collecting vulnerabilities or alerts and then correlating them into
paths, we first try to build a superset graph and identify the suspicious intrusion
propagation paths hidden in it as candidate zero-day attack paths, and then
recognize the highly suspicious candidates among these paths. Interested readers
can refer to Fig. 2 for an example of a superset graph (Fig. 2a) and the suspicious
intrusion propagation paths (Fig. 2b) hidden in it.

We make this decision for four key insights : 1) As the only way for programs
to interact with OS, system calls are found hard-to-avoid and attack neutral;
2) We find that a network-wide superset graph can be generated from system
calls, and zero-day attack paths are showing themselves in it. This graph is also
attack neutral. It exists no matter whether any vulnerability is exploited or not;
3) The superset graph is inherently a set of paths. We find a way to get its ap-
propriate subsets as candidate zero-day attack paths. These paths actually and
naturally correlate vulnerability exploitations, different from the logical correla-
tion in attack graph; 4) The candidate zero-day attack paths expose unknown
vulnerability exploitations along them, and thus can orientate us to recognize
such exploitations. With these paths serving as network-wide attack context, the
accuracy and performance of detecting unknown vulnerability exploitations can
be better than the detection with only isolated per-host context.

The following summarizes our main contributions:

1. We propose to build a network-wide system object dependency graph (SODG)
as the superset graph. Built from system calls, an SODG is made up of OS ob-
jects like processes/files/sockets (nodes) and dependency relations between
them (edges). It neutrally captures the occurrence of vulnerability exploits.

2. We propose to identify suspicious intrusion propagation paths (SIPPs) in
the network-wide SODG as candidate zero-day attack paths. The SIPPs
actually and naturally correlate known/unknown vulnerability exploitations.
We further coin the concepts of vulnerability shadow and shadow indicator
to help recognize the highly suspicious candidates among the SIPPs.

3. We implemented a prototype system, called Patrol, which can work accu-
rately and effectively at runtime with an acceptable performance overhead.

2 Models and Assumptions

We assume a network consists of Unix-like operating systems, in which system
objects can be mainly classified into processes, files and sockets. We propose to
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(a) An example 3-host SODG for the at-
tack scenario in Fig. 1, with 1288 OS
objects from 143120 system calls. The
SIPPs hidden in it is highlighted in red.

���������� �	��������


���
��������

���

���
���

���

���

���
���

���

���
���

���
���

���

���

���

���

���

���

���

���

���

��

��
��

��

�� ���

���

��� ���

���

��� ���

���
���

���

���
���

���

���

���

����

����

���
���

���

���

��������
����

����

���

���

������

���

���
���

������
������

���

���

���

���

���

���

���

���

��� ���
��� ���

���

���

���

���
���

���

���

���

���
���

���

���

���

������

���

���

����

����

���
���

����

����

����

����

���

���

���

���

���

����
����

����

����

����

����

���� ����

����

����

����
����

����
����

����

����
����

����

���
����

���

���

���

����

����
����

����

����

����

���
���

���� ����

����

����

����

����

����

����
����

����

����

����
����

����

����

����
����

����

����

���

���

����

����

����

����

����

����

����

����

����
����

����

����

����

����

����

����

����
����
����

(b) The red colored SIPPs hidden in (a),
with 175 OS objects. The trigger node is
highlighted in red and other verified ma-
licious nodes in grey.

Fig. 2. This figure is to show what the SODG and SIPPs are like. A box contains a
per-host SODG, in which a rectangle denotes a process, a diamond denotes a socket,
and an ellipse denotes a file. They look unreadable because of the fine granularity at
OS-level and the scale of network. Readers are not expected to understand the details.
A main merit of Patrol is that it can dig out SIPPs from the network-wide SODG.

build a network-wide system object dependency graph (SODG) using system
call traces. Since a system call is designed to be the only way to get service from
OS in modern operating systems, attackers have to talk to the system via system
calls. Therefore, although unknown exploits could not be seen by us, they can
be seen by SODG. Fig. 2a gives an example of a 3-host SODG.

To build a network-wide SODG, we first need to construct the SODG for each
host, namely per-host SODG. As in Definition 1, a per-host SODG is a directed
graph made up of OS objects (nodes) and dependency relations (directed edges)
between them. System calls are parsed to generate these nodes and edges. There
are several types of dependency relations. For example, system call read infers
that a process depends on a file (denoted as file→process), while write determines
that a file depends on a process (process→file). Table 1 gives the dependency
rules to help generate dependency relations from system calls. start and end
respectively denote the timestamp at which a system call is invoked and returned.

Definition 1. per-host System Object Dependency Graph
If the system call trace for the i-th host is denoted as Σi, then the per-host
SODG for the host is a directed graph G(Vi, Ei), where:

– Vi is the set of nodes, and initialized to empty set ∅;
– Ei is the set of directed edges, and initialized to empty set ∅;
– If a system call syscall∈Σi, and dep is the dependency relation parsed from

syscall according to dependency rules in Table 1, where dep∈{(src→sink),
(src←sink), (src↔sink)}, src and sink are OS objects (mainly a process,
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Table 1. System call dependency rules

Dependency Events System calls
process→file process modifies file write, pwrite64, rename, mkdir, linkat, link, sym-

linkat, symlink, fchmodat, fchmod, chmod, fchownat,
mount

file→process process uses but does not modify
file

stat64, lstat64, fstat64, open, read, pread64, execve,
mmap2, mprotect, linkat, link, symlinkat, symlink

process↔file process uses and modifies file open, rename, mount, mmap2, mprotect
process→process process creation or termination vfork, fork, kill
process↔process process creation clone
process→socket process writes socket write, pwrite64
socket→process process checks or reads socket fstat64, read, pread64
process↔socket process writes socket mount, connect, accept, bind, sendto, send, sendmsg,

recvfrom, recv, recvmsg
socket↔socket process reads or writes socket connect, accept, sendto, sendmsg, recvfrom, recvmsg

file or socket), then Vi = Vi∪{src, sink}, Ei = Ei∪{dep}. dep inherits times-
tamps start and end from syscall ;

– If (a→b)∈Ei and (b→c)∈Ei, then c transitively depends on a.

As shown in Definition 2, the network-wide SODG is constructed by recur-
sively concatenating the per-host SODGs. If and only if at least one directed
edge exists between two nodes from two different SODGs, these two SODGs can
be concatenated together (by the ∪ operation in Cantor set theory).

Definition 2. network-wide System Object Dependency Graph
If the per-host SODG for the i-th host is denoted as G(Vi, Ei), then the network-
wide SODG can be denoted as ∪G(Vi, Ei), where:

– ∪G(V2, E2)=G(V1, E1)∪G(V2, E2)=G(∪V2, ∪E2), iff ∃obj1∈V1, obj2∈V2
and dep1,2∈∪E2, where dep1,2∈{obj1←obj2, obj1→obj2, obj1↔obj2}. ∪V2 de-
notes V1∪V2, and ∪E2 denotes E1∪E2;

– ∪G(Vi, Ei)={∪G(Vi−1, Ei−1)}∪G(Vi, Ei)=G(∪Vi, ∪Ei), iff ∃obji−1∈∪Vi−1,
obji∈Vi and depi−1,i∈∪Ei, where depi−1,i∈{obji−1←obji, obji−1→obji, obji−1

↔obji}. ∪Vi denotes V1∪· · ·∪Vi, and ∪Ei denotes E1∪· · ·∪Ei.

The network-wide SODG is inherently a set of paths. A zero-day attack path
will be one of them if it exists. Hence, we propose to identify suspicious intrusion
propagation paths (SIPPs) in the network-wide SODG as candidate zero-day
attack paths.

As in Definition 3, the SIPPs are a subgraph of the network-wide SODG, of
which the OS objects are all “suspicious”: given a trigger node tn, they either
have affected tn through direct or transitive dependency relations before lat(tn),
or have been affected by tn after eat(tn). Trigger nodes refer to SODG objects
that are involved in the alerts from existing security sensors, such as Snort [21],
Tripwire [22], or our system itself.1 We assume trigger nodes can be noticed
by administrators. The SIPPs inherently reveal the attacker’s trace at OS level.

1 To reduce dependency on efficiency of security monitoring tools, Patrol implements
another mode: heavy mode, in which Patrol feeds itself with its own alerts as seeds.
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Fig. 2b gives an example of the SIPPs hidden in the 3-host SODG, using the
SSH socket (node 225 ) noticed from the Snort alert “SSH potential brute force
attack” as the trigger node.

Definition 3. Suspicious Intrusion Propagation Paths (SIPPs)
If the network-wide SODG is denoted as ∪G(Vi, Ei), where G(Vi, Ei) denotes
the per-host SODG for the i-th host, then the SIPPs are a subgraph of ∪G(Vi,
Ei), denoted as G(V ′, E′), where:

– V ′ is the set of nodes, and V ′⊂ ∪Vi;
– E′ is the set of directed edges, and E′⊂ ∪Ei;
– V ′ is initialized to include trigger nodes only;
– For ∀obj′∈V ′, if ∃obj∈ ∪Vi where (obj→obj′)∈ ∪Ei and start(obj→obj′)
≤lat(obj′), then V ′=V ′∪{obj} and E′=E′∪{(obj→obj′)}. lat(obj′) maintains
the latest access time to obj′ by edges in E′;

– For ∀obj′∈V ′, if ∃obj∈ ∪Vi where (obj′→obj )∈ ∪Ei and end(obj′→obj )
≥eat(obj′), then V ′=V ′∪{obj} and E′=E′∪{(obj′→obj )}. eat(obj′) main-
tains the earliest access time to obj′ by edges in E′.

A network-wide SODG can be unmanageably complex. A main merit of Patrol
is that it can dig out SIPPs from the network-wide SODG. The size of the
identified SIPPs is much smaller (see Table 4 in Appendix for the statistics of
the 3-host SODG and SIPPs in Fig 2). The SIPPs will include almost all the
zero-day attack paths. The only possible way for a zero-day attack path to escape
SIPPs is that it includes only zero-day exploits on all compromised hosts. This
is very rare and unlikely, because it’s almost impossible for attackers to exploit
only zero-day vulnerabilities along the path. Therefore, a zero-day attack path
will be a path in SIPPs if it exists. Section 3.5 will propose a method to help
recognize highly suspicious candidate zero-day attack paths among the SIPPs.

3 System Design

3.1 System Overview

Fig. 3 shows the overview of our system. It consists of four components:
System call auditing and filtering. We first perform system call auditing on

each host, and then send the system call traces from individual hosts to the
analysis machine after filtering (according to filtering rules). Among the four
components, only system call auditing and filtering is on the fly. The other three
are performed off-line, to reduce overhead imposed on individual hosts.

SODG graph generation. To construct a network-wide SODG, two steps are
needed: per-host SODG generation and inter-host SODG generation. First, the
collected system call logs are parsed based on dependency rules to build per-host
SODGs. Then, per-host SODGs are concatenated into a network-wide SODG.

SIPPs identification. To dig out the SIPPs “hidden” inside the network-wide
SODG, trigger nodes are used as seeds to track the forward and backward OS
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Fig. 3. System overview of Patrol

dependencies across the boundaries of individual hosts. These dependencies iden-
tify the nodes and edges of SIPPs.

Shadow indicator checking. To help identify highly suspicious candidate zero-
day attack paths among the SIPPs, we also perform shadow indicator checking,
which is a new technique that we will present in Section 3.5.

3.2 System Call Auditing and Filtering

Several requirements are expected for system call auditing: 1) System call au-
diting should be done against all running processes, rather than against specific
processes. It’s hard to pre-determine which process to audit, so process-specific
system call auditing could miss important system calls that carry critical intru-
sion information. 2) System call auditing should be network-wide, meaning that:
first, all hosts of the network should be audited; second, the socket communi-
cations between hosts should be captured. Network-wide system call auditing is
the basis for identifying suspicious paths across hosts. 3) Sufficient OS-aware in-
formation should be preserved for accurate OS object identification. Due to the
reuse of process ID and file descriptor numbers, it’s inaccurate to identify system
processes and files solely by their IDs or descriptor numbers. 4) The time that
a system call is invoked and returned should be recorded. Time information can
later help determine whether a system call is involved in intrusion propagation.

Considering unfiltered data would cause more bandwidth/CPU costs on data
transfer and analysis, system calls are filtered before being sent to the analysis
machine. Some filtering rules are applied to prune system calls which involve
OS objects that are either highly redundant or possibly innocent. This is called
filtering preprocessing, which can boost the speed of graph generation and reduce
the complexity of resulted graphs. For example, we currently perform pruning
for the following objects: 1) The dynamic linked library files like libc.so.∗ and
libm.so.∗. They are loaded every time an executable is run, and thus cause a
lot of redundancy; 2) Dummy objects like stdin/stdout and /dev/null ; 3) Ob-
jects about pseudo-terminal master and slave (/dev/ptmx and /dev/pts); 4) Log
relevant objects like syslogd and /var/log/∗; 5) Objects relevant with system
maintenance (apt-get and apt-config). More filtering rules could be specified to
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prune more system calls, gaining better speed boosting. However, it also takes
more risk filtering out objects involved in vulnerability exploitations. Due to this
tradeoff, filtering rules for preprocessing are enabled as options.

After filtering, system call traces are sent to the analysis machine. Considering
accumulative data may cause bigger latency on data transfer and analysis, we
set a parameter called time window to tune the frequency of sending system call
logs. It is the periodic time span during which system calls are logged.

3.3 SODG Generation and Concatenation

System calls from individual hosts are used to construct per-host SODGs. A
per-host SODG can be constructed by first parsing system calls into OS objects
(process/file/socket) and dependency relations between them. OS objects then
become SODG nodes and dependency relations become SODG edges. Depen-
dency rules are proposed and used in related works [23–25] to help determine
dependency relation types according to specific system calls. Table 1 lists the
dependency rules used in Patrol. In addition to dependency rules, system call
arguments also contribute to the parsing. They are used to uniquely recognize
and name SODG nodes, and help infer the edge direction between them. For
example, system call “sys open, start:470880, end:494338, pid:6707, pname:scp,
pathname:/mnt/trojan, inode:9453574” from our trace is transformed to (6707,
scp)←(/mnt/trojan, 9453574 ), where pid and pname are used to recognize the
process, and pathname and inode are used to identify the file.

Hosts communicate with each other, hence a per-host SODG may have di-
rected edges to or from other per-host SODGs. This insight can be leveraged to
build the network-wide SODG by concatenating per-host SODGs. If and only
if there exists at least one directed edge between two nodes from two different
per-host SODGs, these two SODGs can be concatenated together. Such edges
can serve as the glue for concatenation. We find that directed edges between
per-host SODGs are usually caused by socket-based communications. A local
program can communicate with a remote program through message passing,
which can be captured by system call socketcall. Hence, two per-host SODGs can
be concatenated together by identifying and pairing socket objects. For exam-
ple, system call “sys accept, start:681154, end:681162, pid:4935, pname:sshd, sr-
caddr:172.18.34.10, srcport:36036, sinkaddr:192.168.101.5, sinkport:22” results
in a directed edge (172.18.34.10, 36036 )→(192.168.101.5, 22 ), where a socket
object is denoted as a tuple (ip, port). This edge can be used to concatenate the
per-host SODGs of 172.18.34.10 and 192.168.101.5. The network-wide SODG
is constructed by recursively concatenating the per-host SODGs. First, two per-
host SODGs can be concatenated into a 2-host SODG. Then, the 3rd per-host
SODG can be glued to the 2-host SODG, the 4th per-host SODG glued to the
3-host SODG, and so on. The algorithm goes on recursively and ends when no
edge exists between any per-host SODG and the resulted network-wide SODG.
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3.4 SIPPs Identification

SIPPs identification is designed to dig out SIPPs from the network-wide SODG.
A benefit of the network-wide SODG is that intra-host forward and backward
dependency tracking can be extended across the boundaries of individual hosts.
Using trigger nodes as seeds, such inter-host dependency tracking identifies all
network SODG objects that have direct or transitive dependency relations to or
from trigger nodes, i.e. SIPPs by Definition 3. Hence, the SIPPs identification
begins with the recognition of trigger nodes. Trigger nodes could be files that
are deleted, added, or modified in unexpected ways, and processes that behave
in an unusual or malicious manner, such as conducting abnormal port scanning,
or making disallowed system calls. They are usually raised by security sensors
like Snort, Tripwire, etc., and noticed by administrators.

Trigger nodes are not necessarily the start of an intrusion. For example, what
an IDS detects could be later manifestation of the start. In that case, Patrol
will use trigger nodes to first perform backward tracking to find the intrusion
start, and then use the start to perform forward tracking. Basically, backward
dependency tracking is used to identify all the SODG objects that have directly
or transitively affected trigger nodes, and forward tracking is to identify objects
that have been affected by trigger nodes. In patrol, backward and forward de-
pendency tracking are both implemented based on breadth-first search (BFS)
algorithm [26], as depicted in Definition 3. In simple words, the SIPPs is initial-
ized to include only trigger nodes, and then BFS is recursively invoked to add new
nodes and edges from the network-wide SODG. For each object obj′ in SIPPs,
the latest and earliest access time are respectively maintained in lat(obj′) and
eat(obj′). In backward tracking, if obj′ depends on another object obj in SODG,
and the timestamp start of this dependency relation is earlier than lat(obj′), it
means that obj has affected obj′. So, obj and the dependency relation should be
added into SIPPs. Similarly, in forward tracking, if another object obj in SODG
depends on obj′, and the timestamp end of this dependency relation is later than
eat(obj′), it means that obj has been affected by obj′ and should be added into
SIPPs together with the dependency relation.

3.5 Shadow Indicator Checking

The SIPPs could still be complex. To further identify highly suspicious candidate
zero-day attack paths among the SIPPs, we propose the concepts of vulnerability
shadow and shadow indicator. These concepts are based on the observation that
vulnerabilities share some features. CWE [27] enumerates 693 common weak-
nesses, and CAPEC [28] classifies 400 common attack patterns. These common
features could exist in vulnerabilities found in a long time span, and even in
some future unknown vulnerabilities.

The concept of vulnerability shadow is much in the same spirit. But instead of
directly characterizing vulnerabilities, we propose to characterize exploitations
of them at the OS level. This is because, due to the existence of shared fea-
tures, exploitations of some vulnerabilities often result in similar characteristics
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shadow indicator:
node.name=page zero&

node.indegree>0&node.outdegree>0

CVE-2009-1897CVE-2009-1895 CVE-2009-2698CVE-2009-2695 CVE-2010-4346

unknown vulnerabilities... ...
CVE-2009-2692

Fig. 4. A vulnerability shadow example: bypassing mmap min addr

in SODG. The insight here is that, the characteristics extracted from previous
exploitations of known vulnerabilities can be applied to detect the exploitation
of unknown vulnerabilities. We leverage this insight as follows: we define such
common characteristics as an indicator function, which is used to indicate mem-
bership of elements in set theory, and use this function to build a set. The
resulted set is a set of known and unknown vulnerabilities, whose exploitations
all have the common characteristics. Such a set is named vulnerability shadow,
and its set indicator function is called shadow indicator.

Definition 4. Vulnerability Shadow and Shadow Indicator
A vulnerability shadow is a Cantor set denoted as S ={v |p(SODG(v))}, where:

– v is a known or unknown vulnerability, whose exploitation is part of the
SODG represented as SODG(v);

– p, the shadow indicator for S, is a boolean-valued set indicator function:
SODG(v)→{true, false}. p can be a conjunction of several predicates, in a
form like p=p1&p2&· · ·&pn (n is a natural number), where for ∀1 ≤i≤ n, pi
is predicating an attribute of a node or edge in SODG(v), and & stands for
AND operation in logic (p is true, iff pi is true for ∀1 ≤i≤ n);

– v∈S, iff p(SODG(v))=true.

Fig. 4 shows an example vulnerability shadow bypassing mmap min addr,
with node.name=page zero&node.indegree>0&node.outdegree>0 as its shadow
indicator.2 This indicator was first observed in exploiting CVE-2009-1895 and
CVE-2009-1897, and then can be used to recognize the exploitations of CVE-
2009-2692, CVE-2009-2695, CVE-2009-2698, etc. A very intriguing implication
of vulnerability shadow is that, unknown vulnerabilities that do not have a CVE
ID yet could exist in this shadow, if and only if their exploitations can make the
shadow indicator become true.

Shadow indicators imply occurrence of an exploitation and should not appear
in legitimate paths. In addition to the trigger node, if other shadow indicators
appear on a path in SIPPs, the path is very likely to be an attack path. If

2 The kernel variable mmap min addr is tunable to specify the minimum virtual ad-
dress that a process is allowed to mmap. Bypassing mmap min addr makes a vi-
olation to map user-land page zero, which can be triggered later by null pointer
dereference to gain privileges. Page zero is parsed from mmap2 (null, 4096, ∗, ∗,
∗)=0 or mprotect(0, 4096, ∗)=0, where ∗ is the wildcard.
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no alerts from vulnerability scanners or traditional IDS can be associated with
any of these indicators, this path is reported as a highly suspicious candidate
zero-day attack path. Rule-based checking is employed to recognize the shadow
indicators in SIPPs. As Snort rules are developed for Snort to capture attack
signature at packet level, Patrol rules are invented for Patrol to capture shadow
indicators at OS level. A Patrol rule is like this: indicator indicator object (func-
tion: indicator function; msg: “vulnerability shadow name”).

Each rule specifies the object to check upon in indicator object. If no object is
specified, “any” is used to check on every object. Each rule contains the indicator
function in indicator function. The function specifies unexpected attribute values
of the nodes or edges in SIPPs. A message will display the name of the vulnerabil-
ity shadow when the function returns true. The following gives the Patrol rule for
checking the shadow indicator of bypsssing mmap min addr: indicator page zero
(function: indegree>0&outdegree>0; msg: “bypassing mmap min addr”).

The attributes used to specify indicator function include graph attributes and
system call attributes. The graph attributes like indegree (a node’s inward edge
number) and outdegree (outward edge number) allow us to characterize exploita-
tions from the perspective of graph. In addition to graph attributes, system call
attributes such as syscall (system call name), argument (arguments) and rtn
(return value) can also be taken into consideration. Patrol maintains associa-
tion between graph edges and corresponding system calls. Hence, system calls
can be revisited for inspection of its arguments and return values. For example,
the following Patrol rule is used to detect symlink inconsistency: indicator any
(function: outdegree=0&∃(syscall=linkat&rtn=0 ); msg: “symlink inconsistency
between request and creation”).3

4 Implementation

The system design is implemented into a prototype named Patrol, through ap-
proximately 5493 lines of code, which include about 2411 lines of C code for a
loadable kernel module auditing 39 system calls, and 3082 lines of gawk code for
data analysis which produces dot-compatible [29] output for graph visualization.

System Call Auditing and OS-Aware Reconstruction. Patrol hooks sys-
tem calls via a loadable kernel module, which can audit all running processes.
Interested system calls are audited, including those encapsulated in system call
socketcall, such as sys accept, sys sendto, etc. In the module, codes are inserted
to each system call to 1) record its arguments and return values; 2) refer OS
kernel data structures, retrieving process descriptor from task struct and file de-
scriptor from files struct. The OS-aware information such as process descriptors,
absolute file paths and inode numbers are preserved for accurate OS object iden-
tification. The timestamps start and end respectively record the time that the

3 If a symbolic link created is inconsistent with the one requested, an attacker can
exploit race condition to make arbitrary code executed as the requested link is ref-
erenced. Because linkat has other alternatives like symlinkat, link, and symlink, this
rule has several siblings.
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system call is invoked and returned. The resulted kernel module supports Linux
kernel versions 2.6.24 through 2.6.32.

Graph Representation and Edge Aggregation. We represent our graphs
with an adjacency matrix (Map) because during SODG generation and SIPPs
identification we need to quickly look up if there is already an existing edge
connecting two nodes. With adjacency matrix, the query takes only O(1) time,
while with other data structures it may take O(|v|) or O(|e|) time, where |v|
and |e| are respectively the number of nodes and edges in a graph. For each
pair of SODG nodes (srcObj and sinkObj ), there could be a large number of
edges between them. The edges are caused by different system calls or the same
system call with different timestamps. Our implementation aggregates them into
a single one, maintaining the matrix cell (Map[srcObj, sinkObj ]) to count the
number of edges, and a timestamp list (tMap[srcObj, sinkObj ]) to associate this
aggregated edge with different timestamps.

Light Mode and Heavy Mode. To reduce dependency on efficiency of the
traditional security sensors, Patrol implements another mode: heavy mode, in
which Patrol feeds itself with its own alerts as seeds. In light mode, Patrol gets
fed with trigger nodes, identifies SIPPs, and continues with rule-based checking
against SIPPs to detect if shadow indicators exist. In heavy mode, it doesn’t use
any trigger nodes from other tools. Instead, it directly matches shadow indicators
against the whole network-wide SODG. If any shadow indicators are matched,
they are then used as trigger nodes to initiate the light-mode running. That is, a
heavy mode can be run to replace the role of security sensors, but it also causes
heavier workload. For example, the heavy mode can detect the brute-force attack
exploiting CVE-2008-0166 in seconds after the SODG is built, without relying
on any Snort alert. This paper focuses on illustration of light mode.

5 Evaluation

5.1 Experimental Setup

The ideal environment to evaluate Patrol is a real-world enterprise network. How-
ever, accesses to production kernels are tightly controlled by policy. We therefore
built a web-shop test-bed for evaluation. Fig. 1 illustrates the test-bed network,
which is set up with firewalls, Nessus [30], Oval [31], Snort, Wireshark [32],
Ntop [33] and Tripwire. The hosts are typically deployed with Dell PowerEdge
T310 with two 2.53GHz Intel(R) Xeon(R) X3440 quad-core processor and 4GB
of RAM running 32-bit Linux 2.6.24 through 2.6.32.

We implemented the attack scenario in Fig. 1. In order to produce zero-day
attack paths, the attacks have to exploit unknown vulnerabilities. However, a
typical zero-day attack can remain undisclosed for 312 days on average [34]. Due
to such lack of zero-day resources, we emulate unknown vulnerabilities by using
published vulnerabilities. Our strategy is to tune the “time” back to a history
date and assume vulnerabilities published after that date are still unknown.
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Step 1: brute-force attack to SSH server.
shadow indicator: brute-force attack

Step 2: trojan-horse file uploaded to /exports on NFS Server.
shadow indicator: illegal file write access

Step 3: page-zero triggered by null pointer dereference to gain privilege on Workstation 1.
shadow indicator: bypassing mmap_min_addr

Fig. 5. The zero-day attack path p1 dug out from the SIPPs (Fig. 2b) by Patrol,
capturing the 3-step attack in the attack scenario. The identified shadow indictors are
highlighted in red color. The grey nodes are proved to be malicious during verification.

Such emulation enables us to evaluate the correctness of our approach, because
1) timelines can be maintained for vulnerability shadows to make sure that no
specific knowledge of the emulated vulnerabilities is needed; 2) the exploit code
and other information about the emulated vulnerabilities can be available for
verification. This paper assumes that the time is tuned to August 1, 2009, so that
CVE-2008-0166 becomes the only known vulnerability in the attack scenario.

5.2 Correctness

Of all the vulnerabilities in the attack scenario, only the exploit of CVE-2008-
0166 triggered an alert “SSH potential brute force attack” from Snort. Hence,
both of the zero-day attack paths p1 and p2 in the attack scenario were missing.
In contrast, using the SSH socket (node 225 in the figures) noticed from the Snort
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Fig. 6. False positives and negatives of shadow
indicator checking for brute-force attack

alert as the trigger node, Pa-
trol successfully identified both p1
and p2 at the OS level. Fig. 5 and
Fig. 7 respectively illustrate p1 4

and p2. Since p2 and p1 share the
same Step 1 and Step 2, Fig. 7
only shows the Step 3 of p2.

We verified the correctness of
p1 and p2, by comparing the
nodes and edges on them with the

4 There were hundreds of socket communications coming from different ports of the
same malicious IP (192.168.202.2 ) to node 225. For simplicity, only three of them
are illustrated.
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Step 3: symlink inconsistency exploited 
to win race condition on Workstation 2

shadow indicator: symlink inconsistency 
between request and creation 

Fig. 7. Step 3 of the zero-day at-
tack path p2 identified by Patrol.
The red and green dotted lines
respectively denote the execution
of the attack processes and in-
nocent processes. The red lines
replaced the requested symlink
/tmp/ls (79 ) with malicious code
/tmp/evil (78 ), which was later
referenced by the the innocent
process ls (115 ). The identified
shadow indictor is highlighted in
red color. The grey nodes are
proved to be malicious during ver-
ification.

intrusion knowledge extracted from the exploit code, the CVE entries in NVD
[35] and the documentation of corresponding vulnerable applications. We marked
the nodes in Fig. 5 and Fig. 7 with grey color if they were verified to be mali-
cious. It shows that Patrol correctly captured the malicious objects interacting
with each other to accomplish the intrusion break-in and propagation.

We also evaluated the false positives of the shadow indicator checking on the
two identified paths. For this, we kept Patrol running intensively for 72 hours
against a variety of applications and services in the test-bed. It turns out that the
false positive rate of shadow indicator checking is indicator-specific. For example,
the indicator checking for bypassing mmap min addr and symlink inconsistency
got 0 false positives, while the indicator checking for brute-force attack had
false positives varying with the setup of a parameter and the workload of the
host. The brute-force shadow indicator (node.indegree>thresholdbruteforce) uses
thresholdbruteforce to specify the maximum in-degree per minute allowed for a
SODG node. Fig. 6 illustrates the impact of thresholdbruteforce on false positives
and negatives for SSH Server. As the threshold increases, the false positives first
decrease and then stay at 0 until the false negative appears. As the request speed
increases, the false positives increase and a bigger threshold is needed.

Furthermore, the above false positives can be tolerated by Patrol to some
extent. For example, for brute-force shadow indicator checking, the false alarmed
objects include: 1) DNS related process (avahi-daemon) or sockets (port 53 or
5353); 2) uninitialized sockets (port 0); 3) dynamic linked library files. However,
none of them were on the same SIPPs with other shadow indicators. Hence, with
the help of SIPPs, most of the false positives could be eliminated.

5.3 Efficiency

Time window size and filtering preprocessing are two important factors impact-
ing the efficiency of Patrol data analysis. Time window is the periodic time span
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Table 2. Statistics for time window based tests on data analysis

time window size (mins) 5 15 25 35 45 55
# of syscalls in filtered log 17550 52649 87748 122848 157947 193047
time overhead of SODG generation (s) 44.94 108.88 278.52 601.93 1097.33 1836.47
# of objects in SODG 526 1425 2326 3227 4101 4977
time overhead of SIPPs identification (s) 0.91 7.54 22.75 48.79 76.75 107.02
# of objects on SIPPs 374 1094 1811 2519 3209 3903
time overhead of indicator checking (s) 0.004 7.033 18.149 31.159 60.932 76.497
total overhead (s) 52.26 142.30 350.90 726.58 1291.95 2089.31
syscall generation speed (KB/s) 1.02 1.027 1.034 1.033 1.032 1.034
data analysis speed (KB/s) 5.839 6.498 4.418 2.985 2.157 1.634
storage size (raw)(MB) 2.731 8.189 13.65 19.107 24.568 30.026
storage size (compressed)(MB) 0.298 0.903 1.514 2.118 2.722 3.333

during which system calls are collected and analyzed. All the evaluation results
in this subsection use the arithmetic mean averaging over 10 runs of tests.

Impact of Time Window Size. We set the time window size to values from
5 mins to 55 mins. Table 2 illustrates the statistics of Patrol data analysis for
SSH server. To get overhead under heavy workload, requests were loaded to SSH
Server at the speed of 1 request per 5 seconds. Data analysis spends time mainly
on SODG generation, SIPPs identification and shadow indicator checking. Fig. 8
plots the time overheads. The results show that SODG generation dominates the
time overhead, and its computation cost increases approximately quadratic with
the time window size. The time overheads of SIPPs identification and shadow
indicator checking tend to be linear and relatively much smaller. Fig. 9 shows
that the speed of Patrol data analysis is maximized when time window size is 15
mins. This speed is far beyond the system call generation. We also noticed that
the caused latency is about 2.37 mins, and the storage requirement is about 0.085
GB/day. Today’s hard disk is large enough to accommodate this substantial
amount of log traffic. Considering the test is done in quite request-intensive
workload, both the time and storage overheads are reasonable. We therefore
determine the time window size for the test-bed network to be 15 mins.
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The above results are theoretically supported. SODG generation checks each
existing object to avoid duplication before adding new objects. Hence, the com-
putational complexity of SODG generation can be O(|v|2). The SIPPs identifi-
cation is using the BFS algorithm, thus its time complexity is O(|v| + |e|) [26],
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Table 3. Comparison results between filtered and unfiltered data analysis

SSH Server NFS Server Workstation 1
filtered/unfiltered filtered unfiltered filtered unfiltered filtered unfiltered
# of syscalls in log 22249 82133 11761 14944 21722 46043
time overhead on SODG(s) 58.38 1812.966 42.286 48.447 51.012 101.138
# of objects 650 15960 34 210 604 1007
# of processes 230 273 7 121 106 138
# of files 248 15515 17 79 473 844
# of sockets 171 171 10 10 23 23
# of dependencies 18697 97805 11813 15056 19649 43712

where |v| and |e| are respectively the number of nodes and edges in SODG.
The shadow indicator checking checks each object and dependency of SIPPs in
worst case, therefore its complexity is also O(|v′| + |e′|), where |v′| and |e′| are
respectively the number of nodes and edges in SIPPs.

Impact of Filtering Preprocessing. Table 3 summarizes the SODG genera-
tion time with filtering enabled and disabled respectively. The results show that
unfiltered data costs more time than filtered data. The worst case overhead is
the unfiltered SODG generation for SSH Server. It spent about half an hour.
The large overhead is mainly because the algorithm checks each existing object
to avoid duplication before adding new objects. When the system object number
reaches very high, such as 15960 in this case, the time cost rises very quickly.
We also noticed that among these objects, the number of files is extremely large
as 15515. The filtered SODG generation costs less than one minute because a
large number of these files are effectively pruned by filtering rules.

5.4 Performance Overhead

We use LMBench [36] to measure the performance impact of Patrol on individual
core kernel system calls. The outputs show that the addon overhead of most
modified system calls in Patrol is within 10%. Some of them are even working
with negligible overhead, such as sys read and sys write. The worst case overhead
is 52.7% for sys stat and 175% for sys fstat. These results are to be expected,
because of the relatively small amount of work done in each call compared to
the work of recording OS-aware object information. For example, 175% is larger
than 52.7% because of the smaller denominator, but in both cases the imposed
overhead was equally 0.3-0.4 microseconds. The common case is much better.

We use UnixBench to measure the slow-down of the whole system that or-
chestrates the above individual system calls together. The outputs show that
the performance overhead of Patrol is 20.8% for the whole system, with larger
overhead to I/O-intensive applications than CPU-intensive applications. We also
use kernel decompression and kernel compilation to measure the system perfor-
mance of Patrol in intensive workload. The results show that the two workloads
impose 15.93% overhead and 20.34% overhead on the system.
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5.5 Scalability

Regarding the scalability, let’s consider the main overhead imposed on band-
width, SODG generation and SIPPs identification for an enterprise network
equipped with 10000 hosts, 10 GB/s network bandwidth and a HPC cluster
of 640 processor cores (20 processors with 32 cores per processor).

With converging traffic from hosts to the cluster, the bandwidth cost will be
about 10000 times the system call generation speed for each host. Taking the
speed 1.027 KB/s from Table 2, the bandwidth overhead is about 10.029 MB/s
which only occupies less than 1% of total bandwidth.

The SODG generation costs time mainly on per-host SODG generation which
is a parallelizable task (α=0 in Equation 1). Given the data collected in 1 time
window, the SODG generation time for 10000 hosts is estimated to be 28.35
minutes according to the following Gustafson’s law, taking single-host SODG
generation overhead as 108.88 seconds from Table 2.

t1
tp

= p− α(p− 1) = α+ p(1− α) (1)

where p is the number of processors for parallel computing, α is the fraction
of running time a program spends on non-parallelizable parts, t1 is the execution
time of the sequential algorithm, and tp is the execution time with maximum
speed-up under parallelization of the program.

SIPPs identification from a trigger node is non-parallelizable (α=1) due to the
sequential nature of dependency tracking. Hence, the SIPPs identification time
increases linearly with the host-length of SIPPs (l). Its maximum can be esti-
mated by constructing service dependency transitive closure (“host A can reach
host B through one or more service dependencies”) in enterprise network. Let’s
suppose l=100, and the SIPPs identification time will be about 12.57 minutes,
taking time overhead of single-host SIPPs identification as 7.54 seconds from Ta-
ble 2. SIPPs identification from different trigger nodes and branching in SIPPs
identification can be done in parallel. As long as the number of trigger nodes
and branches don’t exceed p, SIPPs identification can be easily handled within
12.57 minutes. We make conservative estimation by α=1, hence the efficiency
for parallel computing can be better in reality than estimated.

6 Related Work

Patrol draws inspirations from previous research such as system call-based in-
trusion detection and system object dependency tracking.

System calls are used in pioneer works by Forrest et al. [11] and Lee et al. [12]
for intrusion detection. System call-based IDS mainly leverages statistical prop-
erties of system call sequence [13] [14] and system call arguments [16] [17].
Bhatkar et al. further takes into account the temporal properties involving ar-
guments of different system calls [18]. Instead of providing individual intrusion

www.it-ebooks.info

http://www.it-ebooks.info/


Patrol 553

alerts, the aim of Patrol is to identify zero-day attack paths through network-
wide dependencies parsed from system calls. These paths provide network-wide
attack context, and help detect unknown vulnerability exploitations.

System object dependency tracking is first proposed by King et al. [23] to au-
tomatically identify sequences of intrusion steps. The follow-up works [37] [38]
further propose to integrate system object dependency tracking and alert correla-
tion techniques. Given a large number of existing IDS alerts, these works target
on identifying their correlations. In contrast, Patrol takes an inverse strategy
to first identify SIPPs hidden in the network-wide SODG, and then recognize
unknown vulnerability exploitations on these paths.

7 Discussion and Conclusion

In addition to the promising potentials, the current version of Patrol may face
challenges such as 1) If an attack path goes through a victim machine hosting
kernel mode service like nfs-kernel-server, Patrol may lose trace halfway since it
relies on system call interface; 2) If an attack is a long-term attack, Patrol may
successfully capture its intrusion propagation paths at different time spans, but
fail to correlate them.

In conclusion, this paper identifies the problem of zero-day attack paths in
practical network defense. This paper proposes a prototype system named Pa-
trol. By building a network-wide system object dependency graph, identifying
suspicious intrusion propagation paths in it, and recognizing shadow indicators
on these paths, Patrol can dig out the zero-day attack paths at runtime.
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Appendix

Table 4. Statistics for the 3-host SODG and SIPPs in Fig 2

metrics SSH Server NFS Server Workstation 1

time window size (in minutes) 15 15 15

# of syscalls in unfiltered log 82133 14944 46043

# of syscalls in filtered log 22249 11761 21722

growth rate of compressed syscall log (GB/day) 0.126 0.019 0.065

# of objects in graph 650 34 604

# of processes in graph 230 7 106

# of files in graph 248 17 473

# of sockets in graph 171 10 23

# of dependencies in graph 18697 11813 19649

# of inter-host dependencies from last host in graph 50 11 1

# of inter-host dependencies to next host in graph 1 11 0

average indegree/outdegree in graph 29 347 33

max indegree in graph 8640 8478 12909

object index of max indegree in graph 543 661 1123

max outdegree in graph 9908 8294 12784

object index of max outdegree in graph 225 663 1153

# of objects in SIPPs 26 6 143

# of processes in SIPPs 8 1 62

# of files in SIPPs 3 2 75

# of sockets in SIPPs 15 3 5

# of dependencies in SIPPs 8905 11664 4059

# of inter-host dependencies from last host in SIPPs 14 1 1

# of inter-host dependencies to next host in SIPPs 1 8 0

average indegree/outdegree in SIPPs 343 1944 28

max indegree in SIPPs 8581 8442 410

object index of max indegree in SIPPs 543 661 808

max outdegree in SIPPs 8686 8280 2373

object index of max outdegree in SIPPs 225 663 783
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Abstract. In this paper, we present AMICO, a novel system for mea-
suring and detecting malware downloads in live web traffic. AMICO
learns to distinguish between malware and benign file downloads from
the download behavior of the network users themselves. Given a labeled
dataset of past benign and malware file downloads, AMICO learns a
provenance classifier that can accurately detect future malware down-
loads based on information about where the downloads originated from.
The main intuition is that to avoid current countermeasures, malware
campaigns need to use an “agile” distribution infrastructure, e.g., fre-
quently changing the domains and/or IPs of the malware download
servers. We engineer a number of statistical features that aim to capture
these fundamental characteristics of malware distribution campaigns.

We have deployed AMICO at the edge of a large academic network
for almost nine months, where we continuously witness hundreds of new
malware downloads per week, including many zero-days. We show that
AMICO is able to accurately detect malware downloads with up to 90%
true positives at a false positives rate of 0.1% and can detect zero-day
malware downloads, thus providing an effective way to complement cur-
rent malware detection tools.

1 Introduction

Drive-by downloads and social engineering attacks have become one of the most
prevalent ways through which machines are compromised with malicious soft-
ware, or malware [10, 17, 19]. As a consequence, by simply browsing the Web,
users (or their browsers) may be either forced or lured to download and run mal-
ware samples, effectively relinquishing control of their machines to the attackers.

Users often rely on host-based anti-virus software (AVs) to protect themselves
from malware infections. However, it is known that AVs are only partially effec-
tive due to the sophisticated code polymorphism techniques adopted by malware
authors, and are not capable of protecting users from the latest threats [13]. To
compensate for this detection gap, modern browsers make use of URL blacklists,
such as Google Safe Browsing [8] (GSB). Essentially, GSB maintains a large list
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of domain names and URLs that are known to be related to malware down-
loads. Therefore, every time the user visits a URL, before the browser fetches
the URL content, the GSB API is queried. If the URL is blacklisted, the browser
stops loading the URL’s content and the user will be notified, thus preventing
a possible malware download. Unfortunately, by nature, static blacklists such as
GSB also lag behind the threat, and suffer from a non-negligible number of false
negatives, as we show in Section 4.6.

In this paper, we present AMICO1, a novel system for measuring and detecting
malware downloads in live web traffic using download provenance information
(see Figure 1). Every time a network user downloads an executable file (we limit
ourselves to Windows executables, in the current implementation), AMICO per-
forms an on-the-fly reconstruction of the download from the network traffic, and
copies the file to a download history database. In addition, the database stores
information regarding who (i.e., what and how many machines) downloaded
the file and where the download came from. By leveraging the (partial) ground
truth provided by existing AV tools, we can label some of these downloads as
either malware or benign. Using these labeled download events collected during
an initial training period, AMICO learns the provenance characteristics of past
malware and benign executable files from the download behavior of the network
users themselves. This allows us to build a statistical classifier that, given a new
file download and its related provenance information, is able to accurately classify
whether the downloaded file is likely to be malicious or not. Unlike traditional
AV products, AMICO does not rely on searching for signs of malicious code in
the content of the downloaded files. Furthermore, the classification is performed
independently of whether third-party detection results may exist about the new
downloads, and can therefore be used to complement existing malware defense
techniques (see Section 3 for details).

The intuitions that motivate us to leverage provenance information for detect-
ing malware downloads are as follows. To avoid signature-based AV detection,
malware authors make heavy use of code polymorphism. Therefore, victim ma-
chines infected with the same malware may in fact have downloaded different
“variants” of the same malware file. Consequently, a given malware file may be
downloaded by only few machines. On the other hand, benign executable files
are fairly “stable”, and change only when a new release version is available.
Therefore, benign files may be downloaded, in time, by several different clients.

Furthermore, to avoid static blacklists, malware distribution sites need to
frequently relocate. For example, the attacker may register a large set of do-
main names that point to the distribution site. This allows for “advertising” the
malware downloads (e.g., though email spam, drive-by download exploit servers,
etc.) from frequently changing domains. Similarly, the IP address of the malware
distribution server may periodically change (although more slowly, compared to
the domain changes). On the other hand, benign executable files are typically
hosted at professionally-operated service providers with a fairly stable domain

1 Accurate Malware Identification via Classification of live network traffic
Observations.
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name and network infrastructure. Even when the benign files are distributed via
content delivery networks (CDNs), both the domain name (especially the second-
level domain) and the IP address or BGP prefix of the distribution server may be
fairly stable, especially with respect to download requests originating from the
same local network. This causes malware downloads to have a download source
“footprint” that is noticeably different from benign downloads.

Once deployed, for each new executable file download event AMICO mea-
sures a number of provenance features specifically engineering to capture the
above observations, and is able to accurately classify the downloads into benign
or malicious. Notice also that while our current implementation of AMICO is
designed to monitor the traffic from the edge of a network, nothing prevents
us from deploying AMICO “within” a web proxy (e.g., using the ICAP proto-
col (RFC 3507)). This may be particularly useful in enterprise network envi-
ronments, which typically already deploy a web proxy, and often perform SSL
man-in-the-middle2 to enable fine-grained inspection of encrypted traffic. This
would allow AMICO to also observe possible file downloads over HTTPS, further
increasing its coverage.

In summary, we make the following contributions:

– We present AMICO, a novel system that aims to efficiently measure and de-
tect malware downloads in live network traffic. In contrast to static blacklists,
AMICO builds a provenance classifier that can dynamically and accurately
detect malware samples based on the download behavior of the network
users.

– We have deployed AMICO at the edge of a large academic network serving
tens of thousands of users for almost nine months. Our measurements show
that, in spite of the widespread use of malware URL blacklists in modern
browsers, we continuously witness hundreds of new malware downloads per
week, including many zero-days. Surprisingly, a non-negligible number of
malware downloads originate from even the most popular websites.

– We perform an extensive evaluation of AMICO’s malware detection capa-
bilities. The experimental results show that our provenance classifier is able
to accurately detect malware downloads with up to 90% true positives at a
false positives rate of 0.1%.

2 Related Work

Malware Detection: Oberheide et al. [13] highlight the limitations of signature-
based AV tools, and propose a new system called CloudAV that leverages a com-
bination of AV tools to improve malware detection coverage. Some researchers
have proposed to improve the detection of malware file content using statistical
machine learning techniques [9, 14, 15], rather than signature matching. Others
have focused on measuring specific types of malware distribution tactics, such as
rogue AV campaigns and pay-per-install (PPI) operations, or on measuring and

2 For example, http://crypto.stanford.edu/ssl-mitm/
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detecting drive-by malware downloads [5–7,10,16,17,21]. Our work is different,
because we do not focus on the file content or drive-by downloads. Rather, AM-
ICO aims to detect malware downloads in general by inspecting network traffic
in real-time, and by leveraging download provenance information.

Domain Reputation: A number of systems that aim to detect malicious, low-
reputation domain names have been proposed [2, 3]. These systems are able to
detect malicious domains in general (e.g., spam domains, phishing sites, mal-
ware download sites, etc.), with particular emphasis on malware command-and-
control (C&C) domains. Our work is different, because we specifically aim to
detect malware file downloads. We correlate many different features that go
beyond domain names and the IP addresses they resolve to, such as the file
download features, URL features, and download request features. Furthermore,
in Section 4.3 we show that domain reputation systems by themselves are not
sufficient to accurately detect malware downloads.

Google CAMP : CAMP [18] detects malware domains based on a reputation score
computed over a number properties of the download source (e.g., the domain
name of the download server, the server IP, etc.). Although, AMICO and CAMP
share similar goals, our AMICO system differs in many important aspects from
CAMP. First of all, AMICO is browser agnostic, whereas CAMP is built within
Google Chrome, and can only monitor downloads from Chrome users3. More
importantly, CAMP is a closed-source service: all download information and
decision rules are “owned” by Google, and a network administrator has no easy
way to gain a complete picture about executable file downloads happening in
his/her network. On the other hand, AMICO was designed to exactly fulfill
this network admins’ need, by offering network-wide information about what
clients in the monitored traffic are downloading malware files and from where.
This enables the administrators to promptly respond to security incidents and
limit potential damage to other network assets. Furthermore, unlike in CAMP,
by deploying AMICO the information about what machines may be infected
will not leave the local network. This may be particularly important in highly
sensitive enterprise or government networks, where shipping information such as
visited URLs, downloaded files, and potential malware infections to a third-party
may pose risks to the reputation of the institutions that operates the network.

AMICO and CAMP also differ with respect to their technical approach. For
example, we measure several statistical features that are not used in CAMP, and
empoly a different, machine-learning-based approach.

3 System Description

In this section, we discuss the internals of our system. AMICO consists of three
main components, shown in Figure 1: (1) the download reconstruction module,
(2) the download history database, and (3) the provenance classifier. In the
following, we provide details on how these components work.

3 It appears that Microsoft may also have built a similar proprietary system specific
to IE9 [12], although we were not able to find its technical details.
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Fig. 1. AMICO System Overview

3.1 Reconstruction of Executable Files

The download reconstruction module aims to inspect all web traffic, and extract
a copy of Microsoft Windows executable files that are being downloaded by the
network users. To this end, AMICO monitors all traffic at the edge of a network,
and performs efficient real-time TCP flow reconstruction using a custom-built
multi-threaded software component. As TCP flows are being reconstructed, a
traffic identification module keeps track of all HTTP flows, and discards the
remaining non-HTTP traffic. HTTP request-response pairs are reconstructed
on-the-fly, and the responses are inspected to determine whether they carry a
portable executable (PE) file [11]. Every time a PE file is detected, AMICO
copies the reconstructed response on persistent memory, along with the related
HTTP request and some additional information, such as source and destination
IPs and ports, and a timestamp. Sensitive information, such as source IP ad-
dresses, cookies, and certain HTTP headers, are either anonymized or removed
outright, in accordance with policies set forth by our Institutional Review Board.

3.2 Download History Database

The download history database stores all information gathered by the download
reconstruction module. In our current implementation, as soon as a downloaded
file is stored, AMICO computes the SHA1 hash of the file and automatically
queries VirusTotal (VT) [1], to determine whether the file had ever been scanned
before and was found to be malicious by any AV. This is done merely for con-
venience, to avoid acquiring and running multiple local AV scanners.

It is important to notice that the information obtained from the AVs is neces-
sary to build the ground truth used to label past download events and train the
provenance classifier, as discussed in Section 3.3. However, to this end AMICO
only submits the hash of downloaded files to VT, and does not need to submit
the URL and Referer of the download events, which may be considered as more
sensitive by the network administrator.
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Notice also that if submitting the file hashes to a third-party services such
as VT still represents a concern, the network administrator can “conceal” the
origin of the file hashes by submitting them through a proxy located in a separate
network. In alternative, submitting the file hashes can be avoided completely by
scanning the downloaded files locally, using multiple different AV products. In
this latter configuration, AMICO would prevent any leakage of information from
the monitored network to third-parties.

3.3 Provenance Classifier

The provenance classifier aims to complement AV-based malware detection, by
identifying malicious file downloads based on how the file was downloaded, rather
than how the file “looks”. To this end, we extract a number of provenance
features that aim to capture the following facts: Has any of the network users ever
downloaded the same file in the past? Has any executable file been downloaded
from this domain name, server IP address, BGP prefix, etc.? If so, were the
previously downloaded files malicious (or at least suspicious)?

We first give a description of the detection features used by AMICO, and then
describe how the provenance classifier can be trained and deployed.

Provenance Features. Let e be an executable file download event occurred
at time te. Also, let Fe be the downloaded file, Hoste be the domain name
associated with the HTTP request for the file, URLe be the URL of the request
(i.e., the file path, file name, query string, etc.), and ServIPe be the IP address
of the server from which the file was downloaded. We translate each such event
into a feature vector #»v e as follows. We first consider only past download events,
namely events occurred at any time t < te, and measure the following main
groups of features (a complete list of features is given in Appendix):

– Past file downloads: We measure four different features as follows: the
number of times that the file Fe was downloaded in the past (we use the file’s
SHA1 to compute this more efficiently); the (estimated) number of distinct
clients that downloaded that file; how many days ago was Fe downloaded for
the first time; and how many times per day (in average) the client machines
in the monitored network downloaded the same file Fe.
Intuition : Many benign executable files are downloaded, in time, by several
different clients. Also, their hash is typically very “stable” and only changes
after a new version release. On the other hand, due to heavy polymorphism
applied by malware developers to evade signature-based AV detection, the
hash of a given malware will change frequently. Consequently, the same mal-
ware file will typically be downloaded by only few victims.

– Domain features: Let de be the domain name related to the download
request, and let 2LD(de) be its effective second-level domain4. Overall, we

4 For example, 2LD(www.bbc.co.uk) = bbc.co.uk. To compute the effective 2LDs we
use the Mozilla public suffix list (publicsuffix.org) augmented with a large list of
second-level domains related to dynamic-DNS providers.
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measure a set of twenty-four features, twelve of which are related to past
download events from de, and another twelve related to past downloads
from any domain under 2LD(de) (i.e., any domain that matches ∗.2LD(de)).
For example, we measure how many confirmed malware samples had been
previously downloaded from de; the number of confirmed benign files from
the same domain; the ratio between malware and benign downloads; the
total number of executable downloads from de (including the “unknown”
files that cannot be labeled either way), the average number of AV labels for
the confirmed malware samples (i.e., how many different AVs flagged the file
as malware), etc. We measure similar features for 2LD(de).
Intuition : To avoid static blacklists, attackers often register many differ-
ent domain names that can be used to “advertise” the malware downloads.
Each malware download domain is typically used for a short amount of time
before it is replaced with a new one, and may therefore serve only a small
number of malware downloads to a few victims. On the other hand, benign
executable files are typically hosted at professionally-run service providers,
and their server’s domain names (or their second-level domains) are usually
very stable, serving the same benign files to potentially many clients. Our
domain features attempt to capture such intuitions.

– Server IP features: In a way similar to the domain features, we measure
twenty-four different features, twelve of which are related to the ServIPe

and another twelve to its BGP prefix, BGP (ServIPe). For example, we
measure how many confirmed malware samples had been previously down-
loaded from ServIPe; the number of confirmed benign files from the same
IP; the ratio between malware and benign downloads; etc. We repeat the
same measurements for BGP (ServIPe).
Intuition : While malware samples are heavily polymorphic, the network
infrastructure used to distribute different variants of the same malware is
usually somewhat more stable. This is particularly true for the server IP
from which the downloads originated. In fact, while the attackers have a
good level of flexibility regarding registering new domain names to be used
for malware distribution, it is more difficult to change IP addresses with high
frequency. Therefore, we may see more than one malware download from the
same server IP, or the same BGP prefix.

– URL features: Given the URLe related to the download, we only consider
its path, file, and query string (i.e., we don’t consider the domain name as
being part of the URL). From URLe we measure six different features. For
example, we measure the number of total past file downloads that share
the same URL, the number of confirmed distinct files downloaded form that
URL, and the number of confirmed malware samples. Because URLs may
change frequently, especially if they contain name-value pairs in the query
string, we also measure similar features related to the URL structure. For
example, one way to derive the URL structure is to replace all alphanumeric
characters with wildcards, keeping special characters such as ‘/’, ‘.’, ‘?’, ‘=’,
‘&’, ‘:’, ‘;’,etc. We can then measure the total number of past downloads that
share the same URL structure, the number of confirmed malware, etc.
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Intuition : The intuition here is that, unlike for benign downloads, malware
URLs may change frequently to avoid blacklists. Furthermore, we noticed
several malware distribution campaigns that advertise many different down-
load URLs with a similar “anomalous” structure, compared to URLs used
in benign file downloads. Therefore, if the current download’s URLe has the
same structure as URLs used in several past malware download, we should
increase the likelihood that URLe is also related to a malware download.
Our URL features attempt to capture these observations.

– Download request features: In addition to the features described above,
which look into the past, we measure five different features that look at the
present single download event e. We check whether the header of the HTTP
request that initiated the download contained a valid domain name in the
Host field, and whether a Referer URL was or not present. Also, we consider
the file extension (if any) extracted from the URLe as a feature, and we
measure the total length of the URL and the “depth” for the URL path
(e.g., /a/b/c/d.exe has a depth of four).
Intuition : These features are justified by the fact that we empirically ob-
served many cases in which malware download requests do not carry any
Referer string, or may report an IP address in the Host filed, instead of a
domain. Also, the URLs for malware downloads often “look” visually differ-
ent from the URLs related to benign downloads (e.g., the URL may have a
.gif or .jpg extension, although it serves an executable file). The download
request features attempt to capture these observations.

It is worth noting that none of the features (or groups of features) described
above are sufficient by themselves to accurately distinguish between malware-
related and benign file downloads. However, as we show in Section 4, each group
provides a meaningful contribution. Furthermore, in combination they yield high
classification accuracy. In Section 4, we also show that the overall accuracy does
not heavily depend on one single group of features. In turn, this makes AMICO
more robust to evasion, because an attacker would need to evade different types
of features at the same time, as discussed more in details in Section 5. In addition,
evading some groups of features such as the server IP and domain features,
may require the attacker to make heavy changes to her malware distribution
infrastructure, thus causing the attacker to incur a significant cost.

Training and Deploying the Classifier. To build the provenance classi-
fier, so that AMICO can automatically distinguish between benign and malware
downloads, we take a supervised learning approach. That is, we first collect a
set of labeled executable file download events, and use this initial training set to
learn the malware provenance models, as shown in Figure 1. The process used
to label the download events is described in Section 4.2.

The training phase proceeds in two high-level steps. We first monitor the net-
work traffic for a period of time Tf (one month, in our experiments), and record
a “bootstrap” set of download events. Essentially, the information collected dur-
ing Tf allows us to measure our detection features over new download events
(i.e., events that occur after Tf). After this initial Tf period, we are ready to
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collect new downloads and compute the feature vectors necessary for training
the provenance classifier. To this end, we collect new download events for an
additional period of time Ttrain (two months, in our experiments). For each new
download event e at time te, we compute the related features using information
about all downloads observed until t < te. We label the download events gath-
ered during Ttrain for which ground truth is available (see Section 3.2), and use
their feature vectors to train the provenance classifier.

Once the classifier is trained, any new executable file downloaded after (Tf +
Ttrain) can be translated into a feature vector and classified by AMICO into
either malware or benign using the provenance classifier. Specifically, for each
new download event e, the classifier will output a malware score, s(e). If the
score s(e) is greater than a given threshold, AMICO labels the downloaded file
as malware, and raises an alert (e.g., notifies the network administrator). The
detection threshold can be chosen during training to produce the desired trade-
off between true and false positives. In Section 4 we show that AMICO can
achieve high true positives even at very low false positive rates.

It is important to notice that for each download event e observed at time te,
we extract its features by looking back at past downloads and their related past
ground truth. Namely, we only consider information about downloads observed
at any time t < te. To classify the new event e, we rely solely on the output of
the provenance classifier, and do not use any information from external sources
about e itself. Specifically, we do not consider any information that may be
obtained from VirusTotal or GSB about e. In Section 4.6, we show that AMICO
can in fact complement popular AV- or blacklist-based malware defense tools,
because it can detect many malware downloads missed by third-party systems.

4 Evaluation

4.1 Implementation and Deployment

We implemented AMICO using different languages. We custom-built the down-
load reconstruction module in C, to achieve high efficiency. Preliminary perfor-
mance experiments show that one single instance of the reconstruction module
can sustain over 300Mbps of traffic on commodity hardware. However, a machine
with a multi-core CPU can run multiple instances independently on different
network interfaces. For example, in our experiments, we run two instances of
the reconstruction module that receive traffic from two different traffic mirror-
ing sources on the same machine. We are currently monitoring over 600Mbps
of traffic (during peak time) from the campus-wide WiFi network of our entire
academic institution. The datasets and experiments we discuss below are derived
from approximately nine months of traffic, from July 2012 to March 2013.

The components of AMICO used to store the download events, extract the
detection features, and collect the ground truth, are written in Python. To build
the provenance classifier we use the Random Forest algorithm [4] implemented
in Weka [20], because it can be trained very efficiently and performs compet-
itively compared to more complex algorithms. Our prototype implementation
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of AMICO is available under open-source license at http://www.cs.uga.edu/

~perdisci/amico/.

4.2 Experimental Setup

Measuring the Detection Features. To measure the detection features used
by AMICO, we follow the definitions given in Section 3.3. It is worth remember-
ing that some features measure things such as the number of malware, benign,
and total samples downloaded in the past from a given domain name or server
IP address, for example. To label past download events we proceed as follows.
During deployment, for each file download captured by AMICO, we compute its
SHA1 hash, and immediately submit the hash to VirusTotal (VT). If VT returns
“unknown” as an answer, i.e., nobody has ever submitted a file with that hash
before, we mark the downloaded file as unknown to VT. It is worth remembering
here that, as we discussed in Section 3.2, if submitting the file hashes to a third-
party system such as VT was a concern, we could simply scan the downloaded
files locally using multiple different AVs. In our current prototype, we chose to
rely on VT mainly because it made our system deployment easier.

Every file analyzed by VT is scanned with more than 40 different AV products.
However, we noticed that some of the AV scanners produced a non-negligible
number of false positives (e.g., marking some well known benign executable files
as malware). We noticed this was especially true for less well-known AV products.
Therefore, we decided to consider a “trusted” subset of nine AV products5 that
are very well known, and cover a large AV market share. Given this set of trusted
AVs, we use the following labeling rules on VT’s results:

Labeling Rules
1) if the SHA1 of the file was not present in VT, label the file as unknown
to VT, otherwise
2) label the file as malware if two or more “trusted” AVs flagged the file
as malware;
3) label the file as benign if none of the AVs (either trusted or non-
trusted) flagged the file as malware;
4) label the file as suspicious in all other cases.

Notice that when measuring the features from a new download event e ob-
served at time te, we only use the labels obtained from VT’s output over past
download events, i.e., at any time t < te. In other words, we do not use any
third-party information (from AVs or blacklists) related to e itself.

Establishing the Ground Truth. To evaluate the results of our deployment
of AMICO, we need to collect clean, reliable ground truth that contains as little
noise as possible. To achieve this goal, we proceed as follows. If a download was
labeled as unknown to VT, we submit the file ourselves to VT (we only submit
samples that pass a number of privacy-preservation criteria). For each sample

5
Avast, AVG, McAfee, F-Secure, Kaspersky, Sophos, Microsoft, TrendMicro, and Symantec.
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that was either already present in VT or submitted by us, after one month time
we send a “re-scan” request to VT, so that the same file is scanned again by
all AVs. The intuition is that it may take some time for AV companies to build
signatures for new malware samples [13]. Therefore, even though a malware may
be missed by the AVs at the time of submission, after one month it is likely that
the AV companies may have developed the necessary detection signatures (we
did observe several of such AV label changes during our study).

It is important to notice that the one-month VT re-scan procedure described
earlier is used only for the purpose of collecting the ground truth “externally” to
AMICO, to enable a more reliable evaluation of our system’s accuracy. The re-
scan information is not used for the purpose of measuring the statistical features
used by the provenance classifier.

Cross-Validation Dataset (CVD). To collect the dataset of labeled down-
loads for cross-validation (see Section 4.4), we proceeded as follows. We first
collected one month (Tf ) of “bootstrap” download events, to enable the mea-
surement of the detection features for future downloads. We then collected new
download events and computed the related feature vectors for the remaining
eight months. To label these feature vectors, we used the ground truth obtained
as explained above. Overall, we obtained 55,396 benign, and 4,928 malware fea-
ture vectors (the suspicious samples are excluded from the cross-validation).

Training Dataset (TRD). Besides cross-validation tests, we also performed
an evaluation of a real-world deployment of AMICO (see Section 4.5). To this
end, we followed the guidelines discussed in Section 3.3. Like for CVD, we first
collected one month (Tf ) of initial download events. Then, we further collected
new download events and the related feature vectors for the following two months
(Ttrain), and we used these two-month data as a training dataset for the prove-
nance classifier. To label the feature vectors in the training dataset, we used the
ground truth gathered as explained earlier. Overall, the training data contained
16,074 benign, and 1,273 malware feature vectors.

Test Dataset (TSD). The test dataset consists of all download events collected
after the first three months (Tf + Ttrain) necessary to gather the “bootstrap”
download events and the training data. Essentially, this dataset consists of the
last six months of download observations. Overall, the test dataset contained
39,322 benign, and 3,655 malware feature vectors.

4.3 Live Traffic Measurements

In this section we report a number of measurements on the traffic observed
during the last six months of our deployment of AMICO. Notice that here we
discuss findings related only to the download reconstruction module and down-
load history database. We defer the evaluation of the provenance classifier (and
the entire AMICO system) to Sections 4.4 and 4.5.
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Fig. 2. Downloads from top Alexa domains (a); Detection results using Notos (b)

During deployment, our sensors observed web traffic from several thousands
distinct source IP addresses per day within our network. Table 1 reports a num-
ber of statistics about the reconstructed download events. To label the downloads
we applied the “clean” ground truth labeling rules discussed in Section 4.2. Over-
all, we observed an average of 24 confirmed malware downloads per day, 67 daily
suspicious downloads, and 253 daily benign downloads.

Table 1. Overall live network download statistics for executable files

Malware Suspicious Benign
Total Daily

Avg.
Total Daily

Avg.
Total Daily

Avg
Download events 5,326 24 15,665 67 59,988 253
Distinct files 1,893 12 2,879 38 5,849 112
Distinct domains 849 10 1,009 27 1,338 43
Distinct server IPs 1,009 6 2,186 41 2,776 59

Figure 2(a) reports the number of confirmed malware and benign downloads
that we observed from the top 1,000, 5,000, 10,000, 100,000, and 1M most pop-
ular domains6, according to Alexa (alexa.com). Surprisingly, we found that
about 18% of all confirmed malware downloads originated from the top 10,000
domains, and we also observed 518 malware downloads originating from the top
1,000 domains. After investigating, we noticed that these malware samples were
downloaded from websites related to software distribution, file sharing, and cloud
services (e.g. softonic.com, hotfile.com, amazonaws.com, cloudfront.net,
etc.). Furthermore, we found that 40% of the domains from which benign down-
loads originated were “unpopular” sites outside of the top 1M rank. These two
facts make it difficult to implement a purely whitelist-based approach to pre-
venting malware downloads, because such an approach would likely cause a non-
negligible number of false positives and false negatives.

The above results may also have an impact on domain reputation systems.
Therefore, we performed experiments to verify if dynamic domain reputation

6 The list of domains we consider reports second-level domains.
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Fig. 3. 10-fold cross-validation results (FPs in [0,1%])

systems, in particular Notos [2], would be sufficient to block malware downloads.
To this end, we fed all (domain name, server IP) pairs related to the malware
downloads observed by AMICO. We then queried Notos to obtain a reputation
score for each such pair. By varying a detection threshold over Notos’ scores, we
obtained the ROC curve in Figure 2(b) (notice that the FP rate is in [0,1]). As we
can see, Notos has a relatively low detection rate for malware download domains.
The reason why the ROC in Figure 2(b) is flat, is because many samples were
“rejected” by Notos and assigned a score of zero, because Notos did not have
enough information to compute a reliable score. We believe this is due to the
fact that the reputation system is “biased” towards accurately detecting malware
command-and-control (C&C) domains, rather than malware download servers.
It is also worth noting that the version of Notos we used was trained on domain
reputation information from a different network environment, and this may be
another cause for the relatively low detection rate.

From the above discussion we can extrapolate two important observations: (1)
using only domain name information to detect malware downloads may not be
sufficient; and (2) training on the traffic specific to the deployment environment
may yield better detection results. This further motivates the approach taken by
AMICO, which learns many different types of features related to the download
behavior of the users in the monitored live network.

4.4 Cross-Validation

To evaluate AMICO’s malware detection accuracy, we perform 10-fold cross-
validation tests using the entire CVD data (see Section 4.2). Figure 3(a) shows
the ROC curve we obtained by using all features, as well as the ROC curves
obtained by removing one of the feature groups described in Section 3.3 at a
time. Note that we only plot the partial ROC for false positive rates ranging from
0 to 1%, to highlight the classifier performance at low false positives. The small
table embedded in Figure 3(a) provides the trade-off between the true positive
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(TP) rate and false positive (FP) rate for some selected operation points on
the “all features” ROC. It also reports the normalized area under the ROC and
partial ROC curves (AUC and PAUC). As we can see, we can achieve a TP rate
close to 98% at 1% FP rate. Furthermore, when we tune the detection threshold
to achieve a FP rate of 0.1%, the classifier still yields an TP rate close to 90%,
using all features. In addition, from Figure 3(a) we can see that the provenance
classifier is not overly reliant on a single group of features.

Figure 3(b) shows the results obtained using only one group of features at
the time. As we can see, each feature group gives a meaningful contribution to
accurately detecting malware downloads, with the server IP and domain features
providing the largest single contributions.

4.5 Train-Test Experiments

In this section, we discuss experiments performed to demonstrate the accuracy of
AMICO in a real-world deployment setting. To this end we train the provenance
classifier over the TRD dataset, and test it on the remaining TSD dataset.
Figure 4 reports the ROC curve computed by using a provenance classifier built
with all available features, as well as ROC curves related to separate tests in
which we eliminate one group of features at a time. Like for the cross-validation
results, we see that AMICO can achieve more than 90% TP rate for an FP
rate ≤ 1%. Also, we can see that no one particular feature group is critical to
obtaining good classification results.

Table 2 highlights the classification results for new malware downloads char-
acterized by a never-before-seen file (unseen SHA1 ), and/or domain (unseen
domain), and/or server IP (unseen sever IP). The “correct” column reports the
number of correctly classified malware downloads. The detection threshold is set
so to keep the overall FP rate (measured on benign TSD downloads) below 1%.
As we can see, even when AMICO observes a completely new file from a new
source (domain or server IP), it can still accurately classify the download event.

4.6 New Findings

In this section we discuss how AMICO can successfully complement existing mal-
ware detection approaches, such as AV scanners and static URL blacklists. All
results discussed below consider a configuration of AMICO’s detection threshold
that yields an FP rate ≤ 1%.
1) Malware “unknown” to VT: Of the 3,655 confirmed malware downloads
in the test dataset TSD (see Section 4.2), 1,031 malware samples were initially
unknown to VT. That is, the first time we submitted the file’s SHA1 to VT, the
file was not present in VT’s database. Of these, AMICO correctly classified 974
(94.5%) as malware at the time of download.
2) Zero-day malware: We also found 187 malware downloads for which all
nine “trusted” AV scanners in VT initially classified the file as benign (i.e.,
no AV label was attributed to the files, the first time they were scanned), and
then were labeled as malware after the one-month re-scan (see Section 4.2).
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Fig. 4. Performance of Provenance Classi-
fier on all test instances (FPs in [0,1%])

Table 2. Detection of “unseen” malware
downloads (FP=1%)

Unseen Feature Correct %

SHA1
90%

(895/994)

Domain
85%

(360/422)

Server IP
93%

(1139/1222)

SHA1 & Domain
85%

(328/386)

SHA1 & Domain & Server IP
85%

(295/346)

Therefore, we regard these file downloads as zero-days. Of these 187 zero-day
malware downloads, AMICO classified correctly 147 (78.6%).
3) Static blacklists: For each download event observed by AMICO, we queried
GSB at the time of the download to see if the domain name or URL associated to
the download was present in the blacklist (we query GSB only for the purpose of
enabling a comparison between our system and URL blacklists). Surprisingly, we
found that out of the 3,655 malicious downloads, at the time of download GSB
failed to detect 3,562 (97.5%). We believe this apparently high false negative
rate is likely due to the fact that many potential malware downloads are already
blocked by GSB, and therefore cannot be observed in the network traffic. How-
ever, many malware downloads that evade GSB’s static blacklist are observable
in the traffic, and can be captured by AMICO. Of the 3,562 malware downloads
missed by GSB, AMICO correctly detected 3,412 (95.8%).

5 Limitations

Our current implementation of AMICO focuses on inspecting HTTP traffic, be-
cause we mainly target malware downloads that happen via the browser. To
evade AMICO, malware developers may attempt to propagate their malware
samples over HTTPS, thus “hiding” the executable files from AMICO’s recon-
struction module. However, it is worth noting that switching to HTTPS may
have some drawbacks for the attacker. For example, because the domain names
associated with the malware distribution servers have to change frequently, to
avoid static blacklists, for each new domain the attacker would have to pur-
chase a signed SSL certificate from a certificate authority (CA), thus incurring a
non-negligible cost. In alternative, the attacker may use self-signed certificates.
However, in this case the browser will typically alert the user of a potential se-
curity problem, thus possibly scaring away a large fraction of potential victims.
Furthermore, AMICO could be deployed “within” a web proxy that performs
SSL man-in-the-middle.
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It may be possible for sophisticated exploit code to force the browser to download
an encrypted PE file, which can then be decrypted before the original malware file
is executed. This scenario is analogous to detecting malware updates initiated from
an infected machine, in which the method for downloading the files can be (almost)
freely chosen by the already running malware instance. We therefore consider this
scenario outside the scope of this paper. Notice that this limitation also affects any
in-browser detection system, such as Google CAMP [18], because reporting the file
downloads to CAMP could be disabled by the browser exploit code.

An attacker may also attempt to evade the statistical features measured by
AMICO. However, while the attacker may be able to evade a few single features,
most of AMICO’s features are engineered to capture the fundamental charac-
teristics of current evasive behavior of malware download campaigns. Namely,
we attempt to capture those characteristics of malware downloads that the at-
tackers already uses to evade existing detection tools, for example by frequently
changing domain names, URLs, or the network infrastructure that supports the
malware download operations. Therefore, evading the majority of AMICO’s fea-
tures would likely force malware campaigns back into a more “stable” malware
distribution infrastructure, which may in turn be more easily blocked by static
blacklists, for example. Therefore, we believe AMICO provides a robust com-
plement to existing detection techniques, forcing attackers to incur a significant
cost to try to evade both AMICO and current detection tools at the same time.

6 Conclusion

We presented AMICO, a novel system for accurately measuring and detect-
ing malware downloads in live network traffic using download provenance in-
formation. To this end, AMICO uses a number of statistical features purposely
engineering to capture the fundamental characteristics of malware distribution
campaigns. We showed that AMICO is able to accurately detect malware down-
loads with up to 90% true positives at a false positives rate of 0.1%, including
many zero-day malware, thus complementing current malware detection tools.
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A List of Features

(a) Domain Features

domain malware downloads integer
domain suspicious downloads integer
domain benign downloads integer
domain total downloads integer
domain malware ratio real
domain suspicious ratio real
domain benign ratio real
domain avg av labels real
domain avg trusted labels real
domain unknown hashes integer
domain total hashes integer
domain unknown hash ratio real
2ld malware downloads integer
2ld suspicious downloads integer
2ld benign downloads integer
2ld total downloads integer
2ld malware ratio real
2ld suspicious ratio real
2ld benign ratio real
2ld avg av labels real
2ld avg trusted labels real
2ld unknown hashes integer
2ld total hashes integer
2ld unknown hash ratio real

(b) Server IP Features

server ip malware downloads integer
server ip suspicious downloads integer
server ip benign downloads integer
server ip total downloads integer
server ip malware ratio real
server ip suspicious ratio real
server ip benign ratio real
server ip avg av labels real
server ip avg trusted labels real
server ip unknown hashes integer
server ip total hashes integer
server ip unknown hash ratio real
bgp malware downloads integer
bgp suspicious downloads integer
bgp benign downloads integer
bgp total downloads integer
bgp malware ratio real
bgp suspicious ratio real
bgp benign ratio real
bgp avg av labels real
bgp avg trusted labels real
bgp unknown hashes integer
bgp total hashes integer
bgp unknown hash ratio real

(c) Past File Downloads

hash life time integer
num dumps with same hash integer
hash daily dump rate per client real
estimated clients with same hash integer

(d) Download Request
Features

referer exists integer
host name exists integer
extension class string
url length integer
directory depth integer

(e) URL Features

url malware downloads integer
url total downloads integer
url distinct sha1s integer
url struct malware downloads integer
url struct total downloads integer
url struct distinct sha1s integer
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Abstract. Attribute-based Access Control (ABAC) extends traditional
Access Control by considering an access request as a set of pairs attribute
name-value, making it particularly useful in the context of open and
distributed systems, where security relevant information can be collected
from different sources. However, ABAC enables attribute hiding attacks,
allowing an attacker to gain some access by withholding information.

In this paper, we first introduce the notion of policy resistance to
attribute hiding attacks. We then propose the tool ATRAP (Automatic
Term Rewriting for Authorisation Policies), based on the recent formal
ABAC language PTaCL, which first automatically searches for resistance
counter-examples using Maude, and then automatically searches for an
Isabelle proof of resistance. We illustrate our approach with two simple
examples of policies and propose an evaluation of ATRAP performances.

Keywords: Attribute-based Access Control, Monotonicity, Attribute
hiding, Model Checking, Proof assistant.

1 Introduction

An authorisation policy for a security mechanism is a document describing which
user requests are authorised and which ones are denied. Many languages exist
in the literature to define policies, most of them considering a request as a triple
subject-object-mode. Recent approaches [23,22,10] consider more expressive re-
quests, consisting of a set of pairs of attribute name and attribute values, thus
defining the model known as Attribute Based Access Control (ABAC).

A major feature of ABAC is its ability to gather attribute information from
different sources. This is essential in open and distributed systems, which indeed
often lack a central security point providing all required information. In order
to make a security decision, such systems need to combine information from
different sources including the user herself (e.g., personal identification), the
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environment (e.g., date or location), the data requested (e.g., relationship with
other objects) and other users (e.g., availability of higher-ranked users).

Delegating the retrieval of security relevant information clearly brings more
flexibility in open systems, but also raises the problem of information withhold-
ing, malicious or not. Tschantz and Krishnamurthi introduce in [24] the notion
of safety, such that a policy is safe when “incomplete requests should only result
in a grant of access if the complete one would have”. More recently, Crampton
and Morisset identify in [10] the notion of an attribute hiding attack, where a
user hides some attribute values in order to get access to a resource she would
be denied otherwise.

As a running example to illustrate our research problem, consider a fictional
organisation, sponsored by both Austria and France, where documents can be
submitted and reviewed. The organisation has a simple conflict-of-interest pol-
icy stating that a document cannot be reviewed by someone with the same
nationality as the submitter. The implementation of such a policy might lead
to attribute hiding attacks: Consider a policy for a document submitted by an
Austrian member that states that it cannot be accessed by another Austrian
member; If an Austrian attacker is able to hide her nationality, for instance by
corrupting the corresponding data, then she could access the document. Such
an attack is particularly relevant when a user can have multiple nationalities.

In this paper, we focus on the behaviour of authorisation policies when facing
attribute hiding attacks. More precisely, we introduce the notion of resistance:
a policy is resistant when every query obtained by adding information to an
allowed query is also allowed. This definition generates the following research
questions:

1. Is it possible to automatically detect whether a policy is resistant or not?
2. If a policy is not resistant, can we exhibit a counter-example?
3. If a policy is resistant, can we construct a formal proof of it?

The main contribution of this paper is to positively answer these questions, at
least in a partial way. In order to do so, we present the tool ATRAP (Automated
Term Rewriting for Authorisation Policies), which combines the term-rewriting
tool Maude [8] and the proof assistant Isabelle/Isar [20,25] to analyse the resis-
tance of PTaCL policies. The core of the tool is written in Java and handles the
communication between Maude and Isabelle by generating the respective inputs
and interpreting their results. ATRAP is capable of generating counter-examples
for non resistant policies, and of building an Isabelle proof for resistant policies.
Although ATRAP is sound, i.e., all counter-examples and proofs generated are
indeed correct, ATRAP is not (yet) complete, as it may fail in some cases to
find a counter-example in a reasonable amount of time or to build a proof.

The rest of the paper is structured as follows: in Section 2. we present the
language PTaCL and introduce its evaluation in Maude. In Section 3, we define
the notion of policy resistance and show how this property can be verified in
practice. In Section 4, we describe our approach to find a counter-example of
resistance, and in Section 5, we present how a proof of resistance can be automat-
ically generated, after which we conclude and present future work in Section 6.
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Related Work

The notion of resistance introduced in this paper is related to that of safety given
in [24], which roughly states that the evaluation of a request should be “lower”
than that of a request with strictly more information. This notion is close to
that of (weak)-monotonicity [10]. As shown in Section 3, a (weakly) monotonic
policy is also resistant, while the converse does not always hold.

There exist several approaches using model-checking to analyse access con-
trol policies [15,27]. For instance, SMT solving can be used to check whether a
given request can eventually be granted with a particular role in Administrative-
RBAC policies [1,2]. Similarly, XACML policies can be automatically compared
using a SAT solver [16]. To the best of our knowledge, we are the first to auto-
matically analyse the resistance of policy, and also to allow for the generation of
a structured proof.

The automation of ATRAP relies on term-rewriting, which has already been
considered for the formalisation of access control [3,11], leading to the analysis
of rewrite-based policies [18]. In particular, Bertolissi and Uttha propose in [4]
to relate the properties of a rewrite system, such as totality or consistency, with
those of an access control policy encoded in this system. This approach allow
them to use the rewrite system CiME to generate proof certificates for these
properties in the proof assistant CoQ. We follow a similar objective here, in that
we generate proof certificates using a rewrite system, however we focus on the
notion of resistance, which is not a property of the rewrite system itself, but of
the policy.

ATRAP relies on the encoding of PTaCL in Isabelle, mentioned in [10], in
order to generate a proof of resistance. Brucker et al. present in [6] an encoding
of an access control model into HOL, in the context of healthcare policies. Finally,
it is worth mentioning that some of the techniques used in ATRAP are inspired
by previous work [13], where the basic idea of using term-rewriting to generate
proofs is used in the context of program refinement.

2 PTaCL

XACML 3.0 [22] is an OASIS standard for representing authorisation policies,
and given an access request, its complete request evaluation cycle can be sum-
marised as follows: (i) the request is submitted to the Policy Enforcement Point
(PEP); (ii) the PEP forwards the request to the Context Handler (CH); (iii) the
CH collects all attributes necessary to the evaluation of the request; (iv) the CH
forwards the complete request to the Policy Decision Point (PDP); (v) the PDP
evaluates the complete request and returns the corresponding decision to the
CH, which returns it to the PEP.

PTaCL [10] formalises the evaluation of the request by the PDP, which con-
siders each request as complete, or more precisely, cannot make a distinction
between incomplete and complete requests. In other words, if the CH is unable
to collect some attributes, and forwards an incomplete request to the PDP, this
request is evaluated in the same way than a complete one.
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� 1 0 ⊥
1 1 0 ⊥
0 0 0 ⊥
⊥ ⊥ ⊥ ⊥

� 1 0 ⊥
1 1 1 ⊥
0 1 0 ⊥
⊥ ⊥ ⊥ ⊥

(a) Weak operators

�̃ 1 0 ⊥
1 1 0 ⊥
0 0 0 0
⊥ ⊥ 0 ⊥

�̃ 1 0 ⊥
1 1 1 1
0 1 0 ⊥
⊥ 1 ⊥ ⊥

(b) Strong operators

X ¬X ∼X
1 0 1
0 1 0
⊥ ⊥ 0
(c) Unary

Fig. 1. Binary and unary operators on the target decision set {1, 0,⊥}

We present in this section the language PTaCL through the description of
an illustrative example. We introduce the different definitions required for the
understanding of this example, and refer to [10] for further details about the
language. We take as example the one given in the introduction, where the
access to a document is based on the nationality of the requester.

2.1 3-valued Logic

The 3-valued logic extends the traditional Boolean logic {1, 0}, where 1 repre-
sents true and 0 represents false , by considering an additional value ⊥ [19]. The
usual Boolean operators, such as the conjunction, disjunction, negation, etc, can
be extended to the set {1, 0,⊥}, as shown in Fig. 1. The weak operators consider
the value ⊥ as absorbing, while the strong ones “resolve” ⊥ as much as possible.

The logic {1, 0,⊥, �̃,∼,¬} is proven in [10] to be functionally complete, using
a result from Jobe [17], which means that any logical operator can be built
from these operators and constants. In the following, we sometimes use the set
{1, 0,⊥, �̃,∼,¬}, since x �̃ y = ¬(¬x �̃ ¬y). In addition, we use the three valued
logic both to represent the result of target evaluation and the result of policy
composition. In order to avoid any confusion, we use {1T, 0T,⊥T} for the former,
and {1P, 0P,⊥P} for the latter, whose meaning will be given in due course.

2.2 Target and Policy

Following recent work [23,22], PTaCL is attribute-based, meaning that a request
is modeled as a set of attribute name-value pairs. Our running example uses an
attribute nat, whose value can be either FR or AT. For instance, the request
{(nat,FR)} represents a request made by a French national.

In addition, PTaCL is target-based [5,7,9,21,22,26], meaning that an access
control policy contains a target that specifies the requests to which the policy
is applicable, and a body (either a single decision or another policy) describing
how applicable requests should be evaluated.

In its simplest form, an atomic target is a pair (n, v), where n is an attribute
name and v is an attribute value. For instance, the target (nat,FR) evaluates
to 1T (match) if the request contains (nat,FR), to 0T (no-match) if it contains
(nat,AT), but not (nat,FR), and to ⊥T (indeterminate) if it does not contain
any value for the attribute nat. In other words, PTaCL can distinguish between
a non-matching value for an attribute and a missing attribute. More formally,
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Table 1. PTaCL evaluation

t1 p1 t2 p2

∅ ⊥T {1P, 0P} ⊥T {1P, 0P}
{(nat,FR)} 0T {1P} 1T {1P}
{(nat,AT)} 1T {0P} 0T {0P}

{(nat,FR), (nat,AT)} 1T {0P} 1T {1P}

the semantics of an atomic target (n, v) for a request q = {(n1, v1), · · · , (nk, vk)}
is given as:

�(n, v)�(q) =

⎧⎪⎨⎪⎩
1T if (n, v′) ∈ q and v = v′,

⊥T if (n, v′) �∈ q,
0T otherwise.

More complex targets can be built using the logical operators notT, for the
negation of a target, optT, for the optional target (i.e., transform ⊥T into 0T)
and andP, for the strong conjunction of targets, interpreted by ¬, ∼ and �,
respectively. Since this set of operators is functionally complete (� can be built
from �̃ and ¬ [10]), any other logical combination can be achieved with them.

Finally, an authorisation policy can be defined as single decision, i.e., either
1P (allow) or 0P (deny), a targeted policy (t, p), where t is a target, or a logi-
cal composition of two policies, using the operators notP for the negation of a
policy, dbdP for the deny-by-default of a policy, or andP for the conjunction of
two policies, interpreted by ¬, ∼ and �̃, respectively. Here again, these three
operators suffice to build any other logical operator. Given an access request,
the evaluation of a policy returns the set of all possible decisions. The logical
operators are therefore extended in a point-wise way, and the evaluation of a
targeted policy (t, p) for a request q is given by:

�(t, p)�P(q) =

⎧⎪⎨⎪⎩
�p�P(q) if �t�T(q) = 1T,

{⊥P} if �t�T(q) = 0T,

{⊥P} ∪ �p�P(q) otherwise.

where ⊥P represents the not-applicable decision. For instance, the policy p1 that
explicitly denies any access to Austrian citizens and otherwise allows the access
can be defined as:

t1 :: (Tatom "nat" "AT")

p1 : Pnot (Pdbd (Pnot (Ptar t1 (Patom Zero))))

We adopt a declarative syntax, where the double-colon is used for target defini-
tion, and a single-colon for policy definition. In the above, the target t1 is defined
as the atomic target (nat,AT) with the keyword Tatom, Patom Zero represents the
atomic policy that always returns 0P (whereas One represents the decision 1P),
Ptar t1 (Patom Zero) is the above policy guarded by the target t1, and thus evalu-
ates to: {0P} if t1 evaluates to 1T; to {⊥P} if t1 evaluates to 0T; and to {0P,⊥P}
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if t1 evaluates to ⊥T. Furthermore, Pnot and Pdpd defines the negation and deny-
by-default operators, and therefore the constructor Pnot (Pdbd (Pnot x)) acts as
an allow-by-default operator, i.e., transforms ⊥P to 1P. Similarly, the policy p2
that explicitly authorises any access to French citizens and otherwise denies the
access can be defined as:

t2 :: (Tatom "nat" "FR")

p2 : Pdbd (Ptar t2 (Patom One))

The evaluation of p1 and p2 for four different requests is given in Table 1. Note
that the evaluation might return more than one decision, which can be inter-
preted as an inconclusive decision. In XACML, such decisions are defined by
the Indeterminate decision. The way an inconclusive decision is concretely inter-
preted by the PEP is left to the implementer, and might vary from a risk-advert
approach (e.g., any inconclusive decision is interpreted as 0P) to a risk-prone
approach (e.g., if 1P is a possible decision, then the PEP allows the request).

2.3 Maude Evaluation

ATRAP uses the term rewriting system Maude [8] to model PTaCL and dy-
namically generate and evaluate requests for a given policy. The syntax for the
PTaCL terms in Maude closely resembles the syntax given above. Based on this
formalisation, we define equations and rewrite rules to manipulate the syntax
tree based on pattern matching.

To evaluate a request, we model the operators for targets, policies and the
three valued logic used in PTaCL. The definition of an operator starts with the
keyword op, followed by a pattern that allows parameters at positions marked
with “ ” (underline), and the signature of the operator after a “:” (colon), where
the list on the left hand side of -> defines the parameters, and the right hand side
the result type. The definition is completed by a “.” (full stop). To exemplify
the notation we give the definitions for decisions and policy operations:

op ALLOW : −> decision .
op DENY : −> decision .
op BOT : −> decision .

op Patom : decision −> policy .
op Pnot : policy −> policy .
op Pdbd : policy −> policy .
op Pand : policy policy −> policy .

The first three lines give parameter-free operators to define the decisions for
1P (ALLOW), 0P (DENY) and ⊥P (BOT) respectively. The decisions are prefixed
with the keyword Patom to form a basic policy, and combined with Pnot, Pdbd
and Pand to form more complex expressions. Similar operators exist for the
targets, where the basic element Tatom holds a key-value pair for the attributes.
While these operators capture the structure of the policies, operators can also
be associated with equations to modify them or evaluate requests. Equations
correspond to operators and are defined using the keyword eq. When one of the
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patterns on the left of the = matches, it is replaced by the pattern on the right
hand side.

op dbd : decision −> decision .
eq dbd DENY = DENY .
eq dbd ALLOW = ALLOW .
eq dbd BOT = DENY .

op strongand : decision decision −> decision [assoc comm] .
eq strongand ALLOW d = d .
eq strongand DENY d = DENY .
eq strongand d d = d .

While the deny-by-default operator dbd has only one parameter and replaces
possible BOT values by DENY, the equations can also contain variables which
match all possible patterns for the respective type. The keywords assoc and
comm declare that the operator for strongand is associative and commutative
respectively, which is considered by Maude in pattern matching (e.g., we only
need strongand ALLOW d and can omit strongand d ALLOW). Note that while
in general associative-commutative rewriting is NP complete, Maude supports
effective algorithms for handling the equational rewriting steps for typical pat-
terns in time proportional to the logarithm of the term size [12]. The definitions
for equations are evaluated from top to bottom. That is, for the equations above,
eq strongand d d = d is only considered if both of the parameters are BOT.
In addition to the policies, we define requests as sets of (key =? value) pairs
and an operation peval that evaluates a request on a given policy.

ATRAP uses this formalisation in three ways: to evaluate a request against a
policy, to compute a counter-example demonstrating that a policy is not resis-
tant, and to search for a proof tree that shows the resistance of a policy.

3 Policy Resistance

To introduce the notion of policy resistance, consider the evaluation of the re-
quest {(nat,FR), (nat,AT)} with the policy p1, as given in Table 1: this request,
corresponding to a user with both French and Austrian citizenships, is initially
denied; however, if the attribute (nat, AT) is “removed”, then the request be-
comes allowed.

In general, several reasons can explain the absence of an attribute in a request,
such as an error during the transmission of the attributes, the expiration of the
attribute certificate, the non-existence of this attribute, etc. In particular, an
attribute might be withheld intentionally (e.g., a user does not want to disclose
her address for privacy reasons), by mistake (e.g., a user is not aware of the
fact that it should be disclosed) or maliciously (e.g., a user wants to hide some
“negative” information).

In the latter case, the omission of an attribute can be seen as an attribute
hiding attack [10] from a user, trying to gain a better answer by hiding some
information. A policy is resistant when it is able to resist to such attacks:
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Definition 1. A policy p is resistant if, and only if, for any requests q and q′,
if q′ ⊆ q and if �p�(q′) = {1P}, then �p�(q) = {1P}.

In other words, if a request q is not allowed, then any sub-request q′ ⊆ q is also
not allowed. For instance, we can observe that the policy p1 is not resistant,
while the policy p2 is.

There are many ways to prove that a policy p is resistant, the most straight-
forward one being to exhaustively check any pair of requests q, q′ such that
q′ ⊆ q. We describe an implementation of this approach in Section 4 using
Maude, together with the notion of a normal form for requests, allowing us to
reduce the set of requests to check.

In some cases, we can also use the structure of the policy to prove its re-
sistance. For instance, the policy Ptar t (Patom Zero) clearly evaluates, for any
request, either to {0P} or to {0P,⊥}, regardless of the definition of t, and is
therefore trivially resistant. Generalising this example, we can observe (and for-
mally prove) that if a policy cannot return 1P, then it is resistant. Furthermore:

– if p cannot return 1P, then Ptar t p cannot return 1P, for any t;
– if p cannot return 1P, then Pdbd p cannot return 1P;
– if p cannot return 1P, then Pand p p1 and Pand p1 p cannot return 1P;
– if p cannot return 1P, then Pnot p cannot return 0P;
– if p cannot return 0P, then Pnot p cannot return 1P;
– if p cannot return 0P, then Ptar t p cannot return 0P.

In other words, it might be possible to prove that a policy is resistant simply
by inspecting its structure, without checking each possible pair of requests. As
another example, a policy without any target clearly evaluates identically for
any request (since all requests are equally applicable), and therefore is resistant.

In addition, the notion of weak-monotonicity is introduced in [10], such that,
intuitively speaking, a target is weakly monotonic if removing information from
a request lowers the evaluation of the target.

Definition 2. A target t is weakly monotonic if for all requests q and for every
q′ ⊆ q, �t�(q′) � �t�(q), where � is the reflexive closure of ⊥T ≺ 0T ≺ 1T. A
policy p is weakly monotonic if and only if every target in p is weakly monotonic.

Any atomic target (n, v) is weakly-monotonic, and the operators optT and
andT preserve the weak-monotonicity [10]. In other words, any policy whose
targets are built without the operator notT is weakly monotonic. Moreover, as a
direct result from Theorem 6 of [10] (which is recalled in [14]), we have:

– If p is weakly monotonic and built without dbdP, then it is resistant;
– If p is weakly monotonic and built without notP, then it is resistant;

Finally, the notion of resistance can be proved in a compositional way:

– If p is resistant, then Pdbd p is resistant;
– If p1 and p2 are resistant, then Pand p1 p2 is resistant.
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These rules make it possible to prove the resistance of a conjunctive policy in a
different way for each sub-policy. Clearly, all the rules presented in this section
are only implications, and a policy might be resistant even though it does not
satisfy any of them. We show in Section 5 how ATRAP can use these rules,
together with their encoding in Isabelle and Maude, to automatically build a
proof of resistance.

Remark 1. A (strongly) monotonic policy, as defined in [10] is also trivially resis-
tant. However, in order to prove the (strong) monotonicity of an atomic target,
attributes must be assumed to be compact, i.e., either all the values of an at-
tribute are given, or none are. For instance, the compactness of the attribute nat
would mean that a user can either hide all of her nationalities, or none of them,
but cannot only hide one. Hence, proving resistance using (strong) monotonicity
requires the assumption of compactness from the environment, whereas we aim
here at generating complete proofs, i.e., without assumption. The integration of
such assumptions when all other strategies have failed is left for future work.

4 Search for Non-resistance

We use the PTaCL encoding in Maude to automatically search for possible
counter-examples to resistance. A naive approach for a policy p would simply
consist in checking any two requests q and q′, such that q′ ⊆ q and �p�(q′) = {1P},
in order to ensure that �p�(q) = {1P}. However, the set of all possible requests can
potentially be very large. For instance, in our previous example, focusing only on
the nat attribute, the United Nations Organisation currently counts 193 mem-
bers1, meaning there are 193 pairs (nat, v) possible, and thus card(Q) = 2193.

In order to simplify the search, we first introduce the normal form of a request
for a given policy. We then describe our correct and complete search for counter-
examples in Maude, and finally we present some experimental results.

4.1 Normal Form of Requests

Intuitively speaking, the evaluation of a request against a policy mostly depends
on whether the request contains the atomic targets present in the policy: given
an attribute n, all pairs (n, v) that do not explicitly appear in the policy are
evaluated in the same way. For instance, consider the policy p1: it is clear that
the pairs (nat,FR), (nat,DE) or (nat,UK) are evaluated similarly.

Hence, given a policy p, we write A(p) for the set of atomic targets appearing
in p. For instance, A(p1) = {(nat,AT)} and A(p2) = {(nat,FR)}. Given an
attribute n and a policy, we write fv (p, n) for a fresh value of n with respect to
p, i.e., a value such that (n, fv (p, n)) �∈ A(p). If p explicitly mentions all possible
values for n, we define fv (p, n) to return a random value for n. Finally, the normal
form of a request q for a policy p is given by keeping all pairs (n, v) that appear
both in q and A(p), and replacing any (n, v) in q that does not appear in A(p)
by (n, fv (p, n)). More formally:

1 http://www.un.org/depts/dhl/unms/whatisms.shtml#states
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Definition 3. The normal form of a request q is given by:

nfp(q) = (q ∩ A(p)) ∪ {(n, fv(p, n)) | ∃v (n, v) �∈ A(p) ∧ (n, v) ∈ q}

Given a set of requests Q and a policy p, we write NFp(Q) = {nfp(q) | q ∈ Q}. In
the following, we omit the subscript when p is clear from context. For instance,
the set of requests in normal form for the policy p1 is given by:

NFp1(Q) = {∅, {(nat,AT)}, {(nat,NV)}, {(nat,NV), (nat,AT)}}

where NV represents the fresh value for the attribute nat, i.e., NV = fv (p1,nat).
This notion of normal is consistent both with policy evaluation and request

inclusion (the proofs can be found in [14]).

Proposition 1. For any policy p and any request q, �p�(q) = �p�(nf(q)).
Proposition 2. Given any requests q and q′, if q′ ⊆ q, then nf(q′) ⊆ nf(q).

Remark 2. The simplicity of the normal form comes from the fact that PTaCL
does not allow for complex atomic targets, such as the comparison of attribute
values. For instance, one cannot directly write the atomic target stating that age
must be lower than 18, and must instead generate the disjunction of all atomic
target for age between 0 and 18. Note however that, as long as attributes have
a finite domain, all possible targets can be defined, hence PTaCL can be seen
here as a low-level language, designed for policy analysis. The design of richer
atomic targets is planned for future work.

4.2 Search for Counter-Examples

As a consequence of Proposition 1 and Proposition 2, the resistance of a policy
can be decided only by looking at the set of requests in normal form.

Proposition 3. A policy p is resistant if, and only if, given q and q′ in NFp(Q),
if q′ ⊆ q and if �p�(q′) = {1P}, then �p�(q) = {1P}.

In other words, we can restrict our attention to NFp(Q), whose size is bounded
by 2|A(p)|+n, where n stands for the number of attributes, instead of Q, whose
size is 2N , where N is the number of all possible attribute name-values pairs.
Finally, it is worth observing that, in order for a policy p to be resistant, it is
enough to check, for any allowed request q, whether removing any pair attribute
value changes the decision. More formally:

Proposition 4. A policy p is resistant if, and only if, for any request q such
that �p�(q) �= {1P}, if �p�(q \ {(n, v)}) �= {1P}, for any attribute n and any value
v.

Combining Propositions 4 and 3, we conclude that to find a counter-example
to resistance, we only need to check all pairs (q, q′), where q, q′ ∈ NFp(Q) and q =
q′∪{(n, v)}. Proposition 4 allows us to reduce the number of comparisons needed
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for the search for counter-examples from an upper bound of 2|A(p)|+n×2|A(p)|+n

(comparison of all subsets) to 2|A(p)|+n × (|A(p)| + n), i.e., where each subset
needs to be checked against at most |A(p)|+ n direct subsets.

The seach for counter-examples is performed by generating and evaluating
the largest possible request qm = A(p) ∪ {(n, fv(n)) | (n, v) ∈ A(p)}, and sys-
tematically removing attributes to see if a reduction of a request (hiding of an
attribute) can lead to an increase of access in the policy. This manipulation of
requests is performed using rewrite rules, which are defined similarly to equa-
tions, but in contrast to them are not evaluated deterministically, i.e., may be
executed whenever the left hand side pattern matches.

The Maude command for the search has the following form:

search sres ( bldevallist ( policy Requests Defs DecsList )) =>∗ error ( x:DecsList ).

where policy is the ID of a top level policy to check, the set Requests is the max-
imal request in normal form, and Defs are the policy definitions. The operator
bldevallist repeatedly removes attribues from the request, evaluates it with re-

spect to the policy, and stores the result in DecsList. The operator sres traverses
the list and searches for pairs that violate resistance, in which case the violating
request pair is wrapped into an error operator. Removing an element from the
set Request is nondeterministic, and thus may generate different lists of decisions.
The maude command search systematically explores all the possible outcomes
and returns those that match the search command, resp. can be rewritten to an
error label. For instance, when analysing the policy p1, ATRAP outputs:

Counter-example #1

["nat" =? "new_value"]: [ALLOW]

["nat" =? "AT", "nat" =? "new_value"]: [DENY]

4.3 Experimental Results

We experiment the search for counter-examples by randomly generating some
policies, and executing the search for each policy. We write P 〈m,n, k, l, r〉 for
a set of r random policies, such that m stands for the maximal height of each
policy, n for the maximal width of each target, k for the number of attributes
and l for the number of values for each attribute.

Figure 2 represents the execution time (on 2 GHz Intel core i7 with 8GB
of RAM) for the search of counter-examples for each p ∈ P 〈4, 4, 4, 4, 300〉, in-
dexed by A(p) and with a logarithmic scale for the execution time. Over the
300 policies, 252 are resistant, and this ratio of 0.85 is consistent with other
experiments, and seems to be independent of the policy dimensions. Note that
the times shown in this Figure are for complete searches, i.e., searches finding
all possible counter-examples. Hence, the time required to analyse a policy is
the same whether the policy is resistant or not. As expected from the theoretical
analysis of the previous section, the search for counter is exponential in the size
of A(p).
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Fig. 2. Automatic search for counter-examples for P 〈4, 4, 4, 4, 300〉

5 Certification of Resistance

If no counter-example is found, ATRAP tries to build a proof of resistance of
the policy, following a proof-obligation discharge approach, where Maude is used
to automatically generate a proof that can be checked in Isabelle [20,25]. To
reach this goal, ATRAP encodes the policy and the deduction mechanism in
rewrite logic and calls Maude to perform a search for the proof. The result is
parsed into Java classes and mapped into a corresponding proof in Isabelle, which
is then called to validate the proof. It is worth mentioning that the encoding
in Maude of the deduction mechanism is independent to the counter-examples
search described in the previous section, although both techniques share the
encoding of PTaCL.

Our approach revolves around two main entities: proof obligation and proof
technique. A proof obligation corresponds to a goal, i.e., to a property that we
want to prove. The top-level goal is a proof of resistance, which in turn may
require further sub-goals like weak-monotonicity to form a complete proof tree.
A proof technique describes a method to discharge a proof obligation, using some
rules described in Section 3.

Rather than encoding the proofs manually in Isabelle, we use Maude to search
for viable proof trees that are then encoded and checked in Isabelle. To facil-
itate this goal, each proof obligation and technique have corresponding facets
in Maude, Isabelle and Java. In Maude, the facet of a proof obligation is rep-
resented as an operator (e.g., isResistant) that takes a policy or target ID and
a proof technique. In Java this is implemented in form of public classes, which
have a field statement corresponding to the Isabelle definition of the proof obli-
gation. For instance, the field statement of the class ResistanceProof is equal to
resistant p q1 q, where p is the name of the policy over which this class is
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defined and where q and q1 are the universally quantified variables representing
the variables q and q′ of Definition 1. The Isabelle facet of a proof obligation is
then a definition over either a target or a policy. For instance, the definition of
resistance in Isabelle is given as:

definition resistant :: ”policy ⇒ request ⇒ request ⇒ bool” where
” resistant p q1 q ≡ (set q1)⊆( set q) → peval p q1 = {One} → peval p q = {One}”

The Maude facet of a proof technique is an operator defined over policies
and/or targets. For instance, let r1 be the rule stating that a policy is resis-
tant if it is weakly-monotonic and without the notP operator. Note that for
technical reasons, we also need to impose that a policy is well-formed, i.e.,
each atomic policy is either 1P or 0P, and not ⊥P. This rule is represented
in Maude as the operator ResWFWMWNProof. A proof technique is implemented
in Java as a class local to that corresponding to the proof obligation. For in-
stance, in order to define the rule r1, the class ResistanceProof comes with a
local class WeakMonotonicityWithoutNotWF. This class is defined with three fields:
WellFormedProof, WithoutNotProof, WeakMonotonicPolicyProof, each being a public
class. In other words, in order to use the rule r1, one must first exhibit a proof
that the policy is well-formed, a proof that it is built without the notP construc-
tor, and a proof that it is weakly-monotonic. Finally, this structure is mapped
to Isabelle, where the proof technique for a proof obligation is a proven lemma
whose goal is that proof obligation. For instance, the lemma corresponding to
rule r1 is defined in Isabelle as2:

lemma weak monotonic without not resistant :
” well formed policy p ⇒ weak pmonotonic p q1 q ⇒ policy without not p
⇒ resistant p q1 q”

To generate the proof tree, each rule of Section 3 is modelled in Maude in
a basic, compositional form. Starting from the initial goal of proving resistance
of a policy p, the proof generation then follows the structure of the policy to
generate new proof obligations for sub-proofs according to the components and
properties of p.

While binary operators like Pand trigger sub-proofs for both operands, the
proof generation is also guided by properties and preconditions of the lemma
to apply. To show, e.g., resistance using the rule r1, we need to establish well-
formedness, weak-monotonicity, and check that the policy does not use notP.
Well-formedness and use of notP can easily be checked by Maude doing a syn-
tactic check. Only if both conditions are fulfilled, a proof for weak monotonicity
is instantiated. When all conditions for a proof are fulfilled, the proof obligation
is replaced by a description of the actual proof. For instance, the rewrite rule
corresponding to the rule r1 is given as:

genproof( isResistant (p, noproof) ,
isWF(p, pr1) , isWN(p, pr2), isWM(p, pr3),pis | defs )

=> genproof(isResistant(p, ResWFWMWNProof(p)),
isWF(p, pr1) , isWN(p, pr2), isWM(p, pr3), pis | defs)

2 All ATRAP lemmas are available at http://www.morisset.eu/atrap/ .
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theory p2 imports atrap begin
definition t2 :: target where ”t2 = (Tatom ’’nat’’ ’’ FR’’)”
definition pone :: policy where ”pone = Patom One”
definition pt :: policy where ”pt = Ptar t2 pone”
definition p2 :: policy where ”p2 = Pdbd pt”

lemma ”resistant p2 q1 q” proof −
have wf: ” well formed policy p2”
by (simp add: p2 def pt def pone def t2 def )

have without not: ” policy without not p2”
by (simp add: p2 def pt def pone def t2 def )

have weak monotonic: ”weak pmonotonic p2 q1 q” proof −
have wm p: ”weak pmonotonic pt q1 q” proof −

have wm p: ”weak pmonotonic pone q1 q” by (simp add: pone def)
have wm t: ”weak tmonotonic t2 q1 q”
by (simp add: tatom weak monotonic t2 def)

from wm p wm t show ?thesis by (simp add:pt def) qed
from wm p show ?thesis by (simp add:p2 def) qed

from wf without not weak monotonic show ?thesis
by ( insert weak monotonic without not resistant [of p2 q1 q] , simp)

qed

Fig. 3. Generated Isabelle Proof

where noproof indicates that the proof obligation was not fulfilled yet, and pr1, pr2,
and pr3 are previously generated subproofs. The variables pis and defs hold the
available sub-proofs and policy definitions respectively. This approach also allows
for manual intervention by the user by supplying the generation mechanism by
external information about the system or predefining proof obligations with their
respective techniques.

Running Example. The policy p2 is automatically proven to be resistant by
ATRAP, which executes the following Maude command (where the policy pt is
introduced as an intermediary step):

rew genproof( isResistant (P ”p2”, noproof) | (T ”t2”::(Tatom ”nat” ”FR”),
P ”pone”=Patom ALLOW, P ”pt”=Ptar T ”t2” P ”pone”, P ”p2”=Pdbd P ”pt”)).

This proof-obligation is automatically discharged using the rules described above,
and the following proof-obligation is returned:

isResistant (P ”p2”, ResWFWMWNProof(P ”p2”)), isWF(P ”p2”,WFBFProof(P ”p2”)),
isWN(P ”p2”, WNBFProof(P ”p2”)), isWM(P ”p2”, WMPdbd(P ”p2”,P ”pt”)),
isWM(P ”pt”, WMwithPtar(P ”pt”,T ”t2”,P ”pone”)),
isWM(T ”t2” ,WMwithTAtom(T ”t2”)), isWM(P ”pone”, WMwithPAtom(P ”pone”)))

Informally, this proof can be read as follows: p2 is resistant, since it is well-
formed, weakly-monotonic and without-not; p2 is well-formed which can checked
by “brute-force”, i.e., by checking the definition of p2; p2 is without the notP
operator, which can also be checked by “brute-force”; p2 is weakly-monotonic,
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since it is the deny-by-default of the weakly-monotonic policy pt; pt is weakly-
monotonic, since it is the composition of the weakly-monotonic target t2 and
of the weakly-monotonic policy pone; t2 is weakly-monotonic, since it is atomic;
and pone is weakly-monotonic since it is atomic.

ATRAP parses this Maude proof-obligation, and using the Java mechanism
described above, the following Isabelle theory is automatically generated. This
theory is built on the logic atrap.thy, which includes the definition of the three-
valued logic, the definition of PTaCL, and the lemmas corresponding to the
different rules described in Section 3.

Fig. 3 presents the generated proof for the running example. For the sake
of compactness, we do not go through Isabelle/Isar’s syntax, but intuitively,
the structure of the proof follows the informal description given above, and the
tactics used are limited to the simplification tactic (which unfolds the definition
of the entities involved in the proof), and the insertion of existing lemmas. It is
worth observing that the generated proof is human readable, and is structurally
very close to the corresponding mathematical proof. We believe this aspect to
be particularly important as a security designer is not necessarily an expert in
proof techniques, and ATRAP provides a high-level proof, without having to
rely blindly on a verification tool.

5.1 Experimental Results

We now evaluate the performance of ATRAP for the generation of resistance
proof. The complexity of the proof generation mostly depends on the number
of constructors of a policy p, which we refer to by size(p), since the number of
applicable rules directly depends on that number. Figure 4 shows some evalua-
tion times for P 〈8, 3, 3, 3, 500〉, where the y axis is logarithmic. As expected, the
complexity of the proof search is exponential in size(p), making the proof search
most of the time faster than the search for counter-examples (the few exceptions
to that rule come from policies p with large sizes, but small A(p), i.e., policies
where a same target is repeated a large number of times).

However, although usually faster than the counter-examples search, the ac-
curacy of the proof generation decreases with size(p). For instance, writing Tn
for P 〈n, n, 2, 2, 1000〉, for T1, we generated the proof for all of the 957 resistant
policies, this ratio falls to 905/920 ≈ 0.98 for T2, to 762/883 ≈ 0.86 for T3, to
659/864 ≈ 0.76 for T4, to 558/852 ≈ 0.66 for T5, to 503/861 ≈ 0.58 for T6, etc.

Theses results, together with those of Section 4.3, should be seen as a val-
idation of the ATRAP approach, rather than a “real-world” characterisation
of policy resistance. Indeed, the policies analysed are randomly generated, and
therefore the samples do not necessarily represent policies defined in a concrete
context. In particular, it is not necessarily the case that about 85% of the policies
enforced in existing information systems are resistant. Similarly, even though the
accuracy of the proof search decreases with the number of constructors used, a
very large policy whose targets consist only of conjunctions of atomic targets,
and using only the operator andP, could be easily proved resistant.
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Fig. 4. Automatic search for proof for P 〈8, 3, 3, 3, 500〉

6 Conclusion - Future Work

This paper presents the tool ATRAP, which, given a PTaCL policy, is capable
of positively answer the three questions stated in the Introduction, i.e., can
automatically detect the resistance of a policy by exhibiting a counter-example
when it is not resistant, and, in some cases, by generating an Isabelle proof when
it is. The different mechanisms are illustrated with two simple policies.

Using Proposition 3, we are able to limit the number of requests to evalu-
ate when searching a counter-example, while maintaining the correctness and
completeness of the approach. We have also implemented a collection of proof
techniques allowing to prove efficiently the resistance of a policy, although large
policies might fail to be proven automatically. However, the rules presented in
Section 3 can also be seen as a policy construction guide, since a policy built
using only those rules is resistant, by construction.

An interesting lead to explore for future work is to increase the interactivity
between the search for counter-examples and the proof generation, by leveraging
the different complexity of each approach. More precisely, we should take ad-
vantage of Maude to rewrite a policy to an equivalent one, such that the latter
policy could be proven to be resistant more easily. This leads to the question of
the existence of a normal form for policies, such that one could build a complete
collection of resistance rules, i.e., if a policy in normal form is resistant, then
there exists a set of structural proofs to prove it. At this stage, this remains as
an open question.

We however believe that one of the strengths of our approach is its flexibility,
and rules can be incrementally added. In order to so, one needs to provide the
corresponding rule in Maude, together with Isabelle lemma and the Java class
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linking the two. Clearly, an interesting future work would consist in formalising
this extendability, by having an explicit, abstract notion of rule, with multiple
facets, i.e., one facet for Maude, one for Isabelle, one for Java. We could also
extend our approach to other properties of access control policies, for instance
by relying on the underlying properties of the rewrite system [4].

Another relevant problem is the one of fixing a policy, in order to transform
a non-resistant policy into a resistant one. This problem raises the question of
policy “closeness”, i.e., given a non-resistant policy, it is not enough to create
a resistant one, we also need to ensure that the new policy is close enough to
the original one. It is worth noting that ATRAP can generate partial proof of
resistance, i.e., even if the whole policy is not resistant, it might identify some
sub-policies that are, which might be helpful to fix a given policy.

Finally, as we mentioned, the current version of PTaCL can be seen as a
low level language, and it would therefore be worth interfacing a “higher” level
language with PTaCL, in order to analyse more complex policies, for instance
include relational targets. XACML 3.0 would be a good candidate for such an
extension, since both languages are attribute and target-based. In general, we
plan to release ATRAP as an open-source software, and to generally optimise
the searches for counter-examples and proofs. In this regard, it would be worth
looking at parallel/distributed computation, since the evaluation of each pair of
requests (q, q \ {(n, v)} can be performed independently.

Acknowledgements. The authors would like to thank Jason Crampton for
valuable discussions about PTaCL and policy resistance.

References

1. Alberti, F., Armando, A., Ranise, S.: Efficient symbolic automated analysis of
administrative attribute-based rbac-policies. In: Proceedings of the 6th ACM ASI-
ACCS 2011, pp. 165–175. ACM, New York (2011)

2. Armando, A., Ranise, S.: Scalable automated symbolic analysis of administra-
tive role-based access control policies by smt solving. Journal of Computer Se-
curity 20(4), 309–352 (2012)

3. Barker, S., Fernández, M.: Term rewriting for access control. In: Damiani, E.,
Liu, P. (eds.) Data and Applications Security 2006. LNCS, vol. 4127, pp. 179–193.
Springer, Heidelberg (2006)

4. Bertolissi, C., Uttha, W.: Automated analysis of rule-based access control policies.
In: Proceedings of the 7th Workshop on Programming Languages Meets Program
Verification, PLPV 2013, pp. 47–56. ACM, New York (2013)

5. Bonatti, P., De Capitani Di Vimercati, S., Samarati, P.: An algebra for composing
access control policies 5(1), 1–35 (2002)
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Abstract. As cloud computing becomes prevalent, more and more sen-
sitive data is being centralized into the cloud for sharing, which brings
forth new challenges for outsourced data security and privacy. Attribute-
based encryption (ABE) is a promising cryptographic primitive, which
has been widely applied to design fine-grained access control system re-
cently. However, ABE is being criticized for its high scheme overhead as
the computational cost grows with the complexity of the access formula.
This disadvantage becomes more serious for mobile devices because they
have constrained computing resources.

Aiming at tackling the challenge above, we present a generic and ef-
ficient solution to implement attribute-based access control system by
introducing secure outsourcing techniques into ABE. More precisely,
two cloud service providers (CSPs), namely key generation-cloud ser-
vice provider (KG-CSP) and decryption-cloud service provider (D-CSP)
are introduced to perform the outsourced key-issuing and decryption on
behalf of attribute authority and users respectively. In order to outsource
heavy computation to both CSPs without private information leakage,
we formulize an underlying primitive called outsourced ABE (OABE)
and propose several constructions with outsourced decryption and key-
issuing. Finally, extensive experiment demonstrates that with the help
of KG-CSP and D-CSP, efficient key-issuing and decryption are achieved
in our constructions.
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1 Introduction

Cloud computing is an emerging computing paradigm in which IT resources and
capacities are provided as services over the Internet while hiding platform and
implementation details. Promising as it is, this paradigm also brings forth new
challenges for data security and privacy when users outsource sensitive data for
sharing on cloud servers, which are likely outside of the same trusted domain of
data owners.

Data access control has been evolving in the past thirty years and various tech-
niques have been developed to effectively implement fine-grained access control
[20], which allows flexibility in specifying differential access rights of individ-
ual users. However, traditional access control systems are mostly designed for
in-house services and depend greatly on the system itself to enforce authoriza-
tion policies. Thus, they cannot be applied in cloud computing because users
and cloud servers are no longer in the same trusted domain. For the purpose
of helping the data owner impose access control over data stored on untrusted
cloud servers, a feasible consideration would be encrypting data through certain
cryptographic primitives but disclosing decryption keys only to authorized users.
One critical issue of this branch of approaches is how to achieve the desired se-
curity goals without introducing high complexity of key management and data
encryption. Existing work resolve this issue either by introducing a per file ac-
cess control list (ACL) for fine-grained access control, or by categorizing files into
several filegroups for efficiency. As the system scales, however, the ACL-based
scheme would introduce an extremely high complexity which could be propor-
tional to the number of system users. The filegroup-based scheme, on the other
hand, is just able to provide coarse-grained access control of data.

Aiming at providing fine-grained access control over encrypted data, a novel
public key primitive namely attribute-based encryption (ABE) [23] is introduced
in the cryptographic community, which enables public key-based one-to-many
encryption. In ABE system, users’ keys and ciphertexts are labeled with sets of
descriptive attributes and access policies respectively, and a particular key can
decrypt a ciphertext only if the associated attributes and policy are matched.

Though ABE is a promising primitive to design fine-grained access control
system in cloud computing, there are several challenges remained in the appli-
cation of ABE.

– One of the main drawbacks of ABE is that the computational cost in de-
cryption phase grows with the number of attributes specified in the access
policy. The drawback appears more serious for resource-constrained users
such as mobile devices and sensors. Therefore, one challenge is how to reduce
the decryption complexity of ABE such that it can be applied to fine-grained
access control for users with resource-constrained devices.

– Beyond decryption, generating user’s private key in existing ABE schemes
also requires a great quantity of modular exponentiations. Furthermore, the
revocation of any single user in existing ABE requires key-update at author-
ity for remaining users who share his/her attributes. All of these heavy tasks
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centralized at authority side would make it become the efficiency bottleneck
in the whole access control system. Therefore, another challenge is how to
reduce the key-issuing complexity of ABE such that scalable access control
can be supported.

1.1 Contribution Overview

Aiming at tackling the challenges described above, we propose a generic con-
struction of attribute-based access control system under an interesting architec-
ture, in which two cloud service providers (CSPs) namely key generation-cloud
service provider (KG-CSP) and decryption-cloud service provider (D-CSP) are
involved to perform the outsourced heavy tasks for users’ key issuing and file ac-
cess. With the help of the CSPs, the computational complexity at both user and
attribute authority sides is reduced. Furthermore, since only small computation
is required at authority side for single user’s private key update, the proposed
system is able to efficiently support user revocation.

The challenge issue in the proposed system is how to outsource the heavy
computation to the CSPs as much as possible but without private information
leakage. Our solution is introducing an underlying primitive namely outsourced
ABE (OABE), which allows expensive tasks to be securely outsourced to CSPs
to relieve computation overhead at local. We provide several OABE construc-
tions with outsourced key-issuing and decryption. As far as we know, this work is
the first attempt considering outsourcing key-issuing and decryption in ABE si-
multaneously. Our first construction requires only constant computation (nearly
two single-based exponentiations) at attribute authority during key-issuing be-
sides efficient decryption. Our second construction provides access control in a
fine-grained manner but remains the same efficiency as previous constructions.

1.2 Organization

The rest of this paper is organized as follows. In Section 2, we present the
architecture and adversary model for attribute-based access control system. In
Section 3, an efficient access control system based on OABE is described. In
Section 4, we propose a basic OABE construction with outsourced decryption
for access control. Several OABE constructions with outsourced key-issuing and
decryption for improved access control are presented in Section 5. In Section 6,
an extensive experimental result is provided for demonstrating the efficiency of
our main OABE construction. In Section 7, the previous work related to ours is
surveyed. Finally, we draw conclusion in Section 8.

2 Attribute-Based Access Control System Model

In this section, we describe the architecture for the attribute-based access control
system and define its security model.
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2.1 Introduction of Attribute-Based Encryption

ABE has been widely applied to impose fine-grained access control on encrypted
data recently. There are two kinds of ABE having been proposed: key-policy
attribute-based encryption (KP-ABE) and ciphertext-policy attribute-based en-
cryption (CP-ABE). In KP-ABE, each ciphertext is labeled by the encryptor
with a set of descriptive attributes. Each private key is associated with an access
structure that specifies which type of ciphertexts the key can decrypt. Whereas,
in CP-ABE, the access structure is specified in ciphertext by encryptor and each
private key is associated with a set of attributes. Without loss of generality, we
are able to denote (Ienc, Ikey) as the input to encryption and key generation of
ABE. Accordingly, in CP-ABE scheme, (Ienc, Ikey) = (A, ω) while that is (ω,A)
in KP-ABE, where ω and A denotes an attribute set and an access structure,
respectively. In ABE, there are two entities: the attribute authority and users.
The attribute authority is in charge of the issue of attribute private key to users
requesting them. In more detail, the definition of four algorithms in ABE is given
as follows.

– Setup(λ) : The setup algorithm takes as input – a security parameter λ. It
outputs (PK,MK), where PK denotes the public key and MK denotes the
master key of the attribute authority.

– KeyGen(Ikey,MK) : The key extraction algorithm takes as input – a user’s
access structure (resp. attribute set) Ikey and the attribute authority’s master
key MK. It outputs the user’s private key SK.

– Encrypt(M, Ienc) : The encryption algorithm takes as input – a message M
and the attribute set (resp. access structure) Ienc. It outputs the ciphertext
CT with access policy Ienc.

– Decrypt(CT, SK) : The decryption algorithm takes as input – a ciphertext
CT which was assumed to be encrypted under the attribute set (resp. access
structure) Ienc and the private key SK for access structure (resp. attribute
set) Ikey. It outputs the message M if γ(Ikey, Ienc) = 1 and the error symbol
⊥ otherwise, where the predicate γ is predefined.

2.2 Architecture for the Attribute-Based Access Control System

As shown in Fig. 1, the architecture for the attribute-based access control system
consists of the following entities:

– Attribute Authority (AA). This is a key authority for the attribute set. It is
in charge of issuing, revoking, and updating attribute keys for users.

– Data Owner. This is a user who owns data files and wishes to outsource
them into the external storage server provided by a CSP. It is responsible
for defining and enforcing an attribute set (resp. access policy) on its own
files.

– User. This is an entity who wants to access an outsourced file. If the user
owns an access privilege of an encrypted file, and is not revoked, he/she will
be able to obtain the file.
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Fig. 1. Architecture for Attribute-based Access Control System

– Storage-Cloud Service Provider (S-CSP). This is an entity that provides a
data storage outsourcing service. In this paper, we assume that S-CSP is
always online and has abundant storage capacity and computation power.

– Key Generation-Cloud Service Provider (KG-CSP). This is an entity that
provides an outsourcing computing service for AA through undertaking the
expensive tasks delegated by AA.

– Decryption-Cloud Service Provider (D-CSP). This is an entity that provides
an outsourcing computing service through performing partial decryption on
ciphertext.

We give an overview of the attribute-based access control system as follows.

– System Setup. Public parameter and master key are initialized for the
system and AA keeps the master key as secret information.

– New User Grant. When a new user wants to join the system, with the aid
of KG-CSP, AA issues an attribute private key to him/her based on his/her
attributes .

– New File Creation. When a data owner wants to outsource and share a
file with some users, he/she encrypts the file to be uploaded under a specified
attribute set (resp. access policy).

– File Access. When a user wants to access an outsourced file, he/she down-
loads ciphertext from S-CSP and decrypts it with the help of D-CSP.

– User Revocation. When there is a user to be revoked, AA updates “af-
fected” users’ private keys with the help of KG-CSP, while the “affected”
ciphertexts having been stored on S-CSP will be updated as well.

2.3 Adversary Model and Security Requirements

We assume that S-CSP, D-CSP and KG-CSP are honest but curious. More pre-
cisely, they will follow our proposed protocols, but try to find out as much
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secret information as possible based on their possessions. Furthermore, D-CSP
is allowed to collude with curious users and S-CSP. Thus, two types of ad-
versaries are considered in our access control system: i) users colluding with
D-CSP and S-CSP; ii) semi-trusted KG-CSP, which is not allowed to collude
with users.

The security requirement considered in this paper is semantic security of data,
which is defined as follows: Unauthorized users (that is, the two types of ad-
versaries defined above) without appropriate access structure (resp. attributes)
matching the attributes (resp. policy) embedded in ciphertext should be pre-
vented from accessing the underlying plaintext.

3 OABE-Based Access Control System

In this section, we provide a generic construction of the attribute-based access
control system. Its security analysis is presented as well.

3.1 Building Block: OABE

Based on the system model provided in Section 2, we attempt to define an
underlying primitive namely OABE with outsourced key-issuing and decryption
for realizing our access control system. Notice that the definitions of Setup and
Encrypt in OABE are identical to traditional ABE shown in Section 2.1, we only
show the definitions of outsourced key-issuing protocol and outsourced decryption
protocol.

Outsourced Key-Issuing Protocol. Three entities including users, AA and KG-
CSP are involved in this protocol. Upon receiving a key-issuing request from
a user, AA firstly sends an outsourcing key (denoted as OK) to KG-CSP and
receives a private key component (denoted as SK1) for the user. The other
component SK2 is computed locally by AA. At a high level, the protocol is
described as follows.

The outsourced key-issuing protocol consists of the following three polynomial-
time algorithms.

– O-KeyGen-PreProc(Ikey,MK) : The preprocessing algorithm run by AA takes
as input – the access structure (resp. attribute set) Ikey for a user, the master
key MK. It outputs the key pair (OK,AK) where OK denotes the outsourc-
ing key for KG-CSP and AK denotes the secret key for AA to compute the
other component of private key.
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– O-KeyGen-Outsource(Ikey, OK) : The outsourced algorithm run by KG-CSP
takes as input – the access structure (resp. attribute set) Ikey and the out-
sourcing key OK. It outputs the private key component SK1.

– O-KeyGen-PostProc(AK,SK1) : The postprocessing algorithm run by AA
takes as input – the secret key AK and the private key SK1. It outputs
SK = (SK1, SK2) as the user’s private key.

Outsourced Decryption Protocol. Two entities including users and D-CSP are
involved in this protocol. More precisely, upon receiving the ciphertext CT , the
user delivers SK1 along with CT to D-CSP and receives a partially decrypted
ciphertext CT ′. Finally, the message is completely computed by the user with
SK. At a high level, it can be described as follows.

– O-Decrypt-Outsource(CT, SK1) : The outsourced algorithm run by D-CSP
takes as input – a ciphertext CT assumed to be encrypted under the attribute
set (resp. access structure) Ienc and the private key component SK1 for
access structure (resp. attribute set) Ikey. It outputs the partially decrypted
ciphertext CT ′ if γ(Ikey, Ienc) = 1, otherwise outputs ⊥.

– O-Decrypt-Dec(CT ′, SK) : The complete decryption algorithm run by the
user takes as input – the partially decrypted ciphertext CT ′ and the private
key SK. It outputs a message M .

Security Model

Two types of adversaries are classified as in Section 2.3:

– Type-I Adversary. It is defined as a curious user colluding with D-CSP. Such
an adversary is allowed to ask for all the SK1 and the private keys SK of dis-
honest users. The goal of this adversary is to obtain useful information from
ciphertext not intended for him/her. Notice that Type-I adversary cannot
get outsourcing key OK for any user.

– Type-II Adversary. It is defined as a curious KG-CSP. Such an adversary
owns outsourcing keys OK for all users in the system and tries to extract
any useful information from ciphertext.

Having the intuition above, we are able to follow the replayable chosen-
ciphertext attack (RCCA) security given in [15] and define it for both type-I
and type-II adversaries in our OABE. The security definition is similar to the
previous work [15], where the only difference is that an additional security game
is defined to simulate the type-II adversary with the outsourcing keys of all users.

Definition 1 (RCCA Security). AnOABE scheme with outsourced key-issuing
and decryption is secure against replayable chosen-ciphertext attack if all
polynomial-time adversaries have at most a negligible advantage in the RCCA
security games for both type-I and type-II adversaries.
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3.2 Generic Construction of OABE-Based Access Control System

System Setup. Choose a security parameter 1λ and run the algorithm Setup(1λ)
of OABE to obtain the public parameter PK and the master key MK. The pub-
lic parameter is then published, while the master key is kept by AA as a secret.

New File Creation. Whenever a data owner wants to create and upload a file
F to S-CSP, he/she firstly defines an attribute set (resp. access structure) Ienc
for this file. Then, the owner randomly picks a symmetric key K from the key
space and encrypts the file F with K using standard symmetric key algorithm
such as AES to obtain the ciphertext CTF . Later on, he/she runs the algorithm
Encrypt(Ienc,K) of OABE to generate the ciphertext CTK which is an encryption
of the symmetric key with respect to Ienc. Finally, the data owner uploads the
ciphertext (CTF , CTK) to S-CSP.

New User Grant. Assuming a user wants to join the system, he/she needs
to be issued a private key on his/her access structure (resp. attribute set)
Ikey from AA who then runs the outsourced key-issuing protocol. In concrete,
AA outsources the operation of key-issuing by running the algorithm of O-
KeyGen-PreProc(Ikey,MK) to obtain an outsourcing key OK. Using OK, KG-
CSP runs O-KeyGen-Outsource(Ikey, OK) to generate a private key component
SK1. Finally, AA generates the other private key component SK2 and assigns
SK = (SK1, SK2) to the user.

File Access. Suppose a user wants to access and retrieve files of his/her in-
terests. He/She firstly downloads the ciphertext (CTF , CTK). To decrypt the
ciphertext while relieving the local computation overhead, the user runs the
outsourced decryption protocol with D-CSP by sending CTK and the private
key component SK1. If the user’s Ikey in SK1 matches Ienc embedded in CTK ,
D-CSP is able to successfully compute and return the partially decrypted ci-
phertext CT ′K . Upon receiving CT ′K , the user performs complete decryption to
get the symmetric key K, with which he/she decrypts and retrieves the file F .

User Revocation. Whenever there is a user to be revoked, a public parameter
update technique in [24] is utilized. Specifically, AA determines a minimal set
of attributes according to the user’s Ikey and updates the corresponding com-
ponents in PK and MK. Then, AA updates private keys SK = (SK ′

1, SK2)
for all the “affected” users by running the outsourced key-issuing protocol with
KG-CSP. Additionally, to update “affected” ciphertexts having been stored in
S-CSP, a re-encrypting key is generated by AA to be sent to S-CSP. S-CSP uses
such a key to update the “affected” ciphertexts with the latest version of PK.
Notice that the main computation at AA side is updating private keys for “af-
fected” users. Utilizing the outsourced key-issuing protocol, such complexity is
minimized.

Security Analysis

Theorem 1. The generic construction of access control system is semantically-
secure if the underlying hybrid encryption satisfies RCCA security.
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Proof. The security will be analyzed based on the security model of access control
system given in 2.3. More specifically, two types of adversaries will be considered
here, that is, type-I and type-II adversaries. For each type adversary, we show
how to construct a simulator to break the hybrid encryption at a high level.

Since the file is encrypted with a hybrid encryption as (CTF , CTK), to get any
information about F , the adversary should decrypt CTK to retrieve the sym-
metric key K. However such a key is protected by OABE. Thus, in the above
generic construction, a hybrid encryption has been utilized to encrypt the file.
As we know, the above hybrid encryption scheme could achieve RCCA security
if the following two conditions satisfy [9], that is, i) the OABE scheme is RCCA
secure and ii) the symmetric key encryption scheme is CCA secure. Thus, data
confidentiality can be reduced to the confidentiality security of the underlying
OABE and symmetric key encryption [9]. Moreover, the privacy of OABE ci-
phertext on S-CSP against outside users without Ikey can be trivially guaranteed
because its security definition inherits that in traditional ABE. Another attack
on data confidentiality is launched by KG-CSP. Such an attack is modeled as
type-II adversary by introducing an oracle OOK(·) in the corresponding security
game of OABE. Specifically, we allow such an adversary to ask for outsourcing
keys OK for all the users, but it is not allowed to get any secret key of users.
Curious users can collude with both D-CSP and S-CSP to launch attack, which
is modeled as type-I adversary in the definition of OABE. Therefore, the secu-
rity of the attribute-based access control system is reduced to that of underlying
OABE and symmetric encryption.

In the following sections, we take our focus on OABE and attempt to provide
secure OABE construction for attribute-based access control system.

4 Basic OABE Construction with Outsourced Decryption

4.1 Access Structure

Definition 2 (Access Structure). Let {P1, . . . , Pn} be a set of parties. A
collection A ⊆ 2{P1,...,Pn} is monotone if ∀B,C : if B ∈ A and B ⊆ C then
C ∈ A. An access structure (resp. monotone access structure) is a collection
(resp. monotone collection) A of non-empty subsets of {P1, . . . , Pn}. The sets in
A are called authorized sets.

Denote ω and A as an attribute set and access structure, respectively. We
define a predicate γ(ω,A) as follows

γ(ω,A) =

{
1 if ω ∈ A

0 otherwise

In this paper, the role of the party is taken by attributes. Thus, the access
structure A contains the authorized sets of attributes. Specifically, the access
structure represented by tree can be supported in this paper.
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Let T be an access tree, in which each interior node is a threshold gate (i.e.
AND gate or OR gate) while the leaves are associated with attributes. A user is
able to decrypt a ciphertext with a given key if and only if there is an assignment
of attributes from the private key to leaf nodes of the tree such that the tree is
satisfied.

4.2 Basic Mathematical Tools

We introduce two basic mathematical tools that will be used in the following
constructions.

Definition 3 (Bilinear Map). Let G and GT be cyclic groups of prime order
q, writing the group action multiplicatively. g is a generator of G. Let e : G×G→
GT be an efficient map with the following properties:

– Bilinearity: e(ga1 , g
b
2) = e(g1, g2)ab for all g1, g2 ∈ G, and a, b ∈R Zq;

– Non-degeneracy: There exists g1, g2 ∈ G such that e(g1, g2) �= 1, in other
words, the map does not send all pairs in G× G to the identity in GT .

Definition 4 (DBDH assumption). The decision Bilinear Diffie-Hellman
(DBDH) assumption is that, given g, gx, gy, gz ∈ G for unknown random val-
ues x, y, z ∈R Zq, and T ∈R GT , it is difficult to decide if T = e(g, g)xyz for a
probabilistic polynomial algorithm.

4.3 Proposed Construction

We only consider to outsource the decryption computation of ABE and propose a
basic OABE construction with outsourced decryption. In another word, the KG-
CSP will not be involved. For simplicity, this basic construction only considers
to support for access structure described as A = {ω ⊆ U : |ω ∩ ω∗| ≥ d} where
U is the attribute universe, ω and ω∗ are attribute sets and d is a predefined
threshold value. Actually, it can be easily extended to an OABE supporting
access structure represented by tree as shown in Section 5.2.

Before providing the construction, we define the Lagrange coefficient Δi,S for
i ∈ Zp and a set S of elements in Zp as Δi,S =

∏
j∈S,j �=i

x−j
i−j .

Setup Phase

– Setup(λ) : Define a bilinear group G of prime order p with a generator g
and a bilinear map e : G× G→ GT . Next, define the attributes in universe
U as elements in Zp. For simplicity let n = |U| and the first n elements in
Zp (i.e. 1, 2, . . . , n mod p) can be taken to be the universe. Select x ∈R Zp

and set g1 = gx. Pick g2, h, h1, . . . , hn ∈R G. Output the public parameter
PK = (g, g1, g2, h, h1, . . . , hn) and the master key MK = x which is kept
secret by AA.

Key-Issuing Phase. A hybrid policy P = Pθ ∧Pω is utilized in the key-issuing
phase, where ∧ is an AND gate connecting two sub-policies Pω and Pθ. More
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precisely, a default attribute θ is appended with each user’s attribute set and the
master key x is randomly split into x1 and x2 for each user to generate private
key components on Pω and Pθ respectively.

The key generation algorithm is described as follows.

– KeyGen(ω,MK) : Upon receiving a private key request on attribute set ω,
the authority selects x1 ∈R Zp and sets x2 = x − x1 mod p. Furthermore,
select a (d − 1)-degree polynomial q(·) such that q(0) = x1. Then, for each

i ∈ ω, choose ri ∈R Zp, and compute di0 = g
q(i)
2 (g1hi)

ri and di1 = gri . For
the default attribute θ, compute dθ0 = gx2

2 (g1h)rθ and dθ1 = grθ by choosing
rθ ∈R Zp. The private key is SK = (SK1, SK2) where SK1 = {di0, di1}i∈ω
and SK2 = {dθ0, dθ1}.

Encryption Phase. Based on the logical split of user’s attribute private key, the
default attribute θ should be embeded in each ciphertext to make the decryption
successful. The encryption algorithm works as follows.

– Encrypt(M,ω′) : To encrypt a message M with respect to an attribute set
ω′, select s ∈R Zp and compute C0 = Me(g1, g2)s, C1 = gs, Eθ = (g1h)s

and Ei = (g1hi)
s for each i ∈ ω′. Finally, output the ciphertext CT =

(ω′ ∪ {θ}, C0, C1, {Ei}i∈ω′∪{θ}).

Outsourced Decryption Phase. The outsourced decryption consists of the
following two algorithms.

– O-Decrypt-Outsource(CT, SK1) : Suppose that a ciphertext CT is encrypted
with an attribute set ω′. After receiving the private key component SK1 for
attribute set ω sent from a user, D-CSP continutes to compute the partially
decrypted ciphertext CT ′: after selecting S ⊆ ω′∩ω with |S| = d, it computes
∏

i∈S e(C1,di0)
Δi,S(0)

∏
i∈S e(di1,Ei)

Δi,S(0) = e(g, g2)sx1 . Fianlly, the partially decrypted ciphertext

CT ′ is obtained as CT ′ = (C0, C1, Eθ, e(g, g2)sx1).
– O-Decrypt-Dec(CT ′, SK) : Upon receiving CT ′ from D-CSP, the user com-

pletely decrypts the ciphertext and gets a messageM asM = e(dθ1,Eθ)C0

e(g,g2)sx1e(C1,dθ0)
.

4.4 Security Analysis

The main challenge in our construction is to prevent attacks from the collusion
between users and D-CSP. However, such collusion is resistant due to the random
split on master key x for each user. More precisely, if two different users call for
their private keys, AA will choose two random splits (x1, x2) and (x′1, x

′
2) such

that x1 + x2 = x mod p and x′1 + x′2 = x mod p. Note that x1 and x′1 are used
to generate the private key component SK1 and SK ′

1 respectively, while SK2

and SK ′
2 are separately generated from x2 and x′2. In this sense, the ciphertext

can be correctly decrypted only when SK1 matches SK2. Therefore, even if a
group of curious users collude with D-CSP to obtain all SK1, they cannot forge
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a valid private key for themselves to perform decryption successfully out of their
scopes.

Since basic outsoured decryption is supported, we only need to consider the
security against type-I adversary. Then, we have the following security result.

Theorem 2. The basic OABE scheme with outsourced decryption is secure
against chosen-plaintext attack in selective model under DBDH assumption.

Proof. Assume there exists an adversary A breaks the proposed scheme, we
can build a simulator S that uses A as a sub-algorithm to solve the DBDH
problem (X,Y, Z, T ) as follows. The simulator S runs A and receives a challenge
attribute set ω∗ from A. S sets g1 = X, g2 = Y and h = g−1

1 g−α where α ∈R Zp.
For i ∈ ω∗, it selects αi ∈R Zp and sets hi = g−1

1 gαi . For i /∈ ω∗, it selects
αi ∈R Zp and sets hi = gαi . Finally, S sends the public parameter PK =
(g, g1, g2, h, h1, . . . , hn) to A, where n is the number of attributes in universe. A
is provided two types of oracles as follows:

i) Upon receiving the private key component SK1 request on ω, S checks
whether the entry (ω, ·, SK1) exists in T . If so return SK1; otherwise, if |ω ∩
ω∗| < d, S picks x2 ∈R Zp and defines three sets Γ, Γ ′ and S, where Γ =
ω ∩ ω∗, |Γ ′| = d − 1, Γ ⊆ Γ ′ ⊆ ω and S = Γ ′ ∪ {0}. Then, for each i ∈ Γ ′,
compute di0 = gτi2 (g1hi)

ri and di1 = gri where τi, ri ∈R Zp. For each i ∈
ω\Γ ′, set ri = −yΔ0,S(i) + r′i by choosing r′i ∈R Zp. Finally, compute di0 =

g
∑

j∈Γ ′ Δj,S(i)τj−(x2+αi)Δ0,S(i)

2 (g1hi)
r′i and di1 = g

−Δ0,S(i)
2 gr

′
i . Otherwise (i.e. |ω∩

ω∗| ≥ d), S picks x1 ∈R Zp and randomly selects a (d−1)-degree polynomial q(·)
with q(0) = x1. Then, for each attribute i ∈ ω, di0 = g

q(i)
2 (g1hi)

ri and di1 = gri

where ri ∈R Zp.
ii) Upon receiving a private key request on ω with |ω ∩ ω∗| < d, S checks

whether the entry (ω, SK, ·) exists in T . If so return SK; otherwise if the value
x2 for such entry has not been selected, S picks x2 ∈R Zp and the remaining
simulation is similar to the first case (i.e. |ω ∩ ω∗| < d) to obtain SK1, and
compute SK2 = (dθ0 = gx2

2 (g1h)rθ , dθ1 = grθ), where rθ ∈R Zp. Finally, after
adding (ω, SK, SK1) into T , S returns SK = (SK1, SK2).

Two challenge messages M0 and M1 are chosen by A. The simulator S flips
a fair binary coin ν and generates the ciphertext of Mν as CT ∗ = (ω∗ ∪
{θ},MνT, g

z, g−zα, {gzαi}i∈ω∗). Note that: i) If μ = 0, then T = e(g, g)xyz. Let
s = z and we have C0 = MνT = Mνe(g, g)

xyz = Mνe(g1, g2)z, C1 = gz, Eθ =
g−zα = (g1g

−1
1 g−α)z = (g1h)z and Ei = gzαi = (g1g

−1
1 gαi)z = (g1hi)

z for
i ∈ ω∗. Therefore, the ciphertext is a random encryption of the message Mν

under the attribute set ω∗.
The above querying phase is repeated with the restriction that A cannot issue

a private key request on ω with γd(ω, ω∗) = 1.
A outputs a guess ν′ of ν. If ν′ = ν, S outputs μ′ = 0 to indicate that it

was given a DBDH-tuple; otherwise, it outputs μ′ = 1 to indicate it was given a
random 4-tuple.
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5 Improved OABE Construction for Efficient Access
Control System

In this section, based on the basic OABE, we further propose two OABE con-
structions supporting outsourced key-issuing and fine-grained access control.

5.1 OABE Construction with Outsourced Key-Issuing

Notice that in our basic construction, any adversary possessing either SK1 or
SK2 cannot extract any useful information from the ciphertext. Thus, we are
able to outsource the operation of generating SK1 to KG-CSP but remain com-
puting SK2 at AA. Considering on this, we propose an OABE construction with
outsourced key-issuing and decryption. Since the other phases are identical to
our basic construction, we only provide the outsourced key-issuing protocol as
follows.

– O-KeyGen-PreProc(ω,MK) : The preprocessing algorithm in outsourced key-
issuing protocol is run by AA. It picks x1 ∈R Zq and sets x2 = x−x1 mod q.
Finally, output (OK,AK) where OK = x1 and AK = x2.

– O-KeyGen-Outsource(ω,OK) : The outsourcing algorithm is run by KG-CSP.
It randomly selects a (d − 1)-degree polynomial q(·) with q(0) = x1, and

computes SK1 = ({di0, di1}i∈ω) where di0 = g
q(i)
2 (g1hi)

ri , di1 = gri and
ri ∈R Zp.

– O-KeyGen-PostProc(SK1, AK) : The postprocessing algorithm is run by AA.
It computes SK2 = (dθ0, dθ1) where dθ0 = gx2

2 (g1h)rθ , dθ1 = grθ and rθ ∈R

Zp. Finally output SK = (SK1, SK2).

We have shown that the proposed construction is resistant to the type-I ad-
versary in Section 4.4. Therefore, it is only needed to prove its security under
the attack launched by the type-II adversary. Intuitively, in order to decrypt
ciphertext, the adversary has to recover e(g1, g2)s. The adversary could utilize
Lagrange interpolation on SK1 and C1 = gs from ciphertext to recover the de-
sired value. This will result in e(g, g2)sx1 but blinded by e(g, g2)

sx2 which cannot
be removed unless the other component of private key SK2 is used.

Thus, we can get the following security result based on the analysis above.

Theorem 3. The proposed OABE construction with outsourced key-issuing and
decryption is secure against chosen-plaintext attack launched by type-II adver-
sary.

5.2 OABE Construction for Fine-Grained Access Control

Though we describe our outsourcing key-issuing technique in the threshold ABE,
it can be easily extended to be applied to the access tree-based KP-ABE scheme
[14] to enable fine-grained access control.
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The idea behind this extension is to build a hybrid tree T as shown in Fig.
2, where ∧ and ∨ denote AND and OR gates respectively, and Ai denotes the
attribute.

To facilitate working with the access tree, we define a few notations and
functions as follows.

– numx is the number of children of an interior node x. Therefore, if assuming
y is the child of node x, we could denote index(y) as such number associated
with the node y.

– kx is the threshold value of an interior node x, specifically, when kx = 1, the
threshold gate at x is OR gate and when kx = numx, that is an AND gate.

– The function parent(x) returns the parent of the node x in the tree. attr(x)
returns the attribute associated with the leaf node x.

Fig. 2. Hybrid Tree Policy

Suppose the access tree specified by user is denoted as TU. Assuming the
parameters have been assigned as the setup algorithm in Section 4.3, we provide
the outsourced key-issuing protocol for access tree-based KP-ABE scheme as
follows.

– O-KeyGen-PreProc(TU,MK) : Randomly pick a one-degree polynomial qR(·)
with qR(0) = x. Set x1 = qR(1) and x2 = qR(2). Finally output OK = x1
and AK = x2.

– O-KeyGen-Outsource(TU, OK) : Firstly, choose a (kx − 1)-degree polynomial
qx(·) for each node x (including leaves) in the tree TU in a top-down manner.
We note that the polynomial qx(·) is chosen with the restriction that qx(0) =
x1 if x is the root node in TU, otherwise qx(0) = qparent(x)(index(x)). Let YU
be the set of leaf nodes in TU, then the private key component SK1 is set to

be ({gqy(0)2 (g1hattr(y))
ry , gry}).

– O-KeyGen-PostProc(AK,SK1) : After generating the private key component
SK2 = ({gx2

2 (g1h)rθ , grθ}) where rθ ∈R Zp, AA outputs the private key
SK = (SK1, SK2).
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6 Performance Evaluation

As shown in Fig. 3, we provide a thorough experimental evaluation of the con-
struction proposed in Section 5.1. Our experiment is simulated with the pairing-
based cryptography (PBC) library [19] on a Linux machine with Intel Core 2
processor running at 2.40 GHz and 2G memory.

Our analysis is in terms of four phases in the construction. In Fig. 3(a) and
Fig. 3(c), it is not surprising to see that as with existing ABE scheme [23], the
computational cost in setup and encryption grows linearly with the number of
attributes. In our outsourced construction, during the outsourced key-issuing
phase the computation at AA just includes three exponentiations in G, while
that at U during the outsourced decryption phase just includes three bilinear
pairings and one exponentiation in GT . The time cost for the both outsourced
phases are reflected respectively in Fig. 3(b) and Fig. 3(d). Compared with the
other OABE schemes such as [15,25], the computational cost at user side in the
decryption algorithm is almost the same with ours. However, their work cannot
support outsourced key-issuing because they used the blinding technique during
user key-issuing.
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Fig. 3. Performance Evaluation
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7 Related Work

Attribute-Based Encryption. The notion of ABE, which was introduced as
fuzzy identity-based encryption in [23], was firstly dealt with by Goyal et al. [14].
Two different and complementary notions of ABE were defined as KP-ABE and
CP-ABE. A construction of KP-ABE was provided in the same paper [14], while
the first CP-APE construction supporting tree-based access structure in generic
group model is presented by Bethencourt et al. [4].

Subsequently, a number of variants of ABE schemes have been proposed
since its introduction. They range from extending its functionality to propos-
ing schemes with stronger security proofs. Such as ABE schemes supporting for
any kinds of access structures [21], ABE with multi-authorities [5], etc.

Recently, a novel paradigm for ABE was provided [15,25,18]. In [15], Green et
al. considered to outsource the decryption of ABE to eliminate the overhead at
user side, while an outsourced ABE with outsourced encryption and decryption
was presented in [25][18]. We point out that the outsourcing decryption technique
in [15,25] is to blind user’s attribute private key by running a number of expo-
nentiations. But such key blinded operation is eliminated in our construction in
Section 4.3 through introducing a default attribute (actually, our technique pro-
vides a feasible way to realize the “piecewise key generation” property recently
introduced in [22]). Moreover, it seems that all of the previous work lacks of
the consideration on the reducing overhead computation at attribute authority.
In another word, these work cannot support outsourced key-issuing due to the
blinding technique used in the key generation algorithm.

Outsourcing Computation To reduce the load at local, it always desires to
deliver expensive computational tasks outside. Actually, how to securely out-
source different kinds of expensive computations has drawn much attention from
theoretical computer science community [2,3,1,7]. But they are not suitable for
reliving ABE computational overhead at user or authority side. To achieve this
goal, the traditional approach is to utilize server-aided techniques [17,16,6]. How-
ever, previous work is oriented to accelerating the speed of exponentiation us-
ing untrusted servers. Directly utilizing these techniques in ABE will not work
efficiently. Another approach might be to leverage recent general outsourcing
technique or delegating computation [13,11,10,8,12] based on fully homomor-
phic encryption or interactive proof system. However, Gentry [12] has shown
that even for weak security parameters on “bootstrapping” operation of the ho-
momorphic encryption, it would take at least 30 seconds on a high performance
machine. Therefore, even if the privacy of the input and output can be preserved
by utilizing these general techniques, the computational overhead is still huge
and impractical.

8 Conclusion

In this paper, we propose an efficient attribute-based access control system in
cloud computing. In our system, two CSPs namely KG-CSP and D-CSP are in-
troduced as employees to finish the outsourced heavy tasks for user management
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and file access respectively. The overhead at both users and attribute author-
ity sides is thus being minimized. A challenging issue in the proposed system
is how to outsource the computational task to CSPs without any private infor-
mation leakage. To deal with this issue, we formulize an underlying primitive
namely OABE and provide several OABE constructions with outsourced key-
issuing and decryption. Finally, through extensive experiments, it demonstrates
that our OABE construction achieves efficient key-issuing and decryption at AA
and user sides respectively.
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Abstract. Privacy policies in sectors as diverse as Web services, finance
and healthcare often place restrictions on the purposes for which a gov-
erned entity may use personal information. Thus, automated methods
for enforcing privacy policies require a semantics of purpose restrictions
to determine whether a governed agent used information for a purpose.
We provide such a semantics using a formalism based on planning. We
model planning using Partially Observable Markov Decision Processes
(POMDPs), which supports an explicit model of information. We argue
that information use is for a purpose if and only if the information is
used while planning to optimize the satisfaction of that purpose under
the POMDP model. We determine information use by simulating igno-
rance of the information prohibited by the purpose restriction, which we
relate to noninterference. We use this semantics to develop a sound audit
algorithm to automate the enforcement of purpose restrictions.

1 Introduction

Purpose is a key concept for privacy policies. Some policies limit the use of certain
information to an explicit list of purposes. The privacy policy of The Bank of
America states, “Employees are authorized to access Customer Information for
business purposes only.” [1]. The HIPAA Privacy Rule requires that healthcare
providers in the U.S. use protected health information about a patient with
that patient’s authorization or only for a fixed list of allowed purposes, such as
treatment and billing [2]. Other policies prohibit using certain information for
a purpose. For example, Yahoo!’s privacy policy states “Yahoo!’s practice on
Yahoo! Mail Classic is not to use the content of messages stored in your Yahoo!
Mail account for marketing purposes.” [3].
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Each of these examples presents a constraint on the purposes for which the
organization may use information. We call these constraints purpose restrictions.

Let us consider a purpose restriction in detail. As a simplification of the
Yahoo! example, consider an advertising network attempting to determine which
advertisement to show for marketing to a visitor of a website (such as an email
website). To improve its public image and to satisfy government regulations, the
network adopts a privacy policy containing a restriction prohibiting the use of
the visitor’s gender for the purpose of marketing.

The network has access to a database of information about potential visitors,
which includes their gender. Since some advertisements are more effective, on
average, for some demographics than others, using this information is in the
network’s interest. However, the purpose restriction prohibits the use of gender
for selecting advertisements since it is a form of marketing. Since tension exists
between selecting the most effective ad and obeying the purpose restriction,
internal compliance officers and government regulators should audit the network
to determine whether it has complied with the privacy policy.

However, the auditors may find manually auditing the network difficult and
error prone leading them to desire automated tools to aid them. Indeed, the dif-
ficulty of manually auditing purpose restrictions has led to commercial software
for this task (e.g., [4]). However, their approaches have been ad hoc.

Our goal is to place purpose restrictions governing information use on a formal
footing and to automate their enforcement. In the above example, intuitively, the
auditor must determine what information the network used while planning which
ads to show to a user. In general, determining whether the purpose restriction
was obeyed involves determining facts about how the audited agent (a person,
organization, or computer system) planned its actions. In particular, philosophical
inquiry [5] and an empirical study [6] show that the behavior of an audited agent
is for a purpose when the agent chooses that behavior while planning to satisfy
the purpose. Our prior work has used a formal model of planning to automate the
auditing of purpose restrictions that limit visible actions to certain purposes [6].

We build upon that work to provide formal semantics and algorithms for
purpose restrictions limiting information uses, whose occurrence the auditor
cannot directly observe. For example, while the ad network is prohibited from
using the visitor’s gender, it may access the database to use other information
even if the database returns the gender as part of a larger record. Thus, our
model must elucidate whether the network used the gender component of the
accessed information.

To provide auditing algorithms, we need a formal model of planning. Fortu-
nately, research in artificial intelligence has provided a variety of formal models
of planning. To select an appropriate model for auditing, we examine the key fea-
tures of our motivating example of the ad network. First, it shows that purposes
are not just goals to be achieved since the purpose of marketing is quantitative:
marketing can be satisfied to varying degrees and more can always be done.
Second, the example shows that outcomes can be probabilistic since the network
does not know what ad will be best for each visitor but does have statistical
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information about various demographics. Lastly, the policy is governing the use
of information. Thus, our model needs an explicit model of information.

The first two features suggest using Markov Decision Processes (MDPs), which
we have successfully used in an auditing algorithm for purpose restrictions on
observable actions [6]. However, needing an explicit model of information re-
quires us to use an extension of MDPs, Partially Observable Markov Decision
Processes (POMDPs), which make the ability of the planning agent to observe
its environment and collect information explicit. We use a POMDP to model the
agent’s environment where the purpose in question defines the reward function
of the POMDP. The explicitness of observations (inputs) in the POMDP model
allows us to go beyond standard research on planning to provide a semantics of
information use by considering how the agent would plan if some observations
were conflated to ignore information of interest.

In more detail, we quotient the POMDP’s space of observations to express
information use. Intuitively, to use information is to see a distinction, and to
not use information corresponds to ignoring this distinction. Thus, we quotient
by an equivalence relation that treats two observations as indistinguishable if
they differ only by information whose use is prohibited by a purpose restriction.
For example, the ad network promising not to use gender should quotient its
observations by an equivalence relation that treats the genders as equivalent.
By conflating observations that differ only by gender, the network will ignore
gender, simulating ignorance of it. Such quotienting is defined for POMDPs since
observations probabilistically constrain the space of possible current states of the
agent’s environment, and quotienting just decreases the constraint’s accuracy.

We use our quotienting operation to provide two different definitions of what it
means for an agent to obey a purpose restriction involving information use. The
first requires that the agent uses the quotiented POMDP to select its behavior.
We call this definition cognitive since it refers to the agent’s cognitive process
of selecting behavior. Since the auditor cannot examine the agent’s cognitive
processes and might only care about their external consequences, we offer a
second weaker definition that depends upon the agent’s observable behavior.
The behaviorist definition only requires that the agent’s behaviors be consistent
with using the quotiented POMDP. It does not depend upon whether the agent
actually used that POMDP or a different process to select its behavior.

We use the behaviorist definition as the basis of an auditing algorithm that
compares the behaviors of an agent to each of the behaviors that is acceptable
under our notion of simulated ignorance. Despite comparing to multiple behav-
iors, our algorithm only needs to optimize the quotiented POMDP once. For the
behaviorist definition, we prove that the algorithm is sound (Theorem 1) and is
complete when the POMDP can be optimized exactly (Theorem 2).

To show that our semantics is strong enough, we compare it to noninterfer-
ence, a prior formalization of information use for automata [7]. This definition
examines how an input to an automaton affects the automaton’s output. Our
approach is similar but uses POMDPs instead of automata. We relate the two
models by defining how an automaton can implement a strategy for a quotiented
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POMDP, which allows us to prove that the cognitive definition implies a form
of noninterference (Theorem 3). On the other hand, we show that an agent can
obey the behaviorist definition while still exhibiting interference. However, inter-
estingly, such interference cannot further the restricted purpose showing that the
behaviorist definition is strong enough to prevent interference for that purpose.

Since an action’s purpose can depend upon how it fits into a chain of actions,
we focus on post-hoc auditing. Nevertheless, other enforcement mechanisms can
employ our semantics. Despite focusing on privacy policies, our semantics and
algorithm may aid the enforcement of other policies restricting the use of infor-
mation to only certain purposes, such as those governing intellectual property.

Contributions andOutline. We start by reviewing related work and POMDPs
(Sections 2 and 3). Our first contribution is definitional: we use our quotienting
characterization of information use to provide both the cognitive and behaviorist
definitions of complying with a purpose restriction on information use (Section 4).
Our second contribution is our auditing algorithm accompanied by theorems of
soundness and a qualified form of completeness (Section 5). Our final contribution
is relating our formalization to noninterference with a theorem showing that the
cognitive definition implies noninterference (Sections 6). We end with conclusions
(Sections 7). All proofs are in a related technical report [8].

2 Prior Work

Information Flow Analysis. Research on information flow analysis led to
noninterference [7], a formalization of information flow, or use. However, prior
methods of detecting noninterference have typically required access to the pro-
gram running the system in question. These analyses either used the program
for directly analyzing its code (see [9] for a survey), for running an instrumented
version of the system (e.g., [10–13]), or for simulating multiple executions of the
system (e.g., [14–16]). Traditionally, the requirement of access to the program
has not been problematic since the analysis has been motivated as a tool for
software engineers securing a program that they have designed.

However, in our setting of enforcing purpose restrictions, such access is not
always possible since the analyzed system can be a person who could be adver-
sarial and whose behavior the auditor can only observe. On the other hand, the
auditor has information about the purposes that the system should be pursuing.
Since the system is a purpose-driven agent, the auditor can understand its be-
havior in terms of a POMDP model of its environment. Thus, while prior work
provides a definition of information use, it does not provide appropriate models
or methods for determining whether it occurs in our setting.

Enforcing Purpose Restrictions. Most prior work on using formal methods
for enforcing purpose restrictions has focused on when observable actions achieve
a purpose [17–24]. That is, they define an action as being for a purpose if that
action (possibly as part of a chain of actions) results in that purpose being
achieved. Our work differs from these works in two ways.
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First, we define an action as being for a purpose when that action is part
of a plan for maximizing the satisfaction of that purpose. Our definition differs
by treating purposes as rewards that can be satisfied to varying degrees and by
focusing on the plans rather than outcomes, which allows an action to be for a
purpose even if it probabilistically fails to improve it. The semantics of purpose
we use follows from informal philosophical inquiry [5] and our prior work using
Markov Decision Processes to formalize purpose restrictions for actions [6]. Ja-
fari et al. offer an alternative view of planning and purposes in which a purpose
is high-level action related to low-level actions by a plan [25]. Our views are com-
plementary in that theirs picks up where ours leaves off: Our model of planning
can justify the plans that their model accepts as given while their model allows
for reasoning about the relationships among purposes with a logic.

Second, we consider information use. While the aforementioned works address
restrictions on information access, they do not have a model of information use,
such as noninterference [7]. In particular, we extend our prior work [6] to model
how the agent uses information while selecting actions with a POMDP. We
show that if the agent does not use the information under our model, then
noninterference holds. While Martinelli et al. have used POMDPs for enforcing
quantitative access controls, we differ by using POMDPs to model information
use itself instead of for modeling policies governing information use treated as
observable actions [26]. Hayati and Abadi provide a type system for tracking
information flow in programs with purpose restrictions in mind [27]. However,
their work presupposes that the programmer can determine the purpose of a
function and provides no formal guidance for making this determination.

Minimal disclosure requires that the amount of information granted should
be as little as possible while still achieving the purpose behind the grant. This
differs from purpose restrictions, which do not require the amount of information
used to be minimal and often involve purposes that are never fully achieved (e.g.,
more marketing is always possible). Thus, unlike works on minimal disclosure [28,
29], we model purposes as being satisfied to varying degrees. Furthermore, we
model probabilistic failures of the agent’s plan, which allows us to identify when
information use is for a purpose despite not increasing the purpose’s satisfaction.

Planning. Since our formal definition is in terms of planning, automating au-
diting depends upon automated plan recognition [30]. We build upon works
that use models of planning to recognize plans (e.g., [31–34]). The most related
work has provided methods of determining when a sequence of actions are for a
purpose (or “goal” in their nomenclature) given a POMDP model of the envi-
ronment [34]. Our algorithm for auditing is similar to their algorithm. However,
whereas their algorithm attempts to determine the probability that a sequence
of actions are for a purpose, we are concerned with whether a use of information
could be for a purpose. Thus, we must first develop a formalism for information
use. We must also concern ourselves with the soundness of our algorithm rather
than its accuracy in terms of a predicted probability. Additionally, we use tradi-
tional POMDPs to model purposes that are never fully satisfied instead of the
goal POMDPs used in their work.
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3 Modeling Purpose-Driven Agents

We review the Partially Observable Markov Decision Process (POMDP) model
and then show how to model the above motivating example as one. We start with
an agent, such as a person, organization, or artificially intelligent computer, that
attempts to maximize the satisfaction of a purpose. The agent uses a POMDP
to plan its actions. The POMDP models the agent’s environment and how its
actions affects the environment’s state and the satisfaction of the purpose. The
agent selects a plan that optimizes the expected total discounted reward (de-
gree of purpose satisfaction) under the POMDP. This plan corresponds to the
program running the audited system.

POMDPs. To define POMDPs, let Dist(X) denote the space of all distributions
over the set X and let R be the set of real numbers. A POMDP is a tuple
〈Q,A, τ, ρ,O, ν, γ〉 where

– Q is a finite state space representing the states of the agent’s environment;
– A, a finite set of actions;
– τ : Q×A → Dist(Q), a transition function from a state and an action to a

distribution over states representing the possible outcomes of the action;
– ρ : Q×A → R, a reward function measuring the immediate impact on the

satisfaction of the purpose when the agent takes the given action in the given
state;

– O, a finite observation space containing any observations the agent may
perceive while performing actions;

– ν : A × Q → Dist(O), a distribution over observations given an action and
the state resulting from performing that action; and

– γ, a discount factor such that 0 ≤ γ < 1.

We say that a POMDP models a purpose if ρ measures the degree to which
the purpose is satisfied. To select actions for that purpose, the agent should
select those that maximizes its expected total discounted reward, E

[∑∞
i=0 γ

iui
]

where i represents time and ui, the reward from the agent’s ith action.
This goal is complicated by the agent not knowing a priori which of the

possible states of the POMDP is the current state of its environment. Rather
it holds beliefs about which state is the current state. In particular, the agent
assigns a probability to each state q according to how likely the agent believes
that the current state is the state q. A belief state β captures these beliefs as a
distribution over states of Q (i.e., β ∈ Dist(Q)). An agent updates its belief state
as it performs actions and makes observations. When an agent takes the action
a and makes the observation o starting with the beliefs β, the agent develops
the new beliefs β′ where β′(q′) is the probability that q′ is the next state.

We define upm(β, a, o) to equal the updated beliefs β′. β′ assigns to the state
q′ the probability β′(q′) = Pr[Q′=q′|O=o,A=a,B=β] where Q′ is a random
variable over next states, B=β identifies the agent’s current belief state as β,
A=a identifies the agent’s current action as a, and O=o identifies the observation
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the agent makes while performing action a as o. We may reduce upm(β, a, o) to
the following formula in terms of the POMDP model:

upm(β, a, o)(q′) =
ν(a, q′)(o)

∑
q∈Q β(q) ∗ τ(q, a)(q′)∑

q′∈Q ν(a, q′)(o)
∑

q∈Q β(q) ∗ τ(q, a)(q′)

To maximize its expected total discounted reward, the agent does not need
to track its history of actions and observations independently of its beliefs as
such beliefs are a sufficient statistic. Thus, the agent need only consider for each
possible belief β it can have, what action it would perform. That is, the agent
can plan by selecting a strategy: a function from the space of beliefs Dist(Q) to
the space of actions A. (We use the word “strategy” instead of the more common
“policy” to avoid confusion with privacy policies.)

The goal of the agent is find the optimal strategy. By the Bellman equa-
tion [35], the expected value of a belief state β under a strategy σ is

Vm(σ, β) = Rm(β, σ(β)) + γ
∑
o∈O

Nm(β, σ(β))(o) ∗ Vm(σ, upm(β, σ(β), o)) (1)

where Rm and Nm are ρ and ν raised to work over beliefs: Rm(β, a) =
∑

q∈Q β(q)∗
ρ(q, a) and Nm(β, a)(o) =

∑
q,q′∈Q β(q) ∗ τ(q, a)(q′) ∗ ν(a, q′)(o). A strategy σ

is optimal if it maximizes Vm for all belief states, that is, if for all β, Vm(σ, β)
is equal to V ∗m(β) = maxσ′ Vm(σ′, β). Prior work has provided algorithms for
finding optimal strategies by reducing the problem to one of finding an optimal
strategy for a related Markov Decision Process (MDP) that uses these belief
states as its state space (e.g., [36]). (For a survey, see [37].)

Example. We can formalize the motivating example provided in Section 1 as a
POMDP mex. Here, we provide an overview that is sufficient for understanding
the rest of the paper; [8] provides additional details.

For simplicity, we assume that the only information relevant to advertising
is the gender of the visitor. Thus, the state space Q is determined by three
factors: the visitor’s gender, the gender (if any) recorded in the database, and
what advertisement (if any) the network has shown to the visitor.

Also for simplicity, we assume that the network is choosing among three ad-
vertisements. We use the action space A = {lookup, ad1, ad2, ad3}. The actions
ad1, ad2, and ad3 correspond to the network showing the visitor one of the three
possible advertisements while lookup corresponds to the network looking up in-
formation on the visitor. We presume ad1 is the best for females and the worst
for males, ad3 is the best for males and the worst for females, and ad2 strikes
a middle ground. In particular, we use ρ(q, ad1) = 9 for a state q in which the
visitor is a female and has not yet seen an ad. The reward 9 could refer to a
measure of the click through rate or the average preference assigned to the ad
by females during market research. If the visitor were instead a male, the reward
would be 3. For ad3, the rewards are reversed with 3 for females and 9 for males.
For ad2, the reward is 7 for both genders. The action lookup or showing a second
ad produces reward of zero. We use a discounting factor of γ = 0.9.
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The function τ shows how actions change the environment’s state while ν
shows how observations accompany these actions. τ enforces that showing an ad
changes the state into one in which showing a second ad produces no further
rewards. It also specifies that performing lookup does not change the state of the
environment. On the other hand, ν shows that lookup can change the state of the
agent’s knowledge. In particular, it shows that performing lookup produces an
observation 〈d, α〉. The observation reveals that the database holds data d about
the visitor’s gender and α about what if any ad the visitor has seen. Thus, the
observation space is O = {f,m,⊥} × {ad1, ad2, ad3,∅} with f for the database
showing a female, m for a male, ⊥ for no gender entry, adi for the visitor having
seen adi, and ∅ for the visitor having not seen an ad.

How the network will behave depends upon the network’s initial beliefs βex1.
We presume that the network believes its database’s entries to be correct, that it
has not shown an advertisement to the visitor yet, and that visitors are equally
likely to be female or male. Under these assumptions, the optimal plan for the
network is to first check whether the database contains information about the
visitor. If the database records that the visitor is a female, then the network
shows her ad1. If it records a male, the network shows ad3. If the database does
not contain the visitor’s gender (holds ⊥), then the network shows ad2. The
optimal plan is not constrained as to what the agent does after showing the
advertisement as it does not affect the reward. (In [8], we discuss using the idea
of non-redundancy to eliminate this artifact.)

This optimal plan characterizes the form of the set of optimal strategies. The
set contains multiple optimal strategies since the network is unconstrained in
the actions it performs after showing the advertisement. The optimal strategies
must also specify how the network would behave under other possible beliefs it
could have had. For example, if the network believed that all visitors are females
regardless of what its database records, then it would always show ad1 without
first checking its database.

Intuitively, using any of these optimal strategies would violate the privacy
policy prohibiting using gender for marketing. The reason is that the network
selected which advertisement to show using the database’s information about
the visitor’s gender.

We expect the network constrained to obeying the policy will show ad2 to
all visitors (presuming approximately equal numbers of female and male visi-
tors). Our reasoning is that the network must plan as though it does not know
and cannot learn the visitor’s gender. In this state of simulated ignorance, the
best plan the network can select is the middle ground of ad2. The next section
formalizes this planning under simulated ignorance.

4 Constraining POMDPs for Information Use

We now provide a formal characterization of how an agent pursuing a pur-
pose should behave when prohibited from using a class of information. Recall
the intuition that using information is using a distinction and that not using it
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corresponds to ignoring the distinction. We use this idea to model sensitive infor-
mation with an equivalence relation ≡. We set o1 ≡ o2 for any two observations
o1 and o2 that differ only by sensitive information.

From ≡ and a POMDP m, we construct a POMDP m/≡ that ignores the
prohibited information. For each equivalence class of ≡, m/≡ will conflate its
members by treating every observation in it as indistinguishable from one an-
other. To ignore these distinctions, on observing o, the agent updates its belief
state as though it has seen some element of ≡[o] but is unsure of which one
where ≡[o] is the equivalence class that holds the observation o.

To make this formal, we define a quotient POMDPm/≡ that uses a quotiented
space of observations. Let O/≡ be the set of equivalence classes of O under ≡.
Let ν/≡ give the probability of seeing any observation of an equivalence class:
ν/≡(a, q′)(O) =

∑
o∈O ν(a, q′)(o) where O is an equivalence class in O/≡. Given

m = 〈Q,A, τ, ρ,O, ν, γ〉, let m/≡ be 〈Q,A, τ, ρ,O/≡, ν/≡, γ〉.

Proposition 1. For all POMDPs m and equivalences ≡, m/≡ is a POMDP.

Example. Returning to the example POMDP of Section 3, the policy govern-
ing the network states that the network will not use the database’s entry about
the visitor’s gender for determining the advertisement to show the visitor. The
auditor must decide how to formally model this restriction. One way would be
to define ≡ex such that for all g and g′ in {f,m,⊥}, and α in {ad1, ad2, ad3,∅},
〈g, α〉 ≡ex 〈g′, α〉, conflating the gender for all observations. Under this require-
ment, mex/≡ex will be such that the optimal strategy will be determined solely
by the network’s initial beliefs and performing the action lookup will be of no
benefit. Any optimal strategy for mex/≡ex will call for performing ad2 from the
initial beliefs βex1 discussed above.

Alternatively, the auditor might conclude that the policy only forces the net-
work to ignore whether the database records the visitor as a female or male and
not whether the database contains this information. In this case, the auditor would
use a different equivalence≡′ex such that 〈f, α〉 ≡′ex 〈m, α〉 but 〈f, α〉 �≡′ex 〈⊥, α〉 �≡′ex
〈m, α〉 for all α. Under the initial beliefs βex1, the network would behave identi-
cally under≡ex and≡′ex. However, if the network’s beliefs were such that it is much
more likely to not know a female’s gender than a male’s, then it might choose to
show ad1 instead of ad2 in the case of observing 〈⊥,∅〉.

The next proposition proves that we constructed the POMDP m/≡ so that
beliefs are updated as if the agent only learns that some element of an equivalence
class of observations was observed but not which one. That is, we prove that the
updated belief upm/≡(β, a,≡[o])(q′) is equal to the probability that the next
environmental state is q′ given the distribution β over possible last states, that
the last action was a, and that the observation was a member of ≡[o]. Recall
that Q′ is a random variable over the next state while O, A, and B identify the
last observation, action, and belief state, respectively.

Proposition 2. For all POMDPs m, equivalences ≡, beliefs β, actions a, obser-
vations o, and states q′, upm/≡(β, a,≡[o])(q′) = Pr[Q′=q′ | O ∈ ≡[o],A=a,B=β].
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Propositions 1 and 2 show thatm/≡ is a POMDP that ignores the distinctions
among observations that only differ by sensitive information. They justify the
following definition, which explains how a purpose-driven agent should act when
prohibited from using certain information. They show that it correctly prevents
the use of the prohibited information. The definition’s appeal to optimizing a
POMDP is justified by our prior work showing that an action is for a purpose
when that action is selected as part of a plan optimizing the satisfaction of that
purpose [6]. We extend this result to information by concluding that information
used to select an action is used for that action’s purpose.

Definition 1 (Cognitive). An agent obeys the purpose restriction to perform
actions for the purpose modeled by the POMDP m without using the information
modeled by ≡ iff the agent selects an strategy by optimizing m/≡.

We call the above definition cognitive since it refers to the strategy selected by
the agent as part of a cognitive process that the auditor cannot measure. Rather,
the auditor can only view the agent’s external behavior and visible aspects of
the environment. That is, the auditor can only view the agent’s actions and
observations, which we refer to collectively as the agent’s execution.

We can formalize the agent’s execution using a function exe. Even when the
agent uses the POMDP m/≡ with observation space O/≡ to select a strategy,
the actual observations the agent makes lie in O, complicating exe. We recur-
sively define exe(m,≡, σ, β1,o) to be the agent’s execution that arises from it
employing a strategy σ observing a sequence of observations o = [o1, . . . on] in
O∗ starting with beliefs β1 for a POMDP m/≡. For the empty sequence [] of ob-
servations, exe(m,≡, σ, β, []) = [σ(β)] since the agent can only make one action
before needing to wait for the next observation and updating its beliefs. For non-
empty sequences o:o, it is equal to σ(β):o:exe(m,≡, σ, upm/≡(β, σ(β),≡[o]),o)
where x:y denotes prepending element x to the sequence y.

A single execution e can be consistent with both an optimal strategy for m/≡
and a strategy that is not optimal for m/≡. Consider for example, the execution
e = [ad2] = exe(mex,≡ex, σ, βex, []) that arises from an optimal strategy σ for
mex/≡ex. This execution can also arise from the agent planning for a different
purpose, such as maximizing kickbacks for showing certain ads, provided that ad2
also just so happens to maximize that purpose. Since the auditor only observes
the execution e and not the cognitive process that selected the action ad2, the
auditor cannot know by which process the agent selected the ad. Thus, the
auditor cannot determine from an execution that an agent obeyed a purpose
restriction under Definition 1.

Some auditors may find this fundamental limitation immaterial since such
an agent’s actions are still consistent with an allowed strategy. Since the actual
reasons behind the agent selecting those actions do not affect the environment,
an auditor might not find concerning an agent doing the right actions for the
wrong reasons. To capture this more consequentialist view of compliance, we
provide a weaker definition that focuses on only the agent’s execution.
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Definition 2 (Behaviorist). An agent performing execution e obeys the pur-
pose restriction to perform actions for the purpose modeled by the POMDP m
and initial beliefs β1 without using the information modeled by the equivalence
relation ≡ given the observations o iff e = exe(m,≡, σ, β1,o) for some σ that is
an optimal strategy of m/≡.

5 Auditing Algorithm

Under the behaviorist definition, to determine whether an agent obeyed a pro-
hibition against using certain information for a purpose pursued by the agent,
the auditor can compare the agent’s behaviors to the appropriate strategies.
The auditor records the agent’s execution in a log 	 that shows the actions and
observations of the agent. For example, databases for electronic medical records
log many of the actions and observations of healthcare providers. The auditor
may then compare the recorded behavior to that dictated by Definition 2, i.e.,
to the optimal strategies for the quotient POMDP modeling the purpose while
ignoring disallowed information.

Given our formal model, we can automate the comparison of the agent’s be-
havior to the allowable behavior. We use an algorithm Audit that takes as inputs
a POMDP m, an equivalence relation ≡, and a log 	 = [a1, o1, a2, o2, . . . , an, on]
such that the audited agent is operating in the environment m under a pol-
icy prohibiting information as described by ≡ and took action ai followed by
observation oi for all i ≤ n. For simplicity, we assume that 	 records all rele-
vant actions and observations. Audit returns whether the agent’s behavior, as
recorded in 	, is inconsistent with optimizing the POMDP m/≡.

Audit operates by first constructing the quotient POMDP m/≡ from m and
≡. Next, similar to a prior algorithm [34], for each i, Audit checks whether
performing the recorded action ai in the current belief state βi is optimal under
m/≡. The algorithm constructs these belief states from the observations and
initial belief state β1. Due to the complexity of solving POMDPs [38], we use an
approximation algorithm to solve for the value of performing ai in βi (denoted
Q∗m/≡(βi, ai)) and the optimal value V ∗m/≡(βi). Unlike prior work, for soundness,
we require an approximation algorithm solvePOMDP that produces both lower
bounds V∗low and upper bounds V∗up on V ∗m/≡(βi). Many such algorithms exist

(e.g., [39–42]). For each βi and ai in 	, Audit checks whether these bounds
show that Q∗m/≡(βi, ai) is strictly less than V ∗m/≡(βi). If so, then the action ai
is sub-optimal for βi and Audit returns true. Pseudo-code for Audit follows:

Audit(〈Q,A, τ, ρ,O, ν, γ〉,≡, β1, [a1, o1, a2, o2, . . . , an, on]):
01 m′ = 〈Q,A, τ, ρ,O/≡, ν/≡, γ〉
02 〈V∗low, V∗up〉 := solvePOMDP(m′)
03 for (i := 1; i ≤ n; i++):
04 if (Q∗up(V

∗
up, βi, ai) < V∗low(βi)):

05 return true
06 βi+1 := upm/≡(βi, ai,≡[oi]);
07 return false
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where Q∗up(V
∗
up, β, a) is a function that uses V∗up to return an upper bound on

Q∗m/≡(β, a). Q∗up(V
∗
up, β, a) equals:

Rm(β, a) + γ
∑

O∈O/≡
Nm(β, a))(O) ∗ V∗up(upm′(β, σ(β), O))

Theorem 1 (Soundness). If Audit returns true, then the agent did not follow
an optimal strategy for m/≡, violating both Definitions 1 and 2.

Thus, if Audit returns true, either the agent optimized some other purpose,
used information it should not have, used a different POMDP model of its envi-
ronment, or failed to correctly optimize the POMDP. Each of these possibilities
should concern the auditor and is worthy of further investigation.

If the algorithm returns false, then the auditor cannot find the agent’s behavior
inconsistent with an optimal strategy and should spend his time auditing other
agents. However, Audit is incomplete and such a finding does not mean that the
agent surely performed its actions for the purpose without using the prohibited
information. For the cognitive definition, incompleteness is unavoidable since the
definition depends upon cognitive constructs that the auditor cannot measure.
For example, recall that the network could display the execution e = [ad2] either
from performing the allowed optimization or by performing some disallowed
optimization that also results in the action ad2 being optimal.

For the behaviorist definition, incompleteness results since a better approxi-
mation might actually show that Q∗m/≡(βi, ai) < V ∗m/≡(βi) for some i. In prin-
ciple this source is avoidable by using an exact POMDP solver instead of an
approximate one. However, the exact solution to some POMDPs is undecid-
able [43]. Nevertheless, we can prove that this inability is the only source of
incompleteness.

Theorem 2 (Qualified Completeness). If Audit using an oracle to exactly
solve POMDPs returns false, then the agent obeyed the purpose restriction ac-
cording to the behaviorist definition (Definition 2).

Other Purpose Restrictions. Audit is specialized for determining whether
or not the audited agent performed its actions for a purpose without using
some prohibited information. While such a question is relevant to an internal
compliance officer auditing employees, it does not correspond to the purpose
restrictions found in outward-facing privacy policies.

One type of restriction found in such policies is the not-for restriction prohibit-
ing information from being used for a purpose. For example, Yahoo! promised
to not use contents of emails for marketing. This restriction is similar to the
condition checked by Audit, but is weaker in that audited agent may obey it
either (1) by performing actions for that purpose without using that information
(which Audit checks) or (2) by not performing actions for that purpose.

A second type is the only-for restriction, which limits the agent to using a class
of information only for a purpose. For example, HIPAA requires that medical
records are used only for certain purposes such as treatment. It is also weak in
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that the agent can obey it either (1) by performing actions for the purpose (which
Audit checks using equality for ≡ to allow the agent to use the information) or
(2) by not using the information in question while performing actions for some
other purpose.

For both of these types, our algorithm can handle the first option (1) for
compliance. However, for both these types, the second option (2) for compliance
involves an open-ended space of possible alternative purposes that could have
motivated the agent’s actions. In some cases (e.g., healthcare), this space may
be small enough to check each alternative (e.g., treatment, billing, research,
training) with Audit. In other cases, the auditor might have the authority to
compel the agent to explain what its purpose was. In either of these cases, the
auditor could use Audit to explore these alternative purposes.

Modeling. Audit requires a POMDP that models how various actions affect
the purpose in question. Future work could ease the process of model construc-
tion using techniques from reinforcement learning, such as SARSA [44], that
automatically construct models from observing the behavior of multiple agents.

In some cases, the auditor might be able to compel the agent to provide the
POMDP used. In this case, Audit would check whether the agent’s story is
consistent with its actions.

6 Relationship with Noninterference

We have provided a definition of information use in terms of a POMDP. Prior
work provides the noninterference definition of information use for automata [7].
In this section, we show that our definition implies a form of noninterference. In
particular, we show that agents using strategies optimizing m/≡ has noninter-
ference for ≡, which suggests that our definition is sufficiently strong to rule out
information use. We start by reviewing automata and noninterference.

Automaton Model of Systems. The agent using the POMDP to select a
strategy can implement that strategy as a control system or controller (e.g., [45]).
We follow Goguen and Meseguer’s work and model systems as deterministic au-
tomata [7]. However, since we do not analyze the internal structure of systems
(it is unavailable to the auditor), our approach can be applied to other models.
We limit our discussion to deterministic systems since there are many competing
generalizations of noninterference to the nondeterministic setting (e.g., [46–48]),
but the main competitors collapse into standard noninterference in the deter-
ministic case [49].

A system automaton s = 〈t, r〉 consists of a labeled transition system (LTS) t
and a current state r. An LTS t = 〈R,O,A, next, act〉 describes the automaton’s
behavior where R is a set of states; O, a set of observations (inputs); A, a set of
actions (outputs); next : R×O → R is a transition function; and act : R → A
is a function identifying the action that the automation selects given its current
state. The current state r ∈ R changes as the system makes observations and
takes actions.
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As with POMDPs, an execution of a system s modeled as an automaton
corresponds to an interleaving of observations from the environment and ac-
tions taken by the system. Let exe(s,o) denote the execution of s on a se-
quence o of observations. As for POMDPs, we define exe for systems recursively:
exe(〈t, r〉, []) = [act(r)] and exe(〈t, r〉, o:o) = act(r):o:exe(〈r, next(r, o)〉,o) where
t = 〈R,O,A, next, act〉.

Noninterference. Recall that we set o1 ≡ o2 for any two observations o1 and
o2 that differ only by sensitive information. To not use the sensitive information,
the system s should treat such related observations identically.

To formalize this notion, we raise ≡ to work over sequences of observations
and actions (i.e., executions and sequences of observations). For such sequences
x and y in (O ∪A)∗, x ≡ y iff they are of the same length and for each pair of
elements x and y at the same position in x and y, respectively, x ≡ y where ≡
is treated as equality when comparing actions.

Definition 3. A system s has noninterference for ≡ iff for all observation se-
quences o1 and o2 in O∗, o1 ≡ o2 implies that exe(s,o1) ≡ exe(s,o2).

Our definition corresponds to the form of noninterference enforced by most
type systems for information flow. (See [9] for a survey.) Unlike Goguen and
Meseguer’s definition, ours does not require the system’s behavior to remain
unchanged regardless of whether or not it receives sensitive information. Rather,
the system’s behavior may change upon receiving sensitive information, but this
change must be the same regardless of the value of the sensitive information.
(See [50] for a discussion.)

Relationship. We now characterize the relationship between our quotienting
definition of information use and noninterference. We do so by considering a con-
trol system s operating in an environment modeled by a POMDP m. We require
that s and m share the same sets of actions A and observations O. However, the
state spaces R of s and Q of m differ with R representing the internal states of
the system and Q representing the external states of the environment.

We relate systems and strategies by saying that a system s implements a strat-
egy σ for m/≡ and beliefs β1 iff for all o in O∗, exe(s,o) = exe(m,≡, σ, β1,o). We
denote the set of such implementing systems as Imp(m,≡, σ, β1). This definition
allows us to formalize the intuition that agents using strategies optimizing m/≡
has noninterference for ≡. In fact, systems implementing any strategy for m/≡
has noninterference since any such implementation respects ≡.

Theorem 3. For all systems q, POMDPs m, initial beliefs β1, strategies σ, and
equivalences ≡, if s is in Imp(m,≡, σ, β1), then s has noninterference for ≡.

Agents obeying a purpose restriction under the cognitive definition (Defini-
tion 1) will employ a system in Imp(m,≡, σ, β1). Thus, Theorem 3 shows that
the cognitive definition is sufficiently strong to rule out information use.
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Information Use for Other Purposes. The situation is subtler for the weaker
behaviorist definition (Definition 2) and the algorithm Audit based upon it.
Systems exist that will pass Audit and satisfy the behaviorist definition despite
having interference by using the protected information for some purpose other
than the restricted one. The key is that there could be more than one optimal
strategy for a POMDP and that the agent may use the choice among optimal
strategies to communicate information. The behavior of such a system will be
consistent with whichever optimal strategy it selects, satisfying the behavior-
ist definition and Audit. However, such a system will not actually implement
any strategy for the quotiented POMDP m/≡ since it distinguishes between
observations conflated by ≡.

For example, consider modifying the motivating example found in Section 3
in two ways to make the POMDP m′

ex. First, let ad2 come in two versions, ada2
and adb2, which are otherwise the same as the original ad2. Second, change the
POMDP so that the network must perform the action lookup before showing any
ads. The agent can optimize m′

ex/≡ by either using a strategy σa or σb. Under
σa, starting from the initial beliefs βex1 discussed above, the network will first
perform lookup and then show ada2 . Under σb, it will show adb2 after lookup.

The network’s ability to choose between σa and σb can result in interference.
In particular, the network might not implement either of them and instead delay
the choice between ada2 and adb2 until after the observation from lookup informs it
of the visitor’s gender. The network could then use ada2 for a female and adb2 for
a male. While such a system would use the information and have interference, it
obeys the behaviorist definition with its actions consistent with either σa or σb.

Since such systems use the prohibited information to choose between optimal
strategies, doing so does not actually increase its satisfaction of the purpose.
Thus, this information use is not intuitively for that purpose and the agent
must be motivated by some other purpose. Thus, the behaviorist definition does
not allow the agent to use the information for the purpose prohibited by the
restriction, but rather allows the agent to use the information for other purposes.

The auditor might want to prevent such interference since it violates the
cognitive definition. The modifications to the example illustrate two ways that
the auditor can do so if he has sufficient control over the agent’s environment.
The first is to ensure that only a single strategy is optimal. The second is to
make sure that the agent can avoid learning the protected information (such
as by performing the action lookup) and that learning it incurs a cost. When
learning information is optional and costly, the agent will only be able to learn
it if doing so increases its total reward, and not just to select among optimal
strategies that do not depend upon using that information. A third possible
modification is to require the agent to perform an action committing it to a
single strategy before it can learn the protected information.

In some cases an auditor can detect such information flows without modifying
the POMDP. For example, intuitively, we would expect the ad network to handle
more than one visitor. The auditor could compare the network’s behavior when
given a female to that when given a male. A difference in treatment indicates that
the network is not consistently implementing either of the optimal strategies.
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7 Conclusion

We use planning to create the first formal semantics for determining when in-
formation is used for a purpose. We have provided an auditing algorithm based
on our formalism. We have discussed applying our algorithm to the problem of
enforcing purpose restrictions found in privacy policies.

Our methods have applications beyond enforcing purpose restrictions. For ex-
ample, due to privacy concerns, much interest exists in determining how third-
party data collection agencies use the information they collect. (See [51] for a
survey.) Despite being a question of information flow, program analyses are inap-
plicable since the programs are unavailable, as in our setting. Unlike our setting,
these agencies typically do not subject themselves to purpose restrictions. Nev-
ertheless, their desire for profit implicitly restrains their behavior in a manner
similar to a purpose restriction. Thus, our semantics and algorithm provide a
starting point for investigating such agencies.
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Abstract. The shuffle index has been recently proposed for organizing
and accessing data in outsourcing scenarios while protecting the confi-
dentiality of the data as well as of the accesses to them. In this paper, we
extend the shuffle index to the use of multiple servers for storing data,
introducing a new protection technique (shadow) and enriching the orig-
inal ones by operating in a distributed scenario. Our distributed shuffle
index produces a significant increase in the protection of the system,
with no additional costs.

1 Introduction

Recent years have witnessed an over increasing reliance on external services
for data storage and management, towards the emerging cloud scenario, char-
acterized by a rich and diverse availability of providers offering storage and
computational functionalities. Together with data management functionality,
the research and industrial communities have been investigating different so-
lutions to ensure confidentiality of data whose management is outsourced to
the cloud [8]. Complementing data confidentiality, more recent approaches have
also considered protection of access and pattern confidentiality, which require to
maintain confidential to the server storing the data the fact that a given access
aims at a specific target or that two accesses aim at the same target. Among
these approaches, the shuffle index [5] organizes data in a hierarchical encrypted
data structure and provides access and pattern confidentiality by obfuscating
accesses and dynamically changing the allocation of data to physical blocks, so
to break the correspondence between data and locations where they are stored.
Such a dynamic allocation prevents the server observing sequences of accesses
from withdrawing inferences which could compromise pattern confidentiality and
even break data confidentiality. The advantages of the shuffle index are the abil-
ity to support equality and range predicates in data retrieval, and the limited
performance overhead compared with other access protection solutions [7].

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 628–645, 2013.
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The availability of different providers for data outsourcing can help in pro-
viding protection in cloud scenarios and has been investigated in some propos-
als, adopting, for example, data fragmentation and slicing at different servers
(e.g., [3, 16]). The intuition is that relying on multiple servers (in contrast to a
single one) for managing data or providing services naturally increases protec-
tion, since it diminishes the knowledge and visibility that each server has on the
data and on accesses to them, and enjoys diversity of risks.

In this paper, we extend the shuffle index to operate with multiple servers for
storing and accessing data. Every data access entails accessing the servers and
shuffling data dynamically changing their allocation even across servers. Since
retrieval of the targeted data may entail traversing the hierarchical structure
across servers (i.e., a parent might be stored at one server and a children at an-
other), we introduce a shadowing technique that ensures protection of this path
information by making observations by each server as if the server was the only
one involved in the access. The distribution of the shuffle index increases protec-
tion for data and accesses, quickly destroying knowledge that servers might have
and effectively preventing the servers from acquiring knowledge by observing
sequences of accesses. Such increased protection comes without impact on the
system performance.

The remainder of the paper is organized as follows. Section 2 recalls the basic
concepts of the shuffle index on which we build. Section 3 extends the index
organization to the adoption of multiple servers. Section 4 introduces shadows
and extends the original protection techniques (covers, cache, and shuffling) to
operate with them. Section 5 describes access execution. Section 6 discusses the
protection offered by our approach illustrating how distributing the shuffle index
provides greater confidentiality guarantees while not impacting performance.
Section 7 illustrates related work. Section 8 concludes the paper.

2 Basic Concepts

A shuffle index [5] organizes the outsourced data as an abstract unchained B+-
tree T a(N a) (i.e., leaves are not connected in a linked list) with fan out F
defined over a candidate key K, with actual data stored in the leaves of the tree.
Each internal node of the index is a pair na = 〈values , children 〉 ∈ N a , where
values is a list of q values with

⌈
F
2

⌉
− 1 ≤ q ≤ F − 1 (the lower-bound does

not apply to the root) ordered from the smallest to the greatest, and children
is a list of q + 1 children. The first child of a node is the root of the subtree
with all values v < values [1 ]; the i-th child is the root of the subtree storing
the values v such that values [i − 1 ] ≤ v < values [i ], i = 2, . . . , q; the last child
is the root of the subtree with all values v ≥ values [q]. Leaf nodes are pairs
na = 〈values , tuples 〉 ∈ N a , where tuples represents the tuples with index value
in values . Figure 1(a) illustrates an example of unchained B+-tree with fan out
3. For simplicity, we refer to the content of a node with a label (e.g., a), instead
of explicitly reporting the values it represents.
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Abstract index Logical index Physical index

r

c

c1 c2 c3a1 a2 a3

001

103 101 102

207 204 203 201 205 202206208

b

b1 b2

a

001

101 102 103

201 202 203 204 205 208207206

(a) (b) (c)

Fig. 1. An example of abstract (a), logical (b), and physical (c) shuffle index
Legend: � target, • node in cache, � cover; blocks read and written: chessboard filling,
blocks written: lines filling

At the logical level , nodes are allocated to logical addresses that work as
logical identifiers . Given an abstract unchained B+-tree T a(N a), its logical
representation T is a triple (N , ID , φ), with N a set of logical nodes, ID
a set of logical identifiers, and φ : N a → ID a bijective function that asso-
ciates a logical identifier with each abstract node. Note that the possible order
among identifiers does not necessarily correspond to the order in which nodes
appear in the value-ordered abstract representation. Each non-leaf abstract node
na = 〈values , children 〉 in N a is represented by a logical node n=〈id , vals , ptrs 〉
in N , with id=φ(na), vals=values , and ptrs [j]=φ(children [j]), j = 0, . . . , q. In
fact, pointers to the children of the nodes in the abstract unchained B+-tree
are translated, at the logical level, into the identifiers of the corresponding child
nodes. Analogously, each abstract leaf node na = 〈values , tuples 〉 in N a trans-
lates into a logical node n=〈id , vals , t 〉 that includes tuples t=tuples instead of
pointers to children. Figure 1(b) illustrates an example of logical representation
of the abstract index in Figure 1(a). Logical identifiers are reported on the top
of each node and, for easy reference, their first digit denotes its level in the tree.

At the physical level , logical identifiers are mapped to physical addresses and
the shuffle index is represented by a set of disk blocks storing the nodes in
the tree. Every node is encrypted by first prefixing it with a random salt and
then applying symmetric encryption in CBC mode. Formally, each non-leaf node
〈id , vals , ptrs 〉 ∈ N (leaf node 〈id , vals , t 〉 ∈ N , resp.) is stored at block 〈id ,b〉,
where b=Ek(salt ||id ||vals ||ptrs ) (b=Ek(salt ||id ||vals ||t ), resp.), with E a sym-
metric encryption function, k the encryption key, and salt a nonce generated for
each encryption. Figure 1(c) illustrates the physical representation of the logical
index in Figure 1(b), which corresponds to the view of the server.

The retrieval of the leaf block containing the tuple corresponding to a given
index value (target value) requires an iterative process. Starting from the root
of the tree and ending at a leaf, the client reads from the server the block in the
path to the target, and decrypts the block for retrieving the address of the child
to be read at the next step. To protect the fact that different accesses may aim
at the same content, this iterative process is extended by:

– performing, in addition to the target search, other fake cover searches , guar-
anteeing indistinguishability of target and cover searches and operating on
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disjoint paths of the tree (retrieving, at every level of the tree, num cover+1
blocks at the same time);

– maintaining a set of num cache nodes in a local cache for each level of the
tree, but level 0;

– mixing (shuffling) the content of all retrieved blocks as well as those main-
tained in cache, and overwriting them accordingly on the server.

Cover searches protect the confidentiality of accesses by introducing uncer-
tainty on the leaf block target of the access (any of the accessed leaves could
store the searched value). The cache makes searches repeated within a short time
interval not recognizable as such. In fact, if the target of an access is in cache,
the corresponding block is not read from the server (the target is substituted by
an additional cover). Shuffling destroys the correspondence between nodes and
the physical blocks where they are stored. (Note that at every reallocation, a
node is encrypted with a different random salt.) Repeated accesses to the same
block do not then imply repeated accesses to the same node. As an example of
access to the shuffle index in Figure 1, consider a search for c3 that adopts a1 as
cover, and assume that the cache contains the path to b2 . The access visits the
tree level by level. The client has the root r in cache, downloads and decrypts
blocks 102 and 103 from the server, shuffles and encrypts nodes a, b, and c (e.g.,
allocating a to 102, b to 101, and c to 103), and overwrites blocks 101, 102, and
103 at the server. At the leaf level, the client downloads and decrypts blocks 202
and 207, shuffles and encrypts nodes a1 , b2 , and c3 , and overwrites blocks 202,
205, and 207 at the server. Figure 1(c) illustrates the observations on the access
at the server in terms of blocks read and/or written. Note that the root (being
in cache) is only written. The server cannot detect which among the accessed
leaves is the target of the access and how the content of blocks has been shuffled.

3 Distributed Shuffle Index

In a distributed shuffle index , the data owner exploits more than one server for
storing and managing data, enjoying then increased protection of data, access,
and pattern confidentiality by dynamically changing the allocation of the nodes
also across the servers. For simplicity, we illustrate our distributed shuffle index
assuming the use of two servers, with the note that the approach can be easily
extended to the consideration of an arbitrary number of servers. For simplicity
of notation and clarity of the figures, we denote our servers by SG and SY ,
coloring nodes stored at them with Green and Yellow , respectively (in b/w
printouts, Green is the darker color).

The consideration of more than one server for the allocation of an abstract
index and for accesses to it requires revising the shuffle index structure discussed
in Section 2 with the following extensions.

– Abstract level . The root ra of a distributed shuffle index is extended to have
twice the capacity as the other nodes. Hence, for an index with fan out F , the
root can contain up to 2F−1 values (in contrast to the original F−1 ). In the
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translation to the logical level, the abstract root ra = 〈values , children 〉 will
be interpreted as two abstract root nodes, ra0 and ra1 , each storing around
half of the values and children in ra. Formally, ra0 = 〈values0 , children0 〉
and ra1 = 〈values1 , children1 〉 with values0=values [1 , . . . , �q/2�],
values1=values [�q/2� + 2 , . . . , q], children0=children [0 , . . . , �q/2�], and
children1=children [�q/2� + 1 , . . . , q], where q is the number of index val-
ues in the abstract root. (Note that values [�q/2� + 1 ] disappears since it
is no more needed for the index.) The set N a of abstract nodes therefore
becomes N a=N a\{ra}∪{ra0,ra1}.

– Logical level . The logical identifiers of a distributed shuffle index must take
into consideration logical identifiers (which translate to physical addresses)
at the two servers. We then distinguish, in the set ID of logical identifiers,
two different subsets: IDG, corresponding to addresses at server SG, and
IDY , corresponding to addresses at server SY , with IDG∪IDY = ID . The
result of function φ over an abstract node, determining the logical identifier
of the node, therefore determines also the server at which the abstract node is
stored. Function φ guarantees the natural requirement to store ra0 and ra1 at
different servers. Formally, φ(ra0)∈IDX and φ(ra1)∈IDZ , with X,Z ∈ {Y,G}
and X �= Z. In the following, given a node n in the set N of logical nodes,
we will use σ(n.id ) to denote the server at which the node is stored. For-
mally, given n = 〈id , vals , ptrs 〉, with id=φ(na), id∈IDG =⇒ σ(n.id )=SG;
id∈IDY =⇒ σ(n.id )=SY .

– Physical level . It works like in the original shuffle index, storing (according
to allocation function φ defined at the logical level) nodes at each server in
encrypted form as described in Section 2.

Figure 2 illustrates an example of abstract, logical, and physical distributed
shuffle index. For simplicity and easy reference, logical identifiers start with a
letter denoting the server where the corresponding block is stored (G for SG

and Y for SY ) and nodes stored at server SG and SY are color-coded (Green
and Yellow). In the following, without loss of generality, we assume that the
physical address of a block corresponds to the logical identifier of the node it
stores. Also, we use the term node to refer to an abstract content and block to
refer to a specific memory slot in the logical/physical structure. When either
terms can be used, we will use node/block interchangeably.

4 Shadows, Covers, Cache, and Shuffling

The shuffle index entails two types of protections. The first involves obfuscating
the fact that the access aims at a specific block. The second is the shuffling, which
changes the allocation of nodes so to dynamically modify the node/block corre-
spondence. Both these types of protection, provided by cover searches, caching,
and shuffling in the original proposal, are complemented in the distributed shuffle
index with the consideration of shadows . In this section, we introduce shadows
and extend cover searches, cache, and shuffling to operate with them.
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Fig. 2. An example of abstract (a), logical (b), and physical (c) shuffle index, dis-
tributed over two servers

4.1 Shadows

Retrieval of a target key value in a distributed shuffle index entails traversing the
index starting from the root ancestor of the target and following, at every node,
the pointer to the child in the path to the leaf possibly containing the target
value. Such a path can naturally involve nodes stored at any of the servers.
For instance, with reference to the shuffle index in Figure 2 a search for target
value e3 involves access to blocks (G001/Y001;G103;Y205), with G001 and G103
stored at SG, and Y001 and Y205 stored at SY . (For simplicity, we assume both
roots to be always accessed.) Like in the original shuffle index proposal, we
assume each server, which initially knows only the number of blocks it stores,
to potentially have knowledge of the height of the shuffle index and of the level
of the node stored at each of its blocks (which can be acquired by observing
the iterations in the accesses). Combined with such knowledge, discontinuity of
accesses with respect to levels (e.g., for SY ) could leak information to the servers.
To avoid such a leakage, in our approach, every time we need to access a block
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at one of the servers, we will also access another block, which we call shadow ,
at the other server. With shadows, each server will observe accesses to blocks
as if it was the only one storing the data structure and involved in the access.
With respect to this aspect, any block at the other server at the same level as
the block for which it works as shadow would do. The choice of the shadow for a
block during a given access, however, needs to take into account the fact that the
shuffle index changes allocation of nodes at every access. Re-allocating a node
n requires changing in its parent the pointer to n, to refer to the block where it
has been moved. Therefore, the nodes involved in an access should always form
a sub-tree. In other words, a shadow at a given level should be child of a node
that is available for the access (i.e., read in the path to the target or to a cover,
or available in cache).

A convenient way to ensure this requirement is to use, as shadow of a node for
a given access, one of its siblings stored at the other server. For each node n, we
call far siblings of n the children of the same parent (i.e., n’s siblings) stored at a
server different from the one where n is stored. We denote with FS (n) the nodes
having such properties at a given time with respect to a node n, as formally
defined in the following.

Definition 1 (Far siblings and shadow). Let T(N , IDG, IDY , φ) be a logical
index, and n be a non-root node in N . The far siblings of node n, denoted FS (n),
are defined as FS (n) = {ni ∈ N : parent(ni) = parent(n) and σ(ni .id ) �=
σ(n.id )}. As particular cases, FS (r0 ) = {r1} and FS (r1 ) = {r0}.
The shadow of a node for a given access is one of its far siblings selected for the
specific access.

For instance, with reference to the shuffle index in Figure 2(b), FS (e) =
{f , h}, and FS (e3 )={e2}. Assuming to choose h and e2 as shadows for e and
e3 , respectively, the search for key value e3 will translate into accessing blocks
(G001;G103;G202) at SG and blocks (Y001;Y104;Y205) at SY .

Note that the far siblings relationship is dynamic as every re-allocation of
nodes, which will operate across servers, changes it. Also, the shadow relationship
is dynamic as, at any given access to a node, any of its far siblings can be
dynamically selected to serve as shadow. Although in principle nodes can be
randomly allocated to servers, distributing allocation uniformly provides better
protection and has the advantage that the set FS (n) of a node n can never be
empty. We then require uniform distribution between the two servers among the
children of each node (storing half of the node’s children at one server and half
at the other). The allocation function φ must enforce a balanced allocation of
nodes’ children to the servers, satisfying the following property.

Property 1 (Balanced allocation). Let T(N , IDG, IDY , φ) be a logical index.
T satisfies the balanced allocation property iff:

1. σ(r0 .id ) �= σ(r1 .id ) (i.e., the two roots are stored at a different server);
2. ∀〈id , vals , ptrs 〉∈N : |card(ptrsG) − card(ptrsY )|≤ 1,

with ptrsG={id i∈ptrs : id i∈IDG} and ptrsY ={id i∈ptrs : id i∈IDY }.
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The first condition in the property states that the two roots are stored at
different servers. The second condition states that, for each node, half of its
children are stored at server SG and the other half at server SY . Property 1
guarantees that every node n, child of a node with k children, has at least

⌊
k
2

⌋
far siblings. It is easy to see that the distributed shuffle index in Figure 2 obeys
to the balanced allocation property.

4.2 Covers

As in the original proposal, cover searches are fake searches executed in parallel
with the search for the target value to the aim of hiding the target request
within a group of other requests. The fact that the shuffle index is distributed
has two effects with respect to covers: one is the extension of the definition of
cover search, the other is the application of shadows to covers.

As in [5], the only constraint on covers chosen for an access is that they actu-
ally act as such, that is, they should be indistinguishable from actual searches,
and their paths should not intersect or intersect the path to the target. The first
aspect is already guaranteed from [5], the latter aspect simply requires extending
the definition of cover searches to the consideration of the fact that the root is
split, and therefore the constraint that paths of the covers have only the root in
common translates into requiring that their paths have nothing in common but
- possibly - any of the roots, as formally stated by the following definition.

Definition 2 (Cover searches). Let T(N , IDG, IDY , φ) be a logical in-
dex built on candidate key K with domain D, and v0 be a value in D.
A set {v1, . . . , vnum cover} ⊆ D is a set of cover searches for v0 iff
∀pathi,pathj∈{path0 , . . . , pathnum cover}, i �= j: (pathi ∩ pathj)\{r0,r1} =∅,
where pathi is the set of nodes in the path from r0 or r1 to the leaf where vi is
possibly stored.

Note that the nodes in the paths to covers can be indifferently stored at one of
the two servers. This does not create any problem in our approach. In fact, just
like the target, covers will also be shadowed and for every node to be accessed
in the path to a cover at a server, one of its far siblings will be accessed at the
other server. In particular, for each level in the shuffle index, if a node nc in the
path to a cover is actually stored at a different server from the node nt in the
path to the target, nc will act as a protection of nt’s shadow and nc’s shadow
will act as a protection for nt, respectively, at the two servers. The application
of shadows to nodes in the path to covers nicely provides a symmetric behavior
at the two servers, regardless of where these nodes are stored. In fact, a server
will observe access to num cover + 1 different blocks for each level, but level 0.

As an example, consider the distributed shuffle index in Figure 2(b), and a
search for e3 (path (r1;e;e3 )), using a2 as cover (path (r0;a;a2 )). Assuming
to choose, in the set of its far siblings, h as shadow for e, c for a, e2 for e3 ,
and a1 for a2 , the accessed blocks are (G001;G102,G103;G202,G207) at SG and
(Y001;Y103,Y104;Y205,Y213) at SY .
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4.3 Cache

Caching works essentially like in the original proposal, maintaining a copy of the
last num cache target searches (where for each target search all nodes in the
path to the target leaf are maintained). In addition to the actual targets, in our
distributed scenario, we also store, in association with every node n in the path
to the target, the node n′ that acted as n’s shadow last time n was accessed.

Formally, the cache of a distributed shuffle index is defined as follows.

Definition 3 (Cache). Let T(N , IDG, IDY , φ) be a logical index with height
h. A cache of size num cache for T is a layered structure of h+1 sets
Cache0 , . . . ,Cacheh of pairs of nodes where:

1. Cache0 contains pair 〈r i,r j〉 with i, j ∈ {0, 1} and i �= j;
2. Cache l , l = 1 , . . . , h, contains num cache pairs of nodes 〈ni,nj〉 s.t. ni and
nj belong to the l-th level of T , with ni and nj far siblings one of the other
(cache balancing);

3. ∀〈ni,nj〉∈Cache l , l = 1 , . . . , h, the node parent of ni and nj in the shuffle
index belongs to Cache l−1 (path continuity).

Note how the path continuity requirement (Condition 3 in the definition),
requesting that the parent of a cached node be also in cache and here extended to
the consideration of shadows, does not impose any complication to the approach.
As a matter of fact, the choice of the shadows among the far siblings of target
nodes included in the cache nicely guarantees that their parent (being a target)
is already in the cache by construction.

A nice advantage of including shadows in cache is that Cache l , l = 1 , . . . , h,
contains 2num cache nodes, half of which are stored at SG and the others are
stored at SY . This will provide a symmetric behavior of the access at the two
servers, with each of them operating with a view as if it was the only one involved
in the access (see Section 5). After the search illustrated in Section 4.2 for value
e3 over the distributed shuffle index in Figure 2(b), the cache includes the nodes
in the path to e3 and their shadows (i.e., 〈r1,r0〉, 〈e,h〉, and 〈e3 ,e2 〉).

4.4 Shuffling

Shuffling aims at destroying the one-to-one correspondence between blocks and
nodes stored in them. The idea is to randomly re-allocate all nodes available in
an access (i.e., accessed as targets, covers, shadows or in cache) so to break the
otherwise static relationship between nodes and blocks where they are stored.
Shuffling is formally defined as follows.

Definition 4 (Shuffling). Given a set ID ⊆ IDG ∪IDY of logical identifiers,
a shuffling, denoted by π, over ID is a random permutation π: ID → ID.

The effect of a shuffling π: ID → ID over shuffle index T (N ,IDG,IDY ,φ) is
that the corresponding abstract index remains unchanged while the allocation
of some nodes (and the pointers to them in their parents) is changed. More
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precisely, each node 〈id , vals , ptrs 〉 is updated as follows: id=π(id ) if id∈ID , it
remains unchanged otherwise; and ∀i = 0, . . . , q with q the number of values in
vals , ptrs [i]=π(ptrs [i]) if ptrs [i]∈ID, it remains unchanged otherwise.

Like in the original (non-distributed) shuffle index, shuffling is performed only
within levels and not cross-levels, due to complications that would otherwise arise
for updating pointers to children.

Also, in our distributed shuffle index, where nodes (accessed because in the
paths to the target or to a cover, or present in cache) are always accompanied
by a shadow, we need to ensure that shuffling does not compromise the balanced
allocation of the index. We then require the shuffling to ensure balancing, as
captured by the following property.

Property 2 (Balanced shuffling). Let T(N , IDG, IDY , φ) be a logical index, and
P = {〈n1, n′1〉, . . . , 〈nm, n′m〉} be a set of pairs of nodes in N s.t. ∀〈ni, n′i〉 ∈ P ,
σ(ni.id ) �=σ(n′i.id ). A shuffling π over IDP={id : ∃〈ni, n′i〉 ∈ P with id=ni.id
or id=n′i.id } is balanced iff ∀〈ni, n′i〉 ∈ P , σ(π(ni.id )) �=σ(π(n′i.id )).

Balanced shuffling essentially guarantees that pairs of nodes provided as input
and stored at different servers before the shuffling remain stored at different
servers after the shuffling. Since we operate shuffling on pairs of nodes that are
far siblings one of the other, balanced shuffling ensures that these pairs of nodes
will remain as such after the shuffling (indeed, shuffling does not change the
‘being child of’ relationship over the abstract index). Note that this does not
mean that the two nodes in a pair can only be swapped one with the other as
shuffling can actually change the blocks to which they are allocated; the only
constraint is that the two nodes do not end up being stored at the same server.
It is then easy to see that a balanced shuffling guarantees that the shuffling does
not compromise the balanced allocation of the shuffle index (Property 1).

We realize a balanced shuffling by: i) randomly shuffling the nodes allocated at
each of the two servers separately; and ii) possibly swapping the allocation of a
node and its shadow. The random shuffling (step i)) does not move nodes from
SG to SY or vice versa. The controlled swapping (step ii)) operates between
pairs of nodes stored at the two servers: whenever a node allocated at SG is
moved to SY , its shadow (which by definition is at SY ) is moved from SY to
SG, and vice versa. More precisely, our shuffling works as follows.

– Consider a logical index T(N , IDG, IDY , φ), a set P =
{〈n1, n′1〉, . . . , 〈nm, n′m〉} of pairs of nodes in N , and the set IDP={id :
∃〈ni, n′i〉 ∈ P with id=ni.id or id=n′i.id } of their identifiers.

– Define an intra-server shuffling over IDP , π1 : IDP → IDP , such that
∀id ∈ IDP , σ(π1(id )) = σ(id ).

– Randomly select a subset S of pairs of nodes in P for inter-server swapping.

– Return π over IDP such that ∀〈ni, n′i〉 ∈ P :

• if 〈ni, n′i〉 ∈ S =⇒ π(ni.id ) = π1 (n ′i .id ) and π(n′i.id ) = π1 (ni .id );

• if 〈ni, n′i〉 �∈ S =⇒ π(ni.id ) = π1 (ni .id ) and π(n′i.id ) = π1 (n ′i .id ).
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Note that, while guaranteeing balancing, our shuffling can move a node to any
block on which the shuffling is operating (either at the same or at a different
server). This provides for a fast degradation of the correspondences between
nodes and blocks, ensuring the protection of access and pattern confidentiality
(see Section 6).

As an example, consider the shuffle index in Figure 2(b), reported in Fig-
ure 3(a) for the reader’s convenience, and the set P = {〈r0,r1〉; 〈e,h〉, 〈a,c〉,
〈b,d〉; 〈e3 ,e2 〉, 〈a2 ,a1 〉, 〈b1 ,b2 〉} of pairs of nodes accessed by the search for
value e3 illustrated above. Figures 3(b) and (c) illustrate an example of intra-
server shuffling π1 over IDP and of inter-server swapping, with S={〈r0,r1〉;
〈a,c〉,〈e,h〉;〈a1,a2〉}, respectively. It is easy to see that the resulting shuffling
π satisfies the balancing property (e.g., σ(r0 .id )=SG and σ(r1 .id )=SY ). Fig-
ure 3(d) illustrates the shuffle index after the shuffling.

5 Access Execution

The application of shadows, covers, cache, and shuffling when performing an ac-
cess works in combination to ensure two kinds of protection: i) obfuscating the
fact that the access aims at a specific block (shadows, covers, and cache); and ii)
changing the allocation of nodes so to dynamically modify the node/block corre-
spondence and therefore provide protection for future accesses. Access execution
with our protection techniques works as follows.

Given a search for a target value v, we first choose a set of num cover+1
cover searches for v (Definition 2), where the additional one is to be used if a
node in the path to v is in cache. For each level l of the distributed shuffle index,
we identify the blocks in the paths to covers and target and choose a shadow
(Definition 1) for each of them. Like covers, shadows are chosen in such a way
to ensure block diversity, meaning that they should not appear in the paths to
the target and to covers, and should not be stored in Cache l . Intuitively, block
diversity guarantees that all the techniques play a role in providing protection
as they will not end up clashing over the same blocks.

Enforcement of block diversity also on shadows, and application of shadows
to both the target and cover searches, as well as availability of shadows in cache,
provide a nice symmetric behavior of the access at the two servers, with each of
them observing num cover + 1 reads and num cover + num cache + 1 writes
for each level of the shuffle index (but level 0). In other words, each server will
observe a pattern of (read/write) accesses to blocks as if it was the only server
storing the data and managing the access. Note that this does not cause any
performance overhead with respect to the single server solution while enjoying
significant higher protection (see Section 6).

For instance, consider the shuffle index in Figure 3(a). Figure 4 illustrates,
step by step, a search for value e3 that adopts a2 as cover and that assumes
that the local cache has size one and contains the path to b1 (e.g., 〈r0,r1〉,
〈b,d〉 and 〈b1 ,b2 〉, with d and b2 the shadows for b and b1 chosen in a previous
search). Among its far siblings, h is chosen as shadow for e, c for a, e2 for
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Logical index before the access

(a)

Intra-server shuffling

(b)

Inter-server swapping

(c)

Logical index after the access

(d)

Fig. 3. Evolution of the shuffle index for our running example
Legend: � target and � its shadow; • node in cache and ◦ its shadow; � cover and � its
shadow

e3 , and a1 for a2 . The columns of the table represent: the visited level of
the shuffle index (l); the content of the cache (Cache l in Retrieved nodes)
and the nodes read from the servers (Read in Retrieved nodes); the balanced
shuffling (shuffle); the nodes in the cache (Cache l in Shuffled nodes) and read
(Non Cached in Shuffled nodes) after the shuffling; the nodes written on the
server that are also kept in cache (Cache l−1 in Written nodes) or that are
only stored at the server (Non Cached P in Shuffled nodes). Note that column
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l Retrieved nodes Shuffle Shuffled nodes Written nodes
Cachel Read Cachel Non Cached Cachel−1 Non Cached P

0 Y001 r0 Y001→G001 G001 r0
[Y103,G104,G102,Y102] [Y103,G104,G102,Y102]

G001 r1 G001→Y001 Y001 r1
[G103,Y101,G101,Y104] [G103,Y101,G101,Y104]

1 G104 b • G104→G102 G102 b • Y001 r1
[Y203,G210,G204,-] [Y203,G210,G204,-] [Y102,Y101,G101,G104]

Y102 d ◦ Y102→Y103 Y103 d ◦ G001 r0
[Y204,G205,G209,Y207] [Y204,G205,G209,Y207] [G103,G102,Y104,Y103]

G103 e � G103→Y102 Y102 e �
[Y206,G202,Y205,-] [Y206,G202,Y205,-]

Y104 h � Y104→G104 G104 h �
[Y202,Y209,G208,-] [Y202,Y209,G208,-]

Y103 a � Y103→G103 G103 a �
[G207,Y213,Y201,-] [G207,Y213,Y201,-]

G102 c � G102→Y104 Y104 c �
[Y210,G206,G212,-] [Y210,G206,G212,-]

2 Y203 b1 • Y203→G202 G202 b1 • Y102 e �
[Y206,G207,Y213,-]

G210 b2 ◦ G210→Y205 Y205 b2 ◦ G104 h �
[Y202,Y209,G208,-]

Y205 e3 � Y205→Y213 Y213 e3 � G102 b •
[G202,Y205,G204,-]

G202 e2 � G202→G207 G207 e2 � Y103 d ◦
[Y204,G205,G209,Y207]

Y213 a2 � Y213→G210 G210 a2 � G103 a �
[Y203,G210,Y201,-]

G207 a1 � G207→Y203 Y203 a1 � Y104 c �
[Y210,G206,G212,-]

Y213 e3 � G202 b1 •

G207 e2 � Y205 b2 ◦

G210 a2 �
Y203 a1 �

Fig. 4. An example of access to the distributed shuffle index in Figure 2 searching for
e3 , with a2 as cover
Legend: � target and � its shadow; • node in cache and ◦ its shadow; � cover and � its
shadow

Cache l−1 in Written nodes represents the status of the local cache at the end
of the access. The evolution of the shuffle index for the search in Figure 4 is
illustrated in Figure 3.

Figure 5 shows the observations of the servers in terms of blocks read and
written by the access in Figure 4. The different blocks read provide confusion to
each of the server with respect to which is the target of the access (as a matter
of fact, the observations of a server might even not include the target but its
shadow); the different blocks written provide confusion over what is stored in the
blocks after the access (as a matter of fact, even the set of nodes stored at each
server might have changed), thus practically destroying any possibility for the
servers to correlate observations over different access requests (see Section 6).

6 Discussion and Evaluation of the Approach

We discuss the protection guarantees and the performance of our distributed
shuffle index, in particular comparing it with the original proposal [5] adopting
a single server.
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SG SY
G001

G103G102G101 G104

G201 G202 G203 G204 G205 G206 G207 G208 G209 G210 G211 G212 G213

Y001

Y104Y101 Y103Y102

Y201 Y202 Y203 Y204 Y205 Y206 Y207 Y208 Y209 Y210 Y211 Y212 Y213

Fig. 5. Observations by each server of read/written blocks in our running example
Legend: blocks read and written: chessboard filling, blocks written: lines filling

Protection. Like in [5], we focus the analysis on leaf nodes, which are more
exposed than the internal ones. Indeed, internal nodes are clearly involved in
shuffling operations more often than leaf nodes. Also, while in the analysis we
assume the servers not to collude, we note that a possible collusion can cause
a slight decrease of protection but does not cause critical breaches because the
distributed shuffle index would remain protected as in the case of a shuffle index
employing 2num cover + 1 covers and a double cache size. We start by noting
that access confidentiality naturally increases with the use of two servers. In fact,
even if no cover was to be applied, the server could have just a 50% confidence
that its observations refer to blocks in the path to a target as they could just refer
to their shadows. Shadows provide then a natural increase to the protection when
covers are applied. The fact that shuffling operates across servers also provides
a natural protection since, again, every node has 50% probability of remaining
on the same server after a shuffling is applied. (Note that encryption with a
different salt at every re-allocation prevents servers from making any inference
on the shuffling performed.)

To study the protection offered by shuffling, we model the knowledge of a
server on the fact that a node n is stored at a given block id as a probability
value P(n, id), expressing the confidence in such a knowledge, with P(n, id) = 1
corresponding to certainty and P(n, id) = 1

|N ′| , with N ′ the set of leaf nodes

in N , corresponding to complete absence of knowledge. We assume the worst
starting case where a server knows the exact correspondence between nodes
and blocks (i.e., P(n, id) = 1 when n is allocated at block id, P(n, id) = 0
otherwise) and evaluate the knowledge degradation of the server due to the
shuffling performed at every access.

Let ID′G ⊆ IDG and ID′Y ⊆ IDY be the sets of identifiers of the m leaf blocks
accessed at servers SG and SY , respectively. Consider also a leaf node n ∈ N
and suppose that server SG knows that n is stored at one of the m accessed
blocks (the same discussion applies to server SY ). After the access, two cases
can occur: i) n is still stored at server SG, or ii) n has been moved to server SY .

In the first case, for all idG ∈ID′G, we have that P(n, idG) =
∑

idG∈ID′
G

P(n,idG )
2m

since there is a 50% chance for node n to remain at server SG and there are m
possible blocks where the node can be stored. In the second case, node n can
be moved to any of the m blocks accessed at server SY . However, server SG

www.it-ebooks.info

http://www.it-ebooks.info/


642 S. De Capitani di Vimercati et al.

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0  100  200  300  400  500  600  700  800  900  1000

E
nt

ro
py

 (
bi

t)

Number of accesses

Two non colluding servers
Two colluding servers

Single server  1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0  100  200  300  400  500  600  700  800  900  1000

E
nt

ro
py

 (
bi

t)

Number of accesses

Two non colluding servers
Two colluding servers

Single server

(a) (b)

Fig. 6. Evolution of the entropy for values of γ equal to 0.5 (a) and 0.25 (b). Every
access request directed to a server has num cover=3 and num cache=1

does not know which are the m leaf blocks accessed at server SY . Then, for all

idY ∈ IDY we have that P (n, idY ) =
1−

∑
idG∈IDG

P(n,idG)

|IDY | .

We performed a set of experiments for studying the degradation of the knowl-
edge of a server at the aggregate level. These experiments evaluate the entropy
of the server knowledge under different configurations (i.e., varying the number
of covers and the size of the cache) with different access profiles, where access
profiles have been simulated by randomly generating sequences of accesses fol-
lowing a self-similar1 probability distribution with skewness γ in the range [0.25,
0.5]. We then evaluated the increase of entropy at the increase of the number of
accesses for three scenarios where: 1) the shuffle index is distributed over two
servers; 2) the shuffle index is distributed over two servers but the two servers
collude; 3) the shuffle index is stored at a single server. Note that the second
scenario has a double role, representing two different cases: 2.1) when the two
servers collude (exchanging all the knowledge they have on the initial allocation
as well as the knowledge on every subsequent observation); 2.2) when a single
server is applied but with the use of 2num cover + 1 covers and with a cache
of size 2num cache. Figure 6 illustrates the experimental results using 3 covers
and a cache with size 1 for every access request directed to a server, considering
a logical shuffle index with 1000 leaves, skewness γ equal to 0.5 and 0.25, and
varying the number of accesses. (Experiments with different configurations pre-
sented a similar behavior.) As it is visible in the figures, in the scenario where the
shuffle index is distributed over two servers (scenario 1, solid line), the entropy
increases much faster than in the scenario of a single server subject to a similar
workload (scenario 3, dotted line). The dashed line, reporting the entropy evolu-
tion in case of collusion (scenario 2), with respect to the other two lines tells us
that: i) collusion among servers implies a slower knowledge degradation (as the
servers combine their knowledge), but does not cause confidentiality breaches
(since entropy remains high); ii) the use of two servers, even when such servers
collude, enjoys a faster entropy increase and hence, protection guarantees, over
the case when a single server is used but with the application of 2num cover +1
covers and with a double size of the cache.

1 Given a domain of cardinality d, a self-similar distribution with skewness γ provides
a probability equal to 1−γ of choosing one of the first γd domain values.
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System Performance. The performance of the distributed shuffle index is based
on the response time experienced by the client when submitting an access re-
quest. Among the different factors contributing to the response time, in our ex-
perimental evaluation, we observed that the latency of the network is the factor
with the greatest impact in a large-bandwidth WAN scenario (which is the most
interesting and natural environment for data outsourcing applications [5, 6]).

To assess the system performance, we considered a data set of 2 GiB stored
in the leaves of a shuffle index with 3 levels with nodes of 8 KiB. To properly
configure the network environment, we adopted a professional-grade tool suite
(i.e., Traffic Control and Network Emulation, for Linux systems) and we chose a
representative WAN configuration suitable for interactive traffic, with LAN-like
bandwidth and round-trip time modeled as a normal distribution with mean
of 100 ms and standard deviation of 2.5 ms . Then, we compared the average
response time in two different scenarios: i) our distributed shuffle index where
each request accesses m leaf blocks at each of the two servers; and ii) the original
(non-distributed) shuffle index where each request accesses 2m leaf blocks. The
experiments considered a variety of configurations, with different values for m.
The average response time in the distributed scenario is approximately 5% lower
than the one obtained in the original scenario. As an example, fixing m = 3,
the average response time is 380 ms in the distributed scenario and 405 ms
in the original one. Our experiments also show that, in both the original and
distributed scenario, the costs of adopting one additional cover search (cache
element, respectively) is 1.18% (0.6%, respectively) of the average response time.

7 Related Work

Previous related works proposed different indexing techniques for the evaluation
of queries over encrypted data (e.g., [4, 13, 14, 18–20]). These solutions however
aim at protecting data confidentiality only. Traditional approaches for protecting
access and pattern confidentiality are based on PIR protocols (e.g., [2,10]), which
however suffer from high computation and communication costs and do not
provide content confidentiality. More efficient PIR solutions rely on the presence
of different copies of the data stored at different servers (e.g., [1]), and are based
on the assumption that servers do not communicate with each-other.

The first approach that protects data, access, and pattern confidentiality has
been illustrated in [22] and combines the pyramid-shaped hierarchy layout of
the Oblivious RAM (ORAM) data structure [11] with Bloom filters. Even if this
proposal adopts an enhanced reordering technique between adjacent levels of
the ORAM to provide a limited amortized cost of accesses, the response time
of queries submitted during the reordering of the bottom level of the structure
remains linear in the database size. Different approaches try to mitigate the cost
of these accesses, for instance by limiting shuffling to fetched records (e.g., [9]);
guaranteeing a constant number of interactions between the data owner and
the server, independently from the number of levels in the ORAM (e.g., [21]);
introducing the support for concurrent accesses by multiple clients (e.g., [12]).
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ORAM has been recently extended to the distributed scenario [16], but its pri-
vacy guarantees rely on the presence of non-communicating servers.

The line of works most related to our is represented by solutions that provide
data, access, and pattern confidentiality by exploiting dynamic data allocation,
which destroys the otherwise static relationship between disk blocks and the in-
formation they store (e.g., [5, 6, 15, 23]). The first approach adopting dynamic
data allocation has been introduced in [15] and is based on a B-tree index struc-
ture. This proposal however does not guarantee pattern confidentiality. Simi-
larly to the shuffle index [5], the proposal in [23] adopts cover searches, repeated
searches, and shuffling protection techniques to provide access and pattern con-
fidentiality. This solution is less flexible than the shuffle index, as it does not
have an underlying index structure and the number of cover searches is fixed.
Our solution provides higher protection guarantees than the proposals above,
since we operate in a distributed scenario. Also, with respect to distributed PIR
and distributed ORAM approaches, we remove the limiting assumption that the
storing servers cannot communicate.

8 Conclusions

We extended the shuffle index to the consideration of multiple servers. Our
approach is based on distributing the index structure over two servers, and on
the use of shadows for providing to each server a view as if it was the only
server storing the data. The distributed index enjoys an increased protection
with respect to the use of a single server while not impacting performance.
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13. Hacigümüs, H., Iyer, B., Mehrotra, S., Li, C.: Executing SQL over encrypted data
in the database-service-provider model. In: Proc. of SIGMOD 2002, Madison, WI
(June 2002)

14. Hore, B., Mehrotra, S., Canim, M., Kantarcioglu, M.: Secure multidimensional
range queries over outsourced data. The VLDB Journal 21, 333–358 (2012)

15. Lin, P., Candan, K.S.: Hiding traversal of tree structured data from untrusted data
stores. In: Proc. of WOSIS 2004, Porto, Portugal (April 2004)

16. Lu, S., Ostrovsky, R.: Distributed Oblivious RAM for secure two-party compu-
tation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 377–396. Springer,
Heidelberg (2013)

17. Murugesan, M., Jiang, W., Clifton, C., Si, L., Vaidya, J.: Efficient privacy-
preserving similar document detection. VLDBJ 19(4), 457–475 (2010)

18. Samarati, P., De Capitani di Vimercati, S.: Data protection in outsourcing sce-
narios: Issues and directions. In: Proc. of ASIACCS 2010, Beijing, China (April
2010)

19. Wang, C., Cao, N., Ren, K., Lou, W.: Enabling secure and efficient ranked keyword
search over outsourced cloud data. IEEE TPDS 23(8), 1467–1479 (2012)

20. Wang, H., Lakshmanan, L.V.: Efficient secure query evaluation over encrypted
XML databases. In: Proc. of VLDB 2006, Seoul, Korea (September 2006)

21. Williams, P., Sion, R.: Single round access privacy on outsourced storage. In: Proc.
of CCS 2012, Raleigh, NC (October 2012)

22. Williams, P., Sion, R., Carbunar, B.: Building castles out of mud: Practical ac-
cess pattern privacy and correctness on untrusted storage. In: Proc. of CCS 2008,
Alexandria, VA (October 2008)

23. Yang, K., Zhang, J., Zhang, W., Qiao, D.: A light-weight solution to preservation of
access pattern privacy in un-trusted clouds. In: Atluri, V., Diaz, C. (eds.) ESORICS
2011. LNCS, vol. 6879, pp. 528–547. Springer, Heidelberg (2011)

www.it-ebooks.info

http://www.it-ebooks.info/


Range Extension Attacks on Contactless
Smart Cards

Yossef Oren, Dvir Schirman, and Avishai Wool

Cryptography and Network Security Lab, School of Electrical Engineering
Tel-Aviv University, Ramat Aviv 69978, Israel

{yos@eng,dvirschi@post}.tau.ac.il, yash@acm.org

Abstract. The security of many near-field RFID systems such as credit
cards, access control, e-passports, and e-voting, relies on the assumption
that the tag holder is in close proximity to the reader. This assumption
should be reasonable due to the fact that the nominal operation range
of the RFID tag is only few centimeters. In this work we demonstrate
a range extension setup which breaks this proximity assumption. Our
system allows full communications with a near-field RFID reader from a
range of 115cm – two orders of magnitude greater than nominal range –
and uses power that can be supplied by a car battery. The added flexibil-
ity offered to an attacker by this range extension significantly improves
the effectiveness and practicality of relay attacks on real-world systems.

Keywords: RFID, Contactless smart card, ISO/IEC 14443, Relay
attack.

1 Introduction

1.1 Background

Over the last few years, radio frequency identification (RFID) and near field com-
munication (NFC) technologies have become increasingly popular. They are used
in applications which benefit from the ease of use, the increased data rate, and
computational abilities offered by RFID technologies compared to traditional
technologies like magnetic stripe or bar-code. There are in general two categories
of passively-powered RFID tags: (a) UHF tags compliant with ISO/IEC 18000
which operate at a range of few meters and are mainly used for marking products
or components, and (b) HF tags compliant with ISO/IEC 14443 which oper-
ate at a range of few centimeters and are used in a variety of security-sensitive
applications such as payment cards, access control, e-passports, national ID-
cards, and e-voting. In both categories tags are generally low cost devices which
communicate with a more powerful reader over a wireless medium. This work
focuses on physical layer security issues of ISO/IEC 14443 HF tags, which are
also commonly referred to as contactless smart cards.

All of the applications mentioned above require security controls, whether to
defend the user’s privacy, to prevent unauthorized access, or to keep the user’s

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 646–663, 2013.
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Victim Tag

Victim Reader L

G

Fig. 1. An RFID channel under a relay attack. Device L is the leech, while device G
is the ghost.

money safe. Most RFID applications deal with security issues through secure
protocols and cryptography, but they also rely on the assumption of proxim-
ity between the tag and the reader as a security feature. In older technologies,
like magnetic stripe credit cards or contact-based smart cards, the assumption
of proximity was guaranteed due to the contact-based interface between the card
and the reader. Near field RFID standards like ISO/IEC 14443 are also perceived
to guarantee proximity since the nominal operation range for communication be-
tween a tag and a reader is only few centimeters. Therefore, most contactless
smart card secure protocols inherently assume that the tag holder stands right
in front of the reader.

1.2 Related Work

In [3] Desmedt et al. presented a generic way to defeat protocols with a assump-
tion of proximity called the mafia fraud attack, or the relay attack. Previous
works have already noted the relevance of relay attacks to the contactless smart
card scenario [15] and have demonstrated that relays can be practically built
and used to attack such systems [7,6,30,14,28]. As illustrated in Figure 1, a relay
is established by placing two special communication devices (called the “ghost”
and the “leech”) between the victim reader and the victim tag. The ghost and
the leech communicate via a long-range channel such as a wireless connection.
The leech transmits any packets sent by the victim reader to the victim tag,
receives the victim tag’s responses, and sends them back to the ghost, which
finally forwards them to the victim reader. Since the ghost and the leech are
built and controlled by the attacker, they do not have to comply to any stan-
dard. This allows the communication ranges between leech and tag and between
ghost and reader to be increased, beyond the nominal standards, improving the
effectiveness of the relay attack. The work of [16] showed how to build a low-
cost, extended-range RFID leech device. In [8] extended range eavesdropping
and skimming attacks are described.

Despite the fact that relay attacks have been a known threat for several years,
and that building a relay system is well within the budget of even a moderately-
funded attacker, there is a surprising lack of reports on relay attacks occurring
on real-world contactless smart card systems [2]. One possible explanation is
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the high risk incurred by the attacker: while the victim tag can be accessed
with relatively low risk (for example, by following the victim and placing a
skimmer near his back pocket), the victim reader is generally located in a high-
security location such as a store counter or a border crossing, and is protected
by additional security measures such as security cameras or guards.

1.3 Contributions

In this work we present a design for a modified ghost device which dramatically
increases the range of the ghost-reader communication channel. The main novelty
of our design is the use of two different antennas and RF front ends: One for the
reader-to-ghost receive path, and one for the ghost-to-reader transmit path. Since
our modifications are completely in the analog domain, they are not expected to
increase the processing delay of the relay or otherwise interfere with the RFID
protocol.

We experimentally verify the effectiveness of our modified ghost device in a
series of experiments. In our experiments we show an effective reader-to-ghost
range of 140cm, an effective ghost-to-reader range of 115cm, and therefore, a full
bi-directional range of 115cm. These ranges are two orders of magnitude greater
than the nominal tag-to-reader range. Most significantly, our device can be built
with a moderate-to-low budget and uses power that can be supplied by a car
battery.

We also study the implications of the improved ghost device on the security of
several contactless RFID scenarios. Specifically, the extended range can increase
the severity of relay attacks by allowing the attacker to move away from the
victim reader, possibly even to the next room or to a nearby car. Beyond posing
a significant threat to the security of contactless smart card applications, we also
show how the range extension setup can also be used for legitimate purposes –
e.g., to allow handicapped persons to use their RFID tag from a distance.

Document Structure
This paper is organized as follows. The next section gives a brief background of
contactless smart card standards and describes relay attacks. Section 3 presents
the design of our range extension system. Section 4 presents the experimental
results. Section 5 discusses possible attack scenarios and legitimate uses for our
setup. Finally, section 5.3 summarizes the implications of our work.

2 The ISO/IEC 14443 Standard

Most close range RFID applications are based on the ISO/IEC 14443 standard.
This standard specifies the operation method and parameters for proximity-
coupling smart cards. The nominal operation range for this standard is 5-10
cm. The standard calls the RFID reader a Proximity Coupling Device (PCD),
so we will use the terms reader and PCD interchangeably. The tag is called a
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Fig. 2. Example communication signals for ISO/IEC14443-2 type A. Top: Downlink
modulation, Bottom: Uplink modulation

Proximity Integrated Circuit Card (PICC), so we will use the terms tag and
PICC interchangeably.

The standard consists of 4 parts: part 1 covers the physical characteristics of
the PICC [10]; part 2 specifies the characteristics of the fields to be provided
for power and bi-directional communication between the PCD and the PICC
[12]; part 3 defines the routines for the initialization of the PICC as well as an
anti-collision routine for multiple PICCs [13]; part 4 specifies a half-duplex block
transmission protocol featuring the special needs of a contactless environment
and defines the activation and deactivation sequence of the protocol [11]. Note
that the higher parts of the standard are intended to be used in conjunction
with the lower parts.

The standard defines two types of tags, type A and type B. The two types
differ in modulation techniques, initialization protocols, and transmission proto-
cols. Our work focuses on type A, hence the following sections will describe only
type A properties.

The parts of the standard that are relevant to the design of our range extension
setup, are parts 2,3, and 4, we highlight their relevant features here.

2.1 ISO/IEC 14443 Part 2: Radio Frequency Power and Signal
Interface

This part defines the physical layer interface between the PCD and the PICC.
the PICC (tag) is passive – it has no source of power, and draws all its energy
from the reader’s transmission signal. The communication is based on inductive
coupling between an active reader and a passive tag. We will refer to the channel
from the reader to the tag as the downlink channel, and the channel from the
tag to the reader as the uplink channel.

According to the standard the carrier frequency of the reader is fc =13.56 MHz.
The operating magnetic field produced by the reader should lie within the range
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of 1.5 A/m rms to 7.5 A/m rms. And, the bit rate during initialization part is
defined as fc/128 ≈ 106 kbits/S.

Downlink Modulation: The communication from the reader to the tag uses
Amplitude Shift Keying (ASK) with modulation depth of 100%. The transmitted
bits are coded with modified Miller coding as shown in Figure 2 (top). In order
to guarantee a continuous power supply to the passive tag, the length of the
blanking intervals is only 2-3 μs.

Uplink Modulation: Since the tag has no independent power source, it trans-
mits its signal by means of load modulation of a sub-carrier at fsc = fc/16 ≈

847 kHz. This modulation is physically carried out by switching a load inside
the PICC on and off.

The transmitted bits are Manchester coded and modulated by on/off keying of
the sub-carrier (i.e., the sub-carrier is ASK 100% modulated by the Manchester
coded bits) – see Figure 2 (bottom).

2.2 ISO/IEC 14443 Timing Parameters

The ISO/IEC 14443 standard defines two critical timing parameters called
the Frame Delay Time (FDT), which defines the maximal time delay during
the initialization protocol [13], and Frame waiting time (FWT) which defines
the maximal time delay during the transmission protocol [11]. Both of these
parameters define the time delay allowed from the end of a PCD’s frame trans-
mission to the start of the PICC’s response reception. These parameters are set
to about 90μs during initialization of the protocol (FDT), and to about 300μs-5s
(FWT).

After the initialization protocol is completed, if a PICC requires a longer
calculation time, it can ask for additional time through sending a WTX request
[11], which can extend the FWT up to its maximal value of about 5 seconds. The
WTX request can be sent multiple times in order to achieve longer calculation
times.

One of the practical limitations that relay attacks face is the issue of timing.
Without careful attention, the relay can introduce delays into the communi-
cation channel, which may break the protocols: As mentioned above, the ini-
tialization protocol has strict delay constraints, while during the transmission
protocol longer delays can be established, but not without actively interfering
in the activation protocol.

3 Ghost System Design

Our goal in this work is to demonstrate an extended-range ghost device – i.e., a
device that can pretend to be a tag to a legitimate reader. Unlike a real tag our
ghost device is an active device that has a power source.
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Fig. 3. Block diagram of full range extension system

We made the following design decisions when creating our ghost device: (1)
We use two separate antennas, one for the downlink, and one for the uplink.
The downlink reception antenna is a large loop antenna which allows greater
sensitivity and therefore, can receive the signal from a greater range. For the
uplink transmission we use the close range magnetic field emitted from an HF
monopole antenna. (2) We use active load modulation for the uplink, to overcome
the nominal range limitations of the magnetic coupling. (3) We perform a relay
of protocol level 4, while implementing protocol level 3 independently in front
of the reader and the tag, to overcome the strict timing requirements of the
initialization protocol at level 3.

The system can be divided into three independent building blocks: downlink,
uplink, and relay. In the following sections these three building blocks are de-
scribed. The system is designed to be mounted on a car, and to get its power from
a standard car battery. A block diagram of our design can be seen in Figure 3.

We tested our ghost using a relay infrastructure. We used standard unmodified
hardware for the leech device, while making all the required changes for range
extension only on the ghost device.

3.1 Downlink Channel Design

The relay setup is based on two OpenPCD2 [17] boards. OpenPCD2 is a
RFID/NFC open source development board based on NXP’s PN532 chip [22].
Thus, the control logic for the Ghost device is based on one of the openPCD2
devices (see figure fig:Diagram).

Our extended range downlink is based on connecting a large loop antenna
to the antenna ports of the PN532 (on the OpenPCD2 board). We used a 39
cm copper tube loop antenna built for a previous leech project in our lab [16].
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The antenna is connected via a matching circuit through a low noise amplifier
(ZFL-500LN [18]) to the Rx port of the PN532.

Matching the Antenna: In order to transfer maximum power from the an-
tenna to the PN532’s input an impedance matching circuit is needed. The circuit
was designed according to NXP’s application note [21]: First measuring the an-
tenna impedance, then calculating appropriate values for the tuning capacitors
and resistors. The Q resistor (R1) value was chosen to achieve a quality factor
of 25 as recommended by NXP. Since we use the antenna only for reception, the
Tx1 and Tx2 ports of the PN532 chip were not connected to the matching circuit,
and instead 50Ω resistors (R01,2) were added. The matching circuit scheme can
be seen in Figure 4.

The matching circuit was first tuned by transmitting a 13.56 MHz carrier wave
signal from a signal generator through another loop antenna, and measuring the
amplitude at the Rx output with a scope, while the circuit is connected to
the OpenPCD2 board. The variable capacitors were tuned for the maximum
amplitude value. Finally, the matching was verified using a network analyzer by
measuring the S11 value of the matching circuit and the antenna (i.e., the input
return loss of the antenna).

3.2 Uplink Channel Design

A key idea behind the uplink is to replace the load modulation technique with an
active modulation technique and transmit the signal through a power amplifier
and a mobile monopole HF antenna.
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Active Load Modulation. is a technique introduced by Finkenzeller et al.
in [4,5]. This technique uses active circuitry which produces the same spectral
image as ISO/IEC 14443 type A load modulation, causing the reader to observe
the transmitted signal as if it was a standard load modulated signal. Active load
modulation operates in the following way:

As described in Section 2.1 the uplink transmission channel of ISO/IEC 14443-
2 is based on an ASK modulation of a sub-carrier. When looking at the spectral
image of this modulation the result is two sidebands centered at f1,2 = fc ± fsc,
and each band functions as carrier for the Manchester coded bits (see Figure
5). According to [5] a typical ISO/IEC 14443 compliant reader evaluates only
the upper side band, hence the relevant part of the spectral image is the upper
sideband centered at fUSB = fc+fsc = 13.56+ 13.56

16 = 14.4075 MHz. Therefore,
In order to emulate the load modulation signal we can directly modulate the
Manchester coded bit stream using an ASK 100% modulation of a 14.4075 MHz
carrier signal.

Doing so, with an active powered transmitter, allows us to bypass the need for
near-field magnetic coupling, and achieve transmission ranges that are 2 orders
of magnitude greater than the nominal range.

The Transmitting Antenna: Nominal RFID communication is based on mag-
netic coupling between two loop antennas. As explained in [5] an effort to increase
the range of an active transmitting signal requires either to dramatically increase
the current injected to the antenna, or to increase the area of the loop (which
also introduces more noise). An alternative approach is to use the field generated
by an HF monopole antenna. Monopole antennas are designed for electric field
(plane wave) transmission rather than magnetic coupling. However, the antenna
still produces a magnetic field in the near field region. Moreover, there may be
a coupling between the electric field produced by the monopole antenna to the
reader’s circuit, which also contributes to the range extension.

There are several advantages of using a monopole antenna for this setup.
First, since it usually looks like a simple pole it is easier to hide, which helps
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in disguising an attack setup. Second, there is a variety of commercial antennas
in the ham radio market which are designed for the desired frequency range.
And third, we hypothesize that the uplink range will be longer, and the power
consumption will be reduced in comparison to our 39cm loop antenna.

In order to choose the appropriate antenna we conducted a preliminary jam-
ming experiment (see section 4.2). We got the best jamming range with a mili-
tary broadband helically wound antenna, NVIS-HF1-BC. The considerations for
choosing the uplink antenna are further described in [23].

Implementation: In order to produce an active load modulation signal from
the PN532 chip we made use of a little-used output pin named LOAD_MOD.
This pin is meant to be connected to an external load, and therefore carries the
modulated sub-carrier signal. The OpenPCD2 board does not make use of the
LOAD_MOD pin, and the regular libnfc code does not instruct the PN532 to
activate the pin. Thus, we needed to solder a connector directly into the pin and
modify the libnfc code to activate it.

For our setup we needed to work with the digital Manchester coded bit stream
rather than the modulated sub-carrier signal. Therefore, we built a simple de-
tector circuit consisting of a diode detector and a comparator which extracts
the bit stream from the modulated sub-carrier signal. We used the extracted bit
stream to modulate a 14.4075 MHz carrier. Note that for our experiments we
produced the modulated signal by entering the bit stream into a signal genera-
tor (Agilent N9310A). The signal generator can be easily replaced by a simple
circuit containing an oscillator and a mixer.

Since our signal generator’s output power reaches only up to 15 dBm, we
needed to amplify the signal. We used a Mini-Circuits ZHL-32A [19] amplifier
which serves as a pre-amplifier, and a RM-Italy KL400 [26] (a ham radio ampli-
fier) which serves as a power amplifier. The amplifier output is connected to our
uplink antenna described above.

The KL400 amplifier is a mobile amplifier intended to be used in a car mounted
setup. It requires a 12VDC power supply, and when working at full power it uses
up to 24A, which can be supplied from a standard car battery.

3.3 Relay Setup

Since our focus was the construction of the ghost system and not the relay
itself, we implemented the relay part of the attack inside a single PC. For the
leech device we used an unmodified OpenPCD2 board. The ghost antennas are
connected to a second OpenPCD2 board. The OpenPCD2 boards run a libnfc
compatible firmware and are both connected to a PC running Linux Fedora 17
with libnfc [1].

We make use of one of the programs in libnfc, called nfc-relay-picc, which
is a relay application built for boards using the PN532 chip. nfc-relay-picc was
designed to overcome the timing issues discussed in Section 2.2, which limit the
effectiveness of relay attacks. The program operates in the following way:
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– One device is selected as initiator (a leech in our terminology), and the other
device is selected as target (a ghost in our terminology).

– The leech is placed in front of a victim tag, emulating a reader. It performs
the initialization and activation protocols defined in the standard, towards
the tag (further description of these protocols can be found in [13,11]).

– The tag credentials are acquired by the leech and relayed to the ghost device.
– The ghost emulates a tag with the data acquired from the original tag and

waits for a reader to activate it.
– When the ghost is activated by the victim reader, it performs the initializa-

tion and activation protocols directly with the reader, using the victim tag’s
credentials acquired earlier, thus overcoming the very strict delay constraints
of the anticollision level 3 protocol.

– While a transmission protocol is established between the ghost and the
reader, a parallel transmission is established between the leech and the tag.

– After both transmission protocols are established, each APDU (level 4) frame
from the reader is relayed through the ghost→PC→leech relay to the tag,
and vice versa.

– In order to overcome timing issues during the transmission itself, the ghost
sends WTX requests each time the FWT period is about to expire.

Note that in itself the nfc-relay-picc program and the OpenPCD2 boards are
designed to operate within the nominal range of 5-10cm.

To use this program with our uplink setup we had to slightly change the libnfc
source, in order to enable an output of the modulated sub-carrier signal out of
the LOAD_MOD pin of the PN532 chip.

4 Experiments and Results

In this section we describe the experiments done to test our setup, including
preliminary experiments to validate our assumptions, and measurements of the
final setup. All of the experiments described below were done with a TI MF
S4100 Reader [9] acting as the victim reader, and a ISO/IEC 14443 type A
sample tag which was provided inside the OpenPCD2 package as the victim tag.
The MF reader was selected since it generates read requests at a high rate (more
than 10 times per second). In addition, the TI reader’s controller software emits
a loud beep when it receives an answer from the tag.

4.1 Reader-to-Ghost (Downlink) Range Estimation

Our first experiment was to measure the reception range of our downlink copper
tube loop antenna in isolation. For this purpose we connected the antenna and
the matching circuit to a simple detector circuit consisting of a diode detector
and a comparator, connected the detector’s output of a scope, and measured
the received pulses. In order to estimate the reception performance we used the
following metric:
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Fig. 6. Downlink performance as a function of the distance from the reader

– A reference measurement was taken at a close range, measuring the reception
of few repeated REQA frames.

– For each measurement the number of positive pulses was counted.
– For each measurement, we define an error rate metric as the normalized

difference between the number of pulses in this measurement and in the
reference measurement.

Figure 6 present the results of the experiment. We observed good downlink
reception up to a range of 140cm, followed by a dramatic drop in quality within
less than 20 cm. A similar experiment was done using a spectrum analyzer
with an analog output as the detector, and we observed a reception range of
about 350cm. However, we believe that our detector’s 140cm range predicts the
expected results more accurately, since the ghost’s PN532 chip needs to receive
the messages error-free in order to decode them.

Based on [25] we believe that a greater downlink range may well be possible.
However, we must note that the ghost range is bounded by both the uplink and
the downlink ranges.

4.2 Ghost-to-Reader (Uplink) Range Estimation

An isolated estimation of the uplink performance was a more challenging task,
since transmission from the tag to the reader occurs only after a successful recep-
tion of a reader’s frame by the tag (i.e., a working downlink channel is required).
Hence, in order to test the performance of the RF part of the uplink channel
(signal generator, amplifier, and antenna) we conducted a jamming experiment.
The basic principle of the jamming setup is to use the same setup as the uplink
channel, only without modulation, in order to transmit a continuous wave signal
at the upper side band frequency (14.4075 MHz, recall Figure 5). By transmit-
ting a powerful signal towards the reader at the same frequency as the tag’s
transmission, we block the tag’s response and jam the communication between
the reader and the tag.
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Table 1. Jamming experiment results

Antenna Full jamming range [cm] Partial jamming range [cm]
39 cm loop 95 125

Hustler 110 165
Helically wound 200 230

We assume that since in the jamming case the signal should only interfere
with a legitimate signal, and not transmit any information, jamming should be
an easier task than uplink transmission. Therefore, by measuring the jamming
range we obtain an upper bound on the achievable uplink range.

Another objective of the jamming experiment was to determine which antenna
is the best for the uplink channel.We tested the following three antennas:

a. 39cm copper tube loop antenna (the one used for the downlink setup)
b. New-Tronics Hustler: MO-4 (mast) + RM-20-S (resonator), which is

designed for the 14–14.35MHz ham radio band [20] (See [29, §6-29])
c. Broadband vertical helically wound antenna: NVIS-HF1-BC (See [29,

§6-37])

Note that in the jamming experiment the KL400 power amplifier was not used,
and the signal was amplified only with the Mini-Circuits pre-amplifier. Further-
more, since no information was transmitted, we did not need to worry about
distortion, and the amplifier was operated with 15dBm input power, above its
1dB compression point. The results of the jamming experiments are summarized
in Table 1. Jamming was identified using an ISO14443A compliant tag placed
next to the reader. Using TI’s demo software the computer beeps every time
a tag is recognized. We distinguish between two jamming types: full jamming
is defined when no beep is heard from the reader for more than 10 seconds,
while partial jamming is defined when 1-2 beeps per second are heard, but still
significantly fewer beeps than with no jamming signal at all (5-10 beeps per
second).

We notice that the helically wound antenna gives the best jamming range, and
therefore, it was chosen for use in the uplink channel. The jamming experiment
is described in further details in [23].

4.3 Full Range Extension Experiment

After estimating the achievable ranges of the different building blocks in isola-
tion, we constructed a full range extension device (ghost). All the range extension
experiments were done with the helically wound antenna chosen during the jam-
ming experiments as the uplink antenna, and the 39cm copper tube loop antenna
as the downlink antenna.

A successful downlink can be observed by watching the PN532 response to a
reader’s frame, which is manifested in a signal on the LOAD_MOD pin. As a
diagnostic tool, a scope was used to monitor the LOAD_MOD output, in order
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to identify a successful downlink. The measured downlink range is 120cm – two
orders of magnitude greater than the nominal range, and enough in many cases
for an attacker to move far enough from the victim reader to avoid capture.

On the other hand, uplink measurements were more complex, since the uplink
channel was found to be very sensitive to the surrounding environment and cable
orientation. A successful uplink was identified by hearing the TI reader’s demo
software beep for a successful read of a tag. So, a successful uplink also meant a
successful range extended relay. Our first attempts with measuring uplink ranges
produced suspiciously high ranges. We discovered that the high range was due
to an unwanted coupling effect as noticed by [30]. In our initial setup a coaxial
cable was passing between the uplink setup and the reader (not connected to
any of them), serving as a waveguide for the uplink signal.

We then decided to move our setup outside of the building in order to work in
a clear and robust environment. The first measurements were held with only the
Mini-Circuit’s 25dB pre-amplifier which has an output-1dB-compression-point of
29dBm (~800mW). In practice, we noticed that at output levels of above 25dBm
(~300 mW) the performance of the uplink channel was severely degraded. We
believe that this is the result of noise created by operating the amplifier close to
its compression point. Therefore, all the measurements were done using a 0dBm
power at the output of the signal generator.

At first, the experiment was held with the monopole antenna alone, and we
achieved only a 35cm uplink range. We believe that this is due to the fact that
monopole antennas need to be placed over a proper ground plane for optimal
performance. Since the wave length of our uplink signal is ~20m a true ground
plane is impractical. Instead, we assumed a car mounted setup, in which the car
itself can serve as a ground plane. To emulate a private car’s dimensions we used
a 1m2 tin plate as a ground plane. With the antenna bolted onto the tin plate
and using only the pre-amplifier we managed to get an uplink range of 85cm.
We noticed that this setup is very sensitive to the orientation of the antenna
cable regarding the tin plate – with different cable orientations the maximal
uplink range varied between 45cm to 85cm. We further noticed that the best
uplink ranges were achieved when the antenna was facing the side of the victim
reader and not its front. A possible explanation is that when the uplink antenna
was placed in front of the reader, it was jamming the downlink antenna from
receiving the reader’s signal, and therefore preventing a full relay.

At last, after establishing a good setup for the uplink antenna, we added the
power amplifier into the transmission chain. Since our pre-amplifier can only
produce up to 300mW without distorting the signal, yet the RM-Italy KL400
amplifier’s input power must be at least 1W, we had to bypass an internal relay
inside the amplifier’s circuit in order to let the amplifier open for transmission
with lower input power. During our experiments we set the KL400 only up to its
2nd power level (out of 6 possible levels) due to radiation hazard concerns (both
for the equipment, and for our safety). Later we measured the output power of
the modified KL400 amplifier set to its 2nd level and found out the output power
of our system was about 7W.
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Table 2. Range extension results

Antenna setup Amplifier Full bidirectional range [cm]
no ground plane pre-amplifier (Pout = 300mW ) 35
1m2ground plane pre-amplifier (Pout = 300mW ) 85
1m2ground plane pre-amplifier + power amplifier (Pout = 7W ) 115

After all modifications, the measured uplink range including the power am-
plifier was 115cm, which is almost the same as our measured downlink range,
and again enough for an adversary to mount his attack from the next room. The
results of the different uplink setups are summarized in Table 2. The final setup
including the tin plate and the power amplifier can be seen in Figure 7.

Fig. 7. The full range extension setup outside our building. The victim reader is located
on the lab stool in the middle of the picture. The uplink antenna on its ground plane
is on the left. The downlink loop antenna is behind the reader. The victim tag is on
the table in the back, next to the laptop running the relay software.

5 Discussion and Conclusions

The range extension setup described in this work has significant implications on
the security of close range RFID systems. The same setup can also be used for
legitimate purposes, in order to enhance RFID capabilities. In this section we
briefly introduce two attack scenarios and some legitimate use examples for this
setup.
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5.1 Attack Scenarios

E-voting. The work of [24] presents a set of physical attacks on Israel’s proposed
e-voting system which uses ISO/IEC 14443 tags as voting ballots. Using a relay
setup an attacker can mount a ballot sniffing attack (which allows him to
learn at any time which votes were already cast into the ballot box), a single
dissident attack (which can undetectably suppress the votes for any amount
of voters), and finally a ballot stuffing attack (which gives the adversary
complete control over previously cast votes).

Using a nominal-range relay the attacks mentioned in [24] are limited since the
adversary must be in a range of 5-10 cm from the target ballots, which places him
inside the ballot station’s room, and in front of the election committee members.
However, if the relay setup is enhanced with a range extension setup the attacks
can be mounted from a distance, possibly even from outside the room, which
allows the attacker to mount the attack without being detected.

Access Control. One of the most common application of close range RFID is
for access control into restricted areas. Using personal RFID tags only authorized
personnel can enter a restricted area.

Using a relay setup an adversary can use a victim worker’s identity while he
is away from the restricted door, and the tag lies in his pocket, to open the door.
However, using a nominal relay setup, this attack scenario is limited, since when
the attacker approaches the door holding his ghost device instead of a regular tag
he can be easily spotted by the other workers who walk by. Alternatively, if the
attacker mounts a range extension setup in a distance from the door (possibly
even behind a wall), he can cause the door to open while an accomplice walks
towards the door and waves a decoy blank tag in front of the reader. Since the
accomplice does not carry any special hardware other than a decoy tag, the risk
incurred by the attacker is drastically lowered.

An interesting twist on this attack would be combination of an RFID zapper
[27] and an extended-range ghost. An RFID zapper is a low-cost device which
can completely disable a victim tag by applying a high-energy electromagnetic
pulse to its RF input. If an attacker first zaps a victim’s tag, then applies an
extended-range ghost attack to the reader just as the victim attempts to use his
(now disabled) tag, it will give any human observers the impression that one tag
is used, while effectively activating a different tag. This forces an innocent user
to be an accomplice to the relay attack described above.

5.2 Legitimate Uses for Range Extension

Besides breaking the close range assumption, and violating the system’s security,
the range extension setup can be used for legitimate purposes.

For example, a handicapped person sitting in a wheel chair might find it hard
to use RFID tags, since most of the readers are placed out of his reach. By
mounting a range extension setup onto the wheel chair, the user will now find
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it possible to enter through doors with RFID access control, or pay for public
transportation without asking for help.

As another example, nowadays many parking lots have RFID tags for sub-
scribers. Many drivers find it hard to reach the RFID reader through the car’s
window. By mounting a range extension setup onto his car, the driver can enter
into the parking lot without the effort of reaching the reader at the entrance of
the parking lot.

5.3 Conclusions

In this work we presented a range extension setup for contactless smart cards.
The setup can be mounted on any car, and powered by a regular car battery.
The entire setup costs about $2,000. The uplink antenna constitutes most of the
sum, and can be replaced by a cheaper model for cost reduction.

Using this setup the close range assumption of ISO/IEC 14443 applications is
broken, since the tag does not have to be placed 5-10cm from the reader, but can
be at a distance of over 1m. Moreover, the more severe implication of this attack
is in combination with the known relay attack. While one of the drawbacks of
a regular relay attack is that the attacker can be seen operating a device right
next to the reader or the tag, using our range extended ghost together with a
range extended leech presented at [16] the attacker can conceal his devices, and
in the case of the range extended ghost might even place his device in the next
room.

The attacks mentioned above operate at the physical layer of the standard,
and therefore, are difficult to defend against by a protocol based solution. De-
signers of close range RFID applications like: credit cards, e-passports, access
control, and e-voting should take into consideration the threats introduced by
extending the nominal operation range of ISO/IEC 14443 tags.
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Abstract. In this paper, we introduce a new Denial-of-Service attack against Tor
Onion Routers and we study its feasibility and implications. In particular, we ex-
ploit a design flaw in the way Tor software builds virtual circuits and demonstrate
that an attacker needs only a fraction of the resources required by a network
DoS attack for achieving similar damage. We evaluate the effects of our attack
on real Tor routers and we propose an estimation methodology for assessing the
resources needed to attack any publicly accessible Tor node. Finally, we present
the design and implementation of an effective solution to the problem that relies
on cryptographic client puzzles, and we present results from its performance and
effectiveness evaluation.

Keywords: Tor network, DoS, client puzzles.

1 Introduction

To date, the Tor network [5], one of the most widely used anonymizing systems, con-
sists of more than 3000 Onion Routers that serve daily over 400000 users [25]. Tor
helps people all around the world circumvent censorships imposed by oppressive gov-
ernments, anonymously report abuses of civil rights, and support the freedom of speech
and information [28]. It is therefore easy to understand why its security and anonymity
properties have attracted a lot of attention over the past years. On the one hand, the
community of people and volunteers grown around the Tor network are interested in
keeping it secure and operational for its users. On the other hand, however, oppressive
governments and organizations may be interested in finding ways to identify people
who use it or hinder others from utilizing its services [26].

Being a distributed system operated by volunteers, the anonymity of Tor users is vul-
nerable to attacks where a set of malicious routers, controlled by an adversary, join the
network with the aim of gaining control of user circuits. The Tor network is specifically
designed and continuously updated to address these types of threats, but another option
available to the adversary would be that of putting a network DoS attack into place with
the aim of making it impossible, or very hard, for users to communicate with Tor routers
and Tor routers with each other [2]. Such an attack could be used to either significantly
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degrade the users’ perceived quality of service, which would discourage them from us-
ing Tor, or to affect the topology of the Tor network in a way that favours traffic flowing
through malicious routers, thus increasing the power of the adversary. A network DoS
would not require a deep knowledge of the Tor network internals and could be per-
formed by using well known, pre-existing, off-the-shelf methods [29]. Clearly, since
such an attack is orthogonal to those that the Tor network was designed to address, we
cannot expect Tor to be resilient to it.

Nevertheless, the protocols used by clients to setup circuits through the Tor network
are vulnerable to a simple attack that would allow an adversary to achieve an effect
similar to that of a network DoS, but with just a fraction of its bandwidth resources.
In this paper, we present this attack, named CellFlood , and provide an experimental
evaluation of it both in a controlled environment and on the real Tor network. Our
results, and our estimations based on measurements from a real Tor router, show that
CellFlood is not only effective, but also cheap enough to make a feasible alternative
to more sophisticated attacks to the Tor network that have been presented in the past.
As a way to mitigate the effect of this attack, we propose to use a client puzzle-based
technique that would allow Tor routers under attack to keep their ability to provide
service to honest clients. The main contributions of our work are the following.

– We study CellFlood, a new DoS attack against Onion Routers that significantly im-
pacts their ability to serve circuit creation requests. As opposed to a straightforward
network DoS attack, which produces a very large number of lightweight service re-
quests, our attack uses few “heavy” circuit creation requests that can be quickly
generated by the attacker on the cheap, but require long processing from the vic-
tim. For instance, to halve the processing capability of our least powerful routers,
this attack requires only 178 Kb/s, which is the 0.2% of the resources needed for
a network DoS attack that matches the maximum Tor data rate supported by the
router. For our newest routers, depending on the amount of resources (i.e., CPU
cores) they dedicate to serve Tor requests, the attack can require between 2.5 Mb/s
(1 core) and 40 Mb/s (16 cores), which is between 1.0% and the 16.0% of the
resources needed for an equivalent network DoS.

– We conducted an extensive evaluation regarding the feasibility of the attack both in
a controlled environment as well as on the real Tor network. Our findings demon-
strate that the attack is effective under different configuration parameters.

– We introduce a lightweight estimation technique for the resilience of a remote,
non-cooperative Onion Router to the attack. Our estimates show that, to halve the
processing capability of 48 among the most used Onion Routers of the Tor network,
CellFlood would require between 2.6 and 9.76 Mb/s per router.

– We discuss the design, implementation, and effectiveness of a mitigation scheme
based on client puzzles. Our improved version of the protocol allows routers under
attack to easily impose a cap on the attacking host(s), thus preserving their ability to
process honest client requests. At the same time, our tests confirm that our protocol
has a small impact on the quality of the service perceived by Tor users, even in
extreme scenarios.
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2 Background

Tor is a distributed overlay network of Onion Routers (ORs), or just routers for brevity,
which allows users to get anonymous access to websites and other network services
(e.g., SSH, IRC, SMTP, DNS, VNC). Tor decouples clients from the endpoints they
aim at connecting to by means of multi-hop paths named circuits. Each circuit typically
consists of three routers that forward user data from source to destination (and vice
versa) in an encrypted way. Data flow through Tor in 512-byte packets, called cells,
which are routed using “Onion Routing” [11]. When sending data, a Tor client fills the
payload of a RELAY DATA cell, and encrypts it iteratively with a different symmetric
key (session key) for each hop on the circuit. Upon receiving a cell, an OR removes
(“peels off”) one layer of encryption, with the session key previously negotiated with
the client, and forwards the result to the next hop on the circuit (or the final destination).

The negotiation of a session key with each router in a circuit is performed in steps.
At each step, the client sends a RELAY EXTEND cell to the latest router ORi that the
circuit has been extended to. The cell wraps an onionskin, indicated as E(gx), where gx

is the first half of a Diffie-Hellman exchange, and E denotes encryption with the onion
key of the next routerORi+1 in the circuit. The onion key is a public 1024-bit RSA key
the client previously downloaded from a set of trusted Tor authorities. Upon receiving
the RELAY EXTEND cell, ORi extracts the onionskin and sends it to ORi+1 in the
payload of a CREATE cell. ORi+1 uses its private onion key to decrypt gx, computes
the second half gy of the handshake, a hash of gxy, and sends everything back toORi in
the payload of a CREATED cell. Finally, ORi forwards the CREATED cell to the client
by encapsulating it into a RELAY EXTENDED cell.

The procedure to negotiate a session key with the router at the first hop of a circuit
is slightly different. Firstly, since there is no other OR between the client and the entry
router, the client must put the onionskin directly in the payload of a CREATE cell (in-
stead of using a RELAY EXTEND cell). Secondly, most of the times a more lightweight
procedure is used that does not involve a Diffie-Hellman exchange, nor public key cryp-
tography. This is because, by default, a Tor client keeps an authenticated and secure TLS
connection with a set of three guard nodes from which all the circuits are initiated [31].
When using a guard node as the first hop of a circuit, the client and the router exchange
the random data used to setup the session key in the payload of a CREATE FAST and
CREATED FAST cell, without any further encryption (TLS is sufficient).

3 The CellFlood Attack

Whenever a Tor client extends a circuit, it generates an onionskin using the public onion
key of the target router. Likewise, the target router processes it using its private onion
key. This operational model makes the processing of onionskins from routers a more
expensive than that of generating them. For instance, as we experimentally verified, do-
ing 1024-bit private key operations on a modern high-end server is ∼ 20 times slower
than doing 1024-bit public key operations [22], which translates into the time to process
a CREATE cell being 4 times bigger than that of generating it. This imbalance can be
exploited by malicious clients to consume, with relatively small effort, all the computa-
tional resources of an OR by means of a continuous stream of CREATE cells. To make
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matters worse, an attacker does not even have to create a different onionskin for each
CREATE cell, as all the cells may contain the same onionskin.

Due to the architecture of Tor software, flooding a Tor router with an excessive num-
ber of CREATE requests does not necessarily disrupt the router’s ability to forward
RELAY DATA cells. Indeed, Tor delegates the processing of onionskins to a pool of one
or more threads (processes), called CPU Workers; this allows the main thread (process)
to keep up with the more critical work on the RELAY DATA cells, while the CPU work-
ers perform the expensive and delay-tolerant tasks in the background. Nonetheless, a
router that receives CREATE cells at a rate higher from what its CPU workers can pro-
cess collectively will eventually start discarding them by replying with DESTROY cells.
As a consequence, an OR that is under attack is going to discard onionskins produced
by honest clients too, which in turn will eventually stop selecting that OR for their cir-
cuits. Thus, if CellFlood is performed strategically, on a selected set of important ORs,
it may result in overloading the surviving part of Tor (e.g., by overwhelming the unaf-
fected routers with an excessive number or circuits), as well as favouring circuits pass-
ing through certain routers, which may well be compromised or controlled by attack-
ers [2] (i.e., similar to the link-cutting attack described by Bellovin and Gansner [1]),
thus degrading the anonymity of the Tor network as a whole.

According to our experiments, even routers running on recent hardware can only
process a limited amount of CREATE cells per second (i.e., a few Mbit/s), which makes
them potentially vulnerable to CellFlood. On the other hand, Tor routers can process
data to be relayed at a much higher speed, in the order of tens of hundreds of Mbit/s.
Hence, an attacker that is interested in excluding a router or a set of routers from the
Tor network will be better off using a stream of CREATE cells, rather than a simpler,
but more expensive (in terms of computational resources), DoS attack at the network
level.

3.1 Feasibility Study

Controlled Experiments. To study the effect of CellFlood on an OR, we first per-
formed experiments on a controlled environment. In particular, we investigated the ca-
pacity of a router, under different attack loads, to process benign CREATE cells that
carry onionskins produced by honest clients. Specifically, given the rate Rt cells/s at
which legitimate CREATE cells reach the victim router, and rate Ra cells/s at which the
attacker sends its bogus CREATE cells, we estimate the final rate Rx ≤ Rt of benign
cells that can be processed by the router. To launch an attack, we built a custom Tor
client that can establish a TLS connection to any victim router in the Tor network and
start sending through it a continuous stream of CREATE requests at a specified rate,
keeping count of the percentage of requests that get processed. An important aspect
of CellFlood is that generating the malicious stream of CREATE cells does not involve
any cryptographically heavy operation; all cells have exactly the same onionskin in their
payload and differ only on the cell header field storing the id of the circuit to be created.

Our testbed consisted of four hosts connected together through an isolated 100 Mbit/s
network. A Victim host (armed with a 2.66GHz Core 2 Duo CPU) played the role of the
victim OR in a private Tor network. According to our benchmarks, when idle, a single
core of Victim has a processing capacity (C) of ∼ 550 CREATE cells/s ( ∼ 2.1 Mbit/s).
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Fig. 1. The effect of CellFlood on a Tor Onion Router. Rt denotes the rate of benign cells, Ra is
the rate of bogus cells, and Rx shows the cells/s actually processed.

On the other hand, Victim can sustain a stream of data cells up to ∼ 250 Mbit/s, which
shows the magnitude of the advantage an attacker may have in flooding an OR router
with CREATE cells. The Attacker and Client0 hosts, running on exactly the same hard-
ware (featuring a 3GHz Pentium 4 CPU), are used to generate two concurrent cell
streams: one with bogus CREATE cells and another with benign. Finally, Client1 (also
armed with a 2.66GHz Core 2 Duo CPU), was used to generate a flow of random data
to be forwarded by the victim router. For our experiments, we used Tor v0.2.2.35 with
all options set to their default setting; the size of the pending CREATE cells queue
(MaxOnionsPending) and the maximum number of CPU workers (NumCPUs) had
their default values, 100 and 1, respectively.

Figure 1(a) shows the results obtained when Victim processes streams of CREATE
cells, one from Attacker, the other from Client0, in absence of any concurrent data
stream. Each line in the plot shows how the final rate Rx of accepted client requests
varies according to Rt, given a fixed rate of Ra. We varied Ra between C (i.e., 550
cells/sec), 2C, and 3C, which corresponds to 2.1, 4.2, and 6.3 Mbit/s of cell traffic. As
the figure shows, when there is no attack (topmost line in the plot) all benign onion-
skins get processed. When the attacker rate Ra matches the capacity C, the number
of requests successfully processed drops by approximately a factor of 2, whereas with
Ra = 2C and Ra = 3C, the drop factor is ∼ 4 and ∼ 8, respectively.

Next, we evaluated CellFlood under a more realistic scenario, where the victim router
processed a stream of RELAY DATA cells coming from Client1 at the maximum speed
allowed by the network, along with the stream of CREATE cells. We also configured
the victim router to limit its relay bandwidth to 5 MB/s (i.e., 40 Mbit/s), by setting
the BandwidthRate and BandwidthBusrst options, accordingly—this setting is
commonly used by Tor routers running on high speed networks for keeping the Tor
bandwidth capped. As Fig 1(b) shows, in absence of an attack (topmost line of the plot)
the capacity C of the relay dropped to ∼ 250 cells/s (∼ 0.9 Mbit/s), as opposed to the
550 cells/s that was the original capacity. This is because the stream of CREATE cells
now competes with the stream of RELAY DATA cells. Nevertheless, the other lines of
the plot confirm that CellFlood remains highly successful and has similar effects.

www.it-ebooks.info

http://www.it-ebooks.info/


CellFlood: Attacking Tor Onion Routers on the Cheap 669

 0

 5

 10

 15

 20

 25

00 02 04 06 08 10 12 14 16 18 20 22 00

A
ve

ra
ge

 c
el

ls
/s

Hour of the day

piyaz
piyaz3

Fig. 2. Daily average of CREATE cells/s received
by Onion Routers Piyaz and Piyaz3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

C 2C 3C

A
ve

ra
ge

 [a
ct

ua
l -

 e
xp

ec
te

d]
 p

ro
ce

ss
ed

 c
el

ls
/s

Ra

piyaz
piyaz3

Fig. 3. The accuracy of CellFlood when attack-
ing Tor Onion Routers in the wild

Experiments in the Wild. To assess the effectiveness of CellFlood on public Tor
nodes, which are subject to delay, packet loss, etc., we used two ORs under our control
that were actively participating to the Tor network. The first, nicknamed Piyaz was run-
ning on a Xen virtual machine with two virtual 3.06GHz cores, each with a capacity C
of 78 cells/s (∼ 0.30 Mbit/s). The other router, nicknamed Piyaz3, was a Xeon server
with 2.67GHz cores, each with a capacity of 658 cells/s (∼ 2.5 Mbit/s). At the time
of the experiments, both Piyaz and Piyaz3 had the fast, stable, and guard flags
on, which are given by the Tor authorities to relays with bandwidth and uptime above
a certain threshold, so as to provide Tor clients with a hint regarding which routers are
the most reliable ones. During our experiments, both ORs were processing an amount
of data traffic that varied between 16 and 32 MB/s. Figure 2 shows how the rate of
CREATE cells/s received by the two routers varies, on average, throughout the day.
Both ORs show a similar trend; they receive a higher rate of CREATE cells/s at night.

To diversify our tests, we decided to run the CellFlood attack on our routers once
every hour, for 2 minutes at a time. Each day, for 3 days, we used a different rate of cells
for our attack (i.e., C, 2C, and 3C), so as to check whether our results was consistent
with those we got from the controlled experiment. The concurrent data traffic that the
routers were handling during our tests was always lower than the maximum they were
able to process, so we expected our results to be consistent to those shown in Fig. 1(b).
Specifically, we expected Rx to be close to 1

2Rt for Ra = C, 1
4Rt for Ra = 2C, and

1
8Rt for Ra = 3C. Our findings are shown in Fig. 3. Each bar represents the average
difference between the value ofRx measured during the attack and the value ofRx that
we were expecting. The difference was always negligible: when Piyaz used as a victim,
the difference was ≤ 2 cells/s on average, whereas when Piyaz3 was the victim, the
difference was even smaller, always ≤ 0.2 cells/s on average.

4 Global-Scale CellFlood

The experiments presented in Sect. 3.1 indicate that an attacker can disrupt the ability
of an OR to respond to circuit creation requests, with only a fraction of the bandwidth
needed to perform a network DoS of comparable impact. The next step of our study is
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to quantify to which extent this is true for core Tor routers. Because of lack of publicly
available data regarding the hardware resources of Tor ORs, we remotely measured the
capacity of real nodes by means of a custom estimation tool. In the remainder of this
section, we will describe the tool and present the results of our estimations.

4.1 Remote Estimation Procedure

We are interested in studying the maximum rate of CREATE cells a remote Tor router,
not under our control, can process (denoted as C in Sect. 3). This problem is somewhat
related to that of estimating the bandwidth capacity of a non-cooperative remote host,
for which a number of packet-pair techniques have been proposed in the past [21].
However, these techniques do not fit our purpose. The CREATE cells are processed
in parallel by multiple CPU workers, and therefore, we have no guarantee that their
replies will be received in order. Hence, we opted for a simpler technique that involves
flooding the remote router for a short period of time (e.g., one minute) with a train of
valid CREATE cells, sent at the maximum speed allowed by the network, and counting
the percentage F of requests the router was able to process. A value of F less than 1
implies that the router was able to process cells at a smaller rateR′ = R×F < R (recall
that R is the rate at which the client sends the CREATE cells train), which is a lower
bound of the capacity C we try to estimate—this is because during a measurement the
OR may receive CREATE cells from other clients as well. Thus, by knowing R and
F , we can compute R′ and use it as an approximation of C. The percentage F can be
easily obtained by counting the number of requests replied with a CREATED cell over
the total number of cells sent, as the number of cells the remote router was not able to
process are replied with a DESTROY cell1. The rate R is simply the number of cells per
second at which our client was flooding the target router.

To validate the accuracy of our remote estimation procedure we performed a prelim-
inary test on a small set of 12 ORs that were participating to the Tor network at the time.
Thanks to active support from their administrators, we were able to get very accurate
estimations regarding the actual capacity C of these routers, which could then use as
the ground truth for the results obtained through remote estimations. The capacity C
was estimated based on: (i) the number S of 1024-bit private key operations reported
by the OpenSSL speed utility, (ii) the maximum number of concurrent CPU workers
the router is allowed to spawn, and (iii) the number of CPU cores available. Specifically,
by assuming a linear relation between S and the number N of CREATE cells a CPU
worker can process per second, it is possible to compute the value NA of a machine
A as NA = SANB

SB
, by just knowing two reference values, SB and NB , computed on

any other machine B. If the number of CPU cores is at least equal to the maximum
number of CPU workers Tor is allowed to spawn, the capacity C of a router A can be
then computed as NA multiplied by the number of CPU workers. Tests performed on
a heterogeneous set of machines in our laboratory confirmed that this local estimation
technique works within a level of accuracy that is sufficient for our purposes: in all
cases, the absolute error in our local estimations was less than 20 cells/s (i.e., ∼ 80
Kbit/s), while, on average, the error was about 10 cells/s (i.e.,∼ 40 Kbit/s).

1 Error code: END CIRC REASON INTERNAL.
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Fig. 5. Accuracy of the remote capacity es-
timation procedure. The shade represents the
confidence of the measurement (lighter shade
correspond to higher confidence).

With the results of our local estimation at hand, we remotely estimated the capacity
of the routers in the test set during a timespan of 11 days. The estimation of the capac-
ity of a router is the result of 126 measurements (one every 2 hours) each lasting 60
seconds. Each measurement produces a pair of values (R,F ), where R is the speed at
which the cells were reaching the router and the productR× F is the estimated capac-
ity. Figure 4 shows the measurements relative to a router in the test set. Each point in
the plot represents a measurement, and the line f(x) = x is where the points relative to
the measurement that did not hit the capacity of the router would lie. The figure shows
a clear trend: as the the rate R increases, the value R × F starts following roughly the
f(x) = 7 line, meaning that the measurements hit the capacity of the router and forced
it to discard some cells.

For each router our measurements yielded two values: the maximum estimated ca-
pacity, and a confidence metric for the accuracy of the estimation. The former is given
by the point maxi (Ri, Fi)—i.e., the measurement that maximizes the estimated capac-
ityRi×Fi. The latter is the value 1.0−Fi, that is, the percentage of cells the router was
not able to process during the measurement that produced the highest estimated capac-
ity. The intuition behind this choice is that, the higher the percentage 1.0 − Fi of cells
the router was forced to discard, the more certain we can be about the rate Ri having
exceeded the capacity of the router—i.e., the value Ri × Fi is a good approximation
of the capacity. Although the confidence metric gets values in the interval [0, 1], values
close are 1 are not common. For instance, a confidence of 0.9 would mean that the rate
R was ten times bigger than the capacity of the router, which can presumably happen
only when the capacity of the router is very low. We thus deem confidence values of
at least 0.5 as high, since they are produced by measurements where the rate R was at
least twice as the capacity.

Figure 5 shows the aggregate results of the estimations that we performed on the
12 ORs. Each bar represents the difference between the remotely and locally estimated
capacity of a given router. The shade of the columns represents the confidence metric
described above. The lighter the shade, the higher the confidence. As the picture shows,
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Fig. 6. Estimated capacity C for the 78 Tor Onion Routers

in almost all the cases our remote estimation technique gives a lower bound of the
actual capacity of the routers (i.e., the columns have negative values). This is normal,
since the routers were probably receiving a concurrent flow of CREATE cells during
our measurements. The only case were we overestimated the capacity was for router
number 9. However, this is acceptable for the type of study we are doing (i.e., the router
is computationally “weaker” from what we think).

4.2 Estimating the Effects of CellFlood on Tor

We ran our remote estimation tool on a set of 78 routers selected according to both the
amount of time they had been part of the network (at least 2 months) and the amount of
data they were relaying, as it was reported in [27]. This allowed us to get a snapshot of
the routers that were part of the “core” of Tor, that is, the set of ORs on which the net-
work was depending on in order to provide a good and reliable service to its users. At
the time of the experiment (May 2012), these routers were responsible for the ∼ 50%
of the total traffic flowing through the Tor network. As with the tests of Sect. 4.1, we ran
our remote estimation tool every 2 hours for 11 days, with each measurement lasting
60 seconds. Results are shown in Fig. 6. The height of each bar in the plot represents
the estimated capacity C of a router, whereas the shade represents the confidence of
the measurement (i.e., the lighter the bar, the higher the confidence). For some of the
routers, especially those in the range 14–59, we measured low C values (around 2 and
4 Mbit/s) with high confidence (above 0.5). On the other hand, the measurements of the
capacity of the topmost 8 routers yielded higher values (4 to 10 Mbit/s), but for two of
them the confidence was rather low (less than 0.4). The measurements of the 5 routers
in the range 9–13 yielded very low capacity (less than 1 Mbit/s) but a confidence level
very close to 0, meaning that there was never enough bandwidth between them and our
measuring machines to give an accurate estimation. The router number 60 was the one
with highest capacity (close to 16 Mbit/s), plus, the confidence of the measurement was
close to 0.1, so we can expect the actual capacity of that router to be even higher. In
general, our confidence values were high (i.e., at least 0.5) for 48 routers, which were
relaying for 22% (i.e., 2.8 Gbit/s) of the total amount of data flowing through the Tor
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network at that time. Considering our findings in Sect. 3.1, these values are low enough
to open the possibility for an attacker to cause a significant disruption to specific routers
or to the Tor network as a whole with relatively small bandwidth resources. For instance,
the total bandwidth needed in order to flood those 48 routers whose capacity was mea-
sured with high confidence would just be around 116 Mbit/s. Even in the pessimistic
case where our estimation gave only the 50% of the actual values (which, given our
high confidence values, is unlikely) the total bandwidth needed by an adversary to clog
them would just be 232 Mbit/s.

5 Client Puzzles to the Rescue

As a countermeasure to the CellFlood attack we propose a solution based on client
puzzles. With client puzzles, a server under attack commits the resources needed to
satisfy a given request (i.e., processing an onionskin) only after the client has performed
some computationally intensive work, usually in the form of solving a cryptographic
problem. This adds a computational constraint to the attacking host(s), thus reducing the
power of the adversary. Client puzzles are a good fit for Tor for several reasons. First,
each router can defend itself against a CellFlood attack without cooperating with other
ORs. This is consistent with the trust model of Tor, where any router can turn out to be
malicious. Second, client puzzles are not affected from how the attack is orchestrated.
That is, whether coming directly from a router or a client, or indirectly, through another
router by encapsulating onionskins into RELAY EXTEND cells (instead of CREATE
cells). Third, the topology of the network will be preserved, as routers under attack will
not be forced to close any active connections in the hope of stopping the attack. Finally,
the difficulty of client puzzles can be adjusted according to the strength of the attack,
thus making the solution effective even in the case of a global-scale CellFlood.

Figure 7 shows how the client puzzle protocol works when establishing a session key
with the first two hops of a circuit. The procedure for the 3rd (4th, 5th, etc.) hop is similar
and omitted for brevity. If a CREATE FAST cell is used for the first hop of the circuit,
puzzles will never be issued, as no intensive cryptographic operation is required (see
Sect. 2). In the remainder of this section, we will discuss in great detail the design and
implementation of our mitigation scheme for CellFlood attacks that is based on client
puzzles.

5.1 Building and Solving Puzzles

Our client puzzles are built upon SHA256-based message authentication codes
(HMAC). To build a puzzle, the router generates s (a random 64-bit key) and com-
putes the value X = HMAC(s, P |H), where P |H is a message resulting from the
concatenation of the onionskin P contained in the payload of the CREATE cell and the
hash H of the router’s public identity key, which is a long-term public key that estab-
lishes the router’s identity. Finally, a key s′ is generated by setting the least k-bits of
s to 0. The puzzle is the triplet (s′, k,X) and does not include the HMAC message
P |H , since P and H are both known to the client. To solve the puzzle, the client has
to guess the k unknown bits of s starting from s′, by computing, for each tentative s′′,
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Client OR1 (identity: H1) OR2 (identity: H2)
H1 = select_relay( )
P1 = new_onionskin( ) CREATE (circuit_id1, P1 = E(g^x1) )

RELAY (PUZZLE, s1', k1, X1 = HMAC(s, P1|H1))

RELAY (PUZZLE_SOLUTION, s1, P1)

CREATED (circuit_id1, g^y1)

RELAY { (EXTEND, H2, P2 = E(g^x2)) }

H2 = select_relay( )
P2 = new_onionskin( )

s1 = solve(s1', k1, X1)

CREATE (circuit_id2, P2)

RELAY (PUZZLE, s2', k2, X2 = HMAC(s, P2|H2))

RELAY { (PUZZLE, s2', k2, X2) }

s2 = solve(s2', k2, X2)
RELAY { (PUZZLE_SOLUTION, s2, P2) }

RELAY (PUZZLE_SOLUTION, s2, P2)

RELAY{ (EXTENDED, g^y2) }

s1, s1', k1, X1 = new_puzzle(P1)
store_solution(circuit_id1, s1)

check_solution(s1)

g^y1 = process_skin(P1)
delete_solution(s1)

s2, s2', k2, X2 = new_puzzle(P2)
store_solution(circuit_id2, s2)

check_solution(s2)

g^y2 = process_skin(P2)
delete_solution(s2)

CREATED (circuit_id2, g^y2)

Fig. 7. Client puzzle protocol for mitigating CellFlood attacks (assuming that CREATE FAST
cells are not used and puzzles are send at each hop). ‘{}’ denotes encryption with the session key.

HMAC(s′′, P |H) and comparing it against X to check whether s′′ = s. Since finding
a pre-image for SHA256 is computationally infeasible, a puzzle with k unknown bits
requires an average of 2k−1 tentatives, which grows exponentially with k. This allows
the puzzle complexity to be adjusted at will from few milliseconds up to several hours.

5.2 Sending Puzzles and Solutions

As Fig. 7 shows, puzzles and puzzle solutions travel in the payload of RELAY cells
with command code PUZZLE and PUZZLE SOLUTION, respectively. These cells are
subsequently encrypted (resp. decrypted) with the session key previously negotiated
with any router in the portion of the circuit built thus far. The only router that can read
both the puzzle and its solution is the last one, which stands between the client and
the router that issued the puzzle. That is, OR1 in Fig. 7, when the client is extending
the circuit to OR2. What preventsOR1 to maliciously interfere with the protocol is the
fact that the client expects the HMAC message used to generate the puzzle to be P2|H2.
This ensures that the client will refuse to solve any puzzle produced with another pair
of P2 and H2, and that no other router but OR2 (with identity H2) will accept the
solution.

Another important detail is that the use of RELAY cells (to send puzzles and puzzle
solutions) makes our protocol backwards compatible with the ORs that implement the
original Tor protocol, which does not support puzzle messages. These routers will be
able to encrypt/decrypt PUZZLE and PUZZLE SOLUTION cells, similarly to any other
RELAY cell. Also, a non puzzle-compatible client that receives a PUZZLE cell will
ignore it and try a different OR. This allows for the incremental adoption of our solution,
since it does not require all routers and clients to upgrade their software at once.
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5.3 Verifying Solutions

To check whether a puzzle solution is correct, a router compares the received solution s
to the one stored when the puzzle was generated (check solution in Fig. 7). In our
implementation, storing a puzzle solution requires 18 bytes of memory (8 for the puzzle
solution + 8 for the connection id + 2 for the circuit ID), and it stays in memory until the
router receives a reply from the client or a timeoutΔp expires (delete solution).
The role of the timeout is to prevent an attacker from consuming all the memory of a
router, by leaving puzzles unsolved.

Choosing a good value for Δp is not hard; even with a Δp as big as 2 minutes, an
attack of 189 Mbit/s will consume 100 MB of memory. Considering that our measure-
ments have shown that the most important routers of the Tor network can support a
stream of CREATE cells of a few Mbit/s (see Sect. 4.1), an attacker that dedicates 189
Mbit/s of bandwidth for clogging each router is much more powerful than the model of
the adversary we are considering. Also, according to our tests, a timeout of 2 minutes
is way more than enough even for slow clients to be able to solve the puzzle on time.
Nevertheless, the Δp parameter can be adjusted to greater or smaller values depending
on the situation. An alternative strategy could be to not store the solution, and give each
puzzle an expire time to avoid an adversary reusing the same solution multiple times.
Setting the expire time, however, is a complicated task that requires carefully estimat-
ing the capacity of the attacker (in terms of bandwidth) and the speed at which honest
clients can solve puzzles. A big value will give too much power to the attacker, whereas
a small value will discriminate slow honest clients. We believe that our solution strikes
a balance between security and performance, as it comes with moderate cost.

5.4 Choosing the Puzzle Difficulty

Two possible approaches can be used here: (i) always send puzzles to clients, or (ii) send
puzzles only when an attack is in place. The first approach is simpler, but most of the
time it imposes an unnecessary load on Tor clients. The second one is lightweight, but it
involves inferring whether a DoS attack is in place or not. For the latter case, a custom
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and lightweight approach could be used where each Δx seconds the router counts the
total number Px of CREATE cells that it was able to process and the number Dx of
those that it had to discard because all the CPU workers were busy. An exponential
moving average (EWMA) μ ∈ [0, inf) of the fraction Dx/Px could used to detect
when the average percentage of dropped cells reaches a threshold value β. The first
time μ becomes bigger than a threshold β, the router starts sending puzzles with a
initial difficulty parameter k (e.g., k = 16) for Δx seconds. At the end of the interval,
the router increases or decreases the difficulty k of the puzzle by one bit depending on
whether the updated value of μ has become smaller than β or not. This would allow the
router to continuously adjust the difficulty parameter k, as shown in Fig. 8. To avoid
imposing a too heavy load on an honest client, the maximum puzzle difficulty could
be set up to be around 20. The parameter β should be set to very low values (even
0), depending on how likely the router administrator believes his CPU workers will be
discarding cells during the normal operation time. Finally, the value of Δx is not very
critical, but it should be short enough to allow quickly finding the right puzzle difficulty.

5.5 Testing and Evaluation

Puzzle Solution Performance. We studied the time it takes to solve client puzzles
on a wide range of machines, which vary from slow, outdated hardware, to brand-new,
high-end workstations. Figure 9 shows the speed at which our machines were able to
solve puzzles for k ∈ [14 − 18]. As the figure shows, even for a value as small as 17,
our fastest host (armed with an Intel Core i7 3.5GHz CPU) can solve just around 6
puzzles per second. It is interesting to notice that for a fixed k, there is no big differ-
ence between the performance of different hardware. For instance, our slowest machine
(the 3GHz Pentium 4) is slower by a factor of ∼ 3.2 with respect to our fastest one.
Thus, a router can easily estimate, within a reasonable level of accuracy, what would
be the impact of sending a puzzle of a difficulty k to honest clients and attackers alike.
According to this data, using a puzzle of difficulty k = 18 should be good enough for
slowing down an attack performed with today’s off-the-shelf hardware. For instance, if
the capacity C of a victim router is 300 cells/s, which is lower than that of Piyaz3, an
attacker should use the equivalent of around∼ 100 cores of our fastest Core i7 3.5GHz
machine, to successfully clog the router. On the other hand, the slowest clients should
only experience a delay of around 1 second.

Puzzle Generation Performance. To evaluate the load imposed by the client puzzle
protocol on ORs, we studied the time it takes for our test machines to read a CREATE
cell and generate a puzzle, and the time it takes to read a PUZZLE SOLUTION cell
and verify the solution. The tests machines used were Victim and Client1, plus the two
routers Piyaz and Piyaz3 (see Sect. 3.1). Figure 10 compares the capacity of these ma-
chines to process RELAY cells containing data to be forwarded (RELAY DATA column),
to read a CREATE cell and generate the relative puzzle (RELAY PUZZLE column), and
to check the solution (RELAY PUZZLE SOLUTION column). For clarity, the capacity
is shown in Mbit/s instead of cells/s, knowing that a cell size is 512 bytes. As the figure
shows, even our slowest machines, namely Client1 and Piyaz, when idle, can process

www.it-ebooks.info

http://www.it-ebooks.info/


CellFlood: Attacking Tor Onion Routers on the Cheap 677

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Client1 Victim Piyaz Piyaz3

C
ap

ac
ity

 (
M

bi
t/s

)

Hostname

RELAY DATA
RELAY PUZZLE SOLUTION

RELAY PUZZLE

Fig. 10. Time required by different Onion
Routers to generate puzzle cells and verify puz-
zle solutions, compared with the time it takes to
process regular RELAY DATA cells.

 0.01

 0.1

 1

 0.01  0.1  1  10  100

P
r(

tim
e 

to
 c

on
ne

ct
 >

=
 x

)

Time (seconds)

no puzzles
k=17
k=18
k=19
k=21

Fig. 11. Distribution of time-to-connect when
simulating a Tor client solving client puzzles

CREATE cells and generate the relative puzzles at around 90 Mbit/s. For Victim and
Piyaz3, the value is at least 200 Mbit/s. On the other hand, checking whether the puz-
zle solution is correct is much faster, even faster than processing a RELAY DATA cell,
since it just requires comparing the received solution with the one the router stored in
memory. From the security point of view, the values we got for the puzzle generation
on Victim and Piyaz3 do not represent an issue. An adversary that floods a router with
200 Mbit/s of data represents a threat anyway. For what concerns the slower machines
Client1 and Piyaz, performances can be improved using a SHA1-based HMAC (instead
of the SHA256-based HMAC). According to our experiments, this would increase their
capacity to generate puzzles up to 230 Mbit/s. To compensate for the higher speed at
which clients would be able to solve SHA1 HMAC puzzles, the routers should slightly
increase the difficulty k of their puzzles by one or two bits. Obviously, using a different
parameter k does not affect the puzzle generation speed in a noticeable way.

Quality of Service. Finally, we considered how the user-perceived quality of service
would change in case our puzzle protocol was actually used in the Tor network. To eval-
uate it, we set up an automatic test where a modified version of the Tor client introduced
fake delays in the generation of circuits. This allowed us to simulate both the time delay
caused by the transmission of puzzles and puzzle solutions, and the time spent by the
client to solve the puzzles. The first type of delay is computed starting from the Δ1,
Δ2, andΔ3 intervals of time needed for the RELAY EXTEND and RELAY EXTENDED
(or CREATE and CREATED) cells to be exchanged between the client and the routers
at the first, second, and third hops of the circuits respectively. By adding Δi to the cir-
cuit creation time, we simulate the exchange of the PUZZLE and PUZZLE SOLUTION
cells between the client and the i-th hop of the circuit. Note that if the client uses a
CREATE FAST cell for the first hop of the circuit, puzzles will not be used and the
extra delay Δ1 will be ignored. The simulation of the time needed to solve each puzzle
was based on a parameter telling the difficulty k of the puzzles. Again, this delay is
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Table 1. CPU usage when simulating a Tor client solving client puzzles

Difficulty k Avg. Sol. Time CPU Idle time % Avg. CPU usage %
(seconds) (when not idle)

0 0 90 3
17 0.5 90 23
18 1.0 87 37
19 2.0 85 52
21 8.0 66 75

added to each hop of the circuit except for the first one, unless the client decided to use
a CREATE cell instead of a CREATE FAST cell.

To automate the test, we implemented a simple HTTP client consecutively fetching
500 random web pages through our Tor client. The client randomly pauses between
each request and the next, so as to simulate the time between user’s clicks. The length
of the pause is drawn from the UNC think-time distribution [12]. This distribution is
also used by Jansen and Hopper [13] when simulating Tor users activity in their Shadow
simulator. In our evaluation, we focused only on the time it takes for the HTTP client
to connect to the web server hosting the page, as our client puzzle protocol affects
solely the creation of the circuits. Results are shown on Fig. 11 and Table 1. In these
experiments we assumed both the best-case scenario when no router asks the client to
solve puzzles (i.e., Δi is not used), and the worst-case scenario where all the routers
send puzzle cells in reply to the client’s CREATE cells (i.e., bothΔ2 andΔ3 are always
used, whereas Δ1 is not used in case of a CREATE FAST cell). In the latter case, the
puzzle difficulty parameter k was set to 17, 18, 19 and 21. The results are computed by
running 5 independent tests for each value k. The Tor client was running on Client1,
which is also the oldest machine we had available in our lab.

6 Related Work

Most of the research on Tor has focused on techniques aimed at degrading user’s
anonymity by means of congestion attacks (Evans et al. [7], Murdoch and Danezis [19]),
web page fingerprints (Shi and Matsura [23]), observations of the throughput of Tor
streams (Mittal et al. [16]), or by means of colluding nodes (Fu et al. [9], Levine et
al. [14]). Other attacks study the potential threat of a (semi) global adversary (Mur-
doch and Zieliński [17], Edman and Syverson [6], Chakravarty et al. [3]), although this
does not fit into Tor’s original adversary model. Specific attacks to Tor bridges and Hid-
den Services have been studied by McLachlan and Hopper [15], and by Murdoch [18],
respectively. Borisov et al. [2] study a selective DoS attack where Tor routers controlled
by an adversary relay only messages of circuits they can fully deanonymize, by control-
ling the first and the last hop, while disrupting everything else. They show that this type
of adversary has a significant advantage over a passive adversary like the one presented
by Syverson et al. [24]. Danner et al. [4] give a countermeasure to this attack that works
by probing the network for misbehaving routers. The proposed technique is able to de-
tect all the adversary-controlled routers with O(n) probes, where n is the total number
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of routers of the Tor network. A DoS-like packet spinning technique is presented by
Pappas et al. [20]. By increasing the circuit creation latency of the honest routers, they
allow an adversary to increase the probability of malicious routers to be selected. As
the method presented by Evans et al. [7], this attack works by building arbitrary long
circuits, which has become harder since Tor v0.2.1.3.

To the best of our knowledge, the only work in literature that is close to ours is the
one presented by Fraser et al. [8]. Their attack, however, exploits the well known DoS
attack against the TLS handshakes, whereas we focus on the circuit creation protocol,
which is specific to Tor only. Their solution is based on stateless client puzzles, but they
do not evaluate the impact of the time-window parameter telling how long a puzzle
solution is valid, which, on the other hand, we believe is critical (more about this in
Sect. 5.3). Also, as opposite to us, they do not give an estimation of the vulnerability of
the routers currently being part of the Tor network. Finally, their solution might actually
make it easier for censoring devices to spot Tor bridges by means of fingerprint attacks
(interested readers are referred to the recent study by Winter and Lindskog [30]).

7 Conclusions

In this paper, CellFlood, a DoS attack that exploits a security weakness in the circuit
creation protocol of the Onion Routers has been evaluated for the first time. Our results,
based on tests in a controlled environment and on an estimation performed on a set of
crucial Tor nodes, have confirmed that this attack could be not only possible but also
effective, and easier to perform, than a standard network DoS. We have proposed, fully
implemented, and evaluated a backward-compatible solution based on a client puzzle
protocol that would allow Tor nodes to increase at will the computational resources
needed to perform this attack. Our results show that the load imposed to honest clients
by our improved protocol would be moderate even in a worst-case scenario.
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Appendix

A User-Perceived Quality of Service

In Table 1, the difficulty parameter k of the puzzles is compared to the average time
needed to solve a puzzle (second column), to the percentage of time that the CPU was
idle during the tests (third column), and to the average CPU usage level when the CPU
was not idle (last column). From the table it can be observed that, as the difficulty of
the puzzle increases, the average CPU idle time decreases and the average CPU usage
percentage increases. It is interesting to see that although the time it takes to solve a
puzzle is as high as 8 seconds, the average CPU load is only 75%. Figure 11 represents
the distribution of the time-to-connect for varying client puzzle difficulty. As the figure
shows, there is never a relevant difference in the time it takes for the connection to be
established. In other words, the user’s perceived quality of service is not affected in
a noticeable way, not even in the case of k = 21 and all routers requiring the client
to solve puzzles before building a circuit. There reason is that the Tor client software
maintains a small pool of pre-built circuits that can readily serve new user request. Plus,
”dirty” circuits are reused for a certain amount of time before being closed definitively.
This design choice has been done in order to deal with any network delay there might
be in the creation of circuits. As our experiments have shown, this mechanism is good
enough to absorb the extra-delay imposed by client puzzles too.

One last important detail is that of our custom implementation of Tor delegates the
solution of the received puzzles to a pool of CPU workers, so as to avoid introducing
a delay in the processing of data to/from the Tor network. Using a single CPU worker
was sufficient even on the slow machine we used for these tests.

B Ntor Handshake

Starting with v0.2.4.8-alpha (released in January 2013), Tor supports a new circuit ex-
tension handshake protocol, ntor, designed by Goldberg et. al [10]. Ntor improves upon
the original protocol we described in Sect. 2 both in terms of security and speed by using
Dan Bernstein’s “curve25519” elliptic-curve Diffie-Hellman function. As of June 2013,
only about 7% of the routers of the Tor network support the new handshake protocol,
although this percentage is destined to grow over time. Preliminary tests performed in
our laboratory confirm that, depending on the machine, ntor provides a speed up factor
in processing create circuit requests of up to 4x. Nevertheless, as for the original circuit
extension handshake protocol, ntor presents an imbalance in the amount of resources
needed for client and routers respectively to extend a circuit, which is still exploitable
to perform a DoS attack like the one described in this paper.
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Abstract. In this paper, we introduce a navigation privacy attack,
where an external adversary attempts to find a target user by exploiting
publicly visible attributes of intermediate users. If such an attack is suc-
cessful, it implies that a user cannot hide simply by excluding himself
from a central directory or search function. The attack exploits the fact
that most attributes (such as place of residence, age, or alma mater) tend
to correlate with social proximity, which can be exploited as navigational
cues while crawling the network. The problem is exacerbated by privacy
policies where a user who keeps his profile private remains nevertheless
visible in his friends’ “friend lists”; such a user is still vulnerable to our
navigation attack. Experiments with Facebook and Google+ show that
the majority of users can be found efficiently using our attack, if a small
set of attributes are known about the target as side information. Our
results suggest that, in an online social network where many users reveal
a (even limited) set of attributes, it is nearly impossible for a specific
user to “hide in the crowd”.

1 Introduction

Over the last few years, online social networks (OSNs) have revolutionized the
way people behave and interact with each other over the Internet. OSNs enable
the majority of users to not just be passive consumers of the Web, but to become
active producers of content, and to be storytellers of their own lives for the first
time online. The other side of the coin is that privacy breaches are intrinsically
bound to OSNs, and new forms of surveillance and control have emerged with
OSNs. Recruiters are now known to look up Facebook profiles of job applicants,
and hiring discrimination based on OSNs has become a serious threat [2, 10].
Some employers and colleges even request the Facebook passwords of job appli-
cants and student athletes in order to get full access to their profiles [36]. OSNs
have also been exploited by government agencies of authoritarian regimes to infil-
trate protesters’ social networks. Several Syrian activists have notably reported
having been arrested and forced to reveal their Facebook passwords [35]. These
practices are only the tip of the iceberg of privacy erosion caused by OSNs.

The first, straightforward method for finding an individual in an online social
network is to rely on a central directory, if available. Obviously, a user u trying

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 682–699, 2013.
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to keep his profile private would opt not to be listed in such a directory or, if this
privacy option is not available,1 make use of a pseudonym. The second method
to reach u is to rely on the social links between users and to navigate via these
links towards u. This approach works if some of u’s friends show their friend lists
publicly (thereby exposing u), which is the default setting in most OSNs.

In order to find a hidden user, an attacker could search the whole public
social graph. However, such an exhaustive search, despite guaranteeing to find
any user in the giant component,2 would certainly be too expensive for OSNs that
contain hundreds of millions users, notably because of the anti-crawling features
deployed by virtually all OSNs. To reduce the search cost, the attacker can
decide to crawl only a targeted subset of OSN users. In this paper, we evaluate
the feasibility of such an attack for large networks and ultimately answer the
following question: Is it possible to find a target profile by navigating a small
fraction of the whole network, by relying on public attributes of queried profiles?
Answering this question is crucial for privacy, because reaching the target profile
or its neighborhood is the necessary precondition for any targeted attack such
as the inference of hidden attributes (e.g., political or religious views) through
other personal attributes [7, 29], or through friends’ public attributes [8, 22, 33].

To the best of our knowledge, this is the first work proposing to find a target
profile in an OSN by making use of social links between users. Our navigation
attack is generic in order to apply to any attribute-enhanced OSN (such as Face-
book, Google+, or Twitter). We propose a search algorithm that relies on a space
of attributes and distance heuristics based on A∗ search [17]. The categories of
attributes and their priorities can be adapted to any kind of OSN. Given the
OSN visibility, privacy policies, and the users’ privacy choices, we show how
the attack can be efficiently carried out, by implementing it in the two largest
OSNs, Facebook and Google+. For these OSNs, building upon results on nav-
igation and routing in social networks, the attack first relies on geographical
attributes only, then making use of additional types of attributes (such educa-
tion or work) as soon as it reaches the target’s city. Our results demonstrate
that 66.5% of Facebook users are findable by crawling a median number of users
smaller than 400; and 59% of Google+ users are findable by crawling a median
number of users small than 300. This shows that it is very difficult to hide in an
OSN, however large it is and to prevent targeted attacks and/or to deny the ex-
istence of a profile. Moreover, targets’ cities are reached in 92% and 93.5% of the
cases by crawling a median number of 13 and 8 users, in Facebook and Google+,
respectively. This shows the efficiency of geographic navigation in Facebook and
Google+. We propose two main explanations for the failed cases. First, the users
least likely to be discovered are those who have a small number of friends, or
privacy-cautious friends (who do not reveal too much information), or friends
whose revealed information is not similar to their own information. Second, users

1 It is the case of Facebook since the end of 2012.
2 This holds if the search starts from the giant component and the target is in this
component too. This is a fair assumption for current OSNs; for example, in Facebook,
99.91% of users belong to the giant component [39].
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living in larger cities tend to be harder than others to discover in Facebook. Al-
though the latter reason is inherent to the structure of the OSN and to the limit
we impose on the number of crawled users, the former is essentially due to the
privacy settings of the targets’ friends and the OSN dynamics. Our results show
that homophily in social networks [5, 30] does not only allow us to infer hidden
attributes of OSN users locally, but also allows us to efficiently navigate toward
the target. Note that we do not assume any prior knowledge about the network
structure and the users’ distribution in the network. Moreover, by starting the
navigation from a random user in the network, we consider the worst-case sce-
nario for the attacker and provide a lower-bound on the attack efficiency. It is
clear that the use of advanced search filters or source users closer to the target
can only further benefit the attacker. We briefly show how this can dramatically
reduce the search cost. Finally, we show that simple countermeasures exist and
could be implemented upstream by the OSN operators.

2 Related Work and Background

We present here the most closely related work on privacy threats in OSNs, show-
ing how our paper complements existing attacks. We also discuss the background
on navigation in social networks.

2.1 Privacy Issues in OSNs

Acquisti and Gross were among the first to mention the potential risks induced
by information sharing in OSNs in their seminal papers [1, 13]. They study in
detail the Facebook privacy settings and data visibility, and they emphasize the
potential threats caused by weak privacy settings (used by most users). In [23]
and [24], Krishnamurthy and Wills study what types of information are shared
with whom, by default or not, and what kind of privacy settings are available for
various pieces of personally identifiable information. They show that, among 12
OSNs, 10 publicly reveal social links by default and 1 reveals them always (i.e.,
without any possibility of changing the settings). 7 reveal by default the user’s
location and 5 always reveal it. 8 reveal the attended schools by default and 6
the employers. These statistics are relevant for our work as they show what kind
of attributes are publicly revealed, and thus can be used for the navigation.

He et al. [18] were among the first to propose inference attacks based on
the users’ neighborhood. They make use of Bayesian inference and multi-hop
inference to predict private attributes based on the friends, and friends of friends
of the targeted users. The authors apply their analytical findings to a LiveJournal
dataset with hypothetical attributes. In the same vein, Lindamood et al. propose
to infer political affiliation (binary attribute: liberal or conservative) based on
a modified Naive Bayes classifier [27]. Their results show that simply sanitizing
user attributes or links is not enough to prevent inference attacks. Johnson [20]
also emphasizes that social links can leak very sensitive information about a
specific Facebook user, for instance whether a certain user is homosexual or not.
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Zheleva and Getoor [43] propose novel inference attacks based on social links
and group memberships, which they apply in four different social networks. An-
other work on inference of undisclosed attributes proposes to rely on any of
the user’s public attributes, and on any of the aggregates of his friends’ at-
tributes [22]. Finally, Chaabane et al. [7] show how music interests can be used
to infer private sensitive attributes of Facebook users. Their approach does not
rely on users’ social links or group memberships, but only on users’ attributes.

Thomas et al. [37] examine how the lack of joint privacy controls can put
a user’s privacy at risk. Notably, they highlight the inherent interdependent
privacy risks due to friends in Facebook, and the fact that a user had no control
over his friends’ friend lists. They present inference techniques that, based on wall
posts and friends, present improvements compared to previous work by relying
only on friends to infer private attributes. Yamada et al. [42] also emphasize the
impact of conflicting privacy policies on users’ privacy. They propose 3 different
attacks: friend-list, profile and wall-post recovery attacks. Dey et al. [8] estimate
the leakage of age information in Facebook, either by relying on the target’s
profile directly, or by using information released by the targets’ friends.

While these previous papers exploit the notion of homophily to infer hidden
attributes of a user from the visible attributes of his neighbors, our work exploits
the global structure of visible attributes to navigate efficiently towards a target.
While the former is a purely local operation, ours exploits a macroscopic property
of the social network. It complements existing work by showing how to efficiently
find anyone in an OSN, necessary condition for any targeted inference attack.

Finally, Jain and Kumaraguru propose an integrated system which uses major
dimensions of a user identity (profile, content and network) to search and link a
user across multiple social networks [19]. Our work notably differs in the method
used to search for a user. Our navigation attack does not require the targeted
user to be present in multiple OSNs, and does not assume the target profile to
be known in one OSN in order to find him in another.

2.2 Navigation in Social Networks

The seminal experiment by Milgram [31] shows that any arbitrarily selected in-
dividuals can reach any other person through a short chain of acquaintances.
There generally exists a short path from any individual to another, thanks to a
few long-range social links. However, knowing that short chains exist does not
tell us how arbitrary pairs of strangers are able to find them. Since Milgram’s
experiment, there have been many theoretical and experimental papers that ex-
plain how people can find short paths, and thus navigate, in social networks [26].
Travers and Milgram ask 296 arbitrarily selected individuals in the United States
to generate acquaintance chains (using postal mail) to a single target person.
Out of the 296 starting chains, 64 reach the target (22% of completion rate)
with a mean number of intermediaries between the sources and the target of
5.2 [38]. They also show that chains converge essentially by using geographic
information; but once in the target’s city, they often circulate before entering
the target’s circle of acquaintances. Dodds et al. propose a similar social-search
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experimental approach except that they rely on e-mails instead of classic postal
service to reach a target [9]. They show that geography clearly dominates the
routing strategies of senders at early stages of the chains and is less frequently
used than other characteristics (such as occupation) after the third step.

Liben-Nowell et al. study the role of geography in order to route messages in
social networks and provide a theoretical model to explain path discovery [26]. To
the best of our knowledge, they are the first to analyze routing in an online social
network (LiveJournal). However, they limit themselves to the problem of reach-
ing the target’s city. They show that geography remains a crucial factor in online
connections and is thus very helpful when trying to reach a target. Lattanzi et
al. extend this one-dimensional approach based on geographical proximity to a
multidimensional space of interests relying on a model of social networks called
“affiliation networks” [25]. In contrast with these contributions, our work studies
large OSNs that allow users to finely tune their privacy settings to protect their
privacy. Our paper notably shows that privacy policies remain weak and do not
protect enough the privacy-cautious users, notably against navigation attacks.

Knowing that acquaintances’ and social networks show small-world properties,
we now question whether current OSNs do so as well. Mislove et al. already
provided a piece of the answer to that question in 2007 [32]. The considered
OSNs exhibit power-law degree distributions, a densely connected core of high-
degree nodes linking small groups of strongly clustered nodes and, as a result,
short path lengths. A crucial step in providing evidence about the small-world
characteristics of OSNs has recently been achieved with the publication of two
reports by Facebook researchers on the Facebook full social graph [6, 39]. Their
dataset of 721 million users shows the main small-world properties: 99.91% users
belong to the largest component, the distribution of nodes degree follows a power-
law distribution, and the average distance between users equals 4.7, showing that
OSNs are even smaller than real-world social networks. We can thus predict that,
by relying on users’ attributes, most OSNs should also be navigable. However,
how to efficiently navigate on them was until now an open question. Furthermore,
Facebook reports considered the full social graph, with all social links, whereas
the attacker assumed in this work would not have access to all those links. In this
paper, we study if the public subgraph induced by the users’ privacy settings on
their social links is navigable by relying on publicly revealed attributes.

3 Model

OSN Model Online social networks can be described as social links between on-
line users who own a personal profile. Formally, an OSN can be defined as a graph
G = (V,E), where the vertex set, V , represents the set of users3 and E, the edge
set, their social links. Each user u ∈ V is endowed with a set of attributes Au

that is a subset of the set A of the available attributes (gender, birthdate, educa-
tion, city, ...). OSNs with symmetric social links requiring mutual consent, such

3 In the rest of the paper, we will alternatively write user, node or vertex to refer to
a member of the OSN.
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as Facebook or LinkedIn, can be modeled as undirected graphs, whereas OSNs
with asymmetric social links, such as Twitter or Google+, can be represented
as directed graphs.4

In most OSNs, users can decide to what extent and with whom they share
information by appropriately tuning their privacy settings. For instance, in Face-
book users can reveal personal attributes to friends only, to friends of friends,
or to everyone in the OSN. The same settings are generally available for their
list of social links. Ai

u = ∅ denotes that a particular attribute Ai is not publicly
revealed by user u. Embedding users’ privacy settings on their social links into
the original social graph G induces a directed public subgraph D, where directed
edges are those whose tail vertices have publicly available social links. Formally,
D = (V,Ed), with Ed = {(u, v)|(u, v) ∈ E, Γ (u) �= ∅}, where Γ (u) represents the
out-neighbors of u ∈ D. Note that we make the conservative assumption that all
privacy settings except the public one (e.g., everyone in Facebook) are private
(e.g., friends, friends of friends), as we cannot access the information if we are
not part of a user’s close neighborhood.

Attacker Model. The attacker can be any external curious entity that wants to
collect data or infer information about a target t. We assume that the attacker
controls at least one node and can thus have access to information publicly
visible in the OSN. In order to reach his target, the attacker will search the
public subgraph D, relying on all public social links and other public personal
attributes (such as place of residence and work, educational affiliations, hobbies,
etc.). We assume this attacker to have prior knowledge on the values of a subset
A′t of t’s personal attributes, that he will use to navigate towards the target.
As the attacker will reach the target through the target’s social links (friends,
friends of friends, ...), he will also discover at least one friend of the target, which
can be useful for friend-based inference attacks [8, 33, 42]. Finally, note that the
attacker we consider in this work is passive, in that he does not subvert any user
account or interact with other OSN users, e.g., to create social ties with them.

4 Approach

We present here our navigation attack and algorithm. This attack is generic in
order to apply to any attribute-enhanced OSN. We suppose that the attacker
cannot rely on any search directory to find the target or to jump towards any user
close to the target and that the navigation’s starting point is randomly selected.
This helps us evaluate the feasibility of a navigation attack in the worst-case
scenario, and provide an upper-bound on the number of nodes that need to be
crawled before reaching a target in general. In Subsec. 6.2, we nevertheless show
how the attacker can take advantage of search filters to quicken the navigation.

In the generic scenario, the attacker navigates from user to user through public
social links, until he reaches the target. He makes an informed decision about the

4 Note that Facebook now also allows asymmetric social links, by enabling users to
become subscribers of other users.
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Algorithm 1. TargetedCrawler

1: F ← s % Initializing the frontier with the source user
2: E ← ∅ % The explored set is initially empty
3: repeat
4: if F = ∅ then
5: Failure
6: else
7: Select the user u∗ ∈ F with the lowest estimated cost to the target t and

remove it from F
8: E ← u∗

9: if t ∈ Γ (u∗) then
10: Return t’s profile and the path from s to t
11: else
12: for all u ∈ Γ (u∗) do
13: cu = dhop(s, u) + drem(u, t)
14: if u /∈ F AND u /∈ E then
15: F ← (u, cu)
16: else if u ∈ F AND cu < c

old
u then

17: coldu = cu
18: Replace the former parent of u by u∗

19: end if
20: end for
21: end if
22: end if
23: until t reached

next user to visit by relying on information publicly revealed by users at each
hop towards the target and on his prior knowledge about the target. Whereas in
Milgram’s experiment every participant in the chain could rely on his own local
information about his acquaintances to make a decision about the next user to
select, the attacker here relies on global information bounded by the attributes
publicly revealed by users on the path. Our navigation attack is represented by
Algorithm 1, called TargetedCrawler. This generic algorithm relies on a heuristic
model inspired by A∗ search [17].

The TargetedCrawler’s inputs are (i) the source user s, from which the attacker
will start crawling, (ii) the target user t that he has to reach, (iii) a subset of
the target’s attributes A′t ⊆ At known a priori by the attacker, (iv) the distance
functions for each attribute, and (v) the priority of the attributes. The priorities
depend essentially on the OSN and on the prior knowledge about the target’s
attributes. For instance, we will give higher priority to profession or workplace
attributes in job-oriented OSNs (such as LinkedIn), to interests in microblogging
OSNs (like Twitter), or to geographical attributes for mobile OSNs. The highest-
and lowest-priority attributes will be represented as A1 and AN , respectively.
The algorithm outputs t’s profile and the shortest discovered path from s to t.

The total estimated cost cu (line 13) from the source to the target at some
node u on the path is divided into (i) the cost from the source to u, dhop(s, u)
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(hop distance), and the estimated remaining cost from u to the target, drem(u, t),
that is expressed as

drem(u, t) =

{
khdh(Ah

u, A
h
t ) if dj(A

j
u, A

j
t ) = 0 ∀j < h

k1d1(A1
u, A

1
t ) otherwise

(1)

where dh(Ah
u, A

h
t ) is the distance function between users u and t in the attribute

h (attribute with hth priority). The distance functions can be represented by
(i) binary values (e.g., 0 or 1 for last names), (ii) real values (e.g., difference for
ages, or geographical distance for locations), or (iii) integers based on hierarchical
decompositions (e.g., half the tree distance for tree-based hierarchies). kh is a
normalization parameter translating the attribute distance into a hop distance.
kh should decrease with h, as the more attributes we share, the closer to each
other we should be. With drem, the targeted crawler will reach a user sharing the
same first-priority attribute as the target before considering the second-priority
attribute, then reach a user sharing a second-priority attribute before considering
the third-priority attribute, and so on. We conjecture that OSN users share
certain categories of attributes more than others (depending on the OSN) and
that these attributes affect the way users cluster different OSNs. Thus, in order
to increase the search efficiency, we prioritize different categories of attributes
depending on the type of OSN.

5 Experiments

As the current largest OSN (1.1 billion users as of March 2013), Facebook is the
most representative candidate for evaluating our attack. Moreover, its privacy
policies are notoriously designed to encourage public disclosure: the default pol-
icy for many important user attributes is everybody, i.e., full public visibility.5

We also implemented our attack in Google+ in order to validate our findings in
Facebook. This OSN is now the second largest OSN, after Facebook [40], and
shares many privacy features with Facebook. It also reveals the users’ social links
by default but, contrary to Facebook, allows users to be not searchable by name.

5.1 Implementation in Facebook and Google+

Gathering Source-Target Pairs Before beginning the navigation attack, we had
to collect source users from which to start and target users to be reached. To
further evaluate the paths’ symmetry, we chose to select pairs of users that would
act both as source and target. In order to have representative and meaningful
results, we wanted to avoid sampling biases as much as possible. Unfortunately,
as Facebook and Google+ IDs are encoded over 64 bits, there is a very small
probability that a randomly generated ID corresponds to an existing profile.

5 As of this writing, this is the case for the following attributes: current city, hometown,
sexual orientation, friend list, relationship status, family, education, work, activities,
as well as music, books, movies, and the sports users like.
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For this reason, to gather source and target profiles, we decided to sample on
the Facebook directory, as in [7]. The Facebook directory6 has a tree structure,
and profiles are sorted in first-name alphabetical order. The first layer of the tree
is divided into Latin characters and non-Latin characters. Then, all subsequent
layers are divided by alphabetical order into at most 120 subcategories, until the
fifth layer, where we can actually select users’ profiles. At each layer of the direc-
tory tree, we randomly selected one branch, until we reached the last layer, where
we randomly selected one profile. Unfortunately for us, Google+ does not pro-
vide such a public directory. Thus, we decided to sample source and target users
by relying on a random walk method. Our method starts by walking through
50 different profiles in order to reach a random profile in the network [34]. Once
we have reached this profile, we select a node with a probability inversely pro-
portional to its (bidirectional) degree, to be added to the source-target set. This
probability compensates the random-walk bias towards high-degree nodes [11].
Finally, we only retain profiles with at least two publicly accessible attributes,
assuming these to be part of the attacker’s prior knowledge.7 We discuss the
representativeness of our target set in Subsection 5.2.

Navigating in Facebook and Google+. Because of the very limited Facebook API,
we had to implement our own crawler of users’ friend lists. With the standard
HTTP request to access the friend list, Facebook provides only the first 60 friends
of a user. Then, it dynamically provides the rest of the friends if the Web user
scrolls down the friend list’s page. While the user is scrolling down, his Web
browser actually sends an Ajax request to get the subsequent 60 friends in the
friend list. The server replies in about 2 seconds with a JSON (JavaScript Object
Notation) object that contains the next 60 friends in the list. We parsed the list
of user IDs of each JSON object, as well as the additional piece of information
(if any) provided right below each friend’s name that would be used for the
navigation. We also implemented our own crawler for Google+. We could get
both of all outgoing and incoming social links with only two HTTP requests.
Both requests returned a JSON object with the social links (names), and some
attributes (including location, employer, education) useful for the navigation.

Several lessons can be learned from previous work on navigation in social
networks: (i) Geography and occupation are the two most crucial dimensions
in choosing the next hop in a chain [21]; (ii) geography tends to dominate in
the early stages of routing [9]; (iii) adding non-geographic dimensions once the
chain has reached a point geographically close to the target can make the routing
more efficient [38, 41]; and (iv) seeking hubs (highly connected users) seems to
be effective in some experiments [4, 38] and to have limited effect in others [9].
As Facebook and Google+ share many properties with real social networks, we
incorporate these findings into our navigation attack in order to maximize its

6 http://www.facebook.com/directory
7 This does not mean that a target without any publicly available attributes could not
be found. We need this information here to replace the prior knowledge the attacker
is assumed to have.
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efficiency. We select location (current city or hometown) as the first-priority at-
tribute in Algorithm 1, and education, employer/workplace, and last name as
second-priority attributes. We make this choice also because of the OSN struc-
ture and design. All aforementioned attributes are those most publicly shared
by the Facebook and Google+ users. Location (current city or hometown), ed-
ucation and work are publicly revealed by around 35%, 30%, and 25% of the
Facebook users, respectively [7, 14]. In Google+, location, education, and em-
ployer are publicly shared by 26%, 27%, and 21% of the users, respectively [28].
Moreover, all these attributes are directly available from the social links’ JSON
objects, thus hindering us from crawling all friends’ profiles individually, and
thus dramatically decreasing the number of HTTP requests and crawling time.

We propose relying on two different types of distance function to evaluate
the similarity between two locations. The first metric is computed as half the
tree distance, where the tree is defined by a discrete geographical hierarchy:
d1(A1

u, A
1
t ) is equal to 3, 2, 1, or 0, if user u shares a continent, a country, a

region/state or a city, respectively, with the target t. d1(A1
u, A

1
t ) = 4 if u and

t are from different continents. The second distance metric relies on the real
geographical distances between two locations and d1(A1

u, A
1
t ) is then defined as

d1(A1
u, A

1
t ) = max(0, log(dgeo(u, t)/α)) (2)

where the logarithm is base-10, dgeo is the great-circle distance (in km), and α
is a normalization constant set to 1 km. We notice that this distance is very
close to the discrete-hierarchy distance (first metric). In order to infer detailed
geographical information from any location attribute, we relied on GeoNames8,
a Web service with a database containing over 10 million geographical names.
More precisely, we used GeoNames (i) to find the region, country and continent
associated with a city in the first distance metric and (ii) to compute the distance
between two locations in the second metric. k1 is set to 2 to get a maximal
(theoretical) hop distance of around 8.

We give all non-geographical attributes second priority. We make these de-
sign choices mainly because we can only access a single attribute in the Facebook
users’ friend lists (below each friend’s name). These structural constraints, im-
posed by the OSN architecture, lead us to trade off some of Algorithm 1’s steps
against efficiency. Moreover, we make use of a binary distance function for these
second-priority attributes (0 if two attributes match, 1 otherwise) because (i)
we believe it is more efficient to directly select users based on whether they
share the same attribute with the target once we have reached the same city,
and (ii) it is particularly complex to build more elaborate distance functions for
last names, employers, high schools or universities. k2 can be set to any number
strictly smaller than 2; we chose k2 = 1.

For simplicity, we verify whether we have reached the target profile by check-
ing his ID or alias, which both uniquely identify users. An attacker who is not
supposed to know such identifiers will have to check the target’s first and last
names that, in addition to the location, should uniquely identify most of the

8 http://www.geonames.org/
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Fig. 1. Empirical complementary cumulative distributions of (a) the targets’ city sizes,
and (b) the targets’ degrees

people. In case there are multiple matching targets, the attacker could, for in-
stance, just check the profile pictures of these few potential targets in order to
select the correct target. Facial recognition could be further used to automatize
the targets’ check for targets making use of pseudonyms.9

5.2 Dataset Description

We ran our experiments on Facebook from April to November 2012, not too
intensively, with a crawler having a behavior similar to an energetic human user,
in order to avoid overloading the system. Despite this, we attempted to reach
200 targets, collecting approximately 393k different friend lists. We also targeted
200 different users in Google+, during Spring 2013, collecting 398k friend lists.
For the Google+ crawler, we took similar precautions as for Facebook.

In both Facebook and Google+, we gathered targets in 42 different countries
spread over all continents. North America encompasses 33.5% of the targets in
Facebook and 44% in Google+, Asia 26% in Facebook and 31% in Google+,
Europe 18% and 15%, South America 13.5% and 8%, Africa 7.5% and 1%, and
Oceania 1.5% and 1%. The continent distribution is quite close to the actual
distribution of users’ continents, except for North America that is a bit over-
represented with respect to Europe and Asia. USA represents 26% of the targets
in Facebook, followed by Indonesia, Brazil, and India, with 9.5%, 8.5%, and
8%, respectively. Almost the same sequence appears in Google+, with USA
representing 38% of the targets, India 13%, Brazil 4%, and Indonesia 4%.

Regarding the targets’ cities, we can notice in Figure 1(a) that the popula-
tions’ distributions of Facebook and Google+ follow a similar shape, Google+’s
targets living in cities with slightly more inhabitants than Facebook’s. The av-
erage and the median city populations are equal to 870k and 233k, respectively,
in Facebook, and to 2.6M and 440k, respectively, in Google+.

9 Face recognition has been shown to be very accurate and efficient for subject re-
identification in OSNs [3].
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Table 1. Success rates and numbers of crawled nodes for all continents

Facebook Google+

Continent % success # nodes: mean median % success # nodes: mean median

North America 71.6 1,065 467 67.1 668 272

Asia 51.9 1,061 658 49.2 565 179

Europe 86.1 513 144 53.3 348 72

South America 59.3 1,275 445 56.3 667 628

Africa 60 1,500 1,608 67 805 100

Oceania 66.7 2,270 553 100 92 14

Regarding the targets’ degrees (friends’ or social links’ numbers), we clearly
notice a phase transition in the degree distribution (Fig. 1(b)) in Facebook,
which is very similar to the one shown in [39]. Moreover, the average target
has 291 friends, which is fairly close to the global average that was around
278 in April 2012 according to [16]. The targets’ degree distribution is more
scattered in Google+, with more targets having degrees smaller than 100 and
greater than 1000. The median number of social links is equal to 71, smaller
than Facebook, but its average is 424, greater than Facebook. It is hard to
link these numbers with other studies, as Google+ is a recent OSN evolving
rapidly [28]. The geographical distance between sources and targets is quite
uniformly distributed between 450 km (shortest distance) and 18,962 km (longest
distance) in Facebook, and between 285 km and 15,814 km in Google+.

6 Results

In this section, we will first exhibit the results of our generic navigation attack,
showing its success rate and efficiency. We will also provide some explanations
for the failed cases. We will then mention how, by using some search filters, we
can drastically reduce the crawling effort.

6.1 General Results

Our objective is not to launch a brute-force attack by crawling millions of nodes,
which would demand a lot of resources. We rather aim to develop an algorithm
that can reach a specific target in the network in a limited amount of time.
For this reason, we decided to stop the attack after a certain number of crawled
nodes, even if the frontier F is not empty. We choose a limit of 4,000 users, which
takes about 14 hours in Facebook (much slower than in Google+). We assume
this is the maximum bearable time for an attacker attempting to reach someone
in Facebook and, for consistency, we keep the same limit with Google+. Despite
this limit, our attack successfully reaches its target in 66.5% of the cases in
Facebook, and 59% of the cases in Google+. Using the Clopper-Pearson interval
in order to evaluate the confidence interval for this success rate, we find that
95% of the users are reachable with a success rate in the intervals [59.5%, 73%]
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Fig. 2. Success rates (and their 95% confidence intervals) with respect to (a) the tar-
get’s city size, and (b) his number of friends

and [52%, 66%] for Facebook and Google+, respectively. The Clopper-Pearson
interval is an exact method for calculating binomial confidence intervals. It is
quite conservative, thus the interval above might be wider than necessary in
order to achieve 95% confidence. Table 1 shows the success rates, average and
median numbers of crawled nodes, for each continent.

We notice that the North American targets are reached quite successfully in
both OSNs, whereas reaching Asian users is more challenging. We also note that
European targets are reached very successfully in Facebook but not in Google+.
Figure 2 helps us understand these discrepancies. In particular, Figure 2(a) shows
that in Facebook the success rate drops with the size of the target’s city, but
not in Google+. We note in Figure 2(b) that the success rate increases with
the target’s number of friends, especially in Google+. Lower success rates in
Facebook can be explained by comparing the average numbers of inhabitants
of the continents. We find that European and North American city populations
have averages far below 1M (217k and 449k, respectively), whereas Asia, South
America and Africa have average city sizes close to or above 1M (925k, 1.83M,
and 2.46M, respectively). This lower success rate is certainly due to the fact
that, in large cities, our algorithm has to crawl more nodes in order to cover
all the users living in these cities. Our 4,000-node limit is certainly too low for
such cities. However, this does not seem to explain the difference in success rates
in Google+. This is probably due to the fact that Google+ is more recent and
smaller than Facebook, there are less people publicizing the same city, hence
fewer people to potentially crawl. The number of friends of the targets seems
to have the highest impact on the success rate in Google+. For instance, the
median number of friends in Europe is equal to 33, whereas it is equal to 81 in
North America. This is certainly due to the young age of Google+, and lower
rate of adoption by European users. We must also mention that source users have
no effect on the success rate: all crawls successfully navigate out of the source
neighborhood, and the large majority of them (92% in Facebook and 93.5% in
Google+) reach the target’s city.
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Fig. 3. (a) Empirical CCDF of the number of crawled nodes in successful cases, (b)
number of crawled nodes with respect to the target’s city size (number of inhabitants)

We evaluate the nodes’ efficiency by looking at the number of nodes crawled in
our searches. Crawling a node in our experiment means crawling a user’s friend
list, not his personal profile. On average, 983 and 591 nodes needed to be crawled
before a target could be reached, in Facebook and Google+, respectively. Half
of the targets were attained in 380 and 291 or fewer nodes in Facebook and
Google+, respectively. European targets were especially rapidly reached, after
513 and 348 nodes on average, half of the targets being found after less than
144 and 72 crawled nodes in Facebook and Google+, respectively. We see in
Figure 3(b) that the number of crawled nodes is (positively) correlated to the
target’s city size. This is again due to the fact that more nodes will be seen
in larger cities, thus the target is reached after a higher expected number of
crawled nodes. Moreover, for all failed and successful cases, on average 44 and
28 nodes had to be crawled before we reached a user in the target’s city, and
in half of the searches we found a user living in the target’s city in less than 13
and 8 crawled nodes, in Facebook and Google+, respectively. This shows that
our search algorithm makes use of long-range social links to efficiently reach the
target’s city, and that the most challenging part of the search is the navigation
within the target’s city, when we have to narrow down the search using second-
priority attributes.

From each subgraph crawled during a successful attack, we reconstructed the
shortest discovered path from the source to the target. Figure 4(a) illustrates the
distribution of the shortest discovered path lengths. We notice that it goes from
4 to 18 hops in Facebook, with most of shortest paths being between 9 and 11-
hops long. This is around twice the distance found in [6] with the knowledge of
the full social graph. The shortest paths are between 3 and 11 hops in Google+,
most of them being 6 hops long. This result is similar to the diameter obtained
in [12], where 90% of the pairs were separated by a distance of 5, 6 or 7 hops.

We show in Figure 4(b) the evolution of the information that displayed by the
nodes on the shortest path (SP). It shows that the city is especially useful 3, 2,
and 1 hop(s) before the target, for both OSNs. At 4 (and more) hops from the
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Fig. 4. (a) Histograms of the shortest discovered path lengths within the crawled sub-
graphs, and (b) evolutions of the information types used to navigate towards the target

target, other (non-local) geographical attributes are used to navigate towards
the target. We also note that the crawler starts using other types of attributes
(education, work, or last name) 4 hops before the target (certainly once we have
reached the target’s city) and their influence is increasing while getting closer
to the target. At the latest hop before the target, the city is represented in
70% of cases in Facebook and 56% in Google+, non-geographical information
representing around 30% of cases in both OSNs. This shows that geographical
information remains crucial, but also that other types of information can still
be useful when we get close to the target, as it was already mentioned in [38].
Finally, we note that 25% of the targets in Google+ were found from a last hop
sharing no similar attributes with the target. These targets were reached from a
last user who is geographically close (at a median distance of 32 km) but does
not share the same location.

6.2 Jumping towards the Target

Facebook provides an additional feature in order to help people find their ac-
quaintances in the network: It allows users to apply search filters on location,
education or workplace. We did not want to rely extensively on this feature for
our navigation attack because we wanted to keep it generic and applicable to
other OSNs. However, we show here that the attacker can take advantage of
Facebook’s search filters to facilitate his attack.

We search for the last names and the cities of the targets using the Facebook
search filters, and then crawl the friend lists of the users found by the search
directory. We search for last names because users sharing same last names are
more likely to be relatives, thus to be friends. Our targets can also appear in the
users found by the search filters, as we chose targets that are in the Facebook
directory for our experiments. Searching for the last names and the cities of our
targets, we directly find the targets in 49.5% of the search results. As targets are
assumed to not be in the directory, we remove them from the list of users to be
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crawled. At least 10 users satisfying the search criteria are found in 30% of the
filtered searches, and the search requests output no user in 15% of the cases. By
crawling only the friend lists of users found by our filtered search, we reach the
targets with a success rate of 16.5%.

7 Countermeasures

Countermeasures should logically be developed and implemented by the OSN
operators themselves. An obvious solution, already advanced in [37], is to set
the visibility policy as the intersection of visibility policies selected by all users
involved in the published information. Although it is difficult to force a friend
to change his privacy settings on his personal attributes, it is possible to enforce
his social links’ privacy policy. Choosing the intersection of both users’ policies
on social links would mean that a user electing to reveal his social links to his
friends, or friends of friends only, would automatically enforce non-public social
links for his own friends. It would prevent any curious stranger from accessing
his profile by using his friends’ friend lists. OSN operators could also prevent
anyone from publicly showing his social links, as it is the case in LinkedIn. They
could at least design non-public default privacy settings on social links. Detailed
formal requirements to protect multilateral privacy are presented in [15].

If the OSN operators themselves do not re-design their privacy policies, the
users could also take action. The first option is to change the default privacy
settings on social links to more restrictive settings. For this option though, users
must collectively deviate from the default policy in order for it to be efficient.
Finally, if more users decided to hide their personal attributes (such as city,
education, ...), the attacker’s ability to navigate efficiently in the social graph
would decrease, thus reducing the threat presented in this paper.

8 Conclusion

We believe our navigation attack to be the first to rely on social links to find a
target’s profile. We describe a search algorithm that relies on public attributes
of users and distance heuristics, and that discovers 66.5% and 59% of the tar-
geted users, in a median number of crawled nodes smaller than 400 and 300, in
Facebook and Google+, respectively. Moreover, the targets’ cities are reached
in more than 90% of the cases, in a median number of 13 and 8 crawled nodes,
respectively, showing the efficiency of geographic navigation in these OSNs. The
navigation within the targets’ cities, which relies on more attributes, is less ef-
ficient and successful. One important reason for the failed cases is the privacy
behaviors of the target’s friends: the more friends with public attributes and
social links, the more likely the target is to be found.

In future work, we plan to propose other search algorithms, especially for once
we have reached the target’s city. We also plan to apply our navigation attack to
other OSNs, and build a theoretical model to support our experimental findings.
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Abstract. Computers plugged into power outlets leak identifiable information
by drawing variable amounts of power when performing different tasks. This
work examines the extent to which this side channel leaks private information
about web browsing to an observer taking measurements at the power outlet. Us-
ing direct measurements of AC power consumption with an instrumented outlet,
we construct a classifier that correctly identifies unlabeled power traces of web-
page activity from a set of 51 candidates with 99% precision and 99% recall. The
classifier rejects samples of 441 pages outside the corpus with a false-positive
rate of less than 2%. It is also robust to a number of variations in webpage load-
ing conditions, including encryption. When trained on power traces from two
computers loading the same webpage, the classifier correctly labels further traces
of that webpage from either computer. We identify several reasons for this con-
sistently recognizable power consumption, including system calls, and propose
countermeasures to limit the leakage of private information. Characterizing the
AC power side channel may help lead to practical countermeasures that protect
user privacy from an untrustworthy power infrastructure.

1 Introduction

Computer users commonly assume that software mechanisms, such as in-browser en-
cryption, protect their private information. Research on side channels has challenged
this assumption by showing that computer components such as the CPU [18] and the
keyboard [32] can leak private information. Along the same lines, this paper examines
the feasibility of inferring private information from a general-purpose computer’s AC
power consumption, despite significant additive noise from the power grid [6].

Past work has exploited AC power side channels for information leakage, but at the
level of an entire household [24] or a device with a constrained state space [8,6]. For ex-
ample, a television that is dedicated to displaying videos produces relatively consistent
power consumption over multiple plays of the same video. Given a small number of can-
didate videos, it is possible to identify which of them is playing [8]. A general-purpose
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computer, on the other hand, exhibits a tremendous state space because of its practi-
cally unconstrained operation. Executing the same computing task at different times
may result in different power consumption patterns because of different background
tasks or I/O workloads (e.g., network activity). Nevertheless, we find that system-wide
traces of AC power consumption leak enough information about the operation of a
general-purpose computer to identify the webpage that the computer is loading (out of
a set of known pages). Because browsers use a diverse subset of the available hardware
components, our results suggest that this technique may generalize to other computing
workloads.

Several factors work to our advantage. Web browsers increasingly take advantage
of hardware to improve the user’s experience (by, e.g., executing native code [35]),
resulting in resource consumption that scales with the webpage’s complexity. Another
factor is that modern computers and operating systems aggressively try to reduce power
consumption [30], resulting in energy-proportional computing in which the power con-
sumption tightly fits the workload [6]. Both of these factors increase the system’s dy-
namic range, which in turn increases the information available in power traces.

There are also challenges to the task of identifying webpages from AC power con-
sumption. The fundamental challenge is separating interesting activity from baseline
power consumption, which a computer’s power supply aggregates. Other challenges
stem from the dynamic nature of the Internet and modern websites. The round trip time
for fetching webpages may change over time; many websites include scripts that run
long after the page loads, and many customize content for each visitor.

This paper’s contribution is an attack on privacy that identifies specific
web-browsing activities via an AC power side channel. We characterize and measure
this side channel by designing methods to extract patterns of power consumption as a
computer loads a webpage. These patterns, which are obscure in the time domain but
more apparent in the frequency domain, act as power signatures that allow an eaves-
dropper to determine which webpage is being loaded. Additionally, these power signa-
tures are robust against a variety of changes to the computing environment, including
background processes, changes in network location, or the use of a VPN. Because most
of the identifiable information occurs at under 10 kHz in the frequency domain, captur-
ing and exfiltrating power measurements is within reason for a simple embedded device
that could fit discreetly inside a power outlet.

Using a covertly modified electrical outlet to record power consumption, we trained
and tested a classifier with over 100 hours of traces representing more than 13,000 page
loads from a set of 51 webpages from sites representing over 30% of global page views.
Given a power trace with 51 possible labels, the classifier identified the correct match
from the training set with 99% precision (resistance to false positives) and 99% recall
(resistance to false negatives). Given an unlabeled trace from one of 441 webpages not
in the training set, the classifier’s false positive rate is less than 2%. In some cases,
the classifier succumbs to overfitting when trained on traces from a single computer,
confusing other consistent power activity for browsing activity. However, when trained
on traces from two computers, the classifier identifies the common patterns that are due
to browser activity and can correctly label unseen traces from either computer.
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This work conceptually bridges the gap between previous work on circuit-level
direct-current (DC) power analysis [18] and coarser-grained, household-level activity
recognition via AC power measurements [12,26,11]. This paper also proposes several
hardware and software countermeasures to minimize information leakage.

Threat Model. Focusing on the AC power side channel, this paper considers an at-
tacker with physical access to a power outlet the victim might use. Possible easy targets
include outlets in coffee shops and airports. A simple modification to a power outlet
enables discreet data recording. Because most users implicitly trust power outlets, an
attacker may gain easy, persistent access to a victim’s power-consumption patterns.

2 Background and Challenges

This section distinguishes AC power measurements from DC power measurements,
which have been studied extensively in literature about side channels [18,4]. It breaks
down the power budget of a computer and discusses how the actions of a web browser
influence power consumption. Finally, it explains some of the challenges inherent in
our attempts to classify AC power traces.

2.1 AC versus DC Power Traces

DC power measurements explored in previous research involve tracing individual com-
ponents’ power consumption on a circuit board. Such techniques require access to inter-
nal hardware elements and are overly intrusive from the viewpoint of our threat model.
An attacker conforming to our threat model seeks a power-analysis technique that is rel-
atively nonintrusive and does not involve opening or modifying the victim’s computer.
Every computer operates on power drawn from a power grid. A laptop user may avoid
drawing power from the grid by relying on the battery, but this is a temporary solution.
Monitoring AC power consumption affords a system-wide view of the computer’s activ-
ity, although individual activities may be difficult to identify because all components’
signals are added together.

Challenge: Noise. Both the “upstream” (e.g., household) circuit and the power supply
itself introduce noise onto the power line. Since this noise is omnipresent, we make no
attempts to remove it, unlike previous work [8]; instead, we provide noisy inputs to
classifiers and rely on the presence of a non-noise signal to influence classification.
Eschewing filtering also simplifies the hardware we use to gather traces.

Challenge: Periodicity. Whereas DC signals often feature prominent level shifts and
other artifacts that are amenable to time-domain analysis, the alternating nature of AC
current essentially convolves sets of sinusoids, making time-domain analysis difficult.
We therefore perform analysis in the frequency domain. Before classification, we trans-
form traces into the frequency domain (Figure 1b) using the Fourier transform. In addi-
tion to making certain signals easier to identify (e.g., 60 Hz utility power in the U.S.),
this approach enables meaningful comparisons despite misaligned traces, or traces of
different lengths, and the additive nature of the SMPS’s power consumption preserves
frequency information from individual components’ power consumption.
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(a) Time-domain plots (b) Spectrogram plots

Fig. 1. Time- and frequency-domain plots of several power traces as a MacBook loads two differ-
ent pages. In the frequency domain, brighter colors represent more energy at a given frequency.
Despite the lack of obviously characteristic information in the time domain, the classifier cor-
rectly identifies all of the above traces.

2.2 Tracking Hardware Components’ Power Consumption

To develop intuition about what kinds of tasks are likely to induce identifiable activity
patterns on the power line, we measured the power consumption of a laptop (MacBook-
1, Appendix A) under a variety of workloads designed to stress individual subsystems.
We used a P3 Kill A Watt power monitor [25] to measure power consumption. Table 1
summarizes the results, which suggest that the MacBook’s CPU and GPU dominate
power consumption under load. The network interfaces and solid-state storage draw
comparatively little power.

Prior side-channel work has leveraged network characteristics such as packet tim-
ings [28] or lengths [33,34] to classify webpages according to their network traffic.
A reasonable question to ask is whether network classifiers are likely to apply to the
problem of webpage identification. We tapped the activity LED of a network switch
port to capture a representation of a computer’s network traffic while also tracing the

Table 1. MacBook power consumption under various types of load. Numbers beginning with +
are relative to the baseline of 8 W.

Condition Power (W) vs. Baseline

Baseline (idle, screen off) 8

One core at 100% +7
Two cores at 100% +11
GPU at 100% +11
Wired network saturated +2
Wireless network saturated +3
File copy, SSD to SSD +6
Screen at maximum brightness +6
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(a) The network activity is correlated with
high current consumption, but is not the only
cause. Spikes before and after network activ-
ity show that local computation dominates the
consumption.

(b) The system call activity (as measured by
DTrace) is also correlated with high current
consumption, and our results suggest that sys-
tems exercised by system calls are a major
cause of consumption.

Fig. 2. Time-domain plots as a MacBook loads webpages. Both network activity and system calls
appear to correlate with energy consumption.

computer’s AC power line. Figure 2a shows an example from our tests. The computer
consumes power performing other tasks before the network interface actually begins to
send and receive packets. Furthermore, the AC power provides insight into client scripts
and rendering loads unavailable in a network trace.

Power consumption appears to be more strongly correlated with system calls than
with network activity as shown by Figure 2b. Tracking the number of system calls
initiated by the browser process with DTrace captures memory allocation and disk I/O
in addition to network activity, enabling monitoring of all of the components we have
identified as major power consumers.

3 Approach: Supervised Learning Classifier

To distinguish among webpages, we adopt a supervised learning approach, in which we
train a classifier on labeled AC power traces and then attempt to match unlabeled traces.
An AC power trace contains artifacts of every powered computer component, each of
which may have its own clock rate or power signature, and each of which processes
information differently. We assume that disentangling these signals (multicore CPU,
multicore video card, multiple drives, etc.) from a single AC power trace is intractable
with current techniques, and instead focus on coarser-grained, system-level questions,
such as which popular webpage the user is loading. Because it is prohibitively difficult
to build a generative model of how computing tasks will map to power consumption—
a discriminative modeling approach is more appropriate. Our supervised-learning ap-
proach fits this requirement; it requires only a labeled training set and learns its own
model of how feature values map to class labels. Specifically, we train support vector
machines (SVMs) using the open-source library libsvm [5].
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Fig. 3. Plots of three of our Fourier transform feature vectors. While the pages are difficult to
separate visually in the time domain, the two cnn.com samples are indistinguishable to the eye
in the frequency domain, whereas yahoo.com diverges around 25 and 65 kHz.

3.1 Feature Selection

Classification requires extracting feature vectors on which to train a classifier. A naı̈ve
classifier might simply consider the length feature of a sample in the time domain, de-
fined as the length of time for which power consumption remains above a predetermined
threshold. However, background tasks add confounding noise in the time domain, which
may obscure the true endpoints of a specific task, and tasks often include periods of both
high and low power consumption. Mean, minimum, and maximum power are equally
unsuitable choices for similar reasons. A more robust approach is to classify traces
based on features from the frequency domain.

We transform traces into the frequency domain by first calculating the spectrogram
using rectangular sliding windows 1000 samples wide with 50% overlap. We then col-
lapse the spectrogram into a single Fourier transform by summing over all of the time
steps. As a base set of features for classification, we divide the Fourier transform of each
power trace into 500 segments, each 250 Hz wide, starting at 0–250 Hz and ending at
124.75–125 kHz, half the 250 kHz sample rate at which we recorded traces. This pro-
cess yields 500 features, each of which represents the power present within one 250 Hz
slice of spectrum over the duration of the trace.

As described in Section 2.1, classifying in the frequency domain allows meaningful
comparisons between misaligned traces or traces of different lengths. Using the out-
put directly from the Fourier transform as a feature vector is a simple approach and
yields excellent results. It is also straightforward to visualize differences in the Fourier
transform, as shown in Figure 3. Plotting the feature vector reveals consistent features
between the two traces of cnn.com and recognizable differences between a trace of
yahoo.com and the cnn.com traces, which are not obvious in the time domain.

3.2 Classification

We train a binary classifier for each page in our corpus. After training all 51 SVMs, we
use each of them to classify test samples. A test sample is an unlabeled 500-dimensional
feature vector, obtained in the same way as the training samples, that is not in the train-
ing set. Each SVM determines whether the test sample was an instance of the webpage
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it was trained to recognize. In the interest of simplicity, we do not implement a multi-
class labeling solution in which all 51 SVMs collectively generate a single output, but
there are a variety of well-studied techniques for this purpose and libsvm implements
several of them [15].

There are three notable details of the training process. First, we linearly normalize
feature values across all samples. This prevents features with large values (e.g., the
low frequency elements) from dominating features with smaller values. Second, we use
standard 10-fold cross-validation to avoid overfitting at training time. By repeatedly
splitting the training set and retraining each time, the classifier avoids the possibility of
biases in a small number of training examples producing a biased model. Finally, we
use a radial basis function (RBF) kernel, as recommended by the authors of libsvm [5].

4 Methods and Metrics

To cover a diverse set of webpages representing typical Internet traffic, we chose 48
webpages drawn from Alexa’s list of the top 1,000,000 websites [2], discarding du-
plicates and adult websites. By Alexa’s estimates, these top 48 websites represent over
30% of global page views. We added the top Google result for “cheap Viagra” as an
example of a potentially embarrassing (or malicious) page. To include a page that loads
with negligible latency, we added two authors’ department’s home pages, a < 1 ms
round trip from one of our measurement points, bringing the number of webpages in
our training set to 51.

The Alexa rankings list websites, but it is more meaningful to collect traces of in-
dividual webpages. Each of our traces represents an automated load of the front page
of one of the 51 websites. To record realistic power traces of user browsing, we used
a custom Chrome extension (see §4.1) to collect at least 90 consecutive traces of each
page. For webpages that require users to log in before displaying useful information, we
logged in as the first or second author. We believe that our choice to consider front pages
is reasonable because users are likely to visit the front page of a given website and then
follow links to other pages. The notable exceptions to this tendency are bookmarked
pages and direct links from other people or sites.

Evaluation Metrics. Because our classifier uses standard machine-learning tech-
niques, we use standard metrics from machine learning to evaluate its performance.
In the following definitions, tp and tn refer to true positives and true negatives (correct
labelings), and fp and fn refer to false positives and false negatives (incorrect labelings).

Precision, tp/(tp + fp), is the fraction of positively labeled examples whose labels are
correct. It measures the classifier’s ability to exclude negative examples.

Recall, tp/(tp+ fn), is the fraction of all the examples that should have been positively
labeled that are correctly positively labeled. It measures the classifier’s ability to
identify positive examples.

We present experimental results in terms of precision and recall because the stan-
dard accuracy metric is often misleading. In most of our experiments, the number of
negative examples is roughly 50 times the number of positive examples because, for
each webpage, there are more traces of other webpages in the testing set than there are
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of that webpage. Because of this disparity between positive and negative examples, the
classifier could achieve greater than 98% accuracy by simply classifying all examples as
negative. A perfect classifier would achieve 100% accuracy, 100% precision, and 100%
recall. For any imperfect classifier, there is a tradeoff between precision and recall.

4.1 Experimental Setup

This section describes the experimental setup we used to capture AC power traces.1

Safety note: This paper is not a complete manual for electrical safety. Measuring
“hot” terminals is potentially fatally dangerous and should be conducted only under
qualified supervision. Do not try this in a non-laboratory setting.

Using an instrumented outlet (described next), we measured the power consumption
of two Apple MacBook computers, a Lenovo T410 laptop, and a Dell Vostro desk-
top PC, all running different operating system versions. (For detailed hardware and
software specifications, see Appendix A.) To approximate the environments of typical
users, we used a stock installation of each operating system. In particular, we allowed
default background processes to run. Experiments with the two MacBook computers
were carried out approximately one year apart using similar but non-identical instru-
mented outlets.

To record each workload’s power signature, we monitored electrical current between
the power supply and an instrumented outlet. A modern AC outlet has three terminals:
hot, neutral, and ground. To measure a power supply’s instantaneous current on the
hot–neutral circuit, we placed a 0.1 Ω sense resistor (part #13FR100E-ND) in series
with one terminal of a standard outlet. We attached an Agilent U2356A data acquisition
unit (DAQ) to the terminals of the sense resistor. The DAQ samples the voltage across
its probes and sends the data via USB to another PC (not the computer being measured).
We recorded 16-bit samples at a rate of 250 kHz to capture workload artifacts occurring
at up to 125 kHz.

Finally, we developed a Chrome extension to automate the repeated loading of a
target webpage. The extension repeatedly: opens a new window, pauses, loads the page,
pauses again, and finally closes the window. For webpages that did not require user
credentials, the script opened browser windows in a private browsing mode to purge the
browser environment of confounding data. To compare webpage identifiability across
browsers, we also used the iMacros extension for Firefox [1] to mimic our Chrome
extension. We recorded continuously with the DAQ while running experiments. A script
with knowledge of the browser extensions’ timings chopped the DAQ’s output into
separate trace files to be used with our classifier. While the majority of the webpages we
profiled show no changes within the measurement period, there are notable exceptions.
A number of high-turnover webpages including cnn.com, cnet.com, and reddit.com
underwent content changes during our measurements.

1 We use the terms power trace, voltage trace, and current trace interchangeably. What we
actually record is a voltage trace that maps trivially to current (Isense = Vsense/Rsense, with
Rsense constant) and therefore power (P = IsenseVRMS, with VRMS a constant 120 volts (RMS)
in North America).
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5 Evaluation

This section summarizes our experimental results over a wide range of conditions.
While there are a limitless number of questions to ask about how well a classifier works
under different conditions, we have distilled them down to the following six questions
regarding causality and intuition:

– How effectively can the SVM classifier differentiate webpages from one another?
(Section 5.1)

– How robust is the classifier in the presence of content distribution services, anonymity
services, encryption, and caching, as well as changes in network location, type, or
interface? (Section 5.2)

– How is classifier performance affected by changes in operating system or hard-
ware? (Section 5.3)

– How does the classifier’s performance change when the test traces include back-
ground activities? (Section 5.4)

– How does sampling rate affect classification? (Section 5.5)
– How well does the classifier exclude samples of pages outside the corpus? (Sec-

tion 5.6)

We find that our classifier can differentiate webpages with high precision and recall
rates (each averaging 99%) and that it is robust against many of the variations we tested,
including the use of a VPN, and changes in the location or network interface. It is not
robust against changes of machine or operating system. Where our classifier performs
poorly, we find in most cases that increasing the diversity of the training set improves
its performance along all metrics. The total number of power traces we tested across all
experiments was 13,110, chronicling over 100 hours of 250 kHz trace recordings.

5.1 Page Differentiation

Our SVM classifier effectively differentiates among the 51 popular webpages we tested.
As a baseline, we varied only the webpage under test and held all other variables con-
stant. These other variables include machine under test, network location, network in-
terface, operating system, and web browser. By varying only the webpage under test,
we minimize differences that are not actually the result of variation among webpages.

We gathered all of the data for this experiment twice, using slightly different Mac-
Books and instrumented outlets built to the same specifications in different locations.
Here we present the results of combining the two data sets into a single corpus. After
gathering∼90 traces for each of the 51 webpages on each of the MacBooks (for a total
of ∼180 traces), we used the experimental protocol described in Section 3.2 to label
each trace. Each SVM labels a trace as either matching or not matching the page for
which it was trained. The total size of the corpus for this experiment was 9,240 traces.
We used half of these traces for training and the remaining traces for testing. With ∼90
training examples per label, the SVM classifier achieves an average 99% precision and
99% recall over all webpages in the data set.

The classifier’s performance varied among the tested webpages. The precision and
recall were both 100% for 18 of the 51 webpages. The lowest precision for any page was
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93% for skype.com and the lowest recall for any page was 88% for slashdot.org.
A plausible explanation for the classifier’s relatively poor performance on skype.com

is that the front page underwent a significant design change between the capture of our
two data sets, which we confirmed by inspecting snapshots from the Internet Archive
Wayback Machine [16]. The poor recall for slashdot.org could be explained by the
high turnover of the front page or inconsistent load times. godaddy.com, which uses a
commercial content distribution service, also yielded lower recall results.

5.2 Diverse Browsing Conditions

We varied the conditions under which our browser operated and found that the SVM
classifier is robust against local network connection type, use of cache, VPN encryption,
and the passage of time for most webpages. It is not robust against the use of a caching
content-distribution network (CDN) such as Coral [10].

Our training and testing setup was as follows. We repeated this process for three web-
pages: one simple page (google.com) and two complex pages (cnn.com andcnet.com).
For each page, we gathered the following sets of traces on one of our MacBooks:

– Time: Traces gathered a month later, to test how fresh the training set must be.
– Cache: Traces recorded with a warm browser cache, to test whether the classifier

depends on specific network traffic patterns.
– VPN: Traces recorded while connected to a VPN concentrator a 1.5 ms round trip

away (essentially measuring only cryptographic overhead), to test whether encrypt-
ing normal traffic would be an effective countermeasure.

– WiFi: Traces recorded while connected to our lab network wirelessly instead of
via wired Ethernet, to test whether the training phase overfits the SVMs to “clean”
low-latency wired traffic.

– CDN: Traces recorded with web traffic passing through the Coral CDN, to test
whether a caching proxy sufficiently disguises traffic.

To test each one of these sets, we trained an SVM on all of the other sets using only
samples from the same MacBook. For example, to study whether the SVM could cor-
rectly label traces in the WiFi set, we trained the SVM on the Time, Cache, VPN, and
CDN sets in addition to the Base set of samples. In contrast to training only on the
Base set, this training approach avoids overfitting the SVM to that set. After training
the classifier, we instructed it to classify the traces in the test set.

The only condition that hurt performance, for two of the three webpages, was the
use of the Coral CDN. For cnn.com, the classifier incorrectly labeled all traces from
the Coral set as negatives; for google.com, the classifier incorrectly labeled 45 of 50
traces as negatives, resulting in a 10% recall rate. The classifier’s poor performance on
Coralized pages illustrates that, while the network interface’s power consumption may
not uniquely determine how a trace is classified, the network interface may still alter the
timing of characteristic consumption patterns for downstream devices such as the CPU
and GPU that act on its outputs. Coralizing cnet.com likely made little difference in
its classifiability because cnet.com is already distributed via a commercial CDN.

The classifier’s performance on traces from the VPN set deserve special attention.
It suggests that encryption and decryption, at least as implemented by our MacBook’s
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PPTP VPN, have little effect on power-trace classification—i.e., the SVM classifier
is robust against VPN encryption. Our MacBook’s processor does not include hard-
ware support for the AES-NI instruction set, which is designed to improve AES perfor-
mance [27]. With AES-NI support, performance and energy efficiency should both be
improved, reducing the encryption and decryption impact even further.

Network Location. The Coral results suggest that changes in latency or throughput
alter packet arrival times enough to thwart the classifier. To test this hypothesis, we cre-
ated two static pages that do not have any running scripts or asynchronous content and
gathered traces of one MacBook loading each page in different locations. One location
had a residential connection and the other a university research network connection. We
then trained on all pages in the corpus, including samples of the static pages using only
one of the two locations. We tested on samples from the untrained location.

When trained on the residential connection and tested on the university connection,
the classifier’s precision and recall were 100% and 73% respectively. This result shows
that the training did not lead to any false negatives for other pages, but was not able to
identify all samples. When we reversed the training and testing locations, the precision
and recall were both 100%. This experiment demonstrates that it is not always necessary
to use or simulate a potential victim’s connection to train an effective classifier, but that
the network connection’s impact is determined largely by page content.

Tor. Based on the classifier’s reduced performance when using Coral, we evaluated
Tor [7] configured as a local SOCKS proxy. While Coral introduces higher latencies
and less consistent throughput, Tor adds additional complications. Not only does the Tor
network add latency and reduce throughput, but Tor includes encryption and decryption
operations and the exit node changes unpredictably, which can change the language
or content of some pages. We gathered 91 traces of MacBook-1 loading google.com

and tested them against an SVM trained on samples from all of the other browsing
conditions. Tor proved to be a very effective countermeasure, with only 2 of the 91 Tor
samples correctly identified, yielding 2% recall.

5.3 Operating System and Machine Diversity

Operating System. Training on traces from a single operating system limits the clas-
sifier’s effectiveness to that operating system. However, training on traces from two
operating systems allows the classifier to correctly identify both OSes. To test this be-
havior, we gathered traces of google.com and cnn.com using Windows 7 and Linux
(Ubuntu 10.04) on the desktop PC. For both sets of traces, we used the same versions
of the Chrome browser and our custom Chrome extension for test automation. When
trained only on examples from one operating system, the classifier failed to correctly la-
bel traces from the other. The only exception was a single trace of cnn.com loaded from
Linux, which the classifier identified correctly despite the having been trained only on
examples from Windows 7. When we rearranged the input sets so that each contained
an equal number of traces from each OS, then trained on one of these mixed sets, the
classifier correctly labeled all unlabeled traces from the other mixed set.

Differences among OSes include system timers, drivers, memory management,
GUI characteristics, and performance tuning. All of these differences may play roles in
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differentiating power-consumption patterns. The above result suggests that a prospec-
tive attacker should collect traces under as many different operating systems as possible.

Machine Diversity. When we varied both machine and operating system, the SVM
classifier failed to correctly label any traces. We trained an SVM on the MacBook
(running Mac OS 10.7.3) with 50 webpages and tested on the Lenovo laptop (run-
ning Windows 7) for 5 webpages (google.com, cnn.com, espn.com, live.com, and
youtube.com). Then switched the roles and trained and tested again. For all webpages,
the SVM failed to correctly label traces from one machine when trained only on exam-
ples from the other. The precision and recall never exceeded 10%.

Training on examples from both machines allowed the SVM to classify traces from
both machines accurately: 98.4% precision and 98.2% recall on average for the 5 web-
pages. This result suggests that, as in the operating system experiment, the problem
lies in the lack of training diversity. In the future, we intend to test this hypothesis by
training an SVM on a small, but diverse, set of machines and then testing traces from
machines that are not represented in the training set.

5.4 Background Activities

Noting the tendency of users to browse multiple webpages at the same time and running
background processes, we measured the classifier’s sensitivity to background noise. We
randomly chose one of the 51 webpages in our training set—live.com —and loaded
it with combinations of background processes. We collected traces for live.com on a
MacBook when a combination of the following 4 processes were running: gmail.com,
iTunes radio, pandora.com, and a word processor. We collected traces for 8 combina-
tions in total, e.g., only gmail.com; gmail.com, pandora.com, and word processor
together, etc. We trained the SVM with examples for all 51 webpages without any back-
ground process and tested it using the background examples. In all cases, the classifier
was able to classify live.com accurately with 100% precision and 100% recall.

Even though we only tested one webpage and a small set of background processes,
the result suggests that the classifier can be robust against combinations of background
processes. A possible explanation for the classifier’s robustness is that the background
processes do not saturate the CPU load and have little effect on the GPU load because
they are literally in the background and do not draw to the screen. Quantifying the limits
of this robustness will require further investigation.

5.5 Sampling Rate Differentiation

Decreasing the sampling rate at which an instrumented outlet records voltage would
allow for tracing and exfiltration using simple, low-cost hardware. To understand how
robust the classifier is to changes in sampling rate, we repeated the set of page differen-
tiation tests, but simulated lower sampling rates by restricting the set of input features
to those representing lower-frequency components. Figure 4 compares the results with
the original sampling rate against results with simulated lower sampling rates. Each
reduction in sampling rate is by a factor of two.

Reducing the sampling rate by a factor of more than 30 (from 250 kHz to 7.8 kHz)
incurs only a 9% reduction in average precision and recall. These results show that the
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Fig. 4. The average precision and recall across all 51 pages with exponentially increasing sample
rate. The classifier’s performance decreases with sampling rate, but the precision and recall do
not drop below 90% until the sampling rate is less than 4 kHz.

lower frequency bands alone contain enough information to accurately classify web-
pages. An attacker could likely produce a compact and inexpensive measurement device
capable of mounting successful attacks.

5.6 Exclusion of Unknown Pages

Our classifier reliably identifies pages appearing in the training set, but a practical attack
would require the classifier to reject pages not appearing in the training set as well. With
training and testing sets that resembled each other, a classifier could perform equally
well in the previous experiments whether it learned to cluster positive or negative ex-
amples. To test the hypothesis that the SVMs learned to cluster only negative examples
during training, we tested them with a set of previously unseen webpage samples that
were not in the training set.

We gathered one trace from each of 441 webpages randomly selected from a list of
1 million popular pages published by Alexa [2], making sure to remove pages that were
already in the training set. We then tested all 441 pages against all 51 trained SVMs and
measured their false-positive rates. The total false positive rate over all classifiers was
1.6%, leading us to reject the above hypothesis and conclude that the SVMs correctly
learned to cluster positive examples.

6 Countermeasures to Limit Information Leakage

This section sketches several countermeasures to mitigate the threats described in Sec-
tion 1. Hardware and software countermeasures both present inherent tradeoffs. Hard-
ware mechanisms that increase design complexity or cost may not find traction with
high-volume manufacturers. Software countermeasures that increase computational
work may vitiate energy-efficiency measures. Altering workloads to disguise activity
may negatively affect usability or user satisfaction. Effective yet usable countermea-
sures remain an open problem.

Software Countermeasure: Delays and Throttling. The classifier’s poor perfor-
mance with traces gathered using Coral or Tor suggests that delays complicate clas-
sification. Tor in particular is a very effective countermeasure according to our experi-
ments. For users unable or unwilling to use Tor, it may be possible to leverage similar
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changes in activity patterns. A defensive idea from Song et al. [28] is to introduce ran-
dom delays in the time domain, which will cause changes in the frequency domain
that may confuse our classifier. The problem with random delays, as Song et al. point
out, is that different instances of the same private signal, with different random delays
added to each, give an attacker enough information to learn the true timing of the sig-
nal by simply averaging the delays. The same problem afflicts the defensive strategy of
randomizing the order in which the browser loads page elements.

Hardware Countermeasure: Current Filtering. Filtering circuitry that damps cur-
rent fluctuations could prevent workload-dependent information from leaking onto the
AC power line. SMPSes internally implement low-pass filters to remove high-frequency
noise and meet government EMI standards [9]. Our experiments reveal that, for the
SMPSes we tested, the frequencies useful for classification are below the internal filter’s
cutoff. A more aggressive low-pass filter or a high-pass filter could remove additional
information, but would likely increase the cost and physical size of an SMPS. Our sam-
pling rate experiments show that the classifier is effective until the maximum observable
frequency drops below 4 kHz, so much more filtering would likely be required.

7 Related Work

AC Power Event Recognition. This work focuses on classifying run-time events
on the order of seconds on a general-purpose computer, in contrast to previous work
that measured on–off transitions at a large granularity from a household vantage point.
Research on recognizing activity by measuring AC power goes back to at least 1989,
when Hart proposed nonintrusive load monitoring (NILM) to map changes in total
household power consumption to appliance activations [12,13]. Hart also recognized the
potential for abuse of NILM techniques. Recently, Gupta et al. proposed ElectriSense,
a system that uses a single-point monitor to detect electromagnetic interference (EMI)
generated by consumer electronics’ switched-mode power supplies [26,11]. Both NILM
and ElectriSense effectively capture and identify on and off events at the device level,
but neither aims to infer the internal states of integrated commodity devices such as
personal computers, as our work does.

Enev et al. refined the ElectriSense concept by studying the correlation of EMI with
video signals being played on modern high-definition televisions [8]. They classified
signals (video segments) more than 15 minutes long. In comparison, we focus on classi-
fying signals containing shorter periods of activity and monitor comparatively complex
general-purpose hardware. Our sensing apparatus is also somewhat simpler, relying on
a single sense resistor and no hardware filtering.

Our prior work has argued that ever-increasing energy proportionality has positive
and negative consequences for security and privacy and presented preliminary webpage
classification results with a smaller corpus [6]. This work instead focuses specifically
on attacks against user privacy and presents a much more in-depth empirical analysis.

Network Traffic Analysis. Past work has, like ours, exploited side channels to learn
sensitive information from traffic that may be encrypted. From previous work we bor-
row the intuition that webpages induce characteristic activity patterns that are robust
against encryption and the passage of time. Several researchers have trained classifiers
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on encrypted or obfuscated web traffic and observed that they could match webpages
against their training set using only packet-length information [14,22,23,29]. Our classi-
fier uses AC power traces as input rather than network traces, and so observes a noisier,
aggregate side channel.

Parasitic Modulation. Our work focuses on leakage via a wired channel, unlike many
past works that focus on leakage via parasitic modulation. Looking at CRT monitors,
van Eck published the first unclassified side channel analysis work, demonstrating that
the screen image could be reconstructed remotely using a TV receiver and tuned os-
cillators [31]. Kuhn further analyzed leakage from CRT and LCD monitors based on
parasitic modulation [19,20,21]. Vuagnoux and Pasini also investigated leakage via par-
asitic modulation, though they targeted keyboards rather than monitors and detached
their laptop power supplies to avoid interference [32]. Barisani and Bianco indepen-
dently demonstrated keystroke recovery for PS/2 keyboards by attaching a resistor to
the AC power cable, as in our work. They focus only on information from the keyboard
and rely on the observation of high-speed switching specified by the PS/2 protocol [3].

DC Power Analysis. Our methods are not designed to find key material, unlike past
work studying DC circuits that required pin-level access to components or detailed
knowledge of the circuits under test. Kocher et al. summarize much of the abundant
research on timing and power side channels [17,18]. The most straightforward of these
attacks measures a small portion of the complete system and uses domain knowledge
to infer the information being processed. This type of attack requires physical access
to the system, knowledge of the cryptosystem under attack, and thousands of accurate
measurements of the same process.

8 Extensions and Future Work

Alternative Tracing Methods. In our experiments, we physically connect probes to
an AC circuit to trace electrical activity. An ancillary goal of this work is to demon-
strate that it is possible to covertly modify a power outlet, so physical contact with the
computer’s power cord is a reasonable expectation under our threat model. However,
less-invasive methods exist to measure the current along the power cable. In particular,
a Hall effect sensor, which measures current via the magnetic field around a wire, could
provide a way to trace power consumption if modifying the outlet is infeasible. Such an
eavesdropper could easily be removed when not in use. We have not tested our classifier
against traces captured with a Hall effect sensor, but we have confirmed that Hall effect
sensors matching our sense resistor’s sensitivity exist.

Another possibility is indirect measurement similar to that of Enev et al. [8]: con-
necting measurement equipment in parallel with the victim on the same electrical cir-
cuit but on a different outlet. We expect classification performance to decline because
of the higher noise floor, but measurements might reveal that traces from outside the
victim’s outlet are qualitatively good enough for an attacker to use.

Adding Classification Features. The current SVM classifier relies solely on a coarse-
grained Fourier transform to learn unique webpage features. There are many promising
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extensions to the feature space that could improve classification performance. One sim-
ple extension would be to increase the resolution of the Fourier transforms used to train
and test the classifier. Doing so would increase the dimensionality of the feature space,
and possibly the classifier’s ability to distinguish among webpages.

An extension that takes advantage of SMPS load characteristics would be to simulta-
neously sample both voltage and current. As Section A discusses, SMPSes are nonlinear
loads that pull the voltage and current waveforms out of phase in a way that is related
to the workload. The changing relationship between the voltage and current waveforms
over time may reveal more information about the state of the system that is orthogonal
to raw current consumption.

Detecting Other Activities. As we have emphasized in this work, computers are com-
plex, general-purpose devices. The space of possible actions that a user might take is
vast. While we have focused on web activity in order to address a well-defined, tractable
problem, future work could address a broad range of other activities. Tasks as simple
as counting keystrokes, regardless of whether different keys can be recognized, may re-
veal sensitive information. Song et al. have demonstrated that counting keystrokes can
reduce the search space for brute-force password cracking by a factor of 50 [28].

9 Conclusions

This work demonstrates that a computer’s AC power consumption reveals sensitive in-
formation about computing tasks, specifically the webpage that the computer is loading.
We designed methods for webpage identification that extract power consumption sig-
natures that are obscure in the time domain but more apparent in the frequency domain.
With a data set of over 13,000 power traces of 51 popular webpages, our trained clas-
sifier can correctly label unseen traces with 99% precision and 99% recall. The power
trace signatures are robust against several variations including the use of an encrypting
VPN, background processes, changes in network location, or even the use of a different
computer. This is the first paper that quantifies the degree to which information about
browsing activity leaks via the AC power supply. We believe it represents an early step
in understanding this side channel. The increasing dynamic range of hardware power
consumption will lead to further information leakage. Open research problems include
the design and evaluation of countermeasures to mitigate the privacy risks of using un-
trusted power infrastructure.
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A Hardware Specifications

MacBook-1: 2008 model, dual-core Intel Core 2 Duo processor, 4 GB of RAM, Intel
GMA X3100 GPU, 80 GB Corsair SATA II MLC solid-state drive, and Mac OS 10.6.8.
We removed the battery from MacBook-1 during all experiments.

MacBook-2: 2008 model, dual-core Intel Core 2 Duo processor, 4 GB of RAM, Intel
GMA X3100 GPU, 320 GB SATA magnetic drive, and Mac OS 10.7.3. The battery
remained in MacBook-2 during all experiments.

Dell Vostro desktop PC: quad-core Intel Core i5 processor, 4 GB of RAM, AMD
Radeon 6450 GPU, and 250 GB SATA magnetic drive. We tested the desktop PC under
Windows 7 and Ubuntu 10.04.

Lenovo T410 Laptop: Intel Core i5 processor, 4 GB of RAM, 300 GB SATA mag-
netic drive, and Windows 7 OS. The battery remained in the laptop during all experi-
ments.

www.it-ebooks.info

http://www.p3international.com/products/special/P4400/P4400-CE.html
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni
http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/computer/Version5.0_Computer_Spec.pdf
http://www.energystar.gov/ia/partners/prod_development/revisions/downloads/computer/Version5.0_Computer_Spec.pdf
http://www.it-ebooks.info/


Eliminating Cache-Based Timing Attacks
with Instruction-Based Scheduling

Deian Stefan1, Pablo Buiras2, Edward Z. Yang1, Amit Levy1, David Terei1,
Alejandro Russo2, and David Mazières1

1 Stanford University
2 Chalmers University of Technology

Abstract. Information flow control allows untrusted code to access sensitive and
trustworthy information without leaking this information. However, the presence
of covert channels subverts this security mechanism, allowing processes to com-
municate information in violation of IFC policies. In this paper, we show that
concurrent deterministic IFC systems that use time-based scheduling are vulner-
able to a cache-based internal timing channel. We demonstrate this vulnerability
with a concrete attack on Hails, one particular IFC web framework. To eliminate
this internal timing channel, we implement instruction-based scheduling, a new
kind of scheduler that is indifferent to timing perturbations from underlying hard-
ware components, such as the cache, TLB, and CPU buses. We show this sched-
uler is secure against cache-based internal timing attacks for applications using a
single CPU. To show the feasibility of instruction-based scheduling, we have im-
plemented a version of Hails that uses the CPU retired-instruction counters avail-
able on commodity Intel and AMD hardware. We show that instruction-based
scheduling does not impose significant performance penalties. Additionally, we
formally prove that our modifications to Hails’ underlying IFC system preserve
non-interference in the presence of caches.

1 Introduction

The rise of extensible web applications, like the Facebook Platform, is spurring interest
in information flow control (IFC) [27, 35]. Popular platforms like Facebook give ap-
proved apps full access to users’ sensitive data, including the ability to violate security
policies set by users. In contrast, IFC allows websites to run untrusted, third-party apps
that operate on sensitive user data [11, 21], ensuring they abide by security policies in
a mandatory fashion.

Recently, Hails [11], a web-platform framework built atop the LIO IFC system [39,
40], has been used to implement websites that integrate third-party untrusted apps. For
example, the code-hosting website GitStar.com built with Hails uses untrusted apps
to deliver core features, including a code viewer and wiki. GitStar relies on LIO’s IFC
mechanism to enforce robust privacy policies on user data and code.

LIO, like other IFC systems, ensures that untrusted code does not write data that may
have been influenced by sensitive sources to public sinks. For example, an untrusted
address-book app is allowed to compute over Alice’s friends list and display a stylized
version of the list to Alice, but it cannot leak any information about her friends to
arbitrary end-points. The flexibility of IFC makes it particularly suitable for the web,
where access control lists often prove either too permissive or too restrictive.
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However, a key limitation of IFC is the presence of covert channels, i.e., “channels”
not intended for communication that nevertheless allow code to subvert security policies
and share information [22]. A great deal of research has identified and analyzed covert
channels [25]. In this work, we focus on the internal timing covert channel, which
occurs when sensitive data is used to manipulate the timing behavior of threads so that
other threads can observe the order in which shared public resources are used [38, 44].
Though we do not believe our solution to the internal timing covert channel affects
(either positively or negatively) other timing channels, such as the external timing covert
channel, which is derived from measuring external events [1, 5, 12] (e.g., wall-clock),
addressing these channels is beyond our present scope.

LIO eliminates the internal timing covert channel by restricting how programmers
write code. Programmers are required to explicitly decouple computations that manip-
ulate sensitive data from those that can write to public resources, eliminating covert
channels by construction. However, decoupling only works when all shared resources
are modeled. LIO only considers shared resources that are expressible by the program-
ming language, e.g., shared-variables, file descriptors, semaphores, channels, etc. Im-
plicit operating system and hardware state can still be exploited to alter the timing
behavior of threads, and thus leak information. Reexamining LIO, we found that the
underlying CPU cache can be used to introduce an internal timing covert channel that
leaks sensitive data. A trivial attack can leak data at 0.75 bits/s and, despite the low
bandwidth, we were able to leak all the collaborators on a private GitStar.com project
in less than a minute.

Several countermeasures to cache-based attacks have previously been considered,
primarily in the context of cryptosystems following the work of Kocher [18] (see Sec-
tion 8). Unfortunately, many of the techniques are not designed for IFC scenarios. For
example, modifying an algorithm implementation, as in the case of AES [7], does not
naturally generalize to arbitrary untrusted code. Similarly, flushing or disabling the
cache when switching protection domains, as suggested in [6, 49], is prohibitively ex-
pensive in systems like Hails, where context switches occur hundreds of times per sec-
ond. Finally, relying on specialized hardware, such as partitioned caches [29], which
isolate the effects of one partition from code using a different partition, restricts the
deployability and scalability of the solution; partitioned caches are not readily available
and often cannot be partitioned to an arbitrary security lattice.

This paper describes a countermeasure for cache-based attacks when execution is
confined to a single CPU. Our method generalizes to arbitrary code, imposes minimal
performance overhead, scales to an arbitrary security lattice, and leverages hardware
features already present in modern CPUs. Specifically, we present an instruction-based
scheduler that eliminates internal timing channels in concurrent programs that time-
slice a single CPU and contend for the same cache, TLB, bus, and other hardware facil-
ities. We implement the scheduler for the LIO IFC system and demonstrate that, under
realistic restrictions, our scheduler eliminates such attacks in Hails web applications.

Our contributions are as follows.

� We implement a cache-based internal timing attack for LIO.

� We close the cache-based covert channel by scheduling user-level threads on a sin-
gle CPU core based on the number of instructions they execute (as opposed to the
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amount of time they execute). Our scheduler can be used to implement other concur-
rent IFC systems which implicitly assume instruction-level scheduling (e.g., [13, 14,
32, 38, 46]).

� We implement our instruction-based scheduler as part of the Glasgow Haskell Com-
piler (GHC) runtime system, atop which LIO and Hails are built. We use CPU per-
formance counters, prevalent on most modern CPUs, to pre-empt threads according
to the number of retired instructions. The measured impact on performance, when
compared to time-based scheduling, is negligible.

We believe these techniques to be applicable to operating systems that enforce
IFC, including [20, 26, 47], though at a higher cost in performance for application
code that is highly optimized for locality (see Section 5).

� We augment the LIO [40] semantics to model the cache and formally prove that
instruction-based scheduling removes leaks due to caches.

The paper is organized as follows. Section 2 discusses cache-based attacks and exist-
ing countermeasures. In Section 3 presents our instruction-based scheduling solution.
Section 4 describes our modifications to GHC’s runtime, while Section 5 analyses their
performance impact. Formal guarantees and discussions of our approach are detailed in
Sections 6 and 7. We describe related work in Section 8 and conclude in Section 9.

2 Cache Attacks and Countermeasures

The severity of information leakage attacks through the CPU hardware cache has been
widely considered by the cryptographic community (e.g. [28, 31]). Unlike crypto work,
where attackers extract sensitive information through the execution of a fixed crypto
algorithm, we consider a scenario in which the attacker provides arbitrary code in a
concurrent IFC system. In our scenario, the adversary is a developer that implements a
Hails app that interfaces with user-sensitive data using LIO libraries.

We found that, knowing only the cache size of the underlying CPU, we can eas-
ily build an app that exploits the shared cache to carry out an internal timing attack
that leaks sensitive data at 0.75 bits/s. Several IFC systems, including [13, 14, 32, 38,
40, 46], model internal timing attacks and address them by ensuring that the outcome
of a race to a public resource does not depend on secret data. Unfortunately, these
systems only account for resources explicitly modeled at the programming language
level and not underlying OS or hardware state, such as the CPU cache or TLB. Hence,
even though the semantics of these systems rely on instruction-based scheduling (usu-
ally to simplify expressing reduction rules), real-world implementations use time-based
scheduling for which the formal guarantees do not hold. The instruction-based sched-
uler proposed in this work can be used to make the assumptions of such concurrent
IFC systems match the situation in practice. In the remainder of this section, we show
the internal timing attack that leverages the hardware cache. We also discuss several
existing countermeasures that could be employed by Hails.

2.1 Example Cache Attack

We mount an internal timing attack by influencing the scheduling behavior of threads
through the cache. Consider the code shown in Figure 1. The attack leaks the secret
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1. lowArray := new Array[M];
2. fillArray(lowArray)

1. if secret 1. for i in [1..n] 1. for i in [1..n+m]
2. then highArray := new Array[M] 2. skip 2. skip
3. fillArray(highArray) 3. readArray(lowArray) 3. outputLow(0)
4. else skip 4. outputLow(1)

thread 1 thread 2 thread 3

Fig. 1. A simple cache attack

boolean value secret in thread 1 by affecting when thread 2 writes to the public
channel relative to thread 3.

fillArraythread 1
thread 2
thread 3

thread 1
thread 2
thread 3

cache

cache

time

low
high

mn

1

rdArr 1

readArray

0

0

Fig. 2. Execution of the cache attack with
secret true (top) and false (bottom)

The program starts (lines 1–2) by creat-
ing and initializing a public array lowArray
whose size M corresponds to the cache size;
fillArray simply sets every element of
the array to 0 (this will place the array in
the cache). The program then spawns three
threads that run concurrently. Assuming a
round-robin time-based scheduler, the execu-
tion of the attack proceeds as illustrated in
Figure 2, where secret is set to true (top) and
false (bottom), respectively.

� Depending on the secret value secret, thread 1 either performs a no-operation
(skip on line 4), leaving the cache intact, or evicts lowArray from the cache (lines
2–3) by creating and initializing a new (non-public) array highArray.

� We assume that thread 1 takes less than n steps to complete its execution—a number
that can be determined experimentally; in Figure 2, n is four. Hence, to allow all the
effects on the cache due to thread 1 to settle, thread 2 delays its computation by n
steps (lines 1–2). Subsequently, the thread reads every element of the public array
lowArray (line 3), and finally writes 1 to a public output channel (line 4). Crucial
to carrying out the attack, the duration of thread 2’s reads (line 3) depends on the
state of the cache: if the cache was modified by thread 1, i.e., secret is true, thread
2 needs to wait for all the public data to be retrieved from memory (as opposed to
the cache) before producing an output. This requires evicting highArray from the
cache and fetching lowArray, a process that takes a non-negligible amount of time.
However, if the cache was not touched by thread 1, i.e., secret is false, thread 2
will get few cache misses and thus produce its output with no delay.

� We assume that thread 2 takes less than m, where m<n, steps to complete reading
lowArray (line 3) when the reads hit the cache, i.e., lowArray was not replaced by
highArray. Like n, this metric can be determined experimentally; in Figure 2, m is
three. Using this, thread 3 simply delays its computation by n+m steps (lines 1–2)
and then writes 0 to a public output channel (line 3). The role of thread 3 is solely to
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serve as a baseline for thread 2’s output: producing its output before thread 2 when
the latter is filling the cache, i.e., secret is true; conversely, it produces an output
after thread 2 if thread 1 did not touch the cache, i.e., secret is false.

We remark that the race between thread 2 and thread 3 to write to a shared public chan-
nel, influenced by the cache state, is precisely what facilitates the attack. We described
how to leak a single bit, but the attack can easily be magnified by wrapping it in a loop.
Note also that we have assumed the attacker has complete control of the cache—i.e.,
the cache is not affected by other code running in parallel. However, the attack is still
plausible under weaker assumptions so long as the attacker deals with the additional
noise, as exemplified by the timing attacks on AES [28].

2.2 Existing Countermeasures

The internal timing attack arises as a result of cache effects influencing thread-scheduling
behavior. Hence, one series of countermeasures addresses the problem through low-
level CPU features that provide better control of the cache.
Flushing the cache. Naively, we can flush the cache on every context switch. In the
context of Figure 1, this guarantees that, when thread 2 executes the readArray in-
struction, its duration is not affected by thread 1 evicting lowArray from the cache—the
cache will always be flushed on a context switch, hence thread 3 will always write to
the output channel first.
No-fill cache mode. Several architectures, including Intel’s Xeon and Pentium 4, sup-
port a cache no-fill mode [15]. In this mode, read/write hits access the cache; misses,
however, read from and write to memory directly, leaving the cache unchanged. As
considered by Zhang et al. [49], we can execute all threads that operate on non-public
data in this mode. This approach guarantees that sensitive data cannot affect the cache.
Unfortunately, threads operating on non-public data and relying on the cache will suffer
from performance degradation.
Partitioned cache. Another approach is to partition the cache according to the num-
ber of security levels, as suggested in [49]. Using this architecture, a thread computing
on secret data only accesses the secret partition, while a thread computing on public
data only access the public one. This approach effectively corresponds to giving each
differently-labeled thread access to its own cache and, as a result, the scheduling behav-
ior of public threads cannot be affected by evicting data from the cache.

Unfortunately, none of the aforementioned solutions can be used in systems built
with Hails (e.g., GitStar). Flushing the cache is prohibitively expensive for preemptive
systems that perform a context switch hundreds of times per second—the impact on
performance would gravely reduce usability. The no-fill mode solution is well suited
for systems wherein the majority of the threads operate on public data. In such cases,
only threads operating on sensitive data will incur a performance penalty. However,
in the context of Hails, the solution is only slightly less expensive than flushing the
cache. Hails threads handle HTTP requests that operate on individual (non-public) user
data, hence most threads will not be using the cache. Another consequence of threads
handling differently-labeled data is that partitioned caches can only be used in a limited
way (see Section 8). Specifically, to address internal timing attacks, it is required that we
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thread 1
thread 2
thread 3

cache

thread 1
thread 2
thread 3

cache

readArray 1

0

fillArray

1

0 time

low
high

rdArr

Fig. 3. Execution of cache attack program of Figure 1 with secret set to true (top) and false
(bottom). In both executions, we highlight that the threads execute one “instruction” at a time in a
round-robin fashion. The concurrent threads take the same amount of time to complete execution
as in Figure 2. However, since we use instructions to context switch threads, the interleaving
between thread 2 or 3 is not influenced by the actions in thread 1, and thus the internal timing
attack does not arise—the threads’ output order cannot encode sensitive data.

partition the cache according to the number of security levels in the lattice. Given that
most existing approaches can only partition caches up to 16-ways at the OS level [24],
and fewer at the hardware level, an alternative scalable approach is necessary. Moreover,
neither flushing nor partitioning the cache can handle timing perturbations arising from
other pieces of hardware such as the TLB, buses, etc.

3 Instruction-Based Scheduling

As the example in Figure 2 shows, races to acquire public resources are affected by
the cache state, which in turn might be affected by secret values. It is important to
highlight that the number of instructions executed in a given quantum of time might
vary depending on the state of the cache. It is precisely this variability that reintroduces
dangerous races into systems. However, the actual set of instructions executed is not
affected by the cache. Hence, we propose scheduling threads according to the number
of instructions they execute, rather than the amount of time they consume. The point
at which a thread produces an output (or any other visible operation) is determined
according to the number of instructions it has executed, a measurement unaffected by
the amount of time it takes to perform a read/write from memory.

Consider the code in Figure 1 executing atop an instruction-based scheduler. An
illustration of this is shown in Figure 3. For simplicity of exposition, the instruction
granularity is at the level of commands (skip, readArray, etc.) and therefore context
switches are triggered after one command gets executed. (In Section 4, we describe a
more practical and realistic instruction-based scheduler.) Observe that the amount of
time it takes to execute an instruction has not changed from the time-based scheduler
of Figure 2. For example, readArray still takes 6 units of time when secret is true,
and 2 when it is false. Unlike Figure 2, however, the interleaving between thread 2
and thread 3 did not change depending on the state of the cache (which did change
according to secret). Therefore, a race to write to the public channel between thread
2 and thread 3 cannot be caused by the secret, through the cache. The second thread
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always executes n+1 = 5 instructions before writing 1 to the public channel, while the
third thread always executes n+m+1 = 8 instructions before writing 0.

Our proposed countermeasure, the implementation of which is detailed in Section 4,
eliminates the cache-based internal timing attacks without sacrificing scalability and
with a minor performance impact. With instruction-based scheduling, we do not re-
quire flushing of the cache. In this manner, applications can safely utilize the cache to
retain most of their performance without giving up system security, and unlike current
partitioned caches, we can scale up to consider arbitrarily complex lattices.

4 Implementation

We implemented an instruction-based scheduler for LIO. In this section, we describe
this implementation and detail some key design features we believe to be useful when
modifying concurrent IFC systems to address cache-based timing attacks.

4.1 LIO and Haskell

LIO is a Haskell library that exposes concurrency to programmers in the form of “green,”
lightweight threads. Each LIO thread is a native Haskell thread that has an associated
security level (label) which is used to track and control the flow of information to/from
the thread. LIO relies on Haskell libraries for creating new threads and the runtime
system for managing them.

In general, M lightweight Haskell threads may concurrently execute on N OS threads.
(It is common, however, for multiple Haskell threads to execute on a single OS thread,
i.e., M : 1 mapping.) The Haskell runtime, as implemented by the GHC system, uses a
round-robin scheduler to context switch between concurrently executing threads. Specif-
ically, the scheduler is invoked whenever a thread blocks/terminates or a timer signal
alarm is received. The timer is used to guarantee that the scheduler is periodically exe-
cuted, allowing the runtime to implement preemptive scheduling.

4.2 Instruction-Based Scheduler

As previously mentioned, timing-based schedulers render systems, such as LIO, vul-
nerable to cache-based internal timing attacks. We implement our instruction-based
scheduler as a drop-in replacement for the existing GHC scheduler, using the number
of retired instructions to trigger a context switch.

Specifically, we use performance monitoring units (PMUs) present in almost all recent
Intel [15] and AMD [3] CPUs. PMUs expose hardware performance counters that are
typically used by developers to optimize code—they provide metrics such as the number
of cache misses, instructions executed per cycle, branch mispredictions, etc. Importantly,
PMUs also provide a means for counting the number of retired instructions.

Using the perfmon2 [9] Linux monitoring interface and helper user-level library
libpfm4, we modified the GHC runtime to configure the underlying PMU to count
the number of retired instructions the Haskell process is executing. Specifically, with
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perfmon2 we set a data performance counter register to 264− n, which the CPU in-
crements upon retiring an instruction.1 Once the counter overflows, i.e., n instructions
have been retired, perfmon2 is sent a hardware interrupt. In our implementation, we
configured perfmon2 to handle the interrupt by delivering a signal to the GHC runtime.

If threads share no resources, upon receiving a signal, the executing Haskell thread
can immediately save its state and jump to the scheduler. However, preempting a thread
which is operating on a shared memory space can be dangerous, as the thread may
have left memory in an inconsistent state. (This is the case for many language runtimes,
not solely GHC’s.) To avoid this, GHC produces code that contains safe points where
threads may yield. Hence, a signal does not cause an immediate preemption. Instead,
the signal handler simply sets a flag indicating the arrival of a signal; at the next safe
point, the thread “cooperatively” yields to the scheduler.

To ensure liveness, we must guarantee that given any point in execution, a safe point
is reached in n instructions. Though GHC already inserts many safe points as a means
of invoking the garbage collector (via the scheduler), tight loops that do not perform
any allocation are known to hang execution [10]. Addressing this eight-year old bug,
which would otherwise be a security concern in LIO, we modified the compiler to insert
safe points on function entry points. This modification, integrated in the mainline GHC,
has almost no effect on performance and only a 7% bloat in average binary size.

4.3 Handling IO

Threads yield at safe points in their execution paths as a result of a retired instruction
signal. However, there are circumstances in which threads would like to explicitly yield
prior to the reception of a retired instruction signal. In particular, when a thread per-
forms a blocking operation, it immediately yields to the scheduler, registering itself to
wake up when the operation completes. Thus, any IO action is a yield which allows the
thread to give up the rest of its scheduling quantum.

While yields are not intrinsically unsafe, it is not safe to allow the leftover scheduling
quantum to be passed on to the next thread. Thus, after running any asynchronous IO
action, the runtime must reset the retired instruction counter. Hence, whenever a thread
enters the scheduler loop due to being blocked, we reset the retired instruction counter.

5 Performance Evaluation

We evaluated the performance of instruction-based scheduling against existing time-
based approaches using the nofib benchmark suite [30]. nofib is the standard bench-
marking suite used for measuring the performance of Haskell implementations.

In our experimental setup, we used the latest development version of GHC (the Git
master branch as of November 6, 2012). The measurements were taken on the same
hardware as Hails [11]: a machine with two dual-core Intel Xeon E5620 (2.4GHz) pro-
cessors, and 48GB of RAM.

1 Though the bit-width of the hardware counters vary (they are typically 40-bits wide) perfmon2
internally manages a 64-bit counter.
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Fig. 4. Mean time between timer signal and retired-instruction signal. Each point represents a
program from nofib, which have been sorted on the x-axis by their mean time.
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Fig. 5. Change to run time from instruction-based scheduling

We first needed to find an instruction budget—number of instructions to retire before
triggering the scheduler. We found a poorly chosen instruction budget could increase
runtime by 100%. To determine a good parameter, we measured the mean time be-
tween retired-instruction signals with an initially guessed instruction budget parameter.
We then adjusted the parameter so the median test program had a 10 millisecond mean
time-slice (the default quantum size in vanilla GHC with time-based scheduling) and
verified our final choice by re-running the measurements. For our specific setup, an
instruction budget of approximately 37,100,000 retired-instructions corresponded to a
10 millisecond time quantum. We plot the mean and standard deviation across all nofib
applications with the final tuning parameter in Figure 4. We found that most programs
receive a signal within 2 milliseconds of when they would have normally received the
signal using the standard time-based scheduler. While the instruction budget parameter
will vary across machines, it is relatively simple to bootstrap this parameter by perform-
ing these measurements at startup and tuning the budget accordingly.

Next, we compared the performance of Haskell’s timer-based scheduler with our
instruction-based scheduler. We used a subset of the nofib benchmark suite called the
real benchmark, which consists of “real world programs”, as opposed to synthetic
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benchmarks (however, results for the whole nofib suite are comparable). Figure 5 shows
the run time of these programs with both scheduling approaches. With an optimized in-
struction budget parameter, instruction-based scheduling has no impact to the runtime
of the majority of nofib applications and results in only a very slight increase in runtime
for others (about 1%).

This result may seem surprising: instruction-based scheduling purposely punishes
threads with good data locality, so one might expect a more substantial performance
impact. We hypothesize that this is the case due to two reasons. First, with preemptive
scheduling, we are already inducing cache misses when we switch from running one
thread to another—instruction-based scheduling only perturbs when these preempts oc-
cur, and as seen in Figure 4, these perturbations are very minor. Second, modern L2
caches are quite large, meaning that hardware is more forgiving of poor data locality—
an effect that has been measured in the behavior of stock lazy functional programs [2].

6 Cache-Aware Semantics

In this section we recall relevant design aspects of LIO [40] and extend the original for-
malization to consider how caches affect the timing behavior of programs. Importantly,
we formalize instruction-based scheduling and show how it removes cache-based inter-
nal timing covert channels.

6.1 LIO Overview

At a high level, LIO provides the LIO monad, which is used in place of IO. Wrapping
standard Haskell libraries, LIO exports a collection of functions that untrusted code may
use to access the filesystem, network, shared variables, etc. Unlike the standard libraries,
which usually return IO actions, these functions return actions in the LIO monad, thus
allowing LIO to perform label checks before executing a potentially unsafe action.

Internally, the LIO monad keeps track of a current label, Lcur. The current label is
effectively a ceiling over the labels of all data that the current computation may depend
on. This label eliminates the need to label individual definitions and bindings: symbols
in scope are (conceptually) labeled with Lcur.2 Hence, when a computation C, with
current label LC, observes an object labeled LO, C’s label is raised to the least upper
bound or join of the two labels, written LC �LO. Importantly the current label governs
where the current computation can write, what labels may be used when creating new
channels or threads, etc. For example, after reading O, the computation should not be
able to write to a channel K if LC is more restricting than LK—this would potentially
leak sensitive information (about O) into a less sensitive channel.

Note that an LIO computation can only execute a sub-computation on sensitive data
by either raising its current label or forking a new thread in which to execute this sub-
computation. In the former case, raising the current label prevents writing to less
sensitive endpoints. In the latter case, to observe the result (or timing and termination be-
havior) of the sub-computation the thread must wait for the forked thread to finish, which

2 As described in [39], LIO does, however, allow programmers to heterogeneously label data
they consider sensitive.
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(STEP)
|〈Σ ,〈σ ,e〉〉|ζ −→k |〈Σ ′,〈σ ′,e′〉〉|ζ ′ q> 0

|〈Σ ,ζ ,q,〈σ ,e〉� ts〉| ↪→ |〈Σ ′,ζ ′,q−k,〈σ ′,e′〉� ts〉|

(PREEMPT)
q≤ 0

|〈Σ ,ζ ,q, t � ts〉| ↪→ |〈Σ ′,ζ ,qi, ts � t〉|

Fig. 6. Semantics for threadpools under round-robin time-based scheduling

first raises the current label. A consequence of this design is that differently-labeled com-
putations are decoupled, which, as mentioned in Section 1, is key to eliminating the
internal timing covert channel.

In the next subsection, we will outline the semantics for a cache-aware, time-based
scheduler where the cache attack described in Section 2 is possible. Moreover, we show
that we can easily adapt this semantics to model the new LIO instruction-based sched-
uler. Interested readers may refer to the extended version of the paper, which can be
found online at [41].

6.2 Cache-Aware Semantics

We model the underlying CPU cache as an abstract memory shared among all running
threads, which we will denote with the symbol ζ . Every step of the sequential execution
relation will affect ζ according to the current instruction being executed, the runtime
environment, and the existing state of the cache. As in [40], each LIO thread has a
thread-local runtime environment σ , which contains the current label σ .lbl. The global
environment Σ , common to all threads, holds references to shared resources.

In addition, we explicitly model the number of machine cycles taken by a single

execution step as a result of the cache. Specifically, the transition ζ ⇁(Σ ,σ ,e)
k ζ ′ captures

the parameters that influence the cache (Σ , σ , and e) as well as the number of cycles k
it takes for the cache to be updated.

A cache-aware evaluation step is obtained by merging the reduction rule of LIO with
our formalization of CPU cache as given below:

|〈Σ ,〈σ ,e〉〉| γ
⇀ |〈Σ ′,〈σ ′,e′〉〉| ζ ⇁(Σ ,σ ,e)

k ζ ′ k ≥ 1

|〈Σ ,〈σ ,e〉〉|ζ
γ−→k |〈Σ ′,〈σ ′,e′〉〉|ζ ′

We read |〈Σ ,〈σ ,e〉〉|ζ
γ−→k |〈Σ ′,〈σ ′,e′〉〉|ζ ′ as “the configuration |〈Σ ,〈σ ,e〉〉| reduces to

|〈Σ ′,〈σ ′,e′〉〉| in one step, but k machine cycles, producing event γ and modifying the

cache from ζ to ζ ′.” As in LIO [40], the relation |〈Σ ,〈σ ,e〉〉| γ
⇀ |〈Σ ′,〈σ ′,e′〉〉| represents

a single execution step from thread expression e, under the run-time environments Σ
and σ , to thread expression e′ and run-time environments Σ ′ and σ ′. Events are used to
communicate information between the threads and the scheduler, e.g., when spawning
new threads.

Figure 6 shows the most important rules of our time-based scheduler in the presence
of cache effects. We elide the rest of the rules for brevity. The relation ↪→ represents a
single evaluation step for the program threadpool, in contrast with −→ which is only
for a single thread. Configurations are of the form |〈Σ ,ζ ,q, ts〉|, where q is the number of
cycles available in the current time slice and ts is a queue of thread configurations of the
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form 〈σ ,e〉. We use a standard deque-like interface with operations � and � for front
and back insertion, respectively, i.e., 〈σ ,e〉 � ts denotes a threadpool in which the first
thread is 〈σ ,e〉 while ts � 〈σ ,e〉 indicates that 〈σ ,e〉 is the last one.

As in LIO, threads are scheduled in a round-robin fashion. Our scheduler relies on
the number of cycles that each step takes; we respectively write qi and q as the initial
and remaining number of cycles assigned to a thread in each quantum. In rule (STEP),
the number of cycles k that the current instruction takes is reflected in the scheduling
quantum. Consequently, threads that compute on data that is not present in the cache
will take more cycles, i.e., have a higher k, so they will run “slower” because they are
allowed to perform fewer reduction steps in the remaining time slice. In practice, this
permits attacks, such as that in Figure 1, where the interleaving of the threads can be
affected by sensitive data. Rule (PREEMPT) is used when the thread has exhausted its
cycle budget, triggering a context switch by moving the current thread to the end of the
queue.

We can adapt this semantics to reflect the behavior of the new instruction-based
scheduler. To this end, we replace the number of cycles q with an instruction budget;
we write bi for the initial instruction budget and b for the current budget. Crucially, we
change rule (STEP) into rule (STEP-CA), given by

(STEP-CA)
|〈Σ ,〈σ ,e〉〉|ζ −→k |〈Σ ′,〈σ ′,e′〉〉|ζ ′ b> 0

|〈Σ ,ζ ,b,〈σ ,e〉 � ts〉| ↪→ |〈Σ ′,ζ ′,b− 1,〈σ ′,e′〉� ts〉|
.

Rule (STEP-CA) executes a sequential instruction in the current thread, provided the
instruction budget is not empty (b> 0), and updates the cache accordingly
(|〈Σ ,〈σ ,e〉〉|ζ −→k |〈Σ ′,〈σ ′,e′〉〉|ζ ′ ). It is important to remark that the effects of the under-
lying cache ζ , as indicated by k, are intentionally ignored by the scheduler. This subtle
detail captures the essence of removing the cache-based internal timing channel. (Our
formalization of a time-based scheduler does not ignore k and thus is vulnerable.) Sim-
ilarly, rule (PREEMPT) turns into rule (PREEMPT-CA), where q and qi are respectively
replaced with b and bi to reflect the fact that there is an instruction budget instead of a
cycle count. The rest of the rules can be adapted in a straightforward manner. Our rules
have the invariant that the instruction budget gets decremented by one when a thread
executes one instruction.

By changing the cache-aware semantics in this way, we obtain a generalized seman-
tics for LIO. In fact, the previous semantics for LIO [40], is a special case, with bi = 1,
i.e., the threads perform only one reduction step before a context-switch happens. In
addition, it is easy to extend our previous termination-sensitive non-interference result
to the instruction-based semantics. The security guarantees of our approach are stated
below.

Theorem 1 (Termination-sensitive non-interference). Given a program function f ,
an attacker that observes data at level L, and a pair of inputs e1 and e2 indistinguish-
able to the attacker, then for every reduction sequence starting from f (e1) there is a
corresponding reduction sequence starting from f (e2) such that both sequences reach
indistinguishable configurations.
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Proof Sketch: Our proof relies on the term erasure technique as used in [23, 34, 39],
and follows in a similar fashion to that of [40]. We refer the interested reader to the
extended version of the paper for details [41].

7 Limitations

This section discusses some limitations of our current implementation, the significance
of these limitations, and how the limitations can be addressed.

Nondeterminism in the hardware counters. While the retired-instruction counter
should be deterministic, in most hardware implementations there is some degree of
nondeterminism. For example, on most x86 processors the instruction counter adds an
extra instruction every time a hardware interrupt occurs [45]. This anomaly could be
exploited to affect the behavior of an instruction-based scheduler, causing it to trigger
a signal early. However, this is only a problem if a high thread is able to cause a large
number of hardware interrupts in the underlying operating system. In the Hails frame-
work, attackers can trigger interrupts by forcing a server to frequently receive HTTP
responses, i.e., trigger a hardware interrupt from the network interface card. Hails,
however, provides mechanisms to mitigate the effects of external events, using the tech-
niques of [4, 48], that can reduce the frequency of such operations. Nevertheless, the
feasibility of such attacks is not directly clear and left as future work.

Scheduler and garbage collector instruction counts. For performance reasons, we do
not reset the retired-instruction counter prior to re-entering user code. This means that
instruction counts include the instructions executed from when the previous thread re-
ceived the signal, to when the previous thread yields, to when the next thread is sched-
uled. While this suggests that thread are not completely isolated, we think that this
interaction is extremely difficult to exploit. This is because the number of instructions
it takes for the scheduler to schedule a new thread is essentially fixed, and the “time to
yield” for any code is highly dependent on the compiler, which we assume is not under
the control of an adversary.

Parallelism. Unfortunately, we cannot simply run instruction-based scheduling on
multiple cores. Threads running in parallel will be able to race to public resources. Un-
der normal conditions, such races can be still influenced by the state of the (L3) cache.
Some parallelism is, however, possible. For instance, we can extend the instruction-
based scheduler to parallelize regions of code that do not share state or have side effects
(e.g., synchronization operations or writes to channels). To this end, when a thread
wishes to perform a side effect, it is required that all the other threads lagging behind (as
per retired-instruction count) first complete the execution of their side effects. Hence,
an implementation would rely on a synchronization barrier whenever a side-effecting
computation is executed; at the barrier, the execution of all the side effects is done in a
pre-determined order. Although we believe that this “optimization” is viable, we have
not implemented it, since it requires major modifications to the GHC runtime system
and the performance gains due to parallelism requiring such strict synchronization bar-
riers are not clear. We leave this investigation to future work.
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Even without built-in parallelism, we believe that instruction-based scheduling rep-
resents a viable and deployable solution when considering modern web applications and
data-centers. In particular, when an application is distributed over multiple machines,
these machines do not share a processor cache and thus can safely run the application
concurrently. Attacks which involve making these two machines access shared external
resources can be mitigated in the same fashion as external timing attacks [4, 40, 48, 49].
Load-balancing an application in this manner is already a well-established technique for
deploying applications.

8 Related Work

Impact of cache on cryptosystems. Kocher [18] was one of the first to consider the se-
curity implications of memory access-time in implementations of cryptographic prim-
itives and systems. Since then, several attacks (e.g., [28, 31]) against popular systems
have successfully extracted secret keys by using the cache as a covert channel. As a
countermeasure, several authors propose partitioning the cache (e.g., [29]). Until re-
cently, partitioned caches have been of limited application in dynamic information flow
control systems due to the small number of partitions available. The recent Vantage
cache partition scheme of Sanchez and Kozyrakis [37], however, offers tens to hun-
dreds of configurable partitions and high performance. As hardware is not yet available
with Vantage, it is hard to evaluate its effectiveness for our problem domain. However,
we expect it to be mostly complimentary to our instruction-based scheduler. Specifi-
cally, a partitioned cache can be used to safely run threads in parallel, each group of
threads using instruction-based schedulers. Other countermeasures (e.g., [28]) are pri-
marily implementation-specific, and, while applicable to cryptographic primitives, they
do not easily generalize to arbitrary code.

Language-based information-flow security. Several works (e.g., [13]) consider sys-
tems that satisfy possibilistic non-interference [38], which states that a concurrent pro-
gram is secure iff the possible observable events do not depend on sensitive data. An
alternative notion, probabilistic non-interference, considers a concurrent program se-
cure iff the probability distribution over observable events is not affected by sensitive
data [44]. Zdancewic and Myers introduce observational low-determinism [46], which
intuitively states that the observable behavior of concurrent systems must be determin-
istic. After this seminal work, several authors improve on each other’s definitions on
low-determinism (e.g., [14]). Other IFC systems rely on deterministic semantics and a
determined class of runtime schedulers (e.g., [32]).

The lines of work mentioned above assume that the execution of a single step is
performed in a single unit of time, corresponding to an instruction, and show that races
to publicly-observable events cannot be influenced by secret data. Unfortunately, the
presence of the cache breaks the correspondence between an instruction and a single
unit of time, making cache attacks viable. Instruction-based scheduling could be seen
as a necessary component in making the previous concurrent IFC approaches practical.

Agat [1] presents a code transformation for sequential programs such that both code
paths of a branch have the same memory access pattern. This eliminates timing covert
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channels, even those relying on the cache. This transformation has been adapted by
several authors (e.g., [36]). This approach, however, focuses on avoiding attacks relying
on the data cache, while leaving the instruction cache unattended.

Russo and Sabelfeld [33] consider non-interference for concurrent systems under co-
operative and deterministic scheduling. An implementation of such a system was pre-
sented by Tsai et al. in [42]. This approach eliminates internal timing leaks, including
those relying on the cache, by restricting the use of yields. Cooperative schedulers are
intrinsically vulnerable to attacks that use termination as a covert channel. In contrast,
our solution is able to safely preempt non-terminating computations while guaranteeing
termination-sensitive non-interference.

Secure multi-execution [8] preserves confidentiality of data by executing the same
sequential program several times, one for each security level. In this scenario, the cache-
based covert channel can only be removed in specific configurations [16]. Zhang et
al. [49] provide a method to mitigate external events when their timing behavior could
be affected by the underlying hardware. This solution is directly applicable to our sys-
tem when considering external events. Similar to our work, they consider an abstract
model of the hardware machine state which includes a description of time. However,
their semantics focus on sequential programs, wherein attacks due to the cache arise in
the form of externally visible events.

Hedin and Sands [12] present a type-system for preventing external timing attacks
for bytecode. Their semantics is augmented to incorporate history, which enables the
modeling of cache effects. We proceed in a similar manner when extending the original
LIO semantics [40] to consider caches.

System security. In order to achieve strong isolation, Barthe et al. [6] present a model
of virtualization which flushes the cache upon switching between guest operating sys-
tems. Different from our scenario, flushing the cache in such scenarios is common and
does not impact the already-costly context-switch.

Allowing some information leakage, Köpft et al. [19] combines abstract interpreta-
tion and quantitative information-flow to analyze leakage bounds for cache attacks. Kim
et al. [17] propose StealthMem, a system level protection against cache attacks. Stealth-
Mem allows programs to allocate memory which does not get evicted from the cache. In
fact, this approach could be seen as a software-level partition of the cache. StealthMem
is capable of enforcing confidentiality for a stronger attacker model than ours, i.e., they
consider programs with access to wall-clock and perhaps running on multi-cores. As
other works on partition caches, StealthMem does not scale to scenarios with arbitrarily
complex security lattices.

Performance monitoring counters. The use of PMUs for tasks other than performance
monitoring is a relatively recent one. Vogl and Ekert [43] also use PMUs, but for mon-
itoring applications running within a virtual machine, allowing instruction level mon-
itoring of all or specific instructions. While the mechanism is the same, our goals are
different: we merely seek to replace interrupts generated by a clock-based timer with
interrupts generated by hardware counters; their work introduces new interrupts that
trigger vmexits. This causes a considerable slowdown, while we achieve no major per-
formance impact.
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9 Conclusion

Cache-based internal timing attacks constitute a practical set of attacks. We present
instruction-based scheduling as a solution to remove such attacks. Different from sim-
ply flushing the cache on a context switch or partitioning the cache, this new class of
schedulers also removes timing perturbations introduced by other components of the
underlying hardware (e.g., the TLB, CPU buses, etc.). To demonstrate the applicability
of our solution, we implemented a scheduler using the CPU retired-instruction coun-
ters available on commodity Intel and AMD hardware. We integrated the scheduler into
the Hails IFC web framework, replacing the timing-based scheduler. This integration
was, in part, possible because of the scheduler’s negligible performance impact and, in
part, due to our formal guarantees. Specifically, by generalizing previous results, we
proved that instruction-based scheduling for LIO preserves confidentiality and integrity
of data, i.e., termination-sensitive non-interference. Finally, we remark that our design,
implementation, and proof are not limited to LIO; we believe that instruction-based
scheduling is applicable to other concurrent deterministic IFC systems where cache-
based timing attacks could be a concern.
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Abstract. Rich client-side applications written in HTML5 proliferate
on diverse platforms, access sensitive data, and need to maintain data-
confinement invariants. Applications currently enforce these invariants
using implicit, ad-hoc mechanisms. We propose a new primitive called
a data-confined sandbox or DCS. A DCS enables complete mediation
of communication channels with a small TCB. Our primitive extends
currently standardized primitives and has negligible performance over-
head and a modest compatibility cost. We retrofit our design on four
real-world HTML5 applications and demonstrate that a small amount of
effort enables strong data-confinement guarantees.

1 Introduction

Rich client-side applications written in HTML, CSS, and JS—including browser
extensions, packaged browser applications (Chrome Apps) [17], Windows 8 Metro
applications [32], and applications in newer browser operating systems (B2G [33],
Chrome OS [18])—are fast proliferating on diverse computing platforms. These
“HTML5” applications run with access to sensitive user data, such as brows-
ing history, personal and social data, and financial documents, as well as capa-
bility bearing tokens that grant access to these data. A recent study of 5,943
Google Chrome browser extensions revealed that 58% required access to the
user’s browsing history, and 35% requested permissions to the user’s data on all
websites [10].

Applications handling sensitive data need the ability to verifiably confine data
to specific principals and to prevent it from leaking to malicious actors. On one
hand, the developers want an easy, high-assurance way to confine sensitive data;
on the other, platform vendors and security auditors want to verify sensitive
data confinement. For example, consider LastPass, a real-world HTML5-based
password manager with close to a million users1. By design, LastPass only stores
an encrypted version of the user’s data in the cloud and decrypts it at the
client side with the user’s master password. It is critical that the decrypted
user data (i.e., the clear-text password database) never leave the client. We
term this requirement a data-confinement invariant. Data-confinement invariants
are fundamental security specifications that limit the flow of sensitive data to
a trusted set of security principals. These data-confinement invariants are not

1 https://www.lastpass.com
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explicitly stated in today’s HTML5 applications but are implicitly necessary to
preserve their privacy and security guarantees.

We observe two hurdles that hinder practical, high-assurance data confine-
ment in existing client-side HTML5 applications. First, mechanisms to spec-
ify and enforce data-confinement invariants are absent in HTML5 platforms as
a result, they remain hidden in application designs; raising the TCB. Second,
client-side HTML5 applications have numerous channels to communicate with
distrusting principals, and no unified monitoring interface like the OS system
call interface exists. Due to the number of channels available to HTML5 appli-
cations, attackers can violate data confinement invariants even in the absence
of code injection vulnerabilities [45,26]. As we explain in Section 3.2, previous
research proposals do not offer complete mediation, or have an unacceptably
large TCB and compatibility cost.

We introduce the data-confined sandbox (or DCS), a novel security primi-
tive for client-side HTML5 applications. A data-confined sandbox is a unit of
execution, such as code executing in an iframe, the creator of which explicitly
controls all the data imported and exported by the DCS. Our design provides the
creator of a DCS a secure reference monitor to interpose on all communications,
privileged API accesses, and input/output data exchanges originating from the
DCS.

Data-confined sandboxes are a fundamental primitive to enable a data-centric
security architecture for emerging HTML5 applications. By moving much of the
application code handling sensitive data to data-confined sandboxes, we can
enable applications that have better resilience to privacy violating attacks and
that are easy to audit by security analysts.

Contributions. We make the following main contributions:

– We introduce the concept of data confinement for client-side HTML5 appli-
cations that handle sensitive data (Section 2).

– We identify the limitations of current security primitives in the HTML5
platform that make them insufficient for implementing data-confinement in-
variants (Section 3.2).

– We design and implement a data-confined sandbox, a novel mechanism in
web browsers that provides complete mediation on all explicit data com-
munication channels (Section 4) and discuss how to implement such a new
primitive without affecting the security invariants maintained by the HTML5
platform (Section 4.3).

– We demonstrate the practicality of our approach by modifying four appli-
cations that handle sensitive data to provide strong data confinement guar-
antees (Section 6). All our code and case studies are publicly available on-
line [13].

2 Data Confinement in HTML5 Applications

Data confinement is a data-centric property, which limits the flow of sensitive
data to an explicitly allowed set of security principals. In this section, we present
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example data-confinement invariants from real-world applications. Our focus
is on modern HTML5 applications that handle sensitive data or tokens with
complex client-side logic leading to a large client-side TCB.

2.1 Password Managers

Password managers organize a user’s credentials across the web in a centralized
store. Consider LastPass, a popular password manager that stores encrypted
credential data in the cloud. LastPass decrypts the password database only at
the client side (in a ‘vault’) with a user provided master password. A number of
data-confinement invariants are implicit in the design of LastPass.

– First, the user’s master password should never be sent to any web server
(including LastPass servers).

– Second, the password database should only be sent back to the LastPass
servers after encryption.

– Third, the decrypted password database on the client-side should not leak
to any web site.

– Finally, only individual decrypted passwords should be sent only to their
corresponding websites: e.g., the credentials for facebook.com should only
be used on facebook.com.

2.2 Client-Side SSO Implementations

Single sign-on (SSO) mechanisms have emerged on the web to manage users’
online identities. These mechanisms rely on confining secret tokens to an allowed
set of principals. Consider Mozilla’s recent SSO mechanism called BrowserID. It
has the following data-confinement invariants implicit in its design:

– It aims to share authorization tokens only with specific participants in one
run of the protocol.

– Similar to the ‘vault’ in LastPass, BrowserID provides an interface for man-
aging credentials in a user ‘home page.’ This home page data should not leak
to external websites.

– The user’s BrowserID credentials (master password) should never be leaked
to a third party: only the authorization credentials should be shared with the
intended web principals involved in the particular instance of the protocol
flow.

Other SSO mechanisms, like Facebook Connect, often process capability-
bearing tokens (such as OAuth tokens). Implementation weaknesses and logic
flaws can violate these invariants, as researchers demonstrated in 2010 [24,3],
2011 [43], and 2012 [41].
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2.3 Electronic Medical Record Applications

Electronic medical record (EMR) applications provide a central interface for
patient data, scheduling, clinical decisions, and billing. Strict compliance regu-
lations, such as HIPAA, require data confinement for these applications, with
financial and reputational penalties for violations. OpenEMR is the most popu-
lar open-source EMR application [38] and has a strict confinement requirement:
an instance of OpenEMR should not leak user data to any principal other than
hospital servers.

Note the dual requirements in this application: first, OpenEMR’s developers
want to ensure data confinement to their application; second, hospitals need to
verify that OpenEMR is not leaking patient data to any external servers. In the
current design, it is difficult for hospitals to verify this: any vulnerability in the
client-side software can allow data disclosure.

2.4 Web Interfaces for Sensitive Databases

Web-based database administration interfaces are popular today, because they
are easy to use. PhpMyAdmin is one such popular interface with thousands of
downloads each week [34]. The following data-confinement invariants are implicit
in its design:

– Data received from the database server is not sent to any website.
– User inputs (new values to store) are only sent to the database server’s data

insertion endpoint.

Currently, a code injection vulnerability in the client-side interface can enable
attackers to steal the entire database, as the interface executes with the database
user’s privileges. Moreover, the application is large and not easily auditable to
ensure data-confinement invariants.

Prevalence of Data Confinement. The discussion above only provides ex-
emplars: any application handling sensitive data typically has a confinement
invariant. Due to space constraints, we have made our analysis of the twenty
most popular Google Chrome extensions available online [13]. All applications
handling sensitive data (sixteen applications in total) maintained an invariant
implicitly.2 The trusted code base for these extensions varied from 7.5KB to
1.24MB. Sensitive data available to the extensions vary from access to the user’s
browsing history to the user’s social media login credentials.

3 Problem Formulation

Given the prevalence of data confinement in HTML5 applications, we aim to
support secure data confinement in HTML5 applications. Due to the increas-
ingly sensitive nature of data handled by modern HTML5 applications, a key

2 The remaining four extensions dealt mainly with the website style and appearance
and did not access sensitive data.
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requirement is high assurance: small TCB, complete mediation. Further, for ease
of adoption, we aim for a mechanism with minimal compatibility costs.

The idea of such high assurance mechanisms is not new, with Saltzer and
Schroeder laying it down as a fundamental requirement for secure systems [39].
Our focus is on developing a high assurance mechanism for HTML5 applications.
We first discuss the challenges in achieving high assurance data confinement in
HTML5 applications, followed by a discussion on why current and proposed
primitives do not satisfy all our goals. We discuss our design in Section 4.

3.1 HTML5 and Data Confinement: Challenges

A number of idiosyncrasies of the HTML5 platform make practical data confine-
ment with a small TCB difficult. First, the HTML5 platform lacks mechanisms
to explicitly state data-confinement invariants—current ad-hoc mechanisms do
not separate policy and enforcement mechanism. Due to the coarse-grained na-
ture of the same origin policy, enforcing these invariants on current HTML5
platforms increases the TCB to the whole application.

Achieving a small TCB is particularly important on the HTML5 platform.
The JavaScript language and the DOM interface make modular reasoning about
individual components difficult. All code runs with ambient access to the DOM,
cookies, localStorage, and the network. Further, techniques like prototype hi-
jacking can violate encapsulation assumptions and allow attackers to leak pri-
vate variables in other modules. The DOM API makes confinement difficult to
ensure even in the absence of code injection vulnerabilities [45,26].

Achieving complete mediation on the HTML5 platform is also difficult. The
HTML5 platform has a large number of data disclosure channels, as by design
it aims to ease cross-origin resource loading and communication. We categorize
these channels as:

– Network channels. HTML5 applications can make network requests via
HTML elements like img, form, script, and video, as well as JavaScript
and DOM APIs like XMLHttpRequest and window.open. Furthermore, CSS
stylesheets can issue network requests by referencing images, fonts, and other
stylesheets.

– Client-side cross-origin channels. Web browsers support a number of
channels for client-side cross-origin communication. This includes exceptions
to the same-origin policy in JavaScript such as the window.location object.
Initially, mashups used these cross-origin communication mechanisms for
fragment ID messaging (via the location.hash property) between cross-
origin windows. Current mashups rely on newer channels like postMessage,
which are also a mechanism for data leaks.

– Storage Channels. Another source of data exfiltration are storage channels
like localStorage, cookies, and so on. These channels do not cause network
requests or communicate with another client-side channel as above; instead,
they allow code to exfiltrate data to other code that will run in the future in
the same origin (or, in case of cookies, even other related origins). Browsers
tie storage channels to the origin of an application.
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Given the wide number of channels available for inadvertent data disclosure,
we observe that no unified interface exists for ensuring confinement of fine-
grained code elements in the HTML5 platform. This is in contrast to system
call interposition in commodity operating systems that provides complete medi-
ation. For example, mediation of data communication channels using system call
sandboxing techniques is well-studied for modern binary applications [30,19,36].
Previous work also developed techniques to automate identification and isola-
tion of subcomponents that process sensitive data [30,7]. Our work shares these
design principles, but targets HTML5 applications.

3.2 Insufficiency of Existing Mechanisms

None of the primitives available in today’s HTML5 platform achieve complete
mediation with a small TCB. Browser-supported primitives, such as Content
Security Policy (CSP), block some network channels but not all. Current mech-
anisms in web browsers aim for integrity, not confinement. For example, even the
most restrictive CSP policy cannot block data leaks through anchor tags and
window.open. Similarly, our previous work on privilege separation of HTML5
applications does not provide any confinement guarantees [4]. An unprivileged
child can leak data by making a request for an image or including a CSS style
from a remote host.

Table 1. Comparison of current solutions for data confinement

System Name Complete Mediation Compatibility Cost Small TCB

HSTS No: HTTPS pages only Low Yes
CSP No: anchors and window.open High: disables eval Yes
JS Static Analysis No: no CSS & DOM High: disables eval No
JS IRMs (Cajole, Conscript) No: no CSS & DOM High: disables eval Yes
JSand No: no CSS High: SES No
Treehouse Yes High: code change No
sandbox with Temp. Origins No: all network channels Low Yes
Data-confined sandboxes Yes Low Yes

Recent work on information flow and non-interference show promise for ensur-
ing fine-grained data-confinement in JavaScript; unfortunately, these techniques
currently have high overhead for modern applications [11]. IBEX proposed writ-
ing extensions in a high-level language (FINE) in a language amenable to deep
analysis to ensure conformance with specific policies [23]. In contrast, our work
does not require significant changes to web applications. Further, as we explain
below, these approaches also have a large TCB.

Another approach to interpose on all data communication channels is to do
static analysis of the application source code [14,16,31]. Static analysis systems
cannot reason about dynamic constructs such as eval, which are used pervasively
by existing applications [37] and modern JavaScript libraries [1]. As a result,
such mechanisms have a high compatibility cost. When combined with rewriting
techniques, such as cajoling [16], JS analysis techniques can achieve complete
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mediation on client-side cross-frame channels; but still do not provide complete
mediation over DOM and CSS channels.

JSand [2] introduced a client-side method of sandboxing third-party JavaScript
libraries. It does so by encapsulating all Javscript objects in a wrapper that me-
diates property accesses and assignments, via an application-defined policy. This
approach does not protect against scriptless attacks such as those using CSS.
Additionally, it relies on the use of Secure EcmaScript 5 (SES), which is not
compatible for some JavaScript libraries. JSand does provide a support layer to
improve compatibility with legacy JavaScript code, but this is a partial trans-
formation and involves a high performance overhead.

Treehouse uses new primitives, like web workers and EcmaScript5 sealed ob-
jects, in the HTML5 platform to ensure better interposition [27]. Treehouse pro-
poses to execute individual components in web workers at the client side. One
concern with the Treehouse approach is that web workers also run with some
ambient privileges: e.g., workers have access to XMLHttpRequest, synchronous
file APIs, script imports, and spawning new workers, which attackers can use
to leak data. Treehouse relies on the seal/unseal features of ES5 to prevent ac-
cess to these APIs, but this mechanism requires intrusive changes to existing
applications and has a high compatibility cost.

Perhaps the most important limitation of all primitives not directly supported
by browsers is their large TCB. For example, in the case of Treehouse, application
code (running in workers) cannot have direct access to the DOM, since that
would break all security guarantees. Instead, application code executes on a
virtual DOM in the worker that the parent code copies over to the main web
page. As a result, the security of these mechanisms depends on the correctness of
the monitor/browser model (e.g., the parent’s client side monitor in Treehouse).

Since the DOM, HTML, CSS, and JS are so deeply intertwined in a modern
HTML5 platform, such a client side monitor is essentially replicating the core
logic of the browser, leading to a massive increase in the TCB. Further, Tree-
house implements this complex logic in JavaScript. Corresponding issues plague
static analysis systems, new language mechanisms like IBEX, and code rewrit-
ing systems like Caja—all of them assume a model of the HTML5 platform to
implement their analysis/rewriting logic.

While implementing a model of HTML5 for analysis and monitoring is diffi-
cult, the approaches discussed above suffer from another fundamental limitation:
they work on a model of HTML5, not the real HTML5 standard implemented
in the platform (browser). Any mismatch between the browser and the model
can lead to a vulnerability, as observed (repeatedly) for Caja [20,22,21,15] and
AdSafe [31,35].

3.3 Threat Model

We focus on explicit data communication channels in the HTML5 platform core,
as defined above. Ensuring comprehensive mediation on explicit data channels
is an important first step in achieving data-confined HTML5 applications. Our
proposed primitive does not protect against covert and side channels (such as
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shared browser caches [28] and timing channels [6]) or self exfiltration chan-
nels [9], which are a subject of ongoing research. These channels are important.
However, we point out that popular isolation mechanisms on existing systems
also do not protect against these [46,8,44]. We believe explicit channels cover a
large space of attacks, and we plan to investigate extending our techniques to
covert channels in the future.

In addition to focusing on explicit channels, our primitive only targets the
core HTML5 platform; our ideas extend to add-ons/plugins, however we exclude
them from our present implementation. We defend against the standard web
attacker model, in which the attacker cannot tamper with or observe network
traffic for other web origins and cannot subvert the integrity of the HTML5
platform itself [3].

4 The Data Confined Sandbox

To draw a parallel with binary applications, current mechanisms for confining
HTML5 applications are analogous to analyzing the machine code before it ex-
ecutes to decide whether it violates any guarantees. We argued above that such
mechanisms cannot provide high assurance. Instead, taking a systems view of
the problem of data confinement, we argue for an strace-like high assurance
monitor for the HTML5 platform.

We call our primitive the data confined sandbox, or DCS (Section 4.1). Our
key contribution is identifying that the shrewd design of the DCS primitive pro-
vides high assurance with minimal compatibility concerns (Section 4.2). Intro-
ducing any new primitive on the HTML5 platform brings up security concerns.
A primitive like DCS that provides monitoring capabilities to arbitrary code is
particularly fraught. We discuss how we ensure that we do not introduce new
vulnerabilities due to our primitive in Section 4.3.

4.1 Design of DCS

Figure 1 presents the architecture of an application using the DCS design. Our
design extends our previous work on privilege separation [4]. Our key contri-
bution is identifying how to extend the ideas of privilege separation to provide
complete mediation on the HTML5 platform. We first recap privilege separated
HTML5 applications and then discuss the DCS design.

Modern HTML5 platforms allow applications to run arbitrary code (specified
via a data:/blob: URI) in a temporary, unprivileged origin [4]. Privilege sep-
arated HTML5 applications run most application code in an arbitrary number
of unprivileged iframes (children). A small privileged parent iframe, with ac-
cess to full privileges of the web origin, provides access to privileged APIs, such
as cookie access and platform APIs like camera access. Unprivileged children
communicate with the parent through a tightly controlled postMessage channel
(dotted arrows in Figure 1).
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Fig. 1. High-level design of an application running in a DCS. The only component
that runs privileged is the parent. The children run in data-confined sandboxes, with
no ambient privileges and all communication channels monitored by the parent.

The parent can enforce policies on the requests it receives over this postMessage
channel from its unprivileged children [4]. The parent uses its privileged interfaces
to fulfill approved requests, such as authenticated XMLHttpRequest calls (curved
dotted arrow in Figure 1). To increase assurance, the parent code enforces a num-
ber of security invariants such as disabling all dynamic code evaluation, allowing
only a text interface with the children, and setting appropriate MIME types for
static code downloaded by the bootstrap code.

Though this privilege separation architecture provides integrity, it does not
provide data confinement. Any compromised child can make arbitrary requests
on the network through the numerous data disclosure channels outlined earlier.
We propose a new primitive, the data-confined sandbox or DCS, that enforces
confinement of data in the child. Our primitive relies on the browser to ensure
confinement. Similar to privilege separation, applications only need to switch to
using the DCS and write an appropriate policy.

Consider the browser kernel in Figure 1. Any content that a DCS child re-
quests the browser to display passes through the HTML/JS/CSS parser. If the
browser encounters a URI that it needs to load, it invokes the URI parser, which
then invokes the content dispatch logic in the browser. We modify this code
for DCS children to call a security monitor that the parent defines (solid arrow
in Figure 1). The security monitor in the parent is transparent to the child.
The browser’s call to the parent also includes the unique id identifying the child
iframe and details about the request. From there, the security monitor can decide
whether to grant the request or not.

Example. Consider the ‘vault’ for the LastPass web application. In our re-
design, when the user navigates to the LastPass application, the server returns
bootstrap code (the parent) that downloads the original application code and
executes it in a data-confined sandbox (the child). The code in the DCS starts
executing and makes network requests to include all the complex UI, DOM,
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and encryption libraries. Finally, the LastPass child code in the DCS makes
a request for the encrypted password database and decrypts it with the user
provided password.

The parent security monitor can enforce a simple policy such as only allowing
network requests to http://lastpass.com. Alternatively, the parent can en-
force stateful policies: e.g., the monitor function could only allow resource loads
(i.e., scripts, images, styles) until the DCS child loads the encrypted password
database. After loading the encrypted database, the security monitor disallows
all future network requests.

4.2 Achieving High Assurance

Recall our goals of complete mediation, small TCB, and backwards compatibility.
We discuss how our DCS design achieves all of them.

Complete Mediation. As discussed Section 3, HTML5 applications only have
three channels for data leakage: storage channels tied to the origin, network
channels, and client-side cross-origin channels. Since all application code runs in
children of temporary origins that only exist for the duration of the application’s
execution, the application code does not have access to any (storage) channel
tied to the origin (e.g., cookies, localStorage).

In a DCS, except for a blessed postMessage channel to the parent, the browser
disables all client-side communication channels. This includes cross-origin com-
munication channels like postMessage and cross-origin window properties (like
location.hash). The postMessage channel is the only client-side cross-origin
channel available to the data-confined child, and the browser guarantees that
the channel only connects to the parent. The postMessage channel allows the
parent to proxy privileged APIs for the child. Further, the postMessage chan-
nel also allows the parent to provide a channel to proxy postMessages to other
client-side iframes—our design only enforces complete mediation by the parent.

HTML5 applications can request network resources via markup like scripts,
images, links, anchors, and forms and JavaScript APIs like XMLHttpRequest.
In our design, the children can continue to make these network requests; the
DCS transparently interposes on all these network channels. The parent defines
a ‘monitor’ function that the browser executes before dispatching a network
request. If the function returns false, the browser will not make the network
request.

We rely on an external monitor (i.e., one running in the parent) over an inline
one. This ensures that the monitor does not share any state with the unprivileged
child, making it easier to reason about its runtime integrity and correctness. As
we discuss in Section 5, the security monitor is not hard to implement—most
browsers already have an internal API for controlling network access, which they
expose to internal browser code as well as popular extensions such as AdBlock
and NoScript.

Small TCB. The TCB in any data confinement mechanism includes the policy
code and the enforcement code. In our design, this includes the monitor code
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in the parent as well as our browser modifications to ensure complete media-
tion for the parent monitor. Relying on the browser allows us to create a data
confinement design with a small enforcement code, as evidenced by our 214 line
implementation described in Section 5. This small enforcement TCB allows for
easier validation and auditing.

Compatibility. Our design for network request mediation is discretionary, as
compared to client-side channels that we block outright. An alternative design
is to disallow all network requests too, and only permit network access via the
postMessage channel between the parent and child. Such a design has a sig-
nificantly higher compatibility cost. HTML5 applications pervasively employ
network channels. In contrast, the use of client-side channels is rare—for ex-
ample, Wang et al. report that cross-origin window.location read and writes
occur in less than 0.1% of pages [40]. Therefore, we find that it is acceptable
to disable cross-origin client-side channels and force the child to use the blessed
postMessage channel to the parent to access these.

4.3 Security Considerations

Our design of the DCS primitive is careful not to introduce new security vul-
nerabilities in the browser. We do not want to allow an arbitrary website to
learn information or execute actions that it could not already learn or execute.
The security policy of the current web platform is the same-origin policy. The
introduction of the DCS should not violate any of the existing same-origin policy
invariants baked into the platform. We enforce this goal with the following two
invariants:

– Invariant 1: The parent should only be able to monitor application code that
it could already monitor on the current web platform (albeit, through more
fragile mechanisms).

– Invariant 2: The parent should not be able to infer anything about a resource
requested by a DCS that is not already possible on the current web platform.

We explain how our design enforces the above invariants. First, in our design,
a data-confined sandbox can only apply to iframes with a data: URI source,
not to arbitrary URIs. Therefore, a malicious site cannot monitor arbitrary web
pages. In an iframe with a data: URI source, the creator of the iframe (the
parent) specifies the source code that executes. This code is under complete
control of the parent anyways. The parent can parse the data: URI source for
static requests and redefine the DOM APIs to monitor dynamic requests [25].
Thus, even in the absence of our primitive, the parent can already monitor any
requests a data: URI iframe makes.

To ensure Invariant 2, we only call the security monitor for the first request
made for a particular resource. As we noted above, the parent can already mon-
itor this request. Future requests (e.g., redirects) are not in the control of the
parent, and we do not call the security monitor for them. While this can cause
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security issues (particularly, if the parent whitelists an open-redirect), allowing
the parent to monitor redirects would cause critical vulnerabilities.

For example, consider a page at http://socialnetwork.com/home that redi-
rects to http://socialnetwork.com/username. Consider a DCS child created
by attacker.com parent. If this child creates an iframe with source http://

socialnetwork.com/home, our modified browser calls the security monitor with
this URI before dispatching the request. However, to ensure Invariant 2, the
browser does not call the security monitor with the redirect URI
(i.e., http://socialnetwork.com/username). Further, since the iframe is now
executing in the security context of http://socialnetwork.com/, Invariant 1
ensures that any image or script loads made by the socialnetwork.com iframe
do not call the security monitor.

5 Implementation

We implemented support for data-confined sandboxes in the Firefox browser.
Our modified browser and our case studies (Section 6) are all available online [13].
Our implementation is fewer than 214 lines of code, with only 60 lines being the
core functionality. The low implementation cost substantiates our intuition that
the monitoring facility is best provided by the browser. Since major browsers
already support temporary origins, we only need to add support for mediating
client-side and network channels of a DCS child.

First, we restrict cross-origin client-side channels to a blessed postMessage
channel. As a fundamental security invariant, the same-origin policy restricts
cross-origin JavaScript access to a restrictive white-list of properties. In Fire-
fox, this whitelist is present in js/xpconnect/wrappers/AccessCheck.cpp. We
modified the IsPermitted function to block all cross-origin accesses, except for
the blessed postMessage channel.

The NSIContentPolicy interface is a standard Firefox API used to monitor
network requests. Popular security and privacy extensions, such as NoScript,
AdBlock, and RequestPolicy, rely on this API, as do security features such as
CSP and mixed content blocking. We register a listener to forward requests for
monitored DCS children to the parent’s security monitor function. We do not
implement a new mediation infrastructure—any bypass of our mediation infras-
tructure would also be a critical vulnerability in the Firefox browser, allowing
bypass of all the features and extensions discussed above.

Applications can mark an iframe as a DCS using the dcfsandbox attribute,
similar to the iframe sandbox attribute. An iframe that has this attribute
only supports a data: or blob: URIs for its src attribute. Such a DCS iframe

implements all the restrictions that a sandboxed iframe supports, but provides
a complete mediation interface to the parent as described above.

To measure the overhead of calling the parent’s monitor code, we measured
the increase in latency caused by a simple monitor that allows all requests. We
measured the time required for script loads from a web server running on the
local machine and found that the load time increased from 16.73ms to 16.74ms.

www.it-ebooks.info

http://socialnetwork.com/home
http://socialnetwork.com/username
attacker.com
http://socialnetwork.com/home
http://socialnetwork.com/home
http://socialnetwork.com/username
http://socialnetwork.com/
socialnetwork.com
iframe
iframe
sandbox
iframe
src
iframe
sandbox
iframe
http://www.it-ebooks.info/


748 D. Akhawe et al.

This increase is statistically insignificant, and pales in comparison to the typical
latencies of 100ms observed on the web.

Due to the semantics of network requests in HTML5, the monitor function
runs synchronously: a long running monitor function could freeze the child. The
ability to cause stability problems via long running synchronous tasks is already
a problem in browsers and is not an artifact stemming from our design.

6 Case Studies

We retrofit our application architecture to four web applications to demonstrate
the practicality of our approach. We focus on open-source software for our case
studies, since that allows us to share our results freely online [13]. Table 2 sum-
marizes all our case studies. Similar to previous work, we use TCB size instead
of lines of code as a metric due to the prevalence of JavaScript minification.

We find that we needed minimal changes (at most 184 lines of code) to port
existing applications to our design, mirroring our previous experience with priv-
ilege separation. In this section, we focus on the policies we implemented for
each application; the accompanying technical report provides full details of our
experience porting these applications to run under a DCS [5],

Table 2. List of our case studies, as well as the individual components and policies

Application Initial
TCB

New
TCB

Lines
Changed

Component Confinement Policy Other Policies

Clipperz 1.4MB 6.3KB 67
Vault UI Only to Clipperz server

& Direct Login Child
None

Direct Login Open arbitrary web-
sites

CSP Policy disabling
dynamic code

BrowserID 206.9KB 5.7KB 184
Management Only to BrowserID

server
None

Dialog Only to BrowserID
server, secure password
input

API requests must
match state machine

OpenEMR 149.1KB 6.1KB 51 Patient
Information

Whitelist of necessary
request signatures

None

SQL
Buddy

100KB 2.97KB 11 Admin UI Only to MySQL server User confirmation
for database writes

6.1 The Clipperz Password Manager

Clipperz is an open-source HTML5 password manager that allows a user to
store sensitive data, such as website logins, bank account credentials, and credit
card information encrypted in the cloud [12]. Clipperz decrypts it at the client
side with the user provided password. Users access their data in a single ‘vault’
page. Users can also click on ‘direct login’ links that load a site’s login page, fill
in the user name/password, and submit the login form. All of Clipperz’s code
and libraries run in a single security principal, with access to all sensitive data.
The Clipperz application uses inline scripts and data: URIs extensively. We
found that enforcing strong CSP restrictions to protect against XSS breaks the
Clipperz application.
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� �
1 var doneLoading_mainframe = false , doneLoading_secondframe = false;
2 function monitor(params) {
3 if (params.id === "mainframe") { /*Policy for UI child*/
4 if (params.url === base_uri) { /*base_uri is the installation

directory */
5 return true;
6 } else if (params.type == "IMAGE") {
7 return check_img_whitelist(params.url);
8 } else if (params.type == "SCRIPT") {
9 if (! doneLoading_mainframe && params.url === base_uri + "/shim1.

js") {
10 doneLoading_mainframe = true;
11 return true;
12 } else if (! doneLoading_mainframe) {
13 return check_script_whitelist(params.url);
14 }
15 }
16 } else if (params.id == "secondframe") { /*Policy for non -UI child*/
17 if (params.url === base_uri) { return true;}
18 else if (params.type == "SCRIPT") {
19 if (! doneLoading_secondframe && params.url === base_uri + "/shim2

.js") {
20 doneLoading_secondframe = true;
21 return true;
22 } else if (! doneLoading_secondframe) {
23 return check_script_whitelist(url);
24 }
25 }
26 }
27 return false;}

� �

Listing 1.1. A basic policy for Clipperz

Data-Confinement. We modified Clipperz to run in a pair of data-confined
sandboxes: one for the UI and another for the non-UI functionality. Our modi-
fications required minimal effort (67 lines changed) and reduced the TCB from
1.4MB to 6.3KB. This new TCB includes 42 lines of policy code.

Invariants. We apply a temporal policy for each sandbox as shown in List-
ing 1.1. For both sandboxes, the monitor code in our modified Clipperz appli-
cations only allows the DCS access to postMessage and a whitelist of images
and JavaScript files (lines 7, 13, and 23). We also enforce a temporal policy: we
allow network requests only until the sandbox downloads the password database
(lines 10 and 20). Once the DCS sandbox downloads the password database, our
policy disallows further network access save for navigation to pages like the help
page. Relying on a whitelist of network resources means that we can guarantee
the secrecy of the user’s master password, which is impossible in the current
HTML5 platform.

We do not allow the UI code to execute direct logins, since it presents a possi-
ble self-exfiltration channel [9]. Instead, it must send a message telling the non-UI
component to do a direct login. The non-UI component retrieves the appropriate
credentials and completes the direct login process. The non-UI component does
not need complex UI code and executes with a restrictive CSP, providing higher
assurance.

www.it-ebooks.info

postMessage
http://www.it-ebooks.info/


750 D. Akhawe et al.

6.2 The BrowserID SSO Mechanism

BrowserID is a new authentication service by Mozilla. Similar to other single
sign-on mechanisms like Facebook Connect and OpenID, BrowserID enables
websites (termed Relying Parties) to authenticate a user using Mozilla’s central-
ized service. Users set up a single “master” email/password to sign in to the
trusted BrowserID service and can have the service authenticate the user to a
Relying Party. Other single sign-on mechanisms share similar designs, and our
results are more generally applicable to other single sign-on systems.

BrowserID uses the EJS templating system [29], which loads template files
from the server and converts them to code at runtime using eval. A number of
modern JavaScript templating languages use this technique [1]. The use of eval
limits the applicability of CSP and static analysis techniques.

Data-Confinement. We modified BrowserID to execute in a data-confined
sandbox. We required minimal effort to port BrowserID—the majority of the
changes (184 lines) were to switch the EJS library from synchronous XmlHttpRe-
quests to asynchronous requests supported by privilege separated HTML5 ap-
plications. Our modifications reduced the TCB from 206.9KB to 5.7KB, which
includes 81 lines of policy code.

Invariants. Running BrowserID in a DCS we were able to implement a pol-
icy to provide two key guarantees. First, the login and credential managers
(management component) do not communicate with any servers other than the
BrowserID servers. This allows us to enforce secrecy on the master BrowserID
username/password.

Second, the parent ensures that in one instance of the authentication protocol,
the DCS executes the whole protocol with the same BrowserID and Relying
Party window. Our design guarantees that sensitive tokens are never leaked to
parties outside these participants. In the past, single sign-on mechanisms have
had implementation bugs that allowed a MITM of an authentication flow [43,41];
our design prevents such bugs.

For further hardening, we implemented a state machine in the security pol-
icy based on the intended dialog behavior, which ensures that the dialog (which
asks for passwords and other user input) component performs a series of requests
consistent with transitions possible in the state machine. This prevents a com-
promised dialog DCS from making arbitrary requests in the user’s session, such
as deleting her account.

6.3 The OpenEMR Patient Information Pages

OpenEMR is the most popular open-source electronic medical record system [38].
With support for a variety of records like patients, billing, prescriptions, medical
reports amongst others, OpenEMR is a comprehensive and complex web appli-
cation. Patient records, prescriptions, and medical reports are highly sensitive
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data, with most jurisdictions having laws regulating their access and distribution,
possibly with penalties for inadvertent disclosure.

We focus on the patient information component of the OpenEMR application.
OpenEMR accesses the patient details by using a session variable named pid (pa-
tient id). Once the user sets the patient id, all future requests, such as ‘demo-
graphic data,’ ‘notes,’ and so on, can only refer to the particular patient. To nav-
igate to another patient, the user uses the search interface to reset the patient id.

Setting the patient id for a particular session just requires a GET request
with a set_pid parameter. An attacker can accomplish this with any content
injection. For example, an attacker could inject a specially crafted image tag that
causes a user to make such a request. As a result, after a user loads the image,
the OpenEMR server will return medical records for the attacker-specified user.
Note that this is not an XSS attack, but a content injection attack.

Data-Confinement. We modified the patient information component to run
under a DCS. This required modifications to 51 lines of code and reduced the
TCB from 149.1KB to 6.1KB, which includes a 38-line policy.

Invariants. First, the DCS verifiably ensures that sensitive medical data does
not leak to untrusted principals. The DCS can also prevent the page from making
arbitrary calls to the large, feature-rich application. In our case, we programmed
the security policy to allow only a short whitelist of (method, URL) pairs nec-
essary for the page to function. For example, the monitor denies any request
with a set_pid parameter. This protects against the content injection attack
discussed above. This would not be possible with an origin-based whitelist.

6.4 The SQL Buddy Database Administration Interface

SQL Buddy is an open-source web-based application to handle the adminis-
tration of MySQL databases. It allows database administrators to browse data
stored in a MySQL database and to execute SQL queries and manage database
users. SQL Buddy does not use any of the client-side communication channels
we block in a DCS.

Data-Confinement. We reused previous work on privilege separation of SQL
Buddy, which required only 11 lines of change to the 100KB SQL Buddy appli-
cation. Our data-confined SQL Buddy application has a TCB of 2.97KB, which
includes a 124-line policy.

Invariants. By executing SQL Buddy in a DCS, we can enforce strong con-
finement policies. The application runs in two logical stages. Initially, the policy
restricts communication to only static SQL Buddy resources. Our first-stage pol-
icy allows the application to load only these whitelisted JavaScript and CSS files.
After loading the scripts and stylesheets, the application only accesses the net-
work to load static images and to make XMLHttpRequests to a special endpoint.
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Our second-stage policy locks down communication to these two channels. The
flexibility of the DCS policy interface is key to enforcing a different policy for
each stage.

Our policy restricts all explicit communication channels: if the SQL Buddy
DCS is compromised, it cannot send data to arbitrary servers. Our design also
allows us to enforce finer grained policies. For example, we have the secure parent
show confirmation prompt for database writes. This prevents compromised code
in the DCS from surreptitiously modifying the database.

7 Related Work

A number of previous works share our goals of improving assurance in web
applications. We gave a detailed comparison to closely related works in Sec-
tion 3.2. Data confinement has been investigated in native binary applications
as well [30]. Zalewski [45] and Heidrich et al. [26] point at a number of attacks
that violate data-confinement invariants even in the absence of code injection.
IceShield demonstrated the efficacy of modern ES5 features to create a tamper-
resistant mediation layer for JavaScript in modern browsers [25]; these may be
used a basis for implementing data confinement policy checkers in the future.

8 Conclusion

Modern HTML5 applications handle increasingly sensitive personal data, and
require strong data-confinement guarantees. However, current approaches to en-
sure confinement are ad-hoc and do not provide high assurance. We presented a
new design for achieving data-confinement that guarantees complete mediation
with a small TCB. Our design is practical, has negligible performance overhead,
and does not require intrusive changes to the HTML5 platform. We empirically
show that our new design can enable data-confinement in a number of appli-
cations handling sensitive data and achieve a drastic reduction in TCB. Future
work includes investigating and mitigating covert channels.
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Abstract. Kernel callback queues (KQs) are the mechanism of choice for han-
dling events in modern kernels. KQs have been misused by real-world malware 
to run malicious logic. Current defense mechanisms for kernel code and data in-
tegrity have difficulties with kernel queue injection (KQI) attacks, since they 
work without necessarily changing legitimate kernel code or data. In this paper, 
we describe the design, implementation, and evaluation of KQguard, an effi-
cient and effective protection mechanism of KQs. KQguard uses static and dy-
namic analysis of kernel and device drivers to learn the legitimate event han-
dlers. At runtime, KQguard rejects all the unknown KQ requests that cannot be 
validated. We implement KQguard on the Windows Research Kernel (WRK) 
and Linux and extensive experimental evaluation shows that KQguard is effi-
cient (up to ~5% overhead) and effective (capable of achieving zero false posi-
tives against representative benign workloads after appropriate training and 
very low false negatives against 125 real-world malware and nine synthetic  
attacks). KQguard protects 20 KQs in WRK, can accommodate new device 
drivers, and through dynamic analysis of binary code can support closed source 
device drivers. 

1 Introduction 

One of the most time-critical functions of an operating system (OS) kernel is inter-
rupt/event handling, e.g., timer interrupts. In support of asynchronous event handling, 
multi-threads kernels store the information necessary for handling an event as an ele-
ment in a kernel callback queue (called KQ for short), specialized for that event type. 
To avoid interpretation overhead, each element of a KQ contains a callback function 
pointer to an event handler specialized for that specific event, plus its associated ex-
ecution context (as input parameters of the event handler function). When an event 
happens, a kernel thread invokes the specified callback function to handle the event. 

KQs are the mechanism of choice for handling events in modern kernels. As con-
crete examples, we found 20 KQs in the Windows Research Kernel (WRK) and 22 in 
Linux. In addition to being popular with kernel programmers, KQs also have become 
a very useful tool for kernel-level malware such as rootkits (Section 5.1 and [5, 24]). 
For example, the Pushdo spam bot has misused the Registry Operation Notification 
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Queue of the Windows kernel to monitor, block, or modify legitimate registry opera-
tions [10]. This paper includes 125 examples of real-world malware misusing KQs 
demonstrating these serious current exploits, and nine additional synthetic potential 
misuses for illustration of future dangers. 

The above-mentioned kernel-level malware misuses the KQs to execute malicious 
logic, by inserting their own requests into the KQs. This kind of manipulation is 
called KQ Injection or simply KQI. Although KQI appears similar to Direct Kernel 
Object Manipulation (DKOM) [6] or Kernel Object Hooking (KOH) [13], it is more 
expressive thus powerful than the other two. While DKOM attacks only tamper with 
non-control data and KOH attacks only tamper with control data, KQI attacks are 
capable of doing both because the attacker can supply both control data (i.e., the call-
back function) and/or non-control data (i.e., the parameters). Moreover, KQI is steal-
thier than DKOM or KOH in terms of invasiveness: DKOM or KOH attacks modify 
legitimate kernel objects so they are invasive, while KQI attacks just insert new ele-
ments into KQs and do not have to modify any legitimate kernel objects. 

Several seminal defenses have been proposed for DKOM and KOH attacks [1, 3, 
26, 36]. Unfortunately, they are not directly applicable to KQI attacks either because 
of their own limitations or the uniqueness of KQIs. For example, CFI [1] is a classic 
defense against control data attacks, but it cannot address non-control data attacks 
launched via KQ injection (Section 2.2 provides a concrete example in WRK). Gi-
braltar [3] infers and enforces invariant properties of kernel data structures, so it 
seems able to cover KQs as one type of kernel data structure. Unfortunately, Gibraltar 
relies on periodic snapshots of the kernel memory, which makes it possible for a tran-
sient malicious KQ request to evade detection. Petroni [26] advocates detecting 
DKOM by checking the integrity of kernel data structures against specifications, 
however, the specifications are elaborate and need to be manually written by domain 
experts. Finally, KQI attacks inject malicious kernel data, which makes HookSafe 
[36] an inadequate solution because the latter can only protect the integrity of legiti-
mate kernel data. Therefore, new solutions are needed to defend against KQI attacks. 

Inspired by the above research, our KQ defense endorses the general idea of using 
data structure invariants. However, we address the limitation of existing approaches 
so that our KQ integrity checking covers both persistent and transient attacks. More 
specifically, our defense intercepts and checks the validity of every KQ request to 
ensure the execution of legitimate event handlers only, by filtering out all untrusted 
callback requests. In [37], we develop a KQ defense for Linux (called PLCP) that 
employs static source code analysis to automatically derive specifications of legiti-
mate KQ requests. However, the reliance on source code limits the practical applica-
bility of PLCP in systems such as Windows in which there are a large number of 
third-party, closed source device drivers that need KQs for their normal operation. 

Therefore, in this paper, we build KQguard, an effective defense against KQI at-
tacks that can support closed source device drivers. Specifically, we make the follow-
ing contributions: (1) we introduce the KQguad mechanism that can distinguish attack  
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KQ requests from legitimate KQ event handlers, (2) we employ dynamic analysis of 
the binary code to automatically generate specifications of legitimate KQ requests 
(called EH-Signatures) in closed source device drivers, (3) we build a static analysis 
tool that can automatically identify KQs from the source code of a given kernel, (4) 
we implement the KQguard in WRK [39] and the Linux kernel, (5) our extensive 
evaluation of KQguard on WRK shows its effectiveness against KQ exploits (125 
real-world malware samples and nine synthetic rootkits), detecting all except two of 
the attacks (very low false negative rate). With appropriate training, we eliminated all 
false alarms from KQguard for representative workloads. For resource intensive 
benchmarks, KQguard carries a small performance overhead of up to about 5%. 

The rest of the paper is organized as follows. Section 2 summarizes the problem 
caused by rootkits misusing KQs. Section 3 describes the high level design of KQ-
guard defense by abstracting the KQ facility. Section 4 outlines some implementation 
details of KQguard for WRK, validating the design. Section 5 presents the results of 
an experimental evaluation, demonstrating the effectiveness and efficiency of KQ-
guard. Section 6 outlines related work and Section 7 concludes the paper. 

2 Problem Analysis: KQ Injection 

2.1 Importance of KQ Injection Attacks 

Functionally, KQs are kernel queues that support the callback of a programmer-
defined event handler, specialized for efficient handling of that particular event. For 
example, the soft timer queue of the Linux kernel supports scheduling of timed event-
handling functions. The requester (e.g., a device driver) specifies an event time and a 
callback function to be executed at the specified time. When the system timer reaches 
the specified time, the kernel timer interrupt handler invokes the callback function 
stored in the soft timer request queue (Fig. 1). More generally and regardless of the 
specific event semantics among the KQs, their control flow conforms to the same 
abstract type: For each request in the queue, a kernel thread invokes the callback func-
tion specified in the KQ request to handle the event. 

Kernel-level rootkits exploit the KQ callback mechanism to execute malicious log-
ic by inserting their own request into a KQ (e.g., by supplying malicious callback 
function or data in step 1 of Fig. 1). This kind of manipulation, called a KQ injection 
attack, only uses legitimate kernel interface and it does not change legitimate kernel 
code or statically allocated data structures such as global variables. Therefore, syntac-
tically a KQ injection request is indistinguishable from normal event handlers. Con-
sider the Registry Operation Notification Queue as illustration. Using it in defense, 
anti-virus software event handlers can detect potential intruder malicious activity on 
the Windows registry. Using it in KQ injection attack, Pushdo [10] can monitor, 
block, or modify legitimate registry operations. 
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Fig. 1. Life cycle of a timer request in Linux Fig. 2. Overall Architecture of KQguard 

Several KQ injection attacks by real world malware have been documented (Table 
1 in Section 5.1). Specifically, malware has misused KQs to hide better against dis-
covery [2,18],  to carry out covert operations [9,10,27], and to attack security products 
directly [4]. Further details can be found in our technical report [38]. Undoubtedly, KQ 
injection attacks represent a clear and present danger to current OS kernels. 

2.2 KQ Injection Attack Model 

The KQ injection malware listed in Table 1 (Section 5.1) misuse KQs in a 
straightforward way. They prepare a malicious function in kernel space and use its 
address as the callback function pointer in a KQ request. We call these callback-into-
malware attacks. Since their malicious functions must be injected somewhere in the 
kernel space, callback-into-malware attacks can be detected by runtime kernel code 
integrity checkers such as SecVisor [29]. Therefore, they are considered the basic 
level of attack. 

Unfortunately, a more sophisticated level of KQ injection attacks, called callback-
into-libc (in analogy to return-into-libc [32, 35]), create a malicious callback request 
containing a legitimate callback function but malicious input parameters. When acti-
vated, the legitimate callback function may carry out unintended actions that are benefi-
cial to the attacker. For example, one legitimate callback function in the asynchronous 
procedure call (APC) queue of the WRK is PsExitSpecialApc, which can cause the 
currently executing thread to terminate with an exit status code that is specified in the 
“NormalContext” parameter field of the APC request structure. Therefore, hypotheti-
cally an attacker can inject an APC request with PsExitSpecialApc as the callback 
function to force a thread to terminate with a chosen exit status code (set in the “Nor-
malContext” field). This kind of Callback-into-libc attack can be used to shutdown an 
anti-virus program but make the termination appear normal to an Intrusion Detection 
System, by setting a misleading exit status code. 

Callback-into-libc KQ injection attacks represent an interesting challenge, since 
they allow an attacker to execute malicious logic without injecting his own code, and 
the above example shows that such attacks can target non-control data (e.g., the exit 
status code of a thread). Therefore, they cannot be defeated by approaches that focus 
on control data (e.g., CFI [1]). 

www.it-ebooks.info

http://www.it-ebooks.info/


 KQguard: Binary-Centric Defense against Kernel Queue Injection Attacks 759 

 

The design of KQguard in Section 3 shows how we can detect both callback-into-
malware and callback-into-libc KQ injection attacks. 

2.3 Design Requirements of KQ Defense 

An effective KQ defense should satisfy four requirements: efficiency, effectiveness, 
extensibility, and inclusiveness. In this section, we outline the reasons KQguard satis-
fies these requirements. Some previous techniques may solve specific problems but 
have difficulties with satisfying all four requirements. We defer a discussion of re-
lated work to Section 6. 

Efficiency: It is important for KQ defenses to minimize their overhead; KQguard is 
designed to protect KQs with low overhead, including the time-sensitive ones. Effec-
tiveness: KQ defenses should detect all the KQ injection attacks (zero false negatives) 
and make no mistakes regarding the legitimate event handlers (zero false positives); 
KQguard is designed to achieve this level of precision and recall by focusing on the 
recognition of all legitimate event handlers. Extensibility: Due to the rapid prolifera-
tion of new devices, it is important for KQ defenses to extend their coverage to new 
device drivers; the KQguard design isolates the knowledge on legitimate event han-
dlers into a table (EH-Signature collection) that is easily extensible. Inclusiveness: A 
practical concern of commercial kernels is the protection of third-party, closed source 
device drivers; KQguard uses static analysis when source code is available and dy-
namic analysis to protect the closed source legitimate drivers. 

3 Design of KQguard 

In this section, we describe the design of KQguard as a general protection mechanism 
for the KQ abstract type. The concrete implementation is described in Section 4. 

3.1 Architecture Overview and Assumptions 

The main idea of KQguard is to differentiate legitimate KQ event handlers from mali-
cious KQ injection attacks based on characteristics of known-good event handlers. For 
simplicity of discussion, we call such characteristics Callback-Signatures. A Call-
back-Signature is an effective representation of a KQ event handler (or a KQ request) 
for checking. One special type of Callback-Signatures is those of the legitimate KQ 
event handlers, and we call them EH-Signatures. 

How to specify or discover the EH-Signatures is a practical challenge in the design 
of KQguard. Since legitimate KQ requests are originated from legitimate kernel or 
device drivers, in order to specify EH-Signatures we need to study the behavior of the 
core kernel and legitimate drivers. In an ideal kernel development environment, one 
could imagine annotating the entire kernel and all device driver code to make  
KQ requests explicit, e.g., by defining a KQ abstract type. Processing the KQ annota-
tions in the complete source code will give us the exact EH-Signature collection.  
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Unfortunately, this is not practical because many third-party closed source device 
drivers are unlikely to share their source code.  

Therefore, our design decision is to apply dynamic binary code analysis to auto-
mate the process of obtaining a specialized EH-Signature collection that fits the con-
figuration and usage of each system. Specifically, our design uses the architecture 
shown in Fig. 2. We extend the kernel in a dedicated training environment to log (col-
lect) EH-Signatures of KQ requests that the kernel encounters during the execution of 
legitimate device drivers. Then we extend the kernel in a production environment to 
use such learned EH-Signatures to guard against KQ injection attacks, which can be 
launched by malware installed in the production environment. 

By employing dynamic analysis, our design does not require source code of the 
device drivers, thus it satisfies the inclusiveness requirement. Moreover, by having 
two kinds of environments, we decouple the collection and the use of EH-Signatures, 
which allows future legitimate drivers to be supported by KQguard: we can run the 
new driver in the training environment to collect its EH-Signatures and then add the 
new EH-Signatures into the signature collection used by the production environment. 
By using this method, our design satisfies the extensibility requirement. 

In order to guarantee that EH-Signatures learned from the training environment is 
applicable to the production environment, we assume that the training environment 
and the production environment run the same OS and set of legitimate device drivers. 

In order to guarantee that all the Callback-Signatures learned from the training en-
vironment represent legitimate KQ requests, we assume that any device driver that is 
run in the training environment is benign. This assumption may not hold on a con-
sumer system because a normal user may not have the knowledge and capability to 
tell whether a new driver is benign or not. Therefore, we expect that KQguard is used 
in a strictly controlled environment (such as military and government) where a know-
ledgeable system administrator ensures that only benign device drivers are installed in 
the training environment, by applying standard security practices. 

As is typical of any dynamic analysis approach, we assume that a representative 
and comprehensive workload is available during training to trigger all the legitimate 
KQ event handlers. Because some legitimate KQ requests may be made only under 
certain conditions, the workload must be comprehensive so that such KQ requests can 
be triggered and thus logged. Otherwise, KQguard may raise false alarms. 

3.2 Building the EH-Signature Collection 

In order to collect EH-Signatures in a training environment, we first instrument the 
kernel with KQ request logging capability and then run comprehensive workloads to 
trigger legitimate KQ requests. 

3.2.1 Instrumentation of the Kernel to Log EH-Signatures 
To collect EH-Signatures, we instrument all places in the kernel where KQ request 
information is available. Specifically, we extend kernel functions that initialize, insert, 
or dispatch KQ requests. We extend these functions with a KQ request logging utility, 
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which generates and logs Callback-Signatures from every “raw” KQ request (i.e., 
with absolute addresses) submitted by the legitimate kernel and device drivers. The 
details of Callback-Signature generation are non-trivial and deferred to Section 3.5.  

In general, the information contained in EH-Signatures is readily available in the 
kernel, although the precise location of such information may differ from kernel to 
kernel. It is a matter of identifying the appropriate location to instrument the kernel to 
extract the necessary information. Section 3.6 describes our non-trivial search for all 
the locations of these simple changes, in which we employ static source code analysis 
on the entire kernel. The extensions are applied to the kernel at source code level. The 
instrumented kernel is then rebuilt for the EH-Signature collection process. 

3.2.2 Dynamic Profiling to Collect EH-Signatures 
In this step, we run a representative set of benchmark applications using a compre-
hensive workload on top of the instrumented kernel. During this phase, the kernel 
extensions described in Section 3.2.1 are triggered by every KQ request. 

To avoid false negatives in KQ defense, the training is performed in a clean envi-
ronment to ensure no malware Callback-Signatures are included. To avoid false posi-
tives, the training workload needs to be comprehensive enough to trigger all of the 
legitimate KQ requests. Our evaluation (Section 5.3) shows a very low false positive 
rate, indicating the feasibility of the dynamic profiling method. In general, the issue of 
test coverage for large scale software without source code is a significant challenge 
and beyond the scope of this paper. 

3.3 Validation Using EH-Signature Collection 

As shown in the “Production Environment” part of Fig. 2, we modify the dispatcher 
of every identified KQ to introduce a KQ guard that checks the legitimacy of a pend-
ing KQ request before the dispatcher invokes the callback function. To perform the 
check, the KQ guard first builds the Callback-Signature from a pending request (de-
tailed in Section 3.5), and then matches the Callback-Signature against the EH-
Signature Collection. If a match is found, the dispatcher invokes the confirmed event 
handler. Otherwise, the dispatcher takes necessary actions against the potential threat 
(e.g., generating a warning message). The details of signature matching are discussed 
in Section 3.4. 

To reduce performance overhead, we cache the results of KQ validation so as to 
avoid repeatedly checking a KQ request if its Callback-Signature has not changed 
since the last time it is checked. Specifically, we maintain cryptographic hashes of the 
“raw” KQ requests (identified by memory location) that pass the validation, so that 
when the same KQ request (at the recorded memory location) is to be checked again, 
we recalculate the cryptographic hash and compare it with the stored one. Our profil-
ing study confirms that a significant fraction (~90%) of KQ validation is redundant 
because the same KQ requests are repeatedly enqueued, dispatched, dequeued, and 
enqueued again. Therefore, caching the validation results for such repeated KQ re-
quests can reduce performance overhead of KQ defense. 
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3.4 Specification of the Callback-Signatures 

A critical design issue of KQguard is the determination of the set of characteristics in 
the Callback-Signatures: it must precisely identify the same KQ requests in the train-
ing and production environments. On one hand, the set must not include characteris-
tics that can vary between the two environments (e.g., the expiration time in a soft 
timer request) because otherwise even the same legitimate KQ requests would appear 
different (false positives); on the other hand, the set must include all the invariant 
characteristics between the two environments because otherwise a malicious KQ re-
quest that differs from a legitimate request only in the missing characteristics would 
also pass the check, resulting in false negatives. For example, the malicious KQ re-
quest in Fig. 3.b is allowed by a KQ guard that only checks the shaded fields, al-
though it causes a malicious function bar_two to be invoked; and the malicious KQ 
request achieves this by tampering with the “action” field of structure se that is not 
covered by the Callback-Signature. Here when the KQ request is dispatched, foo is 
invoked with qe.data as its parameter. 

 

Fig. 3. Illustration of a False Negative Caused by a Callback-Signature that Only Includes the 
Shaded Fields. The two KQ requests have different executions (i.e., bar_one vs bar_two), 
but their Callback-Signatures are the same. Here bar_two is a malicious function. 

In order to minimize false negatives such as the one demonstrated in Fig. 3, one 
could include more characteristics (e.g., se.action) into the Callback-Signatures. 
However, there are some challenges in doing that with closed source device drivers. 
Specifically, in order to realize that se.action is important, one can get hints from 
how foo works, but without source code, it is non-trivial to figure out that foo in-
vokes se.action. Another possibility is to use the type information of se (e.g., 
struct S) to know that its “action” field is a function pointer and such information 
can be derived from the type of KQ request data fields (e.g., qe.data); unfortunately, 
this is often not  possible  because  the  data  fields of  KQ  requests  are often  
generic pointers (i.e., void *); in that case, one cannot figure out the type of se easi-
ly if it resides in a closed source device driver. Therefore, in order to support closed 
source device drivers, our KQ defense assumes that: 

Kernel data reachable from KQ requests (e.g., se.action) can be identified and it 
has integrity in both the training and the production environments (i.e., changing of 
this field from bar_one to bar_two is prohibited by some other security measures).  
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To avoid “reinventing the wheel”, we note that techniques such as KOP [7] can 
correctly locate kernel data such as se.action despite the existence of generic poin-
ters, and techniques such as HookSafe [36] can prevent malware from tampering with 
invariant function pointers in legitimate kernel data structures, such as se.action. 
Moreover, both KOP and HookSafe can be used to cover even “deeper” kernel data 
such as be in Fig. 3. Note that the inclusion of qe.data in the Callback-Signature is 
very critical because it ensures that if qe can pass the check performed by KQguard, 
se is a legitimate kernel data structure, and thus its “action” field can be protected by 
HookSafe (HookSafe is designed to protect only legitimate kernel data structures). 

Note that HookSafe cannot be an alternative defense against KQ injection attacks 
from the top level (e.g., by ensuring that “func” and “data” fields in Fig. 3 are not 
tampered with) for two reasons. First, not all top-level KQ request data structures are 
legitimate because malware can allocate and insert its own KQ request data structure. 
Second, not all top-level legitimate KQ request data structures are invariant (i.e., their 
values do not change) but HookSafe can only protect invariant kernel data. We have 
observed multiple cases in the APC queue of the WRK in which top-level legitimate 
KQ requests change their values during normal execution. For example, IopfComple-
teRequest (in WRK\base\ntos\io\iomgr\iosubs.c) inserts an APC request with call-
back function IopCompleteRequest (in WRK\base\ntos\io\iomgr 
\internal.c); when this APC request is dispatched (i.e., IopCompleteRequest is in-
voked), its callback function field is changed to IopUserCompletion before it is 
inserted back to the APC queue. 

To summarize the above discussion, (1) we need to support closed source device 
drivers, (2) we need a way to defend against KQ injection attacks from the top level, 
and (3) techniques are available to guard deeper kernel data reachable from KQ re-
quests. Based on these three observations, in this paper we choose a Callback-
Signature format that focuses on KQ request level (the top level) characteristics: 
(callback_function, callback_parameters, insertion_path, allocation). Here call-
back_function is the callback function pointer stored in a KQ request, call-
back_parameters represents the relevant parameters stored in it, insertion_path 
represents how the KQ request is inserted (by which driver? along which code path?), 
and allocation represents how its memory is allocated (global, heap, or stack? by 
which driver?). 

Each characteristic in our Callback-Signature is important for effective KQ guard-
ing. callback_function is used to protect the kernel against callback-into-malware 
attacks, and both callback_function and callback_parameters are used to protect the 
kernel against callback-into-libc attacks (Section 2.2). Furthermore, insertion_path 
and allocation provide the context of the KQ request and thus can also be very useful. 
For example, if KQguard only checks callback_function and callback_parameters, 
malware can insert an existing and legitimate KQ request object LKQ if it can some-
how benefit from the dispatching of LKQ (e.g., resetting a watchdog timer). 

To ensure that the signature matching of a KQ request observed during the produc-
tion use and one observed during the training can guarantee the same execution, we 
need to make sure that the code and static data of the core kernel and legitimate  
device drivers have integrity in the production environment. We also need to ensure 
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that malware cannot directly attack KQ guards, including their code and the EH-
Signature collection. We can leverage a hypervisor (e.g., Xen) to satisfy the above 
requirements. The idea is to run the modified kernel (with KQ guards) on top of a 
hypervisor and extend the shadow-based memory management of the hypervisor to 
write-protect code and static data of the modified kernel [37]. Note that this protection 
covers KQ guards and the EH-signature collection because they are part of the mod-
ified kernel.  

3.5 Generation of Callback-Signatures from KQ Requests 

In both EH-Signature collection (Section 3.2) and KQ request validation (Section 
3.3), Callback-Signatures need to be derived from raw KQ requests. This is called 
Callback-Signature generation and we discuss the details in this subsection. 

3.5.1 Motivation for Delinking  
As we discuss in Section 3.4, a Callback-Signature is a tuple (callback_function, call-
back_parameters, insertion_path, allocation). Since callback_function and call-
back_parameters correspond to fields in KQ requests (e.g., the “func” field of qe in 
Fig. 3), it seems that we can simply copy the value of those fields into a Callback-
Signature. However, when a Callback-Signature contains a memory reference (e.g., a 
parameter that points to a heap object), we have to overcome one challenge: namely, 
what the KQ loggers and the KQ guards can directly observe is an absolute memory 
address; however, the absolute addresses of the same variable or function can be dif-
ferent in the training and production environments, for example, when they are inside 
a device driver that is loaded at different starting addresses in the two environments. 
Therefore, if we use absolute addresses in the Callback-Signatures, there will not be a 
match for the same callback function, which results in false positives. 

In order to resolve this issue, we raise the level of abstraction for memory refer-
ences in the Callback Signatures so that variations at the absolute address level can be 
tolerated. For example, we translate a callback function pointer (absolute address) into 
a unique module ID, plus the offset relative to the starting address of its containing 
module (usually a device driver, and we treat the core kernel as a special module). 
Under the assumption that the kernel maintains a uniform mapping of module loca-
tion to module ID, the pair (module ID, offset) becomes an invariant representation of 
the callback function pointer independent of where the module is loaded. This kind of 
translation is called delinking. 

3.5.2 Details of Delinking  
KQguard delinks memory references (i.e., pointers) in different ways depending on 
the allocation type of the target memory. As Fig. 4 shows, there can be three types of 
allocations: global variable, heap variable, and local variable. 

The pointer to a global variable is translated into (module ID, offset), in the same 
way as the callback function pointer (Section 3.5.1). There can be two kinds of global 
variables depending on whether they reside in a device driver inside the kernel or in a 
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user-level library (e.g., a DLL on Windows). We care about user-level global va-
riables because some KQ parameters reference user-level memory (e.g., the APC 
queue on Windows). We regard device drivers and user-level libraries uniformly as 
modules and we modify the appropriate kernel functions to keep track of their address 
ranges when they are loaded (e.g., PspCreateThread for DLLs). 

The pointer to a heap object is translated into a call stack that corresponds to the 
code path that originates from a requester (e.g., a device driver) and ends in the allo-
cation of the heap object. We use a call stack rather than the immediate return address 
because the immediate return address may not be in the requester’s address space 
(i.e., it may be in some wrapper function for the heap allocation function and the re-
quester can call a function at the top of the call chain to allocate a heap object). Since 
most kernels do not maintain the request call stack for allocated heap objects, we 
instrument their heap allocator functions to collect such information, and the instru-
mentation is called Heap ID Tracker in Fig. 2. Specifically, the Heap ID Tracker tra-
verses the call stack frames backwards until it reaches a return address that falls with-
in the code section of a device driver or it reaches the top of the stack; if no device 
driver is found during the traversal, the core kernel is used as the requester; all return 
addresses encountered during this traversal are part of the call stack, and each of them 
is translated into a  (module ID, offset)  pair,  in the same way as the callback func-
tion pointer discussed in Section 3.5.1. Similar to global variables, our delinking sup-
ports two types of heap objects: kernel-level and user-level. 

 

Fig. 4. Illustration of Different Allocation Types of Pointers: (a) Heap Variable, (b) Global 
Variable, (c) Local Variable 

The pointer to a local variable is translated into a pair (call_stack, l_offset). The 
call stack starts in a function where a KQ request is inspected (e.g., in a KQ insertion 
function), and it stops in the function that contains the local variable (e.g., L in func-
tion foo in Fig. 4.c).Each return address encountered during the traversal is translated 
into a (module ID, offset) pair. Finally, l_offset is the relative position of the local 
variable in its containing stack frame. For example, if [ebp-8] is used to represent the 
local variable, l_offset is 8. We have not observed any pointers to user-level local 
variables, so we do not cover the translation for pointers to user-level local variables. 
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Because the static type of a KQ request data (e.g., the “data” field of a soft timer 
request structure) is often a generic pointer (i.e., void *), we have to detect its actual 
type at runtime. Given the raw value of a piece of KQ request data, we run a series of 
tests to decide the suitable delinking for it if it is considered a pointer. First, we test 
whether the raw value falls within the address range of a loaded driver or a user-level 
library to decide whether it should be delinked as a pointer to a global variable. If the 
test fails, we test whether it falls within the address range of an allocated heap object 
to decide whether it should be delinked as a pointer to a heap variable. If this test also 
fails, we test whether it falls within the address ranges of the stack frames to see 
whether it should be delinked as a pointer to a local variable. If this test still fails, we 
determine the KQ data to be a non-pointer, and no delinking is performed. 

3.6 Automated Detection of KQs 

Since every KQ can be exploited by malware (part of the attack surface), we need to 
build the EH-Signatures for all of KQs. But before we can guard a KQ, we must first 
know its existence. Therefore, we design and implement a KQ discovery tool that 
automates the process of finding KQs in a kernel by analyzing its source code. Since 
kernel programmers are not intentionally hiding KQs, they usually follow similar 
programming patterns that our tool uses effectively: 

- A KQ is typically implemented as a linked list or an array. In addition to in-
sert/delete, a KQ has a dispatcher that operates on the corresponding type.  

- A KQ dispatcher usually contains a loop to act upon all or a subset of queue ele-
ments. For example, pm_send_all in Fig. 5 contains the dispatcher loop for the 
Power Management Notification queue of Linux kernel 2.4.32. 

- A KQ dispatcher usually changes the kernel control flow, e.g., invoking a call-
back function contained in a queue element. 

Based on the above analysis, the KQ discovery tool recognizes a KQ in several 
steps. It starts by detecting a loop that iterates through a candidate data structure. 

/* linux-2.4.32/kernel/pm.c */ 
int pm_send_all (pm_request_t rqst, void *data) 
{      …… 
 entry = pm_devs.next; 
 while (entry != &pm_devs) { 
   struct pm_dev *dev=list_entry(entry, struct pm_dev, en-
try); 
   if (dev->callback) { 
     int status = pm_send(dev, rqst, data); 

       ……} 
    entry = entry->next;   } 
……} 
int pm_send(struct pm_dev *dev, 
pm_request_t rqst, void *data) 
{…… 
   status = (*dev->callback)(dev, rqst, 
data);……} 

Fig. 5. Details of the Power Management Notification Queue on Linux Kernel 2.4.32 

Then it checks whether a queue element is derived and acted upon inside the loop. 
Next, our tool marks the derived queue element as a taint source and performs a flow-
sensitive taint propagation through the rest of the loop body; this part is flow-sensitive 
because it propagates taint into downstream functions through parameters (e.g., dev 
passed from pm_send_all to pm_send in Fig. 5).  During the propagation, our tool 
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checks whether any tainted function pointer is invoked (e.g., dev->callback in 
pm_send in Fig. 5), and if that is the case, it reports a candidate KQ. Due to space 
constraints we omit further details, but the results (e.g., KQs found in WRK) are in-
teresting and discussed in Section 4. 

4 Implementations of KQguard 

The KQguard design (Section 3) is implemented on the WRK and Linux (kernel ver-
sion 3.5). Due to space constraint, we only present our implementation on the WRK, 
which consists of about 3,900 lines of C code and 2,003 lines of Objective Caml code. 

Construction of Callback-Signatures in WRK. In order to collect the Callback-
Signatures for the 20 KQs in the WRK, we instrument the kernel in two sets of func-
tions. The first set of functions initialize, insert, or dispatch KQs and our instrumenta-
tion consists of 600 lines of C code. To support delinking of Callback-Signatures, we 
instrument the device driver loader function (IopLoadDriver) and the thread creation 
function (PspCreateThread), and we also instrument heap allocation or deallocation 
functions (ExAllocatePoolWithTag, ExFreePool, NtAllocateVirtualMemory, 
and NtFreeVirtualMemory) to keep track of the address ranges of allocated heap 
memory blocks and the call stack to the heap allocation function. Our instrumentation of 
the heap allocator / deallocator consists of 800 lines of C code.  

Automated Detection of KQs for the WRK. We implement the KQ discovery algo-
rithm (Section 3.6) based on static source code analysis, using the C Intermediate 
Language (CIL) [22]. Our implementation consists of 2,003 lines of Objective Caml 
code. We applied the KQ discovery tool to the WRK source code (665,950 lines of 
C), 20 KQs were detected (seven of them are mentioned in Table 1 and the rest can be 
found in [38]), and they include all the KQs that we are aware of, which suggests the 
usefulness of our KQ discovery algorithm. However, whether these 20 KQs cover all 
KQs in the WRK is an interesting and open question.  

Callback-Signature Collection Management. We developed a set of utility func-
tions to manage the Callback-Signatures, including the EH-Signatures. These  
functions support the generation, comparison, insertion, and search of Callback-
Signatures. They are implemented in 2,200 lines of C code. 

Validation of Callback-Signature in WRK. We instrument the dispatcher of every 
identified KQ in the WRK in the production environment so that the dispatcher 
checks the legitimacy of a pending KQ request before invoking the callback function 
(Section 3.3). Our instrumentation consists of about 300 lines of C code. 

5 Evaluation of KQguard in WRK 

Due to space constraints, we only report the evaluation results of the WRK implemen-
tation of KQguard in this section. We evaluate both the effectiveness and efficiency 
of KQguard through measurements on production kernels. By effectiveness we mean 
precision (whether it misidentifies the attacks found, measured in false positives) and 
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recall (whether it misses a real attack, measured in false negatives) of KQguard when 
identifying KQ injection attacks. By efficiency we mean the overhead introduced by 
KQguard. In both the training and the production systems used in our evaluation, the 
hardware is a 2.4 GHz Intel Xeon 8-Core server with 16 GB of RAM, and the operat-
ing system is Windows Server 2003 Service Pack 1 running the WRK. 

5.1 Real-World KQ Injection Attacks 

We start our evaluation of KQguard effectiveness by testing our WRK implementa-
tion (Section 4) against real-world KQ injection attacks in Windows OS. Since mal-
ware technology keeps advancing, we focus on the most recent and the most influen-
tial malware samples that represent the state of the art. Specifically, we chose 125 
malware samples from the top 20 malware families [40] and the top 10 botnet fami-
lies [41]. These samples are known to have KQ injection behaviors. 

Overall, our test confirmed that 98 samples inject the APC queue, 34 samples in-
ject the DPC queue, 32 samples inject the load image notification queue, 20 samples 
inject the process creation/deletion notification queue, four samples inject the file 
system registration change queue, four samples inject the registry operation notifica-
tion queue, and two samples inject the system worker thread queue. 

Table 1 reports the results of 10 representative spam bot samples. We started with 
malware with reported KQ injection attacks, which are marked with a “√” with cita-
tion. We were able to confirm some of these attacks, shaded in gray. The rows with 
shaded “√” without citations are confirmed new KQ injection attacks that have not 
been reported by other sources. For example, Rustock.J injects an APC request with a 
callback function at address 0xF83FE316, which falls within the address range of a 
device driver called msliksurserv.sys that is loaded by Rustock.J; this APC request 
raises an alarm because it does not match any of the EH-Signatures we have collected. 

For all the malware that we were able to activate (the Rustock.C sample failed to 
run in our test environment), we confirmed the reported KQ injection attacks, except 
for the Duqu attack on load image notification queue and Storm on the APC queue. 

Table 1. Known KQ Injection Attacks in Representative Malware 

           
KQ 
Malware 

Timer/ 
DPC 

Worker 
Thread  

Load 
Image 

Create 
Process 

APC 
FsRegistration
Change 

RegistryOp
Callback 

Rustock.C √ [2, 18]   √ [27] √ [27]   
Rustock.J   √ √ √   
Pushdo √   √ [10] √ √ [10] √ [10] 
Storm √  √  [4]  √ [23]   
Srizbi √    √   
TDSS   √  √ √  
Duqu √  √ [16]  √   
ZeroAccess √ √ [11]   √ [11]  √ 
Koutodoor √   √    
Pandex     √   
Mebroot √       
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The Rustock samples show that malware designers have significant ability and 
flexibility in injecting different KQs. Concretely, Rustock.J has stopped using the 
timer queue, which Rustock.C uses, but Rustock.J started to use the load image notifi-
cation queue, which Rustock.C does not. This may have happened to Duqu’s attack 
on the same queue, or Duqu does not activate the attack on load image notification 
queue during our experiment. Overall, our evaluation indicates that KQguard can 
have a low false negative rate because it detects all except two of the KQ injection 
attacks by 125 real-world malware samples. 

5.2 Protection of All KQs  

In addition to real world malware, we create synthetic KQ injection attacks for two 
reasons. First, nine KQs have maximum queue length of zero during the testing in 
Section 5.1, suggesting that malware is not actively targeting them for the moment; 
however, the Rustock evolution shows that malware writers may consider such KQs 
in the near future, so we should ensure that guards for such KQs work properly. 
Second, the malware analyzed in Section 5.1 belongs to the callback-into-malware 
category. Although there have been no reports of callback-into-libc attacks in the 
wild, it is important to evaluate the effectiveness of KQ-guard for both kinds of at-
tacks. Therefore, for completeness, we developed test Windows device drivers for 
each of the KQs  that have not been called and we have confirmed that our KQ de-
fense can detect all the test drivers, which suggests that our defense is effective 
against potential and future KQ injection attacks. 

5.3 False Alarms 

We have experimentally confirmed that it is possible to reduce the false positives of 
KQ guarding to zero. This is achievable when the training workload is comprehensive 
enough to produce the full EH-Signature collection. 

We first collect EH-Signatures on a training machine with Internet access. We re-
peatedly log in, run a set of normal workload programs, and log off. In order to trigger 
all possible code paths that insert KQ requests, we actively do the above for fifteen 
hours. During this process, we gradually collect more and more EH-Signatures until 
the set does not grow. At the end of training, we collect 813 EH-Signatures. The set of 
workload programs include Notepad, Windows Explorer, WinSCP, Internet Explorer, 
7-Zip, WordPad, IDA, OllyDbg, CFF Explorer, Sandboxie, and Python. 

Next we feed the collected EH-Signatures into a production machine with KQ 
guarding and use that machine for normal workloads as well as the KQ injection 
malware evaluation and the performance overhead tests. During such uses, we ob-
serve zero false alarms. The normal workload programs include the ones mentioned 
above as well as others such as Firefox not used in training. 

While the experimental result appears encouraging, we avoid making a claim that 
dynamic analysis can always achieve zero false positives. For example, the APC 
queue has 733 EH-Signatures, such EH-Signatures have 14 unique callback functions, 
and the most popular callback function is IopCompleteRequest, occurring in 603 
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EH-Signatures. While these 603 EH-Signatures share the same callback function, 
their insertion paths originate from 51 device drivers, two DLLs, and the core kernel, 
so the average number of EH-Signatures per requester (e.g., a device driver) is 11, and 
the largest number is 45 (from the driver ntfs.sys). This result implies that there can be 
potentially many code paths within a driver that can prepare and insert an APC request 
with the same callback function, which may or may not be triggered in our training. 
Moreover, there are in total 199 device drivers in our evaluation system, but our train-
ing only observes a subset of them (e.g., 51 in terms of IopCompleteRequest); so 
some legitimate KQ requests from the remaining drivers may be triggered by events 
such as inserting a USB device, which we have not tested yet. Fortunately, our expe-
rience suggests that it is possible to collect the set of EH-Signatures that fits the con-
figuration and usage of a given system with enough training workloads. 

5.4 Performance Overhead 

We evaluate the performance overhead of KQguard in two steps: microbenchmarks 
and macrobenchmarks. 

For the first step, we measure the overhead of KQguard validation check and heap 
object tracking. KQguard validation check matches Callback-Signatures against the 
EH-Signature Collection, and its overhead consists of matching the four parts of a 
Callback-Signature. Heap object tracking affects every heap allocation and dealloca-
tion operation (e.g., ExAllocatePoolWithTag and ExFreePool). These heap op-
erations are invoked at a global level, with overhead proportional to the overall sys-
tem and application use of the heap. Specifically, we measure the total time spent in 
performing 1,000 KQguard validation checks for the DPC queue and the I/O timer 
queue, two of the most active KQs. The main result is that global heap object tracking 
during the experiment dominated the KQguard overhead. Specifically, DPC queue 
validation consumed 93.7 milliseconds of CPU, while heap object tracking consumed 
8,527 milliseconds. These 1,000 DPC callback functions are dispatched over a time 
span of 250,878 milliseconds (4 minutes 11 seconds). Therefore, the total CPU con-
sumed by our KQguard validation for DPC queue and the supporting heap object 
tracking is 8,620.7 milliseconds (or about 3.4% of the total elapsed time). The mea-
surements of the I/O timer queue (180 ms for validation, 11,807 ms for heap object 
tracking, and 345,825 ms total elapsed time) confirm the DPC queue results. 

For the second step, Table 2 shows the results of five application level benchmarks 
that stress one or more system resources, including CPU, memory, disk, and network. 
Each workload is run multiple times and the average is reported. We can see that in 
terms of execution time of the selected applications, KQguard incurs modest elapsed 
time increases, from 2.8% for decompression to 5.6% for directory copy. These 
elapsed time increases are consistent with the microbenchmark measurements, with 
higher or lower heap activities as the most probable cause of the variations. We also 
run the PostMark file system benchmark and the  PassMark  PerformanceTest  
bench-mark and see similar overhead (3.9% and 4.9%, respectively). 
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Table 2. Performance Overhead of KQ Guarding in WRK 

Workload Original (sec) KQ Guarding (sec) Slowdown 
Super PI [33] 2,108±41 2,213±37 5.0% 
Copy directory (1.5 GB) 231±9.0 244±15.9 5.6% 
Compress directory (1.5 GB) 1,113±24 1,145±16 2.9% 
Decompress directory (1.5 GB) 181±4.1 186±5.1 2.8% 
Download file (160 MB) 145±11 151±11 4.1% 

6 Related Work 

In this section, we survey related work that can potentially solve the KQ injection 
problem and satisfy the four design requirements: efficiency, effectiveness, extensibil-
ity, and inclusiveness (Section 2.3).  

SecVisor [29] and NICKLE [28] are designed to preserve kernel code integrity or 
block the execution of foreign code in the kernel. They can defeat callback-into-
malware KQ attacks because such attacks require that malicious functions be injected 
somewhere in the kernel space. However, they cannot detect callback-into-libc attacks 
because such attacks do not inject malicious code or modify legitimate kernel code. 
HookSafe [36] is capable of blocking the execution of malware that modifies legiti-
mate function pointers to force a control transfer to the malicious code. However, 
HookSafe cannot prevent KQ injection attacks because they do not modify existing 
and legitimate kernel function pointers but instead supply malicious data in their own 
memory (i.e., the KQ request data structures). CFI [1] can ensure that control transfers 
of a program during execution always conform to a predefined control flow graph. 
Therefore, it can be instantiated into an alternative defense against KQIs that supply 
malicious control data. However, CFI cannot defeat the type of KQI attacks that 
supply malicious non-control data because they do not change the control flow. 
SBCFI [25] can potentially detect a callback-into-malware KQ attack. However, 
SBCFI is designed for persistent kernel control flow attacks (e.g., it only checks pe-
riodically) but KQ injection attacks are transient, so SBCFI may miss many of them. 
Moreover, SBCFI requires source code so it does not satisfy the inclusiveness re-
quirement. IndexedHooks [19] provides an alternative implementation of CFI for the 
FreeBSD 8.0 kernel by replacing function addresses with indexes into read-only 
tables, and it is capable of supporting new device drivers. However, similar to SBCFI, 
IndexedHooks requires source code so it does not satisfy the inclusiveness require-
ment. PLCP [37] is a comprehensive defense against KQ injection attacks, capable of 
defeating both callback-into-malware and callback-into-libc attacks. However, PLCP 
does not satisfy the inclusiveness requirement due to its reliance on source code. 

7 Conclusion 

Kernel Queue (KQ) injection attacks are a significant problem. We test 125 real world 
malware attacks [2,4,10,11,14,16,18,23,27]  and nine synthetic attacks to cover 20 
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KQs in the WRK. It is important for a solution to satisfy four requirements: efficiency 
(low overhead), effectiveness (precision and recall of attack detection), extensibility 
(accommodation of new device drivers) and inclusiveness (protection of device driv-
ers with and without source code). Current kernel protection solutions have difficul-
ties with simultaneous satisfaction of all four requirements.  

We describe the KQguard approach to defend kernels against KQ injection attacks. 
The design of KQguard is independent of specific details of the attacks. Consequent-
ly, KQguard is able to defend against not only known attacks, but also anticipated 
future attacks on currently unscathed KQs. We evaluated the WRK implementation of 
KQguard, demonstrating the effectiveness and efficiency of KQguard by running a 
number of representative application benchmarks. In effectiveness, KQguard achieves 
very low false negatives (detecting all but two KQ injection attacks in 125 real world 
malware and nine synthetic attacks) and zero false positives (no false alarms after a 
proper training process). In performance, KQguard introduces a small overhead of 
about 100 microseconds per validation and up to about 5% slowdown for resource-
intensive application benchmarks due to heap object tracking. 

Acknowledgements.  We thank Chenghuai Lu for sharing his knowledge and expe-
rience on real-world malware and Open Malware for sharing their malware samples. 
We also thank the anonymous reviewers for their useful comments. This research is 
supported by Centre for Strategic Infocomm Technologies (CSIT), Singapore. The 
opinions in this paper do not necessarily represent CSIT, Singapore. 

References 

1. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control flow integrity. In: Proceedings of 
the 12th ACM CCS (2005) 

2. Anselmi, D., et al.: Battling the Rustock Threat. Microsoft Security Intelligence Report, 
Special edn. (January 2010 through May 2011)  

3. Baliga, A., Ganapathy, V., Iftode, L.: Automatic inference and enforcement of kernel data 
structure invariants. In: Proceedings of ACSAC 2008 (2008) 

4. Boldewin, F.: Peacomm.C - Cracking the nutshell. Anti Rootkit, (September 2007), 
http://www.antirootkit.com/articles/eye-of-the-storm-
worm/Peacomm-C-Cracking-the-nutshell.html  

5. Brumley, D.: Invisible intruders: rootkits in practice. Login: 24 (September 1999)  
6. Butler, J.: DKOM (Direct Kernel Object Manipulation), http://www.blackhat. 

com/presentations/win-usa-04/bh-win-04-butler.pdf  
7. Carbone, M., Cui, W., Lu, L., Lee, W., Peinado, M., Jiang, X.: Mapping kernel objects to 

enable systematic integrity checking. In: Proceedings of ACM CCS 2009 (2009)  
8. Castro, M., Costa, M., Harris, T.: Securing Software by Enforcing Dataflow Integrity. In: 

Proceedings of OSDI 2006 (2006) 
9. Chiang, K., Lloyd, L.: A Case Study of the Rustock Rootkit and Spam Bot. In: Proceed-

ings of the First Workshop on Hot Topics in Understanding Botnets, HotBots 2007 (2007) 
10. Decker, A., Sancho, D., Kharouni, L., Goncharov, M., McArdle, R.: Pushdo/Cutwail: A 

Study of the Pushdo/Cutwail Botnet. Trend Micro Technical Report (May 2009)  

www.it-ebooks.info

http://www.it-ebooks.info/


 KQguard: Binary-Centric Defense against Kernel Queue Injection Attacks 773 

 

11. Giuliani, M.: ZeroAccess – an advanced kernel mode rootkit, rev 1.2., 
http://www.prevxresearch.com/zeroaccess_analysis.pdf  

12. Hayes, B.: Who Goes There? An Introduction to On-Access Virus Scanning, Part One. 
Symantec Connect Community (2010)  

13. Hoglund, G.: Kernel Object Hooking Rootkits (KOH Rootkits) (2006), http://my. 
opera.com/330205811004483jash520/blog/show.dml/314125  

14. Kapoor, A., Mathur, R.: Predicting the future of stealth attacks. In: Virus Bulletin 2011, 
Barcelona (2011)  

15. Kaspersky Lab. The Mystery of Duqu: Part One, http://www.securelist.com/ 
en/blog/208193182/The_Mystery_of_Duqu_Part_One 

16. Kaspersky Lab. The Mystery of Duqu: Part Five, http://www.securelist.com/ 
en/blog/606/The_Mystery_of_Duqu_Part_Five 

17. Kil, C., Sezer, E., Azab, A., Ning, P., Zhang, X.: Remote attestation to dynamic system 
properties: Towards providing complete system integrity evidence. In: Proceedings of the 
International Conference on Dependable Systems and Networks, DSN 2009 (2009) 

18. Kwiatek, L., Litawa, S.: Yet another Rustock analysis... Virus Bulletin (August 2008)  
19. Li, J., Wang, Z., Bletsch, T., Srinivasan, D., Grace, M., Jiang, X.: Comprehensive and Ef-

ficient Protection of Kernel Control Data. IEEE Transactions on Information Forensics and 
Security 6(2) (June 2011) 

20. Microsoft. Using Timer Objects,  
http://msdn.microsoft.com/en-us/library/ff565561.aspx 

21. Microsoft. Checked Build of Windows, http://msdn.microsoft.com/en-
us/library/windows/hardware/ff543457%28v=vs.85%29.aspx 

22. Necula, G.C., McPeak, S., Rahul, S.P., Weimer, W.: CIL: Intermediate language and tools 
for analysis and transformation of C programs. In: Nigel Horspool, R. (ed.) CC 2002. 
LNCS, vol. 2304, pp. 213–228. Springer, Heidelberg (2002) 

23. OffensiveComputing. Storm Worm Process Injection from the Windows Kernel, 
http://offensivecomputing.net/papers/storm-3-9-2008.pdf 

24. Petroni, N., Fraser, T., Molina, J., Arbaugh, W.A.: Copilot—a coprocessor-based kernel 
runtime integrity monitor. In: Proceedings of the 13th USENIX Security Symposium 
(2004) 

25. Petroni, N., Hicks, M.: Automated detection of persistent kernel control flow attacks. In: 
Proceedings of ACM CCS 2007 (2007) 

26. Petroni, N., Fraser, T., Walters, A., Arbaugh, W.A.: An Architecture for Specification-
Based Detection of Semantic Integrity Violations in Kernel Dynamic Data. In: Proceed-
ings of the 15th USENIX Security Symposium (2006) 

27. Prakash, C.: What makes the Rustocks tick! In: Proceedings of the 11th Association of an-
ti-Virus Asia Researchers International Conference, AVAR 2008 (2008) 

28. Riley, R., Jiang, X., Xu, D.: Guest-transparent prevention of kernel rootkits with VMM-
Based memory shadowing. In: Lippmann, R., Kirda, E., Trachtenberg, A. (eds.) RAID 
2008. LNCS, vol. 5230, pp. 1–20. Springer, Heidelberg (2008) 

29. Seshadri, A., Luk, M., Qu, N., Perrig, A.: SecVisor: A tiny hypervisor to provide lifetime 
kernel code integrity for commodity OSes. In: Proceedings of ACM SOSP 2007 (2007) 

30. Sharif, M., Lee, W., Cui, W., Lanzi, A.: Secure in-VM monitoring using hardware virtua-
lization. In: Proceedings of ACM CCS 2009 (2009) 

31. Smalley, S., Vance, C., Salamon, W.: Implementing SELinux as a Linux Security Module. 
Technical Report. NSA (May 2002) 

32. Designer, S.: Bugtraq: Getting around non-executable stack (and fix), 
http://seclists.org/bugtraq/1997/Aug/63  

www.it-ebooks.info

http://www.it-ebooks.info/


774 J. Wei, F. Zhu, and C. Pu 

 

33. Super PI, http://www.superpi.net/  
34. Symantec Connect Community. W32.Duqu: The Precursor to the Next Stuxnet  

(October 2011),  
http://www.symantec.com/connect/ 
w32_duqu_precursor_next_stuxnet 

35. Tran, M., Etheridge, M., Bletsch, T., Jiang, X., Freeh, V., Ning, P.: On the Expressiveness 
of Return-into-libc Attacks. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011. 
LNCS, vol. 6961, pp. 121–141. Springer, Heidelberg (2011) 

36. Wang, Z., Jiang, X., Cui, W., Ning, P.: Countering kernel rootkits with lightweight hook 
protection. In: Proceedings of ACM CCS 2009 (2009) 

37. Wei, J., Pu, C.: Towards a General Defense against Kernel Queue Hooking Attacks. El-
sevier Journal of Computers & Security 31(2), 176–191 (2012) 

38. Wei, J., Zhu, F., Pu, C.: KQguard: Protecting Kernel Callback Queues. Florida Interna-
tional University Technical Report, TR-2012-SEC-03-01 (2012), 
http://www.cis.fiu.edu/~weijp/Jinpeng_Homepage_ 
files/WRK_Tech_Report_03_12.pdf 

39. Windows Research Kernel v1.2., https://www.facultyresourcecenter.com/ 
curriculum/pfv.aspx?ID=7366&c1=en-us&c2=0 

40. Top 20 Malware Families in 2010, http://blog.fireeye.com/research/ 
2010/07/worlds_top_modern_malware.html  

41. Top 10 Botnet Families in 2009, https://blog.damballa.com/archives/572  
 

www.it-ebooks.info

http://www.it-ebooks.info/


Run-Time Enforcement of Information-Flow Properties
on Android

(Extended Abstract)

Limin Jia1, Jassim Aljuraidan1, Elli Fragkaki1, Lujo Bauer1, Michael Stroucken1,
Kazuhide Fukushima2, Shinsaku Kiyomoto2, and Yutaka Miyake2

1 Carnegie Mellon University, Pittsburgh, USA
{liminjia,aljuraidan,elli,lbauer,mxs}@cmu.edu

2 KDDI R&D Laboratories, Inc., Tokyo, Japan
{ka-fukushima,kiyomoto,miyake}@kddilabs.jp

Abstract. Recent years have seen a dramatic increase in the number and im-
portance of mobile devices. The security properties that these devices provide
to their applications, however, are inadequate to protect against many undesired
behaviors. A broad class of such behaviors is violations of simple information-
flow properties. This paper proposes an enforcement system that permits Android
applications to be concisely annotated with information-flow policies, which the
system enforces at run time. Information-flow constraints are enforced both be-
tween applications and between components within applications, aiding develop-
ers in implementing least privilege. We model our enforcement system in detail
using a process calculus, and use the model to prove noninterference. Our sys-
tem and model have a number of useful and novel features, including support
for Android’s single- and multiple-instance components, floating labels, declas-
sification and endorsement capabilities, and support for legacy applications. We
have developed a prototype of our system on Android 4.0.4 and tested it on a
Nexus S phone, verifying that it can enforce practically useful policies that can
be implemented with minimal modification to off-the-shelf applications.

1 Introduction

Recent years have seen a dramatic increase in the number and importance of smart-
phones and other mobile devices. The security properties that mobile operating systems
provide to their applications, however, are inadequate to protect against many undesired
behaviors, contributing to the rapid rise in malware targeting mobile devices [27,20].

To mitigate application misbehavior, mobile OSes like Android rely largely on strong
isolation between applications and permission systems that limit communication be-
tween applications and access to sensitive APIs. Researchers have investigated these
mechanisms, finding them vulnerable to application collusion [32,21], information-flow
leaks [32,12], and privilege-escalation attacks [9,13]. Attempts to address these issues
have produced tools for detecting information leaks [11,7,17], improvements to permis-
sion systems (e.g., [26,24]), as well as other mechanisms for restricting applications’
access to data and resources (e.g., [5]).
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Many common misbehaviors that are beyond the reach of Android’s permission sys-
tem are violations of simple information-flow properties. This is because Android’s
permission system supports only those policies that allow or deny communication or
access to sensitive resources based on the (mostly static) permissions of the caller and
callee. Once data has been sent from one application to another, the sender has relin-
quished all control over it.

Recent work on preventing undesired information flows on Android typically focuses
on using a specific mechanism to enforce a pre-determined global policy [11,7]. Other
works have developed more powerful mechanisms that track control flow and allow
finer-grained control over communication and resource accesses [10,5]; these also typ-
ically lack a convenient policy language. Although a few formal analyses of Android’s
security architecture have provided some insight about its limitations [33], works that
introduce more powerful mechanisms typically do not formally investigate the proper-
ties that those mechanisms exhibit.

This paper fills many of these gaps by proposing a DIFC-style enforcement system
for Android that allows convenient, high-level specification of policy and has a well-
understood theory, backed by a proof of noninterference. Building on techniques for
controlling information flow in operating systems [19,36], our system permits policy
to be specified via programmer- or system-defined labels applied to applications or ap-
plication components. Enforcing information-flow policies at the level of application
components is a practically interesting middle ground between process- (e.g., [19]) and
instruction-level (e.g., [23]) enforcement, offering finer-grained control than process-
level enforcement, but retaining most of its convenience. Labels specify a component’s
or application’s secrecy level, integrity level, and declassification and endorsement ca-
pabilities. We also allow floating labels, which specify the minimal policy for a compo-
nent, but permit multipurpose components (e.g., an editor) to be instantiated with labels
derived from their callers (e.g., to prevent them from exfiltrating a caller’s secrets).

We develop a detailed model of our enforcement system using a process calculus,
using which we prove noninterference. The modeling—and the design of the system—
is made particularly challenging by the desire to fully support key features of Android’s
programming model. Challenging features include single- and multiple-instance com-
ponents and enforcement at two levels of abstraction—at the level of applications,
which are strongly isolated from each other, and at the level of application compo-
nents, which are not. Our formal analysis reveals that floating labels and the ability of
single-instance components to make their labels stricter at run time—features that ap-
pear necessary to support practical scenarios—can, if not implemented carefully, easily
compromise the noninterference property of the system.

Proving noninterference was also challenging because traditional ways in which
information-flow systems are modeled in process calculi do not directly apply to An-
droid: the security level of the channel through which an Android component commu-
nicates changes as the system executes. To model this, we enhance pi-calculus with a
labeled process, 	[P ], to associate each component with its run-time security level. The
labeled process and the techniques for specifying noninterference can be applied to the
modeling of other distributed systems, such as web browsers.
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The contributions of this paper are the following:

1. We propose the first DIFC-style enforcement system for Android that allows con-
venient, high-level specification of policy and has a well-understood theory (§3).

2. We develop a faithful process-calculus model of Android’s main programming ab-
stractions and our system’s enforcement mechanism (§4).

3. We define noninterference for our enforcement system and prove that it holds (§5),
in the presence of dynamically changing security levels of components.

4. We implement our system on Android 4.0.4 and test it on a Nexus S phone; through
a case study with minimally modified off-the-shelf applications, we show that our
system can specify and enforce practically interesting policies (§6).

For space reasons, we omit many details, which appear in our technical report [1].

2 Background and Related Work

In this section we briefly introduce Android and review related work.

Android Overview. Android is a Linux-based OS; applications are written in Java
and each executes in a separate Dalvik Virtual Machine (DVM) instance. Applications
are composed of components, which come in four types: activities define a specific
user interface (e.g., a dialog window); services run in the background and have no user
interface; broadcast receivers listen for system-wide broadcasts; and content providers
provide an SQL-like interface for storing data and sharing them between applications.

Activities, services, and broadcast receivers communicate via asynchronous mes-
sages called intents. If a recipient of an intent is not instantiated, the OS will create a
new instance. The recipient of an intent is specified by its class name or by the name of
an “action” to which multiple targets can subscribe. Any component can attempt to send
a message to any other component. The OS mediates both cross- and intra-application
communications via intents. Between applications, intents are the only (non-covert)
channel for establishing communication. Components within an application can also
communicate in other ways, such as via public static fields. Such communication is
not mediated, and can be unreliable because components are short lived—Android can
garbage collect all but the currently active component. Hence, although Android’s ab-
stractions do not prevent unmediated communication between components, the pro-
gramming model discourages it. We will often write that a component calls another
component in lieu of explaining that the communication is via an intent.

Android uses permissions to protect components and sensitive APIs: a component
or API protected by a permission can be called only by applications that hold this per-
mission. Permissions are strings (e.g., android.permission.INTERNET) defined by the
system or declared by applications. Applications acquire permissions only at install
time, with the user’s consent. Additionally, content providers use URI permissions to
dynamically grant and revoke access to their records, tables, and databases.

Related Work. We discuss two categories of most closely related work.
Information Flow. Enforcing information-flow policies has been an active area of re-
search. Some develop novel information-flow type systems (cf. [31]) that enforce non-
interference properties statically; others use run-time monitoring, or hybrid techniques
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(e.g., [8,29,22,2,3,16]). These works track information flow at a much finer level of
granularity than ours; in contrast, the goals of our design included minimally impacting
legacy code and run-time performance on Android.

Our approach is most similar to work on enforcing information-flow policies in op-
erating systems [37,35,19]. There, each process is associated with a label. The com-
ponents in our system can be viewed as processes in an operating system. However,
most of these works do not prove any formal properties of their enforcement mecha-
nisms. Krohn et al. [18] presented one of the first proofs of noninterference for practical
DIFC-based operating systems. Our design is inspired by Flume [19], but has many dif-
ferences. For instance, Flume does not support floating labels. In Android, as we show
through examples, floating labels are of practical importance. Because Flume has no
floating labels, a stronger noninterference can be proved for it than can be proved for
our system: Flume’s definition of noninterference is based on a stable failure model, a
simulation-based definition. Our definition is trace-based, and does not capture infor-
mation leaks due to a high process stalling.

A rich body of work has focused on noninterference in process calculi [14,30]. Re-
cently, researchers have re-examined definitions of noninterference for reactive sys-
tems [4,28]. In these systems, each component waits in a loop to process input and
produce one or more outputs (inputs to other components). These works propose new
definitions of noninterference based on the (possibly infinite) streams produced by the
system. Our definition of noninterference is weaker, since we only consider finite pre-
fixes of traces. These reactive models are similar to ours, but do not consider shared state
between components, and assume the inputs and outputs are the only way to communi-
cate, which is not the case for Android. Further, to model the component-based Android
architecture more faithfully, we extend pi-calculus with a label context construct, which
also enables formal analysis of our enforcement mechanism in the presence of Android
components’ ability to change their labels at run time. To our knowledge, such dynamic
behavior has rarely been dealt with in the context of process calculus.
Android Security. Android’s permission system has been shown inadequate to pro-
tect against many attacks, including privilege-escalation attacks [9,13] and information
leaks [11,32,6,12]. Closest to the goal of our work are projects such as TaintDroid [11]
and AppFence [17], which automatically detect and prevent information leaks. They
operate at a much finer granularity than our mechanism, tracking tainting at the level of
variables, enforce fixed policies, and have not been formally analyzed.

Formal analyses of Android-related security issues and language-based approaches
to solving them have received less attention. Shin et al. [33] developed a formal model
to verify functional correctness properties of Android, which revealed a flaw in the
permission naming scheme [34]. Our prior work proposed a set of enhancements to
Android’s permission system designed to enforce information-flow-like policies, for
which some correctness properties were also formally proved [15]. The work described
in this paper is different in several respects: we build on more well-understood theory of
information flow; we support more flexible policies (e.g., in prior work it is not possible
to specify that information should not leak to a component unless that component is
protected by some permission); we make persistent state more explicit; and we formally
model our enforcement system in much greater detail, thus providing much stronger

www.it-ebooks.info

http://www.it-ebooks.info/


Run-Time Enforcement of Information-Flow Properties on Android 779

correctness guarantees. The labeled context used in the modeling and the techniques
developed for specifying noninterference in this paper can be applied to other systems,
and we view the formalism as a main contribution of this paper. In comparison, the
proofs in our prior work are customized for that specific system.

3 Enforcing Information-Flow Properties

We next describe a scenario that exemplifies the Android permission system’s inability
to implement many simple, practical policies (§3.1). We then discuss key aspects of our
system and show it can specify (§3.2) and enforce (§3.3) richer policies.

3.1 Motivating Scenario File manager 
for secret files 

Private 
files 

Editor 

Viewer 

Email 

Internet 
… 
� 
� 

Fig. 1. A simple scenario that cannot be imple-
mented using Android permissions

Suppose a system has the following
applications: a secret-file manager for
managing files such as lists of bank-
account numbers; a general-purpose
text editor and a viewer that can modify
and display this content; and an email
application. Because of their sensitive
content, we want to prevent files managed by the secret-file manager from being inad-
vertently or maliciously sent over the Internet; this should be allowed only if the user
explicitly requests it through the file manager. This scenario is shown in Figure 1.

The desired (information-flow) policy is representative of practical scenarios that
Android currently does not support. In Android, one might attempt to prevent the editor
or viewer from exfiltrating data by installing only viewers and editors that lack the
Internet permission; these then could not send out secret data directly, but they could
still do so via another application that has the Internet permission (e.g., the email client).

3.2 Key Design Choices

In general, the attacker model we consider is one where an application may try to ex-
filtrate data or access sensitive resources that it is not permitted to access, including by
taking advantage of cooperating or buggy applications.

We now discuss the design of our system and explain how it can specify and enforce
our desired example policy. We revisit the example more concretely in §6.

Enforcement Granularity. Traditionally, information-flow properties have been en-
forced either at instruction level (e.g., [23,16]) or at process level (e.g., [19]). Android’s
division of applications into components invites the exploration of an interesting middle
ground between these two. Android applications are typically divided into a relatively
few key components, e.g., an off-the-shelf file manager with which we experimented
was comprised of five components. Hence, component-level specification would likely
not be drastically more complex than application-level specification. This additional
granularity, however, could enable policies to be more flexible and better protect appli-
cations (and components) from harm or misuse.
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Unfortunately, enforcing purely component-level policies is difficult. The Android
programming model strongly encourages the use of components as modules. In fact,
the Android runtime may garbage collect any component that is not directly involved in
interacting with the user; using Android’s narrow interface for communication between
components is the only reliable method of cross-component communication. However,
neither Android nor Java prevent components that belong to the same application from
exchanging information without using the Android interfaces, e.g., by directly writing
to public static fields. Hence, Android’s component-level abstractions are not robust
enough to be used as an enforcement boundary; fully mediating interactions between
components would require a lower-level enforcement mechanism. Although such en-
forcement is possible, e.g., with instruction-level information-flow tracking [23], im-
plementation and integration with existing platforms and codebases is difficult and can
cause substantial run-time overhead.

We pursue a hybrid approach. We allow policy specification at both component level
and application level. Enforcement of component-level policies is best-effort: When
programmers adhere to Android’s programming conventions for implementing inter-
actions between components, most potential policy violations that are the result of
application compromise or common programmer errors will be prevented by the en-
forcement system. On the other hand, the components of a non-conformant application
will be able to circumvent its component-level policy (but not its application-level pol-
icy, nor other applications’ application- or component-level policy). Thus, component-
level policies are a tool to help programmers to better police their own code and
implement least privilege, and also act in concert with application-level policy to reg-
ulate cross-application interactions at a more fine-grained level. However, application-
level policies are enforced strictly because Android provides strong isolation between
applications.

Policy Specification via Labels. We use labels to express information-flow policies
and track information flows at run time. A label is a triple (s, i, δ), where s is a set of
secrecy tags, i a set of integrity tags, and δ a set of declassification and endorsement
capabilities. For convenience, we also refer to s as a secrecy label and i as an integrity
label; and to δ as the set of declassification capabilities, even though δ also includes en-
dorsement capabilities. Labels are initially assigned to applications and components by
developers in each application’s manifest; we call these static labels. At run time, each
application and component also has an effective label, which is derived by modifying
the static label to account for declassification and endorsement. Additionally, secrecy
labels s and integrity labels i can be declared as floating; we explain this below.

Labels as Sets of Tags. Implementing secrecy and integrity labels as sets of tags was
motivated by the desire to help with backward compatibility with standard Android per-
missions. In Android, any application can declare new permissions at installation time.
We similarly allow an application to declare new secrecy and integrity tags, which can
then be used as part of its label. The lattice over labels, which is required for enforce-
ment, does not need to be explicitly declared—this would be impractical if different
applications declare their own tags. Rather, the lattice is defined by the subset relation
between sets of tags. The permissions that legacy applications possess or require of
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their callers can be mapped to tags and labels. A more detailed discussion can be found
in our technical report [1].

Declassification and Endorsement. The declassification capabilities, δ, specify the tags
a component or application may remove from s or add to i. We make the declassification
capabilities part of the label, because whether a component may declassify or endorse
is a part of the security policy. Declaratively specifying declassification policy makes
it easier to reason about and aids backward compatibility: declassification (or endorse-
ment) that is permitted by policy can be applied to a legacy application or component
automatically by the enforcement system when necessary for a call to succeed.

Returning to the example from §3.1: The secret-file manager application may be
labeled with the policy ({FileSecret}, {FileWrite}, {-FileSecret}). Intuitively, the first
element of this label conveys that the secret-file manager is tainted with the secret files’
secrets (and no other secrets); the second element that the file manager has sufficient
integrity to add or change the content of files; and the third element that the file manager
is allowed to declassify. The file manager’s effective label will initially be the same as
this static label. If the file manager exercises its declassification capability -FileSecret,
its effective label will become ({}, {FileWrite}, {-FileSecret}).

The complement to declassification and endorsement is raising a label. Any com-
ponent may make its effective secrecy label more restrictive by adding tags to it, and
its effective integrity label weaker by removing tags. After a component has finished
executing code that required declassification or endorsement, it will typically raise its
effective label to the state it was in prior to declassification or endorsement. Components
without declassification capabilities can also raise their labels, but this is rarely likely
to be useful, since raising a label can be undone only by declassifying or endorsing.

Floating Labels. Some components or applications, e.g., an editor, may have no secrets
of their own but may want to be compatible with a wide range of other applications. In
such cases, we can mark the secrecy or integrity label as floating, e.g., (F{}, F{}, {}), to
indicate that the secrecy or integrity element of a component’s effective label is inherited
from its caller. The inheriting takes place only when a component is instantiated, i.e.,
when its effective label is first computed. Floating labels serve a very similar purpose
to polymorphic labels in Jif [23].

In our example, the editor’s static policy is (F{}, F{}, {}). If instantiated by the file
manager, the editor’s effective secrecy label becomes {FileSecret}, allowing the editor
and the file manager to share data, but preventing the editor from calling any applica-
tions or APIs that have a secrecy label weaker than {FileSecret}. If the editor also had
secrets to protect, we might give it the static label (F{EditorSecret}, F{}, {}). Then, the
editor’s effective label could be floated to ({EditorSecret, FileSecret}, {}, {}), but any
instantiation of the editor would carry an effective secrecy label at least as restrictive as
{EditorSecret}. Similarly, when the editor is instantiated by the file manager, its static
integrity label F{} would yield an effective integrity label {FileWrite}, permitting the
editor to save files, and preventing components without a FileWrite integrity tag from
sending data to the editor.

Unlike secrecy and integrity labels, declassification capabilities cannot be changed
dynamically; they are sufficiently powerful (and dangerous) that allowing them to be
delegated is too likely to yield a poorly understood policy.
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3.3 Enforcement Approach and Limitations

We described in §3.2 how to specify rich, practically useful policies in our system; we
next outline how they are enforced. The crux of our enforcement system is a reference
monitor that intercepts calls between components, which we build on top of Android’s
activity manager (§6). Much of its responsibility is maintaining the mapping from appli-
cations and components (and their instances) to their effective labels. Our formal model
(§4) abstracts the bookkeeping responsibilities into a label manager and the purely en-
forcement duties into an activity manager. We next discuss how our reference monitor
makes enforcement decisions and how our system handles persistent state.

Application- and Component-Level Enforcement. When two components try to
communicate via an intent, our reference monitor permits or denies the call by com-
paring the caller’s and the callee’s labels. When the caller and callee are part of the
same application, the call is allowed only if the caller’s effective secrecy label is a sub-
set of the callee’s and the caller’s effective integrity label is a superset of the callee’s.
The comparison is more interesting when the caller and callee are in different applica-
tions. Then, a call is allowed if it is consistent with both component-level labels and
application-level labels of the caller’s and callee’s applications.

If the callee component (and application) has a floating (static) label, the callee’s ef-
fective integrity label is constructed as the union of its static integrity label and effective
integrity labels of the caller and the caller’s application. The effective secrecy label (and
the callee’s application’s effective labels) is constructed similarly.

Declassification and endorsement change the effective labels of components and
applications, and are permitted only when consistent with policy. For programmer con-
venience, the reference monitor will automatically declassify or endorse a caller com-
ponent when this is necessary for a call to be permitted. We discuss this further in §6.

From the standpoint of policy enforcement, returns (from a callee to a caller), includ-
ing those that report errors, are treated just like calls. As a consequence, a return may
be prohibited by policy (and prevented) even if a call is allowed.

Much of the functionality of Android applications is accomplished by calling An-
droid and Java APIs, e.g., for accessing files or opening sockets. We assign these APIs
labels similarly as we would to components. For instance, sending data to sockets po-
tentially allows information to be leaked to unknown third parties; therefore, we assign
a label with an empty set of secrecy tags to the socket interface to prevent components
with secrets from calling that API. We treat globally shared state, e.g., individual files,
as components, and track their labels at run time.

Persistent State. Multi-instance components intuitively pose little difficulty for enforc-
ing information-flow policies: each call to such a component generates a fresh instance
of the component bereft of any information-flow entanglements with other components.

More interesting are single-instance components, which can be targets for multiple
calls from other components, and whose state persists between those calls. Interaction
between single-instance components and the ability of components to raise their labels
can at first seem to cause problems for information-flow enforcement.

Consider, for example, malicious components A and B that seek to communicate
via a colluding single-instance component C. Suppose that A’s static secrecy label is
{FileSecret} and B’s is {}, preventing direct communication from A to B; C’s static
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secrecy label is {}. Component C, upon starting, sends B an intent, then raises its effec-
tive label to {FileSecret}. A sends the content of a secret file to C; their labels permit
this. If the content of the secret file is “Attack,” C exits; otherwise, C continues running.
B calls C, then calls C again. If B receives two calls from C, then it learns that A’s secret
file is “Attack.” C can only make the second call to B after exiting, which only happens
when A’s secret file is “Attack.” The information leak arose because C changed its label
by exiting. To prevent such scenarios (and to allow us to prove noninterference, which
ensures that no similar scenarios remain undiscovered), raising a label must change not
only a component’s effective label, but also its static label.

Limitations. We do not address communication via covert channels, e.g., timing chan-
nels. Recent work has identified ways in which these may be mitigated by language-
based techniques [38]; but such techniques are outside the scope of this paper. We also
do not address the robustness of Android’s abstractions: stronger component-level ab-
stractions would permit robust, instead of best-effort, enforcement of information-flow
policies within applications. Improving these abstractions, or complementing them by,
e.g., static analysis, could thus bolster the efficacy of our approach.

Many security architectures are vulnerable to user error. On Android, a user can at
installation time consent to giving an application more privileges than is wise. Our sys-
tem does not address this; we design an infrastructure that supports rich, practically
useful policies. Because our approach allows developers to better protect their applica-
tions, they may have an incentive to use it. However, we do not tackle the problem of
preventing the user from making poor choices (e.g., about which applications to trust).

4 Process Calculus Model

We next show a process calculus encoding of Android applications and our enforce-
ment mechanism. The full encoding captures the key features necessary to realistically
model Android, such as single- and multi-instance components, persistent state within
component instances, and shared state within an application. Many details that we omit
for brevity can be found in our technical report [1].

4.1 Labels and Label Operations

Labels express information-flow policies and are used to track flows at run time. A label
is composed of sets of tags. We assume a universe of secrecy tags S and integrity tags
I. Each secrecy tag in S denotes a specific kind of secret, e.g., contact information.
Each integrity tag in I denotes a capability to access a security-sensitive resource.
Simple labels κ ::= (σ, ι) Process labels K ::= (Q(σ),Q(ι), δ) where Q = C or Q = F

A simple label κ is a pair of a set of secrecy tags σ drawn from S and a set of
integrity tags ι drawn from I. Simple labels form a lattice (L,*), where L is a set of
simple labels and * is a partial order over simple labels. Intuitively, the more secrecy
tags a component has, the more secrets it can gather, and the fewer components it can
send intents to. The fewer integrity labels a component has, the less trusted it is, and
the fewer other components it can send intents to. Consequently, the partial order over
simple labels is defined as follows: (σ1, ι1) * (σ2, ι2) iff σ1 ⊆ σ2, and ι2 ⊆ ι1
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AM Erasure of label C(σ)− = σ F (σ)− = ! (Q(σ),Q(ι), δ)− = ((Q(σ))−, ι)
PF Erasure of label C(ι)∗ = ι F (ι)∗ = ! (Q(σ),Q(ι), δ)∗ = (σ, (Q(ι))∗)
Label Declassify (C(σ), C(ι), δ) "d δ1 =

(C(σ\{t|(−t) ∈ δ1}), C(ι ∪ {t|(+t) ∈ δ1}), δ)
Fig. 2. Selected label operations

Secrecy and integrity labels are annotated withC for concrete labels or F for floating
labels. A process label K is composed of a secrecy label, an integrity label, and a set
of declassification capabilities δ. An element in δ is of the form −ts, where ts ∈ S, or
+ti, where ti ∈ I. A component with capability −ts can remove the tag ts from its
secrecy tags σ; a component that has +ti can add the tag ti to its integrity tags ι.

We define operations on labels (Figure 2). An AM erasure function K− is used by
the activity manager to reduce process labels to simple labels that can easily be com-
pared. This function removes the declassification capabilities from K , and reduces a
floating secrecy label to the top secrecy label. This captures the idea that declassifica-
tion capabilities are not relevant to label comparison, and that a callee’s floating secrecy
label will never cause a call to be denied. The PF erasure functionK∗ is used in defin-
ing noninterference, and is explained in §5. The declassification operation K "d δ1
removes from K the secrecy tags in δ1, and adds the integrity tags in δ1.

4.2 Preliminaries

We chose a process calculus as our modeling language because it captures the dis-
tributed, message-passing nature of Android’s architecture. The Android runtime is the
parallel composition of component instances, application instances, and the reference
monitor, each modeled as a process.

The syntax of our modeling calculus, defined below, is based on π-calculus. We use
′|′ for parallel composition, and reserve | for BNF definitions. aid denotes an appli-
cation identifier, and cid a component identifier, both drawn from a universe of identi-
fiers. c denotes constant channel names. Specific interfaces provided by an application
or component are denoted as aid ·c and aid ·cid ·c.

The only major addition is the labeled process 	[P ]. Label contexts 	 include the
unique identifiers for applications (aid ) and components (cid ), channel names (c) that
serve as identifiers for instances, and a pair (	1, 	2) that represents the label of a com-
ponent and its application. Bundling a label with a process aids noninterference proofs
by making it easier to identify the labels associated with a process.

Names a ::= x | c | aid ·c | aid ·cid ·c Proc P ::= 0 | in a(x).P | in a(patt).P
Label ctx � ::= aid | cid | c | (�1, �2) | out e1(e2).P | P1 + P2 | νx.P | !P
Expr e ::= x | a | ctr e1 · · · ek | (P1

′|′ P2) | �[P ] | if e then P1 else P2

| (e1, · · · , en) | case e of{ctr 1x1 ⇒ P1...
| ctrnxn ⇒ Pn}

We extend the standard definition of a processP with if statements, pattern-matching
statements, and a pattern-matched input inx(patt) that accepts only outputs that match
with patt. These extensions can be encoded directly in π-calculus, but we add them as
primitive constructors to simplify the representation of our model.
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Application App(aid) = aid [!(in aid ·cL(cAI ).cAI [AppBody(aid , cAI )])]

App body AppBody(aid , cAI ) = νcsvL.νcsv .out csvL(s0).(SV (csvL, csv )
′|′

(cAI , cid1)[CP1(aid , cid1, cAI , csv )]
′|′ · · ·

′|′ (cAI , cidn)[CPn(aid , cidn, cAI , csv )])

Component CP(aid , cid , cAI , csv ) = !(in aid ·cid ·ccT ( =cAI , I, cnI , clock , rt).
(cAI , cnI )[...in cnI (I).〈out I(self)〉.A(...)])

Comp body A(cid , aid , I, cAI , rt, ...) ::= ... | out am(callI , rt, aid , cAI , cidce , I)
′|′ A(...)

Fig. 3. Partial encoding of applications and components

4.3 A Model of Android and Our Enforcement Architecture

We model as processes the three main constructs necessary to reason about our enforce-
ment mechanism: application components, the activity manager, and the label manager.
The activity manager is the part of the reference monitor that mediates calls and decides
whether to allow a call based on the caller’s and the callee’s labels. The label manager
is the part of the reference monitor that keeps track of the labels for each application,
component, and application and component instance.

Life-cycles of Applications and Components and Their Label Map. A large part of
the modeling effort is spent on ensuring that the process model faithfully reflects the
life-cycles of applications and components, which is crucial to capturing information
flows through persistent states within or across the life-cycles. The reference monitor
maintains a label map Ξ , which reflects these life-cycles.

Android supports single- and multi-instance components. Once created, a single-
instance component can receive multiple calls; the instance body shares state across all
these calls. A fresh instance of a single-instance component is created only when the
previous instance has exited and the component is called again. A component does not
share state across its instantiations. For a multi-instance component, a new instance is
created on every call to that component. An application is similar to a single-instance
component, and all component instances within one application instance share state.

All calls are asynchronous; returning a result is treated as a call from the callee to
the caller. When a component instance is processing a call, any additional intents sent
to that instance (e.g., new intents sent to a single-instance component, or results being
returned to a multi-instance component) are blocked until the processing has finished.

Encoding Applications and Components. A partial encoding of applications and
components is shown in Figure 3. We delay explaining the label contexts 	[...] until
§5—they are annotations that facilitate proofs, and have no run-time meaning.

We encode a recursive process using the ! operator. A process !(in c(x).P ) will run a
new process P each time a message is sent to c. This models the creation of a run-time
instance of an application or a component. In both cases, we call channel c the launch
channel of P , and say that P is launched from c.

An application App(aid) with ID aid is the parallel composition of a shared state
SV and componentsCP i(aid , cid i, cAI , csv ). Each application has a designated launch
channel aid ·cL. The channel cAI , passed as an argument to the launch channel, serves
as a unique identifier for an application instance. Once an application is launched, it

www.it-ebooks.info

http://www.it-ebooks.info/


786 L. Jia et al.

0 AMI = in am(callI , kAcr , kCcr , rt, aid , cAI , cidce , I).
1 νc. out tm(lookUp, cidce , c). in c(s).
2 case s of ...
18 |M(kce)⇒ if kcr

− # kce−
19 then νcnI .νclock . out tm(upd, { (cnI , (clock , kce � kCcr

−)), ...}).
20 (aid , (cAI , cnI ))[out aid ·aid ·ccT (cAI , I, cnI , clock , rt)]
21 else 0

Fig. 4. Partial encoding of the activity manager

launches the shared state. At this point, the application’s components are ready to re-
ceive calls, and we call this application instance an active launched instance.

A component CP(aid , cid , cAI , csv ) is launched from a designated creation chan-
nel aid ·cid ·ccT after a message is received on that channel. The message is a tuple
( =cAI , I, cnI , clock , rt) whose first argument ( ) must match the current application
instance (cAI ). I is the intent conveyed by the call. cnI is the new intent channel for
the component to process multiple calls. clock is the channel used to signal the refer-
ence monitor that this instance has finished processing the current intent and is ready
to receive a new one. Finally, rt contains information about whether and on what chan-
nel to return a result. A components receives messages on the new intent channel, then
proceeds to execute its body (denoted A).

The body of a component is defined in terms of the operations that a component can
perform. It is parameterized over several variables, which are free in the body and are
bound by outer-layer constructs. A component can use if and case statements, and read
or write to the shared state in its application. It can also request from the label manager
to change its (and its application’s) label, and can call another component by sending a
request to the activity manager. All of these operations are encoded using the process
calculus. E.g., the call operation is encoded as outam(callI , rt, . . .), where am is the
designated channel to send requests to the activity manager.

Label Manager and Activity Manager. The label manager TM maintains the label
map Ξ and processes calls to update the mapping through a designated channel tm.

Android’s activity manager mediates all intent-based communication between com-
ponents, preventing any communication that is prohibited by policy. The top-level pro-
cess of the activity manager is of the form: AM =!(AMI + AME + AMEX + AMR).
The activity manager processes four kinds of calls: AMI processes calls between com-
ponents within the same application; AME processes inter-application calls; AMEX pro-
cesses exits, and AMR processes returns.

We show an example of processing calls between components within the same ap-
plication (Figure 4): When the activity manager receives a request to send intent I to
a component cid ce , it asks the label manager for the callee’s label. A possible reply is
one that indicates that the callee is a multi-instance component (M(kce)). The activity
manager allows the call if the caller’s label is lower than or equal to the callee’s. If the
call is permitted, a new callee instance is launched. To do this, the activity manager (1)
generates a new-intent channel and a lock channel for the new instance; (2) updates the
label mapping to record the label of this new active instance; and (3) sends a message
containing the intent to the callee’s creation channel.
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Overall System. We assume that an initial process init bootstraps the system and
launches the label manager with the static label map that reflects the labels of appli-
cations and components at install time, and then calls the first process with fixed labels:
S = TM |AM |App1(aid1) | ... |Appn(aidn) | init.

5 Noninterference

To show that our system prevents information leakage, we prove a noninterference the-
orem. We use the simple label κL as the label of malicious components. We call com-
ponents whose labels are not lower than or equal to κL high components, and others low
components. Low components are considered potentially controlled by the attacker. We
want to show that a system S that contains both high and low components behaves the
same as a system composed of only the low components in S.

Choice between Trace and Bisimulation-based Equivalence. Processes P andQ are
trace equivalent if for any trace generated by P ,Q can generate an equivalent trace, and
vice versa. Another commonly-used equivalence, barbed bisimulation, is stronger: it
additionally requires those two processes to simulate each other after every τ transition.

Our decision about which notion of process equivalence to use for our noninterfer-
ence definition is driven by the functionality required of the system so that practically
reasonable policies can be implemented. As discussed earlier, floating labels are essen-
tial to implement practical applications in Android. However, allowing an application
(or single-instance component) to have a floating label weakens our noninterference
guarantees: In this case, we cannot hope to have bisimulation-based noninterference
(see our technical report [1] for an example).

Rather than disallowing floating labels, we use a weaker, trace-equivalence-based
definition of noninterference. This still provides substantial assurance of our system’s
ability to prevent disallowed information flows: noninterference would not hold if our
system allowed: (1) explicit communication between high and low components; or (2)
implicit leaks in the reference monitor’s implementation, such as branching on data
from a high component affecting low components differently depending on the branch.

High and Low Components. Most commonly seen techniques that classify high and
low events based on a fixed security level assigned to each channel cannot be directly
applied to the Android setting, as the components may declassify, raise, or instantiate
their labels at run time. Whether an input (output) is a high or low event depends on the
run-time label of the component that performs the input (output). Similarly, whether a
component is considered high or low, also depends on its run-time label. This makes the
definitions and proofs of noninterference more challenging. To capture such dynamic
behavior, we introduce the label contexts of processes, and use the run-time mapping
of these labels in the label manager to identify the high and low components in the
system. The current label of a process can be computed from its label context and the
label mapΞ . For a process with nested label contexts 	1[...	n[P ]...], the innermost label
	n reflects the current label of process P .

Our mechanism enforces information-flow policies at both component and applica-
tion level; we consequently define noninterference to demonstrate the effectiveness of
the enforcement at both levels. Next, we explain how to use the application ID, the
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component-level label, and the application-level label to decide whether a process is
high or low for our noninterference theorem.

Without loss of generality, we pick one application whose components do not access
the shared state of that application, and decide whether each of its components is high or
low solely based on each component’s label; all other applications, whose components
may access the shared applicate state, are treated as high or low at the granularity of an
application, based on their application-level labels. We write aid c to denote the specific
application whose components we treat as individual entities and disallow their accesses
to the shared state.

Now we can define the procedure of deciding whether a process is high or low. We
first define a binary relation*aidc between a label context (aid , (κ1, κ2)) and a simple
label κ. We say that (aid , (κ1, κ2)) is lower than or equal to κ relative to aid c. This
relation compares the application-level label (κ1) to κL if the application is not aid c,
and compares the component-level label (κ2) to κL if the application ID is aid c.
(aid , (κ1, κ2)) #aidc κL iff κ1 # κL when aid �= aidc and κ2 # κL when aid = aidc

Now, given the label map Ξ , let Ξ〈c〉 denote the label associated with a channel
name c in Ξ . We say that a process of the form aid [...(cAI , cnI )[P ]...] is a low process
with regard to κL if (aid , ((Ξ〈cAI 〉)∗, (Ξ〈cnI 〉)∗) *aidc

κL; otherwise, it is a high
process. Please see our tech report for a formal definition and additional details [1].

The function K∗ (Figure 2) removes the declassification capabilities in K , and re-
duces floating integrity labels to the lowest integrity label (on the lattice). This is be-
cause a call to a component with a floating integrity label may result in a new instance
with a low integrity label, a low event observable by the attacker; hence, a floating
component should always be considered a low component.

Traces. The actions relevant to our noninterference definitions are intent calls received
by an instance, since the only explicit communication between the malicious compo-
nents (applications) and other parts of the system is via intents. We model intents I as
channels. The encoding of components includes a special output action 〈out I(self)〉
right after the component receives a new intent (Figure 3). This outputs to the intent
channel the current labels of the component, denoted by self. Traces consist of these
outputs (out I(aid , (kA, kC))), which contain information about both what the recip-
ient has learned and the security label of the recipient. We call such an action low, if
(aid , (kA, kC)) *aidc

κL, and high otherwise.
We restrict the transition system to force the activity manager’s processing of a

request—from receiving it to denying, allowing, or delaying the call—to be atomic.
Some requests require that a lock be acquired; we assume the activity manager will
only process a request if it can grab the lock. This matches reality, since the run-time
monitor will process one call at a time, and the run-time monitor’s internal transitions
are not visible to the outside world. We write a small-step Android-specific transition
as S

α−→AS
′, and S

τ
=⇒AS

′ to denote zero or multiple τ transitions from S to S′.

Noninterference. We define the projection of traces t|aidc
κL

, which removes all high
actions from t. The function projT(Ξ;κL; aid c) removes from Ξ mappings from IDs
or channel names to high labels. Similarly, proj(P, κL, aid c, Ξ) removes high compo-
nents, applications, and instances from P . The resulting configuration is the low system
that does not contain secrets or sensitive interfaces.
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We say that a declassification step is effective with regard to κL and aid c if the label
of the declassified instance before the step is not lower than or equal to κL relative to

aid c, and the label after is. We call a sequence of transitions
t

=⇒A valid if each step pre-
serves the application-level label of aid c (application aid c cannot exit the application
or raise its application-level label), and if it is not an effective declassification step.

We prove a noninterference theorem, which captures the requirements on both cross-
application and intra-application communications. The theorem only concerns traces
generated by valid transitions. Declassification can cause the low actions that follow it to
differ between the two systems. However, we do allow arbitrary declassification prior to
the projection of the high components. A component that declassified will be treated as a
low component, and will afterward be denied any secrets unless further declassification
occurs elsewhere. Changing aid c’s application-level label interferes with our attempt to
view components in aid c as independent entities.

Theorem 1 (Noninterference)
For all κL, for all applications App(aid1), · · · ,App(aidn),
given a aidc (aidc = aid i), i = 1 . . . n, whose components do not access the shared variable,
let S = AM |TM |App(aid1), · · · , App(aidn) be the initial system configuration, S=⇒AS

′,
S′ = AM |TM | νc.(TMI(Ξ) |AC (aidc) |S′′), where TMI(Ξ) is an instance of the tag man-
ager, Ξ is the current label map, and AC (aidc) is an active launched instance of aidc,
let Ξ ′ = projT(Ξ;κL; aidc),
SL = AM |TM | νc′.(TMI(Ξ

′) | proj(AC (aidc) |S′′, κL, aidc, Ξ
′))

1. ∀t s.t. S′ t
=⇒AS1, and

t
=⇒A is a sequence of valid transitions, ∃t′ s.t. SL

t′
=⇒ASL1, and

t|
aidc
κL = t′|
aidc

κL

2. ∀t s.t. SL
t

=⇒ASL1, and
t

=⇒A is a sequence of valid transitions, ∃t′ s.t. S′ t′
=⇒AS1, and

t|
aidc
κL = t′|
aidc

κL

6 Case Study and Implementation

We implemented our system on Android 4.0.4, using techniques similar to those used
by other works [5,15]. Here we describe in detail our policy for the example scenario
from §3.1, and briefly discuss our implementation.

Motivating Scenario Revisited. The policy of our example from §3.1 prohibits secret
files from being leaked on the Internet, but allows them to be manipulated by applica-
tions and emailed at the user’s behest. Files may be edited, but can be emailed only if
the file manager itself calls the email application. We extend the example to also allow
files to be emailed if they are first encrypted.

We first show how to implement this policy by assigning application-level labels.
The file manager is labeled with ({FileSecret}, {FileWrite}, {-FileSecret}). The editor
is labeled with (F{}, F{}, {}), to indicate that its effective secrecy and integrity labels
are inherited from its caller, but it has no ability to declassify or endorse. The email ap-
plication is labeled with ({ReadContacts, . . .}, {}, {+Internet, . . .}). The “. . . ” signify
additional secrecy tags and endorsement capabilities that enable the email application to
read user accounts, cause the phone to vibrate, etc. To permit callers with low integrity,
tags that permit access to resources (e.g., to vibration functionality) appear as endorse-
ment capabilities rather than integrity tags. The encryption application is labeled with
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(F{}, F{}, {-T, +WriteExternalStorage}). It has floating secrecy and integrity labels and
can declassify all secrets it acquires, and so it must be trusted to correctly encrypt files
and not reveal files without encrypting them. The encryption application also needs the
WriteExternalStorage tag to be able to store encrypted data on the SD card.

This choice of labels achieves our desired functionality as follows: When called by
the file manager, the editor’s label floats to ({FileSecret}, {FileWrite}, {}). The editor
cannot declassify FileSecret and so cannot leak the file; because it has FileWrite, it can
save the file to secret storage. To email the file, a user invokes the email application
via the file manager, which adds the file content to the intent that starts the email appli-
cation, and removes FileSecret by declassifying before sending the intent. The file can
also be released via the encryption application. If invoked by the file manager, the en-
cryption application floats to ({FileSecret}, {FileWrite}, {-T,+WriteExternalStorage});
its capability to declassify any secret (-T) allows it to release data to any application.

We used component-level policy to restrict the file manager’s declassification capa-
bility to only the component whose task is to send files to other applications. The duties
of the components can be inferred from their names. We label the Main activity and the
File provider with ({FileSecret}, {FileWrite}, {}) since they need to handle files; the
Help and DirectoryInfo activities with ({FileSecret}, {}, {}); the Settings activity with
({FileSecret}, {FileWrite}) because it needs to return a result to the Main activity; and
the Send activity with ({FileSecret}, {FileWrite}, {-FileSecret}).
Implementation. Our case study is fully implemented and has been tested on a Nexus
S phone. We extended Android’s manifest file syntax to support our labels. Run-time
enforcement is via extensions to Android’s activity manager, which already mediates
communication between components. The biggest challenges were in providing more
detailed information about callers to the activity manager and capturing low-level ac-
tions that it did not mediate; we do this via kernel-level middleware [25]. For backward
compatibility, we mapped system-declared permissions to secrecy and integrity tags,
and assigned label signatures to Android and Java APIs. Please see our technical re-
port [1] for more detail about the implementation.

As part of booting the phone to the point where it can execute ordinary applications,
over 50 built-in applications start running. Our case study used minimally modified
off-the-shelf applications: Open Manager 2.1.8, Qute Text Editor 0.1, Android Privacy
Guard 1.0.9, Email 2.3.4. Our system’s implementation totaled ∼1200 lines of code:
∼650 in the reference monitor, 400 for bookkeeping, 100 for enhancing IPCs, and 50
for syntactic support for labels. We measured overheads on the order of 7.5 ms for the
label checks incurred by each call1. Performance was sufficiently good for this overhead
not to be observable to the user.

7 Conclusion

We propose the first DIFC-style enforcement system for Android that allows con-
venient, high-level specification of policy and has a well-understood theory. To sup-
port Android’s programming model the system had to incorporate several features that

1 Even averaging over hundreds of runs, variance between sets of runs was too great to report
more precise measurements.
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are new to information-flow systems, including multi-level policy specification and
enforcement, floating labels, and support for persistent state and single-instance compo-
nents. Our system strikes a balance between providing strong formal properties (non-
interference) and applicability, achieving most of each. A prototype and case study
validate the design of our system, and confirm that it can enforce practical policies on a
Nexus S phone.

Acknowledgments. This research was supported in part by Department of the Navy
grant N000141310156 issued by the Office of Naval Research; by NSF grants 0917047
and 1018211; by a gift from KDDI R&D Laboratories Inc.; and by Kuwait University.

References

1. Aljuraidan, J., Fragkaki, E., Bauer, L., Jia, L., Fukushima, K., Kiyomoto, S., Miyake, Y.:
Run-time enforcement of information-flow properties on Android. Technical Report CMU-
CyLab-12-015, Carnegie Mellon University (2012)

2. Arden, O., George, M.D., Liu, J., Vikram, K., Askarov, A., Myers, A.C.: Sharing mobile
code securely with information flow control. In: Proc. IEEE S&P (2012)

3. Austin, T.H., Flanagan, C.: Multiple facets for dynamic information flow. In: Proc. POPL
(2012)
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