Jason Crampton
Sushil Jajodia
Keith Mayes (Eds.)

Computer Security -
ESORICS 2013

18th European Symposium
on Research in Computer Security
Egham, UK, September 2013, Proceedings

LNCS 8134

@ Springer

http://www.it-ebooks.info/

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

8134

http://www.it-ebooks.info/

Jason Crampton Sushil Jajodia
Keith Mayes (Eds.)

Computer Security —
ESORICS 2013

18th European Symposium
on Research in Computer Security

Egham, UK, September 9-13, 2013
Proceedings

@ Springer

http://www.it-ebooks.info/

Volume Editors

Jason Crampton

Royal Holloway, University of London
Information Security Group

Egham Hill, Egham, TW20 0EX, UK
E-mail: jason.crampton@rhul.ac.uk

Sushil Jajodia

George Mason University

Center for Secure Information Systems

4400 University Drive, Fairfax, VA 22030-4422, USA
E-mail: jajodia@gmu.edu

Keith Mayes

Royal Holloway, University of London
Information Security Group

Egham Hill, Egham, TW20 0EX, UK
E-mail: keith.mayes @rhul.ac.uk

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-40202-9 e-ISBN 978-3-642-40203-6
DOI 10.1007/978-3-642-40203-6

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013944563
CR Subject Classification (1998): K.6.5, E.3, D.4.6, K.4.4, C.2.0,J.1, H.2.7

LNCS Sublibrary: SL 4 — Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

http://www.it-ebooks.info/

Preface

This volume contains the papers selected for presentation at the 18th European
Symposium on Research in Computer Security (ESORICS 2013), held during
September 9-13, 2013, in Egham, UK.

In response to the symposium’s call for papers, 242 papers were submitted
to the conference from 38 countries. These papers were evaluated on the basis of
their significance, novelty, technical quality, as well as on their practical impact
and/or their level of advancement of the field’s foundations.

The Program Committee’s work was carried out electronically, yielding in-
tensive discussions over a period of a few weeks. Of the papers submitted, 43
were selected for presentation at the conference (resulting in an acceptance rate
of 18%). We note that many top-quality submissions were not selected for pre-
sentation because of the high technical level of the overall submissions, and we
are certain that many of these submissions will, nevertheless, be published at
other competitive forums in the future.

An event like ESORICS 2013 depends on the volunteering efforts of a host
of individuals and the support of numerous institutes. There is a long list of
people who volunteered their time and energy to put together and organize the
conference, and who deserve special thanks. Thanks to all the members of the
Program Committee and the external reviewers for all their hard work in evalu-
ating the papers. We are also very grateful to all the people whose work ensured
a smooth organization process: the ESORICS Steering Committee, and its Chair
Pierangela Samarati in particular, for their support; Giovanni Livraga, for taking
care of publicity; Sheila Cobourne, for maintaining the website; and the Local
Organizing Committee, for helping with organization and taking care of local ar-
rangements. We would also like to express our appreciation to everyone who or-
ganized the workshops (CATACRYPT, Cryptoforma, DPM, EUROPKI, QASA,
SETOP, STM, Trustworthy Clouds) co-located with ESORICS. A number of
organizations also deserve special thanks, including Royal Holloway University
of London for acting as host, and the ESORICS sponsors: CESG, Transport for
London, ISG Smart Card Centre, Crisp Telecom Limited, and NESSoS.

Last, but certainly not least, our thanks go to all the authors who submitted
papers and all the symposium’s attendees. We hope you find the proceedings of
ESORICS 2013 stimulating and a source of inspiration for your future research
and education programs.

September 2013 Jason Crampton
Sushil Jajodia
Keith Mayes

http://www.it-ebooks.info/

Organization

General Chair

Keith Mayes Royal Holloway, University of London, UK

Program Chairs

Jason Crampton Royal Holloway, University of London, UK
Sushil Jajodia George Mason University, USA

ESORICS Steering Committee

Michael Backes Saarland University, Germany
Joachim Biskup University of Dortmund, Germany
Frédéric Cuppens Télécom Bretagne, France
Sabrina De Capitani di

Vimercati Universita degli Studi di Milano, Italy
Yves Deswarte LAAS, France
Dieter Gollmann TU Hamburg-Harburg, Germany
Sokratis Katsikas University of Piraeus, Greece
Miroslaw Kutylowski Wroclaw University of Technology, Poland
Javier Lopez University of Malaga, Spain
Jean-Jacques Quisquater UCL Crypto Group, Belgium
Peter Ryan University of Luxembourg, Luxembourg
Pierangela Samarati (Chair) Universita degli Studi di Milano, Italy
Einar Snekkenes Gjovik University College, Norway
Michael Waidner TU Darmstadt, Germany

Publicity Chair

Giovanni Livraga Universita degli Studi di Milano, Italy

Local Organizing Committee

Geraint Price Royal Holloway, University of London, UK
Gerhard Hancke Royal Holloway, University of London, UK
Kostas Markantonakis Royal Holloway, University of London, UK
Lorenzo Cavallaro Royal Holloway, University of London, UK

Sheila Cobourne Royal Holloway, University of London, UK

http://www.it-ebooks.info/

VIII Organization

Emma Mosley
Jenny Lee

Program Committee

Gail-Joon Ahn
Massimiliano Albanese

Claudio Agostino Ardagna

Alessandro Armando
Michael Backes

David Basin

Kevin Bauer

Lujo Bauer

Konstantin Beznosov

Marina Blanton

Carlo Blundo

Kevin Butler

Srdjan Capkun

Liqun Chen

Sherman S.M. Chow

Marco Cova

Jason Crampton

Frédéric Cuppens

Sabrina De Capitani
Di Vimercati

Roberto Di Pietro

Claudia Diaz

Josep Domingo-Ferrer

Wenliang Du

Riccardo Focardi

Simon Foley

Sara Foresti

Cedric Fournet

Keith Frikken

Dieter Gollmann

Dimitris Gritzalis

Gerhard Hancke
Amir Herzberg
Michael Huth

Sushil Jajodia
Aaron Johnson
Jonathan Katz
Stefan Katzenbeisser
Engin Kirda

Royal Holloway, University of London, UK
Royal Holloway, University of London, UK

Arizona State University, USA

George Mason University, USA

Universita degli Studi di Milano, Italy

University of Genova, Italy

Saarland University and Max Planck Institute
for Software Systems, Germany

ETH Zurich, Switzerland

MIT Lincoln Laboratory, USA

Carnegie Mellon University, USA

UBC, Canada

University of Notre Dame, USA

Universita di Salerno, Italy

University of Oregon, USA

ETH Zurich, Switzerland

Hewlett-Packard Laboratories, UK

Chinese University of Hong Kong, SAR China

University of Birmingham, UK

Royal Holloway, University of London, UK

TELECOM Bretagne, France

Universita degli Studi di Milano, Italy

Universita di Roma Tre, Italy

K.U. Leuven, Belgium

Rovira i Virgili University, Spain

Syracuse University, USA

Universita Ca’ Foscari di Venezia, Italy

University College Cork, Ireland

Universita degli Studi di Milano, Italy

Microsoft, UK

Miami University, USA

Hamburg University of Technology, Germany

Athens University of Economics and Business,
Greece

Royal Holloway, University of London, UK

Bar Ilan University, Israel

Imperial College London, UK

George Mason University, USA

Naval Research Laboratory, USA

University of Maryland, USA

TU Darmstadt, Germany

Northeastern University, USA

http://www.it-ebooks.info/

Markulf Kohlweiss
Steve Kremer
Miroslaw Kutylowski
Adam J. Lee

Wenke Lee

Yingjiu Li

Benoit Libert

Javier Lopez
Wenjing Lou

Pratyusa K Manadhata
Luigi Mancini

Fabio Martinelli

Sjouke Mauw

Atsuko Miyaji

Gregory Neven
Stefano Paraboschi
Kenneth Paterson
Dusko Pavlovic
Giinther Pernul
Frank Piessens
Michalis Polychronakis
Alexander Pretschner
Kui Ren

Mark Ryan

P.Y.A. Ryan

Andrei Sabelfeld
Ahmad-Reza Sadeghi
Rei Safavi-Naini
Pierangela Samarati
Radu Sion

Nigel Smart

Einar Snekkenes
Vipin Swarup
Roberto Tamassia
Carmela Troncoso
Yevgeniy Vahlis
Jaideep Vaidya

Vijay Varadharajan
Venkat Venkatakrishnan
Luca Vigano

Michael Waidner
Bogdan Warinschi
Ting Yu

Moti Yung

Organization IX

Microsoft Research Cambridge, UK

INRIA Nancy - Grand Est, France

Wroclaw University of Technology, Poland

University of Pittsburgh, USA

Georgia Institute of Technology, USA

Singapore Management University, Singapore

Technicolor, France

University of Malaga, Spain

Virginia Polytechnic Institute and State
University, USA

HP Labs, USA

Universita di Roma La Sapienza, Italy

IIT-CNR, Italy

University of Luxembourg, Luxembourg

Japan Advanced Institute of Science and
Technology, Japan

IBM Zurich Research Laboratory, Switzerland

Universita di Bergamo, Italy

Royal Holloway, University of London, UK

Royal Holloway, University of London, UK

Universitdt Regensburg, Germany

Katholieke Universiteit Leuven, Belgium

Columbia University, USA

Technische Universitit Miinchen, Germany

State University of New York at Buffalo, USA

University of Birmingham, UK

University of Luxembourg, Luxembourg

Chalmers University of Technology, Sweden

TU Darmstadt, Germany

University of Calgary, Canada

Universita degli Studi di Milano, Italy

Stony Brook University, USA

University of Bristol, UK

Gjvik University College, Norway

The MITRE Corporation, USA

Brown University, USA

IBBT-K.U.Leuven, ESAT/COSIC, Belgium

University of Toronto, Canada

Rutgers University, USA

Macquarie University, Australia

University of Illinois at Chicago, USA

University of Verona, Italy

Fraunhofer SIT, Germany

University of Bristol, USA

North Carolina State University, USA

Google and Columbia University, USA

http://www.it-ebooks.info/

X Organization

Additional Reviewers

Ahmadi, Ahmad
Alfardan, Nadhem
Aliasgari, Mehrdad
Alimomeni, Mohsen
Androulaki, Elli
Arriaga, Afonso
Asharov, Gilad
Balsa, Ero

Banescu, Sebastian
Basu, Anirban
Batten, Ian

Baum, Carsten
Beato, Filipe

Ben Hamouda, Fabrice
Bertolissi, Clara
Bkakria, Anis
Blaskiewicz, Przemyslaw
Boyd, Colin
Bozzato, Claudio
Broser, Christian
Brzuska, Christina
Cachin, Christian
Calvi, Alberto
Calzavara, Stefano
Carbone, Roberto
Catalano, Dario
Chandran, Nishanth
Chen, Jiageng
Chen, Ling

Chen, Si

Chen, Xihui

Cheval, Vincent
Choo, Euijin
Collberg, Christian
Cremers, Cas
Cuppens-Boulahia, Nora
Datta, Anupam

De Benedictis, Alessandra
De Caro, Angelo

De Groef, Willem
De Ryck, Philippe
Del Tedesco, Filippo
Delaune, Stéphanie

Devriese, Dominique
Du, Changlai
Durgin, Nancy
Epasto, Alessandro
Farnan, Nicholas
Farras, Oriol
Ferdman, Mike
Fernandez-Gago, Carmen
Fitzgerald, William Michael
Frank, Mario
Fromm, Alexander
Fuchs, Andreas
Fuchs, Ludwig

Futa, Yuichi

Gajek, Sebastian
Galbraith, Steven
Galindo, David
Garrison, William
Gasti, Paolo
Gelernter, Nethanel
George, Wesley
Ghiglieri, Marco
Gilad, Yossi
Giustolisi, Rosario
Gjomemo, Rigel
Goberman, Michael
Grewal, Gurchetan S.
Hadi Ahmadi, Ashish Kisti
Hajian, Sara
Hanzlik, Lucjan
Hedin, Daniel
Herfert, Michael
Herrmann, Michael
Heuser, Stephan
Hoens, T. Ryan
Holzer, Andreas
Hosek, Petr

Idrees, Sabir
Jansen, Rob
Jhawar, Mahavir
Jia, Limin

Joaquim, Rui
Jonker, Hugo

http://www.it-ebooks.info/

Jorgensen, Zachery
Joye, Marc

Kalabis, Lukas
Kamara, Seny
Keppler, David
Khader, Dalia
Klaedtke, Felix
Kluczniak, Kamil
Komanduri, Saranga
Konidala, Divyan
Kordy, Barbara
Kostiainen, Kari
Krzywiecki, Lukasz
Kubiak, Przemystaw
Kumari, Prachi
Kywe, Su Mon
Kiinnemann, Robert
Lancrenon, Jean

Li, Jin

Li, Yan

Liu, Jia

Livraga, Giovanni
Lochbihler, Andreas
Loftus, Jake
Lombardi, Flavio
Lovat, Enrico

Ma, Di

Magazinius, Jonas
Majcher, Krzysztof
Malacaria, Pasquale
Malisa, Luka
Manulis, Mark
Marinovic, Srdjan
Mathur, Suhas
Maurice, Clementine
Mazurek, Michelle
Meadows, Catherine
Meier, Stefan

Min, Byungho
Mitrou, Lilian
Moataz, Tarik
Molinaro, Cristian
Mood, Benjamin
Moyano, Francisco
Muehlberg, Jan Tobias

Organization

Mutti, Simone
Mylonas, Alexis
Netter, Michael
Nikiforakis, Nick
Nojoimian, Mehrdad
Nufiez, David
Oligeri, Gabriele
Omote, Kazumasa
Orlandi, Claudio
Oswald, Elisabeth
Oya, Simon
Palazzi, Bernardo
Pang, Jun
Paterson, Maura
Paul, Giura
Peacock, Thea
Peeters, Roel
Peroli, Michele
Peters, Thomas
Petit, Jonathan
Phillips, Joshua
Pieczul, Olgierd
Pinto, Alexandre
Poettering, Bertram
Pujol, Marta

Qin, Zhan
Radomirovic, Sasa
Rafnsson, Willard
Ranganathan, Aanjhan
Ranise, Silvio
Reisser, Andreas
Rial, Alfredo
Riesner, Moritz
Rijmen, Vincent
Riva, Ben

Roman, Rodrigo
Saracino, Andrea
Sayaf, Rula

Scerri, Guillaume
Schneider, Thomas
Schuldt, Jacob
Schulz, Steffen
Schunter, Matthias
Sepehrdad, Pouyan
Sgandurra, Daniele

XI

http://www.it-ebooks.info/

XII Organization

Shafiq, Basit
Shakarian, Paulo
Shen, Entong

Shi, Jie

Shirazi, Fatemeh
Shulman, Haya
Simo, Hervais
Smans, Jan

Smith, Geoffrey
Soria Comas, Jordi
Soriente, Claudio
Soupionis, Yannis
Squarcina, Marco
Stebila, Douglas
Stefanov, Emil
Stopczynski, Martin
Struminski, Tomasz
Sun, Wenhai
Syverson, Paul
Tews, Erik
Theoharidou, Marianthi
Torabi Dashti, Mohammad
Toz, Deniz
Tsoumas, Bill
Tuerpe, Sven
Tupakula, Uday

Van Acker, Steven
Verde, Nino Vincenzo
Villani, Antonio
Virvilis, Nick

Vitali, Domenico
Wachsmann, Christian
Wang, Bing

Wang, Lusha
Watson, Gaven J.
Weber, Michael

Wei, Wei

Whiichner, Tobias
Yan, Qiben
Yautsiukhin, Artsiom
Yu, Jiangshan
Zagorski, Filip
Zanella-Béguelin, Santiago
Zhang, Bingsheng
Zhang, Liang Feng
Zhang, Ning

Zhang, Tao

Zhang, Xifan

Zhang, Yihua

Zhou, Lan
Zugenmaier, Alf

http://www.it-ebooks.info/

Table of Contents

Cryptography and Computation

Practical Covertly Secure MPC for Dishonest Majority —

Or: Breaking the SPDZ Limits.
Ivan Damgard, Marcel Keller, Enrique Larraia, Valerio Pastro,
Peter Scholl, and Nigel P. Smart

Practical and Employable Protocols for UC-Secure Circuit Evaluation
1 A3 /P
Jan Camenisch, Robert R. Enderlein, and Victor Shoup

Privacy-Preserving Accountable Computation
Michael Backes, Dario Fiore, and Esfandiar Mohammadi
Measurement and Evaluation

Verifying Web Browser Extensions’ Compliance with Private-Browsing

Benjamin S. Lerner, Liam Elberty, Neal Poole, and
Shriram Krishnamurthi

A Quantitative Evaluation of Privilege Separation in Web Browser
Designs . .o
Xinshu Dong, Hong Hu, Prateek Saxena, and Zhenkai Liang

Estimating Asset Sensitivity by Profiling Users
Youngja Park, Christopher Gates, and Stephen C. Gates
Applications of Cryptography

Practical Secure Logging: Seekable Sequential Key Generators
Giorgia Azzurra Marson and Bertram Poettering

Request-Based Comparable Encryption
Jun Furukawa

Ensuring File Authenticity in Private DFA Evaluation on Encrypted
Filesin the Cloud e
Lei Wei and Michael K. Reiter

http://www.it-ebooks.info/

X1V Table of Contents

Code Analysis

HI-CFG: Construction by Binary Analysis and Application to Attack
Polymorphism 164
Dan Caselden, Alex Bazhanyuk, Mathias Payer,
Stephen McCamant, and Dawn Song

AnDarwin: Scalable Detection of Semantically Similar Android
Applications.o 182
Jonathan Crussell, Clint Gibler, and Hao Chen

BISTRO: Binary Component Extraction and Embedding for Software
Security Applicationsttt e 200
Zhui Deng, Xiangyu Zhang, and Dongyan Xu

Network Security

Vulnerable Delegation of DNS Resolution 219
Amir Herzberg and Haya Shulman

Formal Approach for Route Agility against Persistent Attackers........ 237
Jafar Haadi Jafarian, Fhab Al-Shaer, and Qi Duan

Plug-and-Play IP Security: Anonymity Infrastructure instead of PKI ... 255
Yossi Gilad and Amir Herzberg

Formal Models and Methods

Managing the Weakest Link: A Game-Theoretic Approach for the

Mitigation of Insider Threats, 273
Aron Laszka, Benjamin Johnson, Pascal Schdttle,
Jens Grossklags, and Rainer Bohme

Automated Security Proofs for Almost-Universal Hash for MAC
Verification.o 291
Martin Gagné, Pascal Lafourcade, and Yassine Lakhnech

Bounded Memory Protocols and Progressing Collaborative Systems 309
Max Kanovich, Tajana Ban Kirigin, Vivek Nigam, and
Andre Scedrov

Universally Composable Key-Management 327
Steve Kremer, Robert Kinnemann, and Graham Steel

http://www.it-ebooks.info/

Table of Contents

Protocol Analysis

A Cryptographic Analysis of OPACITY (Extended Abstract)..........
Ozgiir Dagdelen, Marc Fischlin, Tommaso Gagliardoni,
Giorgia Azzurra Marson, Arno Mittelbach, and Cristina Onete

Symbolic Probabilistic Analysis of Off-Line Guessing
Bruno Conchinha, David Basin, and Carlos Caleiro

ASICS: Authenticated Key Exchange Security Incorporating

Certification Systemso
Colin Boyd, Cas Cremers, Michéle Feltz, Kenneth G. Paterson,
Bertram Poettering, and Douglas Stebila

Privacy Enhancing Models and Technologies

Efficient Privacy-Enhanced Familiarity-Based Recommender System
Arjan Jeckmans, Andreas Peter, and Pieter Hartel

Privacy-Preserving User Data Oriented Services for Groups with
Dynamic Participation..........
Dmitry Kononchuk, Zekeriya Erkin, Jan C.A. van der Lubbe, and

Reginald L. Lagendijk

Privacy-Preserving Matching of Community-Contributed Content
Mishari Almishari, Paolo Gasti, Gene Tsudik, and Ekin Oguz

E-voting and Privacy

Ballot Secrecy and Ballot Independence Coincide
Ben Smyth and David Bernhard

Election Verifiability or Ballot Privacy: Do We Need to Choose?
Edouard Cuvelier, Olivier Pereira, and Thomas Peters

Enforcing Privacy in the Presence of Others: Notions, Formalisations
and Relations
Naipeng Dong, Hugo Jonker, and Jun Pang

Malware Detection

Mining Malware Specifications through Static Reachability Analysis
Hugo Daniel Macedo and Tayssir Towili

Patrol: Revealing Zero-Day Attack Paths through Network-Wide
System Object Dependencieso,
Jun Dai, Xiaoyan Sun, and Peng Liu

XV

345

363

381

400

418

443

463

481

499

017

http://www.it-ebooks.info/

XVI Table of Contents

Measuring and Detecting Malware Downloads in Live Network

Traffic . ..o
Phani Vadrevu, Babak Rahbarinia, Roberto Perdisci, Kang Li, and
Manos Antonakakis

Access Control

Automated Certification of Authorisation Policy Resistance
Andreas Griesmayer and Charles Morisset

Fine-Grained Access Control System Based on Outsourced
Attribute-Based Encryption
Jin Li, Xiaofeng Chen, Jingwei Li, Chunfu Jia, Jianfeng Ma, and

Wenging Lou

Purpose Restrictions on Information Use............................
Michael Carl Tschantz, Anupam Datta, and Jeannette M. Wing

Distributed Shuffling for Preserving Access Confidentiality
Sabrina De Capitani di Vimercati, Sara Foresti, Stefano Paraboschi,
Gerardo Pelosi, and Pierangela Samarati

Attacks

Range Extension Attacks on Contactless Smart Cards
Yossef Oren, Dvir Schirman, and Avishai Wool

CellFlood: Attacking Tor Onion Routers on the Cheap................
Marco Valerio Barbera, Vasileios P. Kemerlis, Vasilis Pappas, and
Angelos D. Keromytis

Nowhere to Hide: Navigating around Privacy in Online Social
Networks
Mathias Humbert, Théophile Studer, Matthias Grossglauser, and

Jean-Pierre Hubaux

Current Events: Identifying Webpages by Tapping the Electrical

Outlet .o
Shane S. Clark, Hossen Mustafa, Benjamin Ransford, Jacob Sorber,
Kevin Fu, and Wenyuan Xu

Language-Based Protection

Eliminating Cache-Based Timing Attacks with Instruction-Based
Schedulingt
Deian Stefan, Pablo Buiras, Edward Z. Yang, Amit Levy,
David Terei, Alejandro Russo, and David Maziéres

http://www.it-ebooks.info/

Table of Contents XVII

Data-Confined HTML5 Applications, 736
Devdatta Akhawe, Frank Li, Warren He, Prateek Sazena, and
Dawn Song

KQguard: Binary-Centric Defense against Kernel Queue Injection
Attacks . .o 755
Jinpeng Wei, Feng Zhu, and Calton Pu

Run-Time Enforcement of Information-Flow Properties on Android

(Extended Abstract)ooiiiiiiii i 775
Limin Jia, Jassim Aljuraidan, Elli Fragkaki, Lujo Bauer,
Michael Stroucken, Kazuhide Fukushima, Shinsaku Kiyomoto, and
Yutaka Miyake

Author Index 793

http://www.it-ebooks.info/

Practical Covertly Secure MPC for Dishonest Majority —
Or: Breaking the SPDZ Limits

Ivan Damgﬁrdl, Marcel Keller?, Enrique Larraia2, Valerio Pastro!,
Peter Scholl?, and Nigel P. Smart?

! Department of Computer Science, Aarhus University
2 Department of Computer Science, University of Bristol

Abstract. SPDZ (pronounced “Speedz”) is the nickname of the MPC protocol
of Damgard et al. from Crypto 2012. In this paper we both resolve a number
of open problems with SPDZ; and present several theoretical and practical im-
provements to the protocol. In detail, we start by designing and implementing a
covertly secure key generation protocol for obtaining a BGV public key and a
shared associated secret key. We then construct both a covertly and actively se-
cure preprocessing phase, both of which compare favourably with previous work
in terms of efficiency and provable security.

We also build a new online phase, which solves a major problem of the SPDZ
protocol: namely prior to this work preprocessed data could be used for only one
function evaluation and then had to be recomputed from scratch for the next eval-
uation, while our online phase can support reactive functionalities. This improve-
ment comes mainly from the fact that our construction does not require players
to reveal the MAC keys to check correctness of MAC’d values.

1 Introduction

For many decades multi-party computation (MPC) had been a predominantly theo-
retic endeavour in cryptography, but in recent years interest has arisen on the practi-
cal side. This has resulted in various implementation improvements and such protocols
are becoming more applicable to practical situations. A key part in this transformation
from theory to practice is in adapting theoretical protocols and applying implementation
techniques so as to significantly improve performance, whilst not sacrificing the level
of security required by real world applications. This paper follows this modern, more
practical, trend.

Early applied work on MPC focused on the case of protocols secure against passive
adversaries, both in the case of two-party protocols based on Yao circuits [[18] and that
of many-party protocols, based on secret sharing techniques [5/9/22]]. Only in recent
years work has shifted to achieve active security [[16J17021], which appears to come
at vastly increased cost when dealing with more than two players. On the other hand,
in the real applications active security may be more stringent than one would actually
require. In [2J3]] Aumann and Lindell introduced the notion of covert security; in this se-
curity model an adversary who deviates from the protocol is detected with high (but not
necessarily overwhelming) probability, say 90%, which still translates into an incentive
on the adversary to behave in an honest manner. In contrast active security achieves the

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 1-[8] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.it-ebooks.info/

2 I. Damgard et al.

same effect, but the adversary can only succeed with cheating with negligible probabil-
ity. There is a strong case to be made, see [2/3]], that covert security is a “good enough”
security level for practical application; thus in this work we focus on covert security,
but we also provide solutions with active security.

As our starting point we take the protocol of [13] (dubbed SPDZ, and pronounced
Speedz). In [13] this protocol is secure against active static adversaries in the standard
model, is actively secure, and tolerates corruption of n — 1 of the n parties. The SPDZ
protocol follows the preprocessing model: in an offline phase some shared randomness
is generated, but neither the function to be computed nor the inputs need be known; in
an online phase the actual secure computation is performed. One of the main advan-
tages of the SPDZ protocol is that the performance of the online phase scales linearly
with the number of players, and the basic operations are almost as cheap as those used
in the passively secure protocols based on Shamir secret sharing. Thus, it offers the
possibility of being both more flexible and secure than Shamir based protocols, while
still maintaining low computational cost.

In [[11] the authors present an implementation report on an adaption of the SPDZ
protocol in the random oracle model, and show performance figures for both the offline
and online phases for both an actively secure variant and a covertly secure variant. The
implementation is over a finite field of characteristic two, since the focus is on providing
a benchmark for evaluation of the AES circuit (a common benchmark application in
MPC [21U10]).

Our Contributions: In this work we present a number of contributions which extend
even further the ability the SPDZ protocol to deal with the type of application one is
likely to see in practice. All our theorems are proved in the UC model, and in most cases,
the protocols make use of some predefined ideal functionalities. We give protocols im-
plementing most of these functionalities, the only exception being the functionality that
provides access to a random oracle. This is implemented using a hash functions, and
so the actual protocol is only secure in the Random Oracle Model. We back up these
improvements with an implementation which we report on.

Our contributions come in two flavours. In the first flavour we present a number of
improvements and extensions to the basic underlying SPDZ protocol. These protocol
improvements are supported with associated security models and proofs. Our second
flavour of improvements are at the implementation layer, and they bring in standard
techniques from applied cryptography to bear onto MPC.

In more detail our protocol enhancements, in what are the descending order of im-
portance, are as follows:

1. In the online phase of the original SPDZ protocol the parties are required to reveal
their shares of a global MAC key in order to verify that the computation has been
performed correctly. This is a major problem in practical applications since it means
that secret-shared data we did not reveal cannot be re-used in later applications. Our
protocol adopts a method to accomplish the same task, without needing to open the
underlying MAC key. This means we can now go on computing on any secret-
shared data we have, so we can support general reactive computation rather than
just secure function evaluation. A further advantage of this technique is that some

http://www.it-ebooks.info/

Practical Covertly Secure MPC for Dishonest Majority 3

of the verification we need (the so-called “sacrificing” step) can be moved into the
offline phase, providing additional performance improvements in the online phase.

2. In the original SPDZ protocol [11413] the authors assume a “magic” key generation
phase for the production of the distributed Somewhat Homomorphic Encryption
(SHE) scheme public/private keys required by the offline phase. The authors claim
this can be accomplished using standard generic MPC techniques, which are of
course expensive. In this work we present a key generation protocol for the BGV
[6] SHE scheme, which is secure against covert adversaries. In addition we generate
a “full” BGV key which supports the modulus switching and key switching used
in [15]]. This new sub-protocol may be of independent interest in other applications
which require distributed decryption in an SHE/FHE scheme.

3. In [11] the modification to covert security was essentially ad-hoc, and resulted in
a very weak form of covert security. In addition no security proofs or model were
given to justify the claimed security. In this work we present a completely different
approach to achieving covert security, we provide an extensive security model and
provide full proofs for the modified offline phase (and the key generation protocol
mentioned above).

4. We introduce a new approach to obtain full active security in the offline phase. In
[L3]] active security was obtained via the use of specially designed ZKPoKs. In this
work we present a different technique, based on a method used in [20]. This method
has running time similar to the ZKPoK approach utilized in [13]], but it allows us to
give much stronger guarantees on the ciphertexts produced by corrupt players: the
gap between the size of “noise” honest players put into ciphertexts and what we can
force corrupt players to use was exponential in the security parameter in [[13]], and
is essentially linear in our solution. This allows us to choose smaller parameters
for the underlying cryptosystem and so makes other parts of the protocol more
efficient.

It is important to understand that by combining these contributions in different ways,
we can obtain two different general MPC protocols: First, since our new online phase
still has full active security, it can be combined with our new approach to active security
in the offline phase. This results in a protocol that is “syntactically similar” to the one
from [[13]]: it has full active security assuming access to a functionality for key genera-
tion. However, it has enhanced functionality and performance, compared to [13]], in that
it can securely compute reactive functionalities. Second, we can combine our covertly
secure protocols for key generation and the offline phase with the online phase to get a
protocol that has covert security throughout and does not assume that key generation is
given for free.

Our covert solutions all make use of the same technique to move from passive to
covert security, while avoiding the computational cost of performing zero-knowledge
proofs. In [[L1]] covert security is obtained by only checking a fraction of the resulting
proofs, which results in a weak notion of covert security (the probability of a cheater
being detected cannot be made too large). In this work we adopt a different approach,
akin to the cut-and-choose paradigm. We require parties to commit to random seeds
for a number of runs of a given sub-protocol, then all the runs are executed in parallel,
finally all bar one of the runs are “opened” by the players revealing their random seeds.

http://www.it-ebooks.info/

4 I. Damgard et al.

If all opened runs are shown to have been performed correctly then the players assume
that the single un-opened run is also correctly executed.

A pleasing side-effect of the replacement of zero-knowledge proofs with our custom
mechanism to obtain covert security is that the offline phase can be run in much smaller
“batches”. In [11{13]] the need to amortize the cost of the expensive zero-knowledge
proofs meant that the players on each iteration of the offline protocol executed a large
computation, which produced a large number of multiplication triples [4] (in the mil-
lions). With our new technique we no longer need to amortize executions as much, and
so short runs of the offline phase can be executed if so desired; producing only a few
thousand triples per run.

Our second flavour of improvements at the implementation layer are more mundane;
being mainly of an implementation nature. This extended abstract presents the main
ideas behind our improvements and details of our implementation. For a full description
including details of the associated sub-procedures, security models and associated full
security proofs please see the full version of this paper at [[12]].

2 SPDZ Overview

We now present the main components of the SPDZ protocol; in this section unless
otherwise specified we are simply recapping on prior work. Throughout the paper we
assume the computation to be performed by n players over a fixed finite field IF), of
characteristic p. The high level idea of the online phase is to compute a function repre-
sented as a circuit, where privacy is obtained by additively secret sharing the inputs and
outputs of each gate, and correctness is guaranteed by adding additive secret sharings
of MACs on the inputs and outputs of each gate. In more detail, each player P; has a
uniform share «; € IF), of a secret value o = a1 + - - - + «y, thought of as a fixed MAC
key. We say that a data item a € F), is (-)-shared if P; holds a tuple (a;,v(a);), where
a; is an additive secret sharing of a, i.e. a = a1 + -+ + ay,, and y(a); is an additive
secret sharing of y(a) := a - a,i.e. y(a) = y(a)1 + - - + y(a)n.

For the readers familiar with [[13]], this is a simpler MAC definition. In particular we
have dropped §, from the MAC definition; this value was only used to add or subtract
public data to or from shares. In our case d, becomes superfluous, since there is a
straightforward way of computing a MAC of a public value a by defining vy(a); + a-«;.

During the protocol various values which are (-)-shared are “partially opened”, i.e.
the associated values a; are revealed, but not the associated shares of the MAC. Note
that linear operations (addition and scalar multiplication) can be performed on the
(-)-sharings with no interaction required. Computing multiplications, however, is not
straightforward, as we describe below.

The goal of the offline phase is to produce a set of “multiplication triples”, which
allow players to compute products. These are a list of sets of three (-)-sharings {{(a) , (b),
(¢)} such that ¢ = a-b. In this paper we extend the offline phase to also produce “square
pairs” i.e. a list of pairs of (-)-sharings {(a), (b)} such that b = a?, and “shared bits”
i.e. a list of single shares (a) such that a € {0, 1}.

In the online phase these lists are consumed as MPC operations are performed.
In particular to multiply two (-)-sharings (z) and (y) we take a multiplication triple

http://www.it-ebooks.info/

Practical Covertly Secure MPC for Dishonest Majority 5

{{a), (b),{c)} and partially open (x) — (a) to obtain € and (y) — (b) to obtain §. The
sharing of z = z - y is computed from (z) « (c¢) + €- (b) + 4 - (a) + € - 4.

The reason for us introducing square pairs is that squaring a value can then be com-
puted more efficiently as follows: To square the sharing (x) we take a square pair
{{(a), (b)} and partially open (x) — (a) to obtain e. We then compute the sharing of
z = 22 from (z) < (b) + 2 - € - (z) — €2. Finally, the “shared bits” are useful in com-
puting high level operation such as comparison, bit-decomposition, fixed and floating
point operations as in [1L7}8].

The offline phase produces the triples in the following way. We make use of a Some-
what Homomorphic Encryption (SHE) scheme, which encrypts messages in F,,, sup-
ports distributed decryption, and allows computation of circuits of multiplicative depth
one on encrypted data. To generate a multiplication triple each player P; generates en-
cryptions of random values a; and b; (their shares of a and b). Using the multiplicative
property of the SHE scheme an encryption of ¢ = (a1 + -+ + a,) - (b1 + -+ + by)
is produced. The players then use the distributed decryption protocol to obtain shar-
ings of ¢. The shares of the MACs on a, b and ¢ needed to complete the (-)-sharing
are produced in much the same manner. Similar operations are performed to produce
square pairs and shared bits. Clearly the above (vague) outline needs to be fleshed out
to ensure the required covert security level. Moreover, in practice we generate many
triples/pairs/shared-bits at once using the SIMD nature of the BGV SHE scheme.

3 BGV

We now present an overview of the BGV scheme as required by our offline phase.
This is only sketched, the reader is referred to [[6414415]] for more details; our goal is to
present enough detail to explain the key generation protocol later.

3.1 Preliminaries

Underlying Algebra: We fix the ring R, = (Z/qZ)[X]/®$.,(X) for some cyclotomic
polynomial @,,,(X), where m is an parameter which can be thought of as a function
of the underlying security parameter. Note that ¢ may not necessarily be prime. Let
R = Z[X]/®,(X), and ¢(m) denote the degree of R over Z, i.e. Euler’s ¢ function.
The message space of our scheme will be R, for a prime p of approximately 32, 64
or 128-bits in length, whilst ciphertexts will lie in either B2 or R? , for one of two
moduli ¢o and ;. We select R = Z[X]/(X™/? + 1) for m a power of two, and p = 1
(mod m). By picking m and p this way we have that the message space R, offers
m/2-fold SIMD parallelism, i.e. R, =]F;"/ ?. In addition this also implies that the ring
constant c,,, from [[13/15] is equal to one.

We wish to generate a public key for a leveled BGV scheme for which n players
each hold a share, which is itself a “standard” BGV secret key. As we are working with
circuits of multiplicative depth at most one we only need two levels in the moduli chain
go = po and ¢ = po - p1. The modulus p; will also play the role of P in [15] for the

http://www.it-ebooks.info/

6 I. Damgard et al.

SwitchKey operation. The value p; must be chosen so that p; = 1 (mod p), with the
value of pg set to ensure valid distributed decryption.

Random Values: Each player is assumed to have a secure entropy source. In practice
we take this to be /dev/urandom, which is a non-blocking entropy source found on
Unix like operating systems. This is not a “true” entropy source, being non-blocking,
but provides a practical balance between entropy production and performance for our
purposes. In what follows we model this source via a procedure s < Seed(), which
generates a new seed from this source of entropy. Calling this function sets the players
global variable cnt to zero. Then every time a player generates a new random value in
a protocol this is constructed by calling PRF(cnt), for some pseudo-random function
PRF, and then incrementing cnt. In practice we use AES under the key s with message
cnt to implement PRF.

The point of this method for generating random values is that the said values can then
be verified to have been generated honestly by revealing s in the future and recomputing
all the randomness used by a player, and verifying his output is consistent with this value
of s.

From the basic PRF we define the following “induced” pseudo-random number gen-
erators, which generate elements according to the following distributions but seeded by
the seed s:

— HWT s(h,n): This generates a vector of length n with elements chosen at random
from {—1,0, 1} subject to the condition that the number of non-zero elements is
equal to h.

- Z0;(0.5,n): This generates a vector of length n with elements chosen from {—1, 0,
1} such that the probability of coefficientis p_1 = 1/4,p9 = 1/2and p; = 1/4.

- DG(0%,n): This generates a vector of length n with elements chosen according to
the discrete Gaussian distribution with variance o2.

- RC4(0.5,0% n): This generates a triple of elements (v, g, e1) where v is sampled
from Z0,(0.5,n) and eq and e; are sampled from DG4 (02, n).

— Us(g,m): This generates a vector of length n with elements generated uniformly
modulo q.

If any random values are used which do not depend on a seed then these should be
assumed to be drawn using a secure entropy source (again in practice assumed to be
/dev/urandom). If we pull from one of the above distributions where we do not care
about the specific seed being used then we will drop the subscript s from the notation.

Broadcast: When broadcasting data we assume two different models. In the online phase
during partial opening we utilize the method described in [[13]; in that players send their
data to a nominated player who then broadcasts the reconstructed value back to the
remaining players. For other applications of broadcast we assume each party broadcasts
their values to all other parties directly. In all instances players maintain a running
hash of all values sent and received in a broadcast (with a suitable modification for the
variant used for partial opening). At the end of a protocol run these running hashes are
compared in a pair-wise fashion. This final comparison ensures that in the case of at
least two honest parties the adversary must have been consistent in what was sent to the
honest parties.

http://www.it-ebooks.info/

Practical Covertly Secure MPC for Dishonest Majority 7

3.2 Key Generation

The key generation algorithm generates a public/private key pair such that the public
key is given by p¢ = (a, b), where a is generated from U (q1, ¢(m)) (i.e. a is uniform in
Rg),and b = a - s+ p - e where € is a “small” error term, and s is the secret key such
that s = s1 + - - - + s,,, where player P; holds the share s;. Recall since m is a power of
2 we have ¢(m) = m/2.

The public key is also augmented to an extended public key ept by addition of a
“quasi-encryption” of the message —p; - s2, i.e. ep€ contains a pair enc = (bs g2, s 52)
such that b g2 = @542 -6+ P+ €562 — P1 - 52, Where aq g2 < U(qr, p(m)) and € 42
is a “small” error term. The precise distributions of all these values will be determined
when we discuss the exact key generation protocol we use.

3.3 Encryption and Decryption

Encpe(m): To encrypt an element m € Ry, using the modulus g1, we choose one “small
polynomial” (with 0, £1 coefficients) and two Gaussian polynomials (with variance
0?), via (v, eq, 1) + RCs(0.5,02,¢(m)). Thenwe setco =b-v+p-eg+m, c1 =
a-v+p- ey, and set the initial ciphertextas ¢’ = (co, ¢1,1).

SwitchModulus((cg, ¢1), £): The operation SwitchModulus(c) takes the ciphertext ¢ =
((co, c1), £) defined modulo g, and produces a ciphertext ¢’ = ((cp, ¢}), ¢ — 1) defined
modulo ge—1, such that [co — 6 - ¢1]q, = [¢f — § - ¢4]q,_, (mod p). This is done by
setting ¢, = Scale(c;, ge, ge—1) where Scale is the function defined in [13]; note we
need the more complex function of Appendix E of the full version of [[15] if working in
dCRT representation as we need to fix the scaling modulo p as opposed to modulo two
which was done in the main body of [15]]. As we are only working with two levels this
function can only be called when ¢ = 1.

Decs(c): Note, that this operation is never actually performed, since no-one knows the
shared secret key s, but presenting it will be instructive: Decryption of a ciphertext
(co, c1,0) at level £ is performed by setting m’ = [co — § - ¢1]4,, then converting m/ to
coefficient representation and outputting m’ mod p.

DistDecs;, (c): We actually decrypt using a simplification of the distributed decryption
procedure described in [[13], since our final ciphertexts consist of only two elements
as opposed to three in [13]. For input ciphertext (co, ¢1, £), player P; computes v; =
co — §; - ¢1 and each other player P; computes v; = —s; - ¢;. Each party P; then
sets t; = v; + p - r; for some random element r; € R with infinity norm bounded
by 2°¢ - B/(n - p), for some statistical security parameter sec, and the values t; are
broadcast; the precise value B being determined in the full version of this abstract [12].
Then the message is recovered as t; + - - - + t,, (mod p).

3.4 Operations on Encrypted Data

Homomorphic addition follows trivially from the methods of [6/15]. So the main re-
maining task is to deal with multiplication. We first define a SwitchKey operation.

http://www.it-ebooks.info/

8 I. Damgard et al.

SwitchKey(do, dy, d2): This procedure takes as input an extended ciphertext ¢ = (dg, dy,
d2) defined modulo ¢ ; this is a ciphertext which is decrypted via the equation

[d() 75~d1 752 ~d2}q1.

The SwitchKey operation also takes the key-switching data enc = (bg 42, a4 52) above
and produces a standard two element ciphertext which encrypts the same message but
modulo qg.

— ¢y p1-do+bse2-dy (mod qr), ¢) < p1-di+asq-dy (mod qy).
- ¢ < Scale(c), q1,q0), ¢ < Scale(c}, q1,q0)-
- OUtput ((Cgv C/ll)v O)

Notice we have the following equality modulo ¢;:

0675~C/1 :(p1~d0)+d2~b5752 —5- ((p~d1)7d2~a5752)
:p1~(do—5'd1—52d2)—p'd2-65’52,

The requirement on p; = 1 (mod p) is from the above equation as we want this to
produce the same value as dg — s - d; — s2d, mod g; on reduction modulo p.

Mult(c, ¢’): We only need to execute multiplication on two ciphertexts at level one, thus
¢ = ((co,c1),1) and ¢’ = ((cf, c}), 1). The output will be a ciphertext ¢’ at level zero,
obtained via the following steps:

- ¢ « SwitchModulus(c), ¢ « SwitchModulus(¢’).
- (do,d1,dg) < (co- ¢y, c1-¢h+co-ch,—ecr-).
-+ SWitChKey(do,dl, d2)

4 Protocols Associated to the SHE Scheme

In this section we present two sub-protocols associated with the SHE scheme; namely
our distributed key generation and a protocol for proving that a committed ciphertext is
well formed.

4.1 Distributed Key Generation Protocol for BGV

The protocol for distributed key generation protocol is given in Figure [l It makes use
of an abstract functionality Fcommvir Which implements a commitment functionality. In
practice this functionality is implemented in the random oracle model via hash func-
tions, see the full version for details [12]. Here we present a high level overview.

As remarked in the introduction, the authors of [13] assumed a “magic” set up which
produces not only a distributed sharing of the main BGV secret key, but also a dis-
tributed sharing of the square of the secret key. That was assumed to be done via some
other unspecified MPC protocol. The effect of requiring a sharing of the square of the
secret key was that they did not need to perform KeySwitching, but ciphertexts were
50% bigger than one would otherwise expect. Here we take a very different approach:

http://www.it-ebooks.info/

Practical Covertly Secure MPC for Dishonest Majority 9

The protocol IIkeyGen

Initialize:
1. Every player P; samples a uniform e; < {1, ..., c} and asks Fcommr to broadcast
the handle 77 <+~ Commit(e;) for a commitment to e;.
2. Every player P; samples a seed s;; and asks Fcowmwmir to broadcast Tf, i o
Commit(s;,;).
3. Every player P; computes and broadcasts a;,; < Us, ; (g1, p(m)).

4. All the players compute a; <— a1,; + -+ an,j-
5. Every player P; computes s;; < HWT,, (h,¢(m)) and €; <+
DG, (0%, ¢(m)),

and broadcasts b; j < [a;j * Sij + P €ijla;-

6. All the players compute bj <— b1,; + -+ + by, ; and set pt; < (a;,b;)..
7. Every player P; computes and broadcasts enc;J — Encpej (—p1
si,5, RCs, ;(0.5,0%,¢(m))).
Stage 3:
8. All the players compute encj < ency ; + - - - + enc/, ;.
9. Every player P; computes jeto, ; < Encpe, (0, RCs, ; (0.5, o2, p(m))).
10. Every player P; computes and broadcasts enc;,; < (5,5 - enc}) + 3ero; ;.
Output:
11. All the players compute enc; <— ency,; + - -+ + encp,; and set ept; (pE]., ency).
12. Every player P; calls Fcomwir With Open(7y). If any opening failed, the players
output the numbers of the respective players, and the protocol aborts.
13. All players compute the challenge chall < 1+ ((3°7, €:) mod c).
14. Every player P; calls Fcomr With Open(7;;) for j # chall. If any opening failed,
the players output the numbers of the respective players, and the protocol aborts.
15. All players obtain the values committed, compute all the derived values and check
that they are correct.
16. If any of the checks fail, the players output the numbers of the respective players,
and the protocol aborts. Otherwise, every player P; sets
= §; < Sjchall,
— pt < (achall, behall), ept < (p€, encchan).

Fig. 1. The protocol for key generation.

we augment the public key with the keyswitching data from [[15] and provide an explicit
covertly secure key generation protocol.

Our protocol will be covertly secure in the sense that the probability that an adversary
can deviate without being detected will be bounded by 1/c, for a positive integer c. Our
basic idea behind achieving covert security is as follows: Each player runs c instances
of the basic protocol, each with different random seeds, then at the end of the main
protocol all bar a random one basic protocol runs are opened, along with the respective
random seeds. All parties then check that the opened runs were performed honestly and,
if any party finds an inconsistency, the protocol aborts. If no problem is detected, the
parties assume that the single unopened run is correct. Thus intuitively the adversary
can cheat with probability at most 1/c.

http://www.it-ebooks.info/

10 I. Damgard et al.

We start by discussing the generation of the main public key pt; in execution j where
j € {1,...,c}. To start with the players generate a uniformly random value a; € R, .
They then each execute the standard BGV key generation procedure, except that this is
done with respect to the global element a;. Player i chooses a low-weight secret key and
then generates an LWE instance relative to that secret key. Following [[15], we choose

5ij « HWT(h,d(m)) and i ; < DG(0?, $(m)).

Then the player sets the secret key as s; ; and their “local” public key as (a;, b; ;) where
bijj = laj -sij +p€ijlg-

Note, by a hybrid argument, obtaining n ring-LWE instances for n different secret
keys but the same value of a; is secure assuming obtaining one ring-LWE instance is
secure. In the LWE literature this is called “amortization”. Also note in what follows
that a key modulo ¢; can be also treated as a key modulo gy since g divides g; and s; ;
has coefficients in {—1,0,1}.

The global public and private key are then set to be pt; = (a;, b;) and 5; = s1,; +
-+++ 8y j, where b; = [by j + - - + by_j]q, - This is essentially another BGV key pair,
since if we set €; = €1, ; + - - - + €, ; then we have

n
bj= (aj-sij+p-cij)=a;-5+p-¢,
i=1
but generated with different distributions for s; and ¢; compared to the individual key
pairs above.

We next augment the above basic key generation to enable the construction of the
KeySwitching data. Given a public key p€; and a share of the secret key s;, ; our method
for producing the extended public key is to produce in turn (see Figure[Tl for the details
on how we create these elements in our protocol).

/
— enc;ﬁj — Ef)Cpgj(—pl .52-,]-/)
— enc; < ency ; + - +ency, o
- jev0; ; < Encpe, (0)

/ 2

— enc; j < (si; - enc}) + jevo; ; € R .
— eNnc; < ency j + - - F ency, ;.
— ept; < (pt;, ency).

Note, that encgﬁj is not a valid encryption of —p; - §; j, since —p1 - §; ; does not lie in
the message space of the encryption scheme. However, because of the dependence on
the secret key shares here, we need to assume a form of circular security; the precise
assumption needed is stated in the full version [12]. The encryption of zero, jevo, ;, is
added on by each player to re-randomize the ciphertext, preventing an adversary from
recovering s; ; from enc; ;/ enc;. We call the resulting ept; the extended public key. In
[15] the keyswitching data enc; is computed directly from 5?; however, we need to use
the above round-about way since 5? is not available to the parties.

Finally we open all bar one of the ¢ executions and check they have been executed
correctly. If all checks pass then the final extended public key ept is output and the
players keep hold of their associated secret key share s;. See Figure[T] for full details of
the protocol.

http://www.it-ebooks.info/

Practical Covertly Secure MPC for Dishonest Majority 11

Theorem 1. In the Fcomwr-hybrid model, the protocol Ilgeygen implements FxeyGen
with computational security against any static adversary corrupting at most n — 1
parties.

Freycen simply generates a key pair with a distribution matching what we sketched
above, and then sends the values a;, b;, enc}, enc; for every i to all parties and shares of
the secret key to the honest players. Like most functionalities in the following, it allows
the adversary to try to cheat and will allow this with a certain probability 1/c. This is
how we model covert security. See the full version for a complete technical discription
of FkeyGen-

The BGV cryptosystem resulting from Fgeygey 1S proven semantically secure by the
following theorem from the full version of this paper [12].

Theorem 2. If the functionality Fgeycen is used to produce a public key ept and secret
keys s; fori =0, ... ,n—1then the resulting cryptosystem is semantically secure based
on the hardness of RLWE,, .2 , and the circular security assumption mentioned earlier.

4.2 EncCommit

We use a sub-protocol IIgnccommir to replace the IIzkpopk protocol from [13]]. In this
section we consider a covertly secure variant rather than active security; this means that
players controlled by a malicious adversary succeed in deviating from the protocol with
a probability bounded by 1/c¢. In our experiments we pick ¢ = 5, 10 and 20. In the full
version of this paper we present an actively secure variant of this protocol.

Our new sub-protocol assumes that players have agreed on the key material for the
encryption scheme, i.e. ITgnccommir TUNS in the Fgeygen -hybrid model. The protocol en-
sures that a party outputs a validly created ciphertext containing an encryption of some
pseudo-random message m, where the message m is drawn from a distribution satisfy-
ing condition cond. This is done by committing to seeds and using the cut-and-choose
technique, similarly to the key generation protocol. The condition cond in our appli-
cation could either be uniformly pseudo-randomly generated from R, or uniformly
pseudo-randomly generated from IF,, (i.e. a “diagonal” element in the SIMD represen-
tation).

The protocol ITgxccomvrr 18 presented in Figure2l A proof of the following theorem,
and a description of the associated ideal functionality, are given in the full version of
this paper [12].

Theorem 3. In the (‘FCOMMITa FKEyGEN)'hybrid model, the pr()tOC()l HENCCOMMIT imple-
ments Fsyg with computational security against any static adversary corrupting at
most n — 1 parties.

Fsue offers the same functionality as Fgeygen but can in addition generate correctly
formed ciphertexts where the plaintext satisfies a condition cond as explained above,
and where the plaintext is known to a particular player (even if he is corrupt). Of course,
if we use the actively secure version of ITgxccommrr from the full version, we would get
a version of Fsyg where the adversary is not allowed to attempt cheating.

http://www.it-ebooks.info/

12 I. Damgard et al.

Protocol HENCCOMMIT

Usage: The specific distribution of the message is defined by the input parameter cond. The
output is a single message m; private to each player, and a public ciphertext ¢; from
player . The protocol runs in two phases; a commitment phase and an opening phase.
KeyGen: The players execute ITxryvGen to obtain s;, p€, and epé.
Commitment Phase:
1. Every player P; samples a uniform e; < {1,...,c}, and queries Commit(e;) to
Fcommrr, Which broadcasts a handle 7;°.
2. Forj=1,...,c
(a) Every player P; samples a seed s;,; and queries Commit(s; ;) to Fcowmir,
which broadcasts a handle 7; ;.

(b) Every player P; generates m;, ; according to cond using PRF;, .

(c) Every player P; computes and broadcasts ¢; ; < Encye(m; ;) using PRF
to generate the randomness.

3. Every player P; calls Fcommr With Open(7y). All players get e;. If any opening
failed, the players output the numbers of the respective players, and the protocol
aborts.

4. All players compute chall < 1+ ((37, e;) mod c).

Opening Phase:

5. Every player P; calls Fcomwir With Open(Tﬁj) for all j # chall so that all players
obtain the value s; ; for j # chall. If any opening fails, the players output the
numbers of the respective players, and the protocol aborts.

6. For all j # chall and all ' < n, the players check whether ¢;/ ; was generated
correctly using s,/ ;. If not, they output the numbers of the respective players i’, and
the protocol aborts.

7. Otherwise, every player P; stores {¢; chail }+ <n and m; chal.

56,5

Fig. 2. Protocol that allows ciphertext to be used as commitments for plaintexts
S The Offline Phase

The offline phase produces pre-processed data for the online phase (where the secure
computation is performed). To ensure security against active adversaries the MAC val-
ues of any partially opened value need to be verified. We suggest a new method for this
that overcomes some limitations of the corresponding method from [[13]]. Since it will
be used both in the offline and the online phase, we explain it here, before discussing
the offline phase.

5.1 MAC Checking

We assume some value a has been (-)-shared and partially opened, which means that
players have revealed shares of the a but not of the associated MAC value 7, this is still
additively shared. Since there is no guarantee that the a are correct, we need to check
it holds that v = aa where « is the global MAC key that is also additively shared.
In [13], this was done by having players commit to the shares of the MAC. then open
« and check everything in the clear. But this means that other shared values become

http://www.it-ebooks.info/

Practical Covertly Secure MPC for Dishonest Majority 13

useless because the MAC key is now public, and the adversary could manipulate them
as he desires.

So we want to avoid opening «, and observe that since a is public, the value v — aa
is a linear function of shared values 7, «, so players can compute shares in this value
locally and we can then check if it is O without revealing information on «. As in
[L3], we can optimize the cost of this by checking many MACs in one go: we take a
random linear combination of a and ~y-values and check only the results of this. The
full protocol is given in Figure[3L it is not intended to implement any functionality — it
is just a procedure that can be called in both the offline and online phases.

Protocol MACCheck

Usage: Each player has input «; and (y(aj);) for j = 1,...,t. All players have a public
set of opened values {a1, ..., as}; the protocol either succeeds or outputs failure if an
inconsistent MAC value is found.

MACCheck({a1,...,a¢}):

1. Every player P; samples a seed s; and asks Fcouwir to broadcast 7; <
Commit(s;).
2. Every player P; calls Fcomur With Open(7;’) and all players obtain s; for all j.

Sets <+ 51D+ D sn.

Players sample a random vector r = Us(p,t); note all players obtain the same

vector as they have agreed on the seed s.

Each player computes the public value a Z;‘.zl T Q.

B w

Player ¢ computes ~y; 23:1 ri - v(aj)i,and o; < v — @y - a.

Player ¢ asks Fcouwir to broadcast 77 <— Commit(o;).

Every player calls Fcomwr With Open(7;), and all players obtain o; for all j.
Ifo1 4+ - 4+ on # 0, the players output @ and abort.

W=

Fig. 3. Method to Check MACs on Partially Opened Values

MACCheck has the following important properties.

Lemma 1. The protocol MACCheck is correct, i.e. it accepts if all the values a; and the
corresponding MACs are correctly computed. Moreover; it is sound, i.e. it rejects except
with probability 2 /p in case at least one value or MAC is not correctly computed.

The proof of LemmalIlis given in the full version of this paper.

5.2 Offline Protocol

The offline phase itself runs two distinct sub-phases, each of which we now describe. To
start with we assume a BGV key has been distributed according to the key generation
procedure described earlier, as well as the shares of a secret MAC key and an encryption
¢ of the MAC key as above. We assume that the output of the offline phase will be a
total of at least n; input tuples, n,, multiplication triples, n, squaring tuples and ny
shared bits.

http://www.it-ebooks.info/

14 I. Damgard et al.

In the first sub-phase, which we call the tuple-production sub-phase, we over-produce
the various multiplication and squaring tuples, plus the shared bits. These are then “sac-
rificed” in the tuple-checking phase so as to create at least n,,, multiplication triples, ng
squaring tuples and n; shared bits. In particular in the tuple-production phase we pro-
duce (at least) 2 - n,,, multiplication tuples, 2 - ns + n; squaring tuples, and n; shared
bits. Tuple-production is performed by a variant of the method from [[13]] (precise details
are in the full version of this paper). The two key differences between our protocol and
that of [[13]], is that

1. The expensive ZKPoKs, used to verify that ciphertexts encrypting random values
are correctly produced, are replaced with our protocol ITgxccommir -
2. We generate squaring tuples and shared bits, as well as multiplication triples.

The tuple production protocol can be run repeatedly, alongside the tuple-checking sub-
phase and the online phase.

The second sub-phase of the offline phase is to check whether the resulting material
from the prior phase has been produced correctly. This check is needed, because the
distributed decryption procedure needed to produce the tuples and the MACs could
allow the adversary to induce errors. We solve this problem via a sacrificing technique,
as in [13]], however, we also need to adapt it to the case of squaring tuples and bit-
sharings. Moreover, this sacrificing is performed in the offline phase as opposed to
the online phase (as in [13]]); and the resulting partially opened values are checked in
the offline phase (again as opposed to the online phase). This is made possible by our
protocol MACCheck which allows to verify the MACs are correct without revealing the
MAC key a. The tuple-checking protocol is presented in the full version of this paper
[12].

We show that the resulting protocol Ilpggp, securely implements the functionality
Fprer, Which models the offline phase. The functionality Fpgepr outputs some desired
number of multiplication triples, squaring tuples and shared bits. Full details of Fpggp
and Ilpgep are given in the full version, along with a proof of the following theorem.

Theorem 4. In the (Fsug, Fcowwr)-hybrid model, the protocol Ilpgee implements
Fprep With computational security against any static adversary corrupting at most n—1
parties if p is exponential in the security parameter.

The security flavour of ITpggp follows the security of EncCommit, i.e. if one uses the
covert (resp. active) version of EncCommit, one gets covert (resp. active) security for
HPREP-

6 Online Phase

We design a protocol IToyine Which performs the secure computation of the desired
function, decomposed as a circuit over IF,,. Our online protocol makes use of the pre-
processed data coming from Fpggp in order to input, add, multiply or square values. Our
protocol is similar to the one described in [13]]; however, it brings a series of improve-
ments, in the sense that we could push the “sacrificing” to the preprocessing phase,

http://www.it-ebooks.info/

Practical Covertly Secure MPC for Dishonest Majority 15

we have specialised procedure for squaring etc, and we make use of a different MAC-
checking method in the output phase. Our method for checking the MACs is simply
the MACCheck protocol on all partially opened values; note that such a method has a
lower soundness error than the method proposed in [[13], since the linear combination
of partially opened values is truly random in our case, while it has lower entropy in
[L3].

In the full version of the paper we present the protocol 1oy ne, Which is the ob-
vious adaption of the equivalent protocol from [13]]. In addition we present an ideal
functionality Fonuine and prove the following theorem.

Theorem 5. In the Fprep-hybrid model, the protocol Ilonne implements Foxuine With
computational security against any static adversary corrupting at mostn — 1 parties if
p is exponential in the security parameter.

7 Experimental Results

7.1 KeyGen and Offline Protocols

To present performance numbers for our key generation and new variant of the offline
phase for SPDZ we first need to define secure parameter sizes for the underlying BGV
scheme (and in particular how it is used in our protocols). This is done in the full version
for various choices of n (the number of players) and p (the field size).

We then implemented the preceding protocols in C++ on top of the MPIR library for
multi-precision arithmetic. Modular arithmetic was implemented with bespoke code us-
ing Montgomery arithmetic [[19] and calls to the underlying mpn__ functions in MPIR.
The offline phase was implemented in a multi-threaded manner, with four cores produc-
ing initial multiplication triples, square pairs, shared bits and input preparation mask
values. Then two cores performed the sacrificing for the multiplication triples, square
pairs and shared bits.

In Table Il we present execution times (in wall time measured in seconds) for key
generation and for an offline phase which produces 100000 each of the multiplication
tuples, square pairs, shared bits and 1000 input sharings. We also present the average
time to produce a multiplication triple for an offline phase running on one core and
producing 100000 multiplication triples only. The run-times are given for various values
of n, p and ¢, and all timings were obtained on 2.80 GHz Intel Core i7 machines with 4
GB RAM, with machines running on a local network.

We compare the results to that obtained in [11]], since no other protocol can provide
malicious/covert security for ¢ < n corrupted parties. In the case of covert security the
authors of [[L1]] report figures of 0.002 seconds per (un-checked) 64-bit multiplication
triple for both two and three players; however the probability of cheating being detected
was lower bounded by 1/2 for two players, and 1/4 for three players; as opposed to our
probabilities of 4/5,9/10 and 19/20. Since the triples in [I1]] were unchecked we need
to scale their run-times by a factor of two; to obtain 0.004 seconds per multiplication
triple. Thus for covert security we see that our protocol for checked tuples are superior
both in terms error probabilities, for a comparable run-time.

When using our active security variant we aimed for a cheating probability of 2749;
so as to be able to compare with prior run times obtained in [[11]], which used the method

http://www.it-ebooks.info/

16 I. Damgard et al.

Table 1. Execution Times For Key Gen and Offline Phase (Covert Security)

Run Times Time per Run Times Time per
p =~ | c || KeyGen | Offline |Triple (sec) p =~ | c || KeyGen | Offline |Triple(sec)
25215 2.4 156 | 0.00140 25215 3.0 202 | 0.00204
232 |10 5.1 277 | 0.00256 232 |10 6.4 413 | 0.00380
232 120 104 512 | 0.00483 232 |20 133 790 | 0.00731
257 15 5.9 202 | 0.00194 2527 15 7.7 202 | 0.00267
264 |10 125 377 | 0.00333 264 10| 163 568 | 0.00497
264 |20 256 682 | 0.00634 264 |20 337 1108 | 0.01004
2128 5 162 307 | 0.00271 2128 |5 21.0 462 | 0.00402
2128 |10 || 336 561 | 0.00489 2128 |10 || 444 889 | 0.00759
2128 |20 || 745 1114 | 0.00937 2128 120 || 99.4 | 2030 | 0.01487

WL WWWwwwwws

B I I NN N3

from [[13]. Again we performed two experiments one where four cores produced 100000
multiplication triples, squaring pairs and shared bits, plus 1000 input sharings; and one
experiment where one core produced just 100000 multiplication triples (so as to produce
the average cost for a triple). The results are in Table

Table 2. Execution Times for Offline Phase (Active Security)

n =2 n=3
p ~|| Offline Time per Triple|| Offline Time per Triple
25271 2366 0.01955 3668 0.02868
264 || 3751 0.02749 5495 0.04107
2128 || 6302 0.04252 10063 0.06317

By way of comparison for a prime of 64 bits the authors of [11] report on an imple-
mentation which takes 0.006 seconds to produce an (un-checked) multiplication triple
for the case of two parties and equivalent active security; and 0.008 per second for the
case of three parties and active security. As we produce checked triples, the cost per
triple for the results in [[11] need to be (at least) doubled; to produce a total of 0.012 and
0.016 seconds respectively.

Thus, in this test, our new active protocol has running time about twice that of the
previous active protocol from [[13] based on ZKPoKs. From the analysis of the proto-
cols, we do expect that the new method will be faster, but only if we produce the output
in large enough batches. Due to memory constraints we were so far unable to do this,
but we can extrapolate from these results: In the test we generated 12 ciphertexts in
one go, and if we were able to increase this by a factor of about 10, then we would get
results better than those of [L3/11], all other things being equal. More information can
be found in the full version [12]].

7.2 Online

For the new online phase we have developed a purpose-built bytecode interpreter, which
reads and executes pre-generated sequences of instructions in a multi-threaded manner.
Our runtime supports parallelism on two different levels: independent rounds of com-
munication can be merged together to reduce network overhead, and multiple threads
can be executed at once to allow for optimal usage of modern multi-core processors.

http://www.it-ebooks.info/

Practical Covertly Secure MPC for Dishonest Majority 17

In Table 3 we present timings (again in elapsed wall time for a player) for multiply-
ing two secret shared values. Results are given for three different varieties of multipli-
cation, reflecting the possibilities available: purely sequential multiplications; parallel
multiplications with communication merged into one round (50 per round); and parallel
multiplications running in 4 independent threads (50 per round, per thread). The exper-
iments were carried out on the same machines as the offline phase, running over a local
network with a ping of around 0.27ms. For comparison, the original implementation of
the online phase in [13] gave an amortized time of 20000 multiplications per second
over a 64-bit prime field, with three players.

Table 3. Online Times
Multiplications/sec
Sequential 50 in Parallel
n| p =~ | Single Thread|| Single Thread | Four Threads
2] 2% 7500 134000 398000
2| 264 7500 130000 395000
2| 2128 7500 120000 358000
3] 232 4700 100000 292000
3] 264 4700 98000 287000
3| 2128 4600 90000 260000

Acknowledgements. The first and fourth author acknowledge partial support from the
Danish National Research Foundation and The National Science Foundation of China
(under the grant 61061130540) for the Sino-Danish Center for the Theory of Interactive
Computation, and from the CFEM research center (supported by the Danish Strategic
Research Council). The second, third, fifth and sixth authors were supported by EPSRC
via grant COED-EP/I03126X. The sixth author was also supported by the European
Commission via an ERC Advanced Grant ERC-2010-AdG-267188-CRIPTO, the De-
fense Advanced Research Projects Agency and the Air Force Research Laboratory under
agreement number FA8750-1 1-2-00791 , and by a Royal Society Wolfson Merit Award.

References

1. Aliasgari, M., Blanton, M., Zhang, Y., Steele, A.: Secure computation on floating point num-
bers. In: Network and Distributed System Security Symposium, NDSS 2013. Internet Society
(2013)

2. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols for realis-
tic adversaries. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 137-156. Springer,
Heidelberg (2007)

3. Aumann, Y., Lindell, Y.: Security against covert adversaries: Efficient protocols for realistic
adversaries. J. Cryptology 23(2), 281-343 (2010)

4. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J.
(ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420-432. Springer, Heidelberg (1992)

! The US Government is authorized to reproduce and distribute reprints for Government purposes
notwithstanding any copyright notation hereon. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily representing the official policies
or endorsements, either expressed or implied, of DARPA, AFRL, or the U.S. Government.

http://www.it-ebooks.info/

13.

14.

15.

16.

20.

21.

22.

I. Damgard et al.

Bogdanov, D., Laur, S., Willemson, J.: Sharemind: A framework for fast privacy-preserving
computations. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp.
192-206. Springer, Heidelberg (2008)

. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption with-

out bootstrapping. In: ITCS, pp. 309-325. ACM (2012)

. Catrina, O., Saxena, A.: Secure computation with fixed-point numbers. In: Sion, R. (ed.) FC

2010. LNCS, vol. 6052, pp. 35-50. Springer, Heidelberg (2010)

. Damgard, L., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-

rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi,
S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285-304. Springer, Heidelberg (2006)

. Damgard, I., Geisler, M., Krgigaard, M., Nielsen, J.B.: Asynchronous multiparty compu-

tation: Theory and implementation. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS,
vol. 5443, pp. 160-179. Springer, Heidelberg (2009)

. Damgard, 1., Keller, M.: Secure multiparty AES. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052,

pp- 367-374. Springer, Heidelberg (2010)

. Damgard, 1., Keller, M., Larraia, E., Miles, C., Smart, N.P.: Implementing AES via an ac-

tively/covertly secure dishonest-majority MPC protocol. In: Visconti, 1., De Prisco, R. (eds.)
SCN 2012. LNCS, vol. 7485, pp. 241-263. Springer, Heidelberg (2012)

. Damgard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly

secure MPC for dishonest majority — or: Breaking the SPDZ limits (2012)

Damgérd, 1., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from somewhat
homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 643-662. Springer, Heidelberg (2012)

Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with polylog overhead.
In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 465—-482.
Springer, Heidelberg (2012)

Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-
Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850-867. Springer, Hei-
delberg (2012)

Kreuter, B., Shelat, A., Shen, C.-H.: Towards billion-gate secure computation with malicious
adversaries. In: USENIX Security Symposium 2012, pp. 285-300 (2012)

. Lindell, Y., Pinkas, B., Smart, N.P.: Implementing two-party computation efficiently with

security against malicious adversaries. In: Ostrovsky, R., De Prisco, R., Visconti, 1. (eds.)
SCN 2008. LNCS, vol. 5229, pp. 2-20. Springer, Heidelberg (2008)

. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay - Secure two-party computation system.

In: USENIX Security Symposium 2004, pp. 287-302 (2004)

. Montgomery, P.L.: Modular multiplication without trial division. Math. Comp. 44, 519-521

(1985)

Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A new approach to practical active-
secure two-party computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 681-700. Springer, Heidelberg (2012)

Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is prac-
tical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250-267. Springer,
Heidelberg (2009)

SIMAP Project. SIMAP: Secure information management and processing,
http://alexandra.dk/uk/Projects/Pages/SIMAP.aspx

http://alexandra.dk/uk/Projects/Pages/SIMAP.aspx
http://www.it-ebooks.info/

Practical and Employable Protocols
for UC-Secure Circuit Evaluation over 7,

Jan Camenisch!, Robert R. Enderlein'-2, and Victor Shoup?

1 IBM Research — Zurich, Siumerstrasse 4, 8803 Riischlikon, Switzerland
2 Department of Computer Science, ETH Ziirich, 8092 Ziirich, Switzerland
3 New York University, Courant Institute, NY 10012 New York, United States

Abstract. We present a set of new, efficient, universally composable two-party
protocols for evaluating reactive arithmetic circuits modulo n, where n is a safe
RSA modulus of unknown factorization. Our protocols are based on a homomor-
phic encryption scheme with message space Zn, zero-knowledge proofs of ex-
istence, and a novel “mixed” trapdoor commitment scheme. Our protocols are
proven secure against adaptive corruptions (assuming secure erasures) under
standard assumptions in the CRS model (without random oracles). Our proto-
cols appear to be the most efficient ones that satisfy these security requirements.
In contrast to prior protocols, we provide facilities that allow for the use of our
protocols as building blocks of higher-level protocols.

Keywords: Two-party computation, Practical Protocols, UC-Security.

1 Introduction

Designing and proving secure large and complex cryptographic protocols is very chal-
lenging. Today, the security proofs of most practical protocols consider only a single
instance of the protocol and therefore all security guarantees are lost if such a pro-
tocol is run concurrently with other protocols or with itself, in other words, when
used in practice. Better security guarantees can be obtained when using composabil-
ity frameworks—Canetti’s Universal Composability (UC) [8], the similar GNUC [22]
by Hofheinz and Shoup, or other frameworks [36l283 1][—which ensure that protocols
proved secure in the framework remain secure under arbitrary composition. This also
simplifies the design of protocols: high-level protocols can be composed from building
block protocols and the security proofs of the high-level protocols can be based on the
security of the building blocks and so become modular and easier.

Unfortunately, protocols proven secure in such composability frameworks are
typically an order of magnitude less efficient than their traditional counterparts with
“single-instance” security. Moreover, most UC-secure schemes and protocols found in
the literature can not be used as building blocks for higher-level protocols because they
do not offer the proper interfaces. That is, unless one considers only multi-party proto-
cols with honest majority, it is typically not possible to ensure that a party’s output of
one building block is used as the party’s input to another building block. We note that
the situation for two-party protocols is different from UC-secure multi-party protocols
with an honest majority where it is possible to secret-share all input and output values
and then, by the virtue of the majority’s honesty, it is ensured that the right outputs are
used as inputs to the next building block.

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 19-B7] 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://www.it-ebooks.info/

20 J. Camenisch, R.R. Enderlein, and V. Shoup

In this paper we are therefore interested in practically useful UC-secure building
block protocols that provide interfaces so that parties in higher-level protocols can
prove to each other that their inputs to one building block protocol correspond to the
outputs of another building block protocol. More precisely, we provide a set of two-
party protocols for evaluating an arithmetic circuit with reactive inputs and outputs.
The protocols accept as (additional) inputs and provide as (additional) outputs tailored
commitment values which, in conjunction with UC zero-knowledge proofs, make them
a useful building block for higher-level protocols. In Section 8 of the full version of this
paper [4], we we demonstrate the usefulness of our protocols by providing as example
application an oblivious pseudorandom function evaluation. Additionally, we point out
that our protocols can be used to implement the subprotocols required by Camenisch et
al’’s credential authenticated identification and key-exchange protocols [3] (see Section
6.3 of their paper).

Apart from being the only protocols that allow for their use as building blocks, ours
are also more efficient than existing UC-secure two-party reactive circuit evaluation
protocols [1812441912] which were designed to be used as standalone protocols.

Our contribution. Our main contribution is twofold: /) we provide a mechanism for
protocol designers to easily integrate our arithmetic circuit functionality in their higher-
level protocol in a practical yet secure manner; and 2) we provide a concrete construc-
tion of the circuit evaluation protocol that is in itself more efficient than prior work.
We achieve the latter by using cryptographic primitives that work very well together.
Additionally, the tools we use in our construction—especially our novel mixed trapdoor
commitment scheme—may be of independant interest.

Our protocols evaluate an arithmetic circuit modulo a composite number n, where n
is a product of two large safe primes that is assumed to be generated by a trusted third
party, and whose factorization remains otherwise unknown. We believe that in many
practical cases, this is a natural assumption.

Our protocols are universally composable and proven secure under standard assump-
tions in a setting where parties can be corrupted at any time. It additionally assumes
that secure erasures are possible and that parties can agree on a common reference
string (CRS). We do not require random oracles. We strongly believe that achieving
security against adaptive corruptions is crucial in order to achieve any meaningful
sense of security in the “real world”, where computers are compromised on a regu-
lar basis. The assumption of secure erasures is a pragmatic compromise: without it,
obtaining a practical protocol seems unlikely; moreover, this assumption does not seem
that unrealistic. Likewise, as it is impossible to achieve universal composability with-
out some kind of setup assumption [11], a CRS seems like a reasonable, pragmatic
compromise.

Our ideal functionality. We denote our basic ideal functionality for verifiably eval-
uating arithmetic circuits modulo n by Fagp (our functionality is similar to Nielsen’s
arithmetic black box [32], hence the name). Parties compute the circuit step-by-step in a
reactive manner by sending identical instructions with identical common input to Fagg.
(For some instructions, one party must additionally provide private input to Fagp.) We
assume that a higher-level protocol orchestrates the steps the parties take.

http://www.it-ebooks.info/

Practical and Employable Protocols for UC-Secure Circuit Evaluation over Z, 21

Fasp processes instructions from the two parties of the following types: Input: a
party inserts a value in Z, into the circuit; Linear Combination: a linear combination
of values in the circuit is computed; Multiplication: the product of two values in the
circuit is computed; Output: a value in the circuit is output to a party; Proof: a party
can prove an arbitrary statement to the other party in zero-knowledge involving values
that she input in the circuit, values she got as an output, and values external to the
circuit.

A party can use the Proof instruction to prove that the value inside a commitment
used in the higher-level protocol is the same as a value in the circuit. This instruction
thus makes it easy and practical to compose Fapp With a higher-level protocol. To input
a committed value from a higher-level protocol into the circuit, P would first use the
Input instruction to set the value in the circuit, and then use the Proof instruction to
convince Q that the new value corresponds to what was in the commitment. Similarly
to transfer a value from the circuit to the higher-level protocol, P would first get the
value with the Output instruction, generate a commitment in the higher-level protocol,
and then use the Proof instruction to convince Q that the commitment contains the
value that was output by the circuit.

All of our results are presented in the GNUC framework [22]. This has two advan-
tages. First, the GNUC framework is mathematically consistent, and so our results have
a clear mathematical meaning. Second, the GNUC framework supports the notion of a
system parameter, which is how we wish to model the modulus n (a system parame-
ter is formally modeled as an “ideal functionality”, to which all parties—including the
environment—have direct access).

Additional features. In Section 5 of the full version [4]], we extend our framework
with some features, such as generating random values and computing multiplicative
inverses modulo n, using standard techniques. Other features require an extension of our
ideal functionality. In particular we extend our ideal functionality with an Exponentiated
Output instruction, which allows us to directly implement Jarecki and Liu’s two-party
protocol for computing an oblivious pseudorandom function (OPRF) [25]].

Efficiency. Our protocols are quite practical; in particular, they do not require any ex-
pensive “cut and choose” techniques. The complexity of our protocols can be summa-
rized as follows: if the circuits involved have ¢ gates, the communication complexity is
O(t) elements of Z,2 (and groups of similar or smaller order) and the computational
complexity is O(t) exponentiations in Z,2 (and groups of similar or smaller order). We
report on an experimental comparison of our protocols with relevant prior work in Sec-
tion[6.J1 We show that our protocols are practical, and that small circuits can be run in
a few seconds—for example our implementation of Jarecki and Liu’s OPRF (see [4])
would run in 0.84 seconds (for a 1248-bit modulus) on the authors’ laptop computers.

Roadmap. In Section 2] we introduce the notation used in this paper, recapitulate some
fundamental theory, and present our new mixed trapdoor commitment scheme. We de-
scribe our ideal functionality Fapp for circuit evaluation in Section 3, and construct
a concrete protocol in Section @l We discuss the main ideas of our security proof in
Section 3l In Section [6] we disucuss related work, and compare the efficiency of our
protocol with relevant related work.

http://www.it-ebooks.info/

22 J. Camenisch, R.R. Enderlein, and V. Shoup

2 Preliminaries

In this section we will introduce the notation used throughout this paper and provide
some background on the UC model, zero-knowledge proofs of existence, and homo-
morphic encryption. Finally we provide a new construction of a commitment scheme,
which might be of independant interest.

2.1 Notation

By N, we denote the set of all natural numbers between 0 and (i — 1), by Z; we denote
the ring of integers modulo i. We use N and Z} to denote N; \ {0} and Z; \ {0},

respectively. If A is a set, then a & A means we set a to a random element of that set.

If A is a Probabilistic Polynomial-Time (PPT) algorithm, then y < A(z) means we
assign y to the output of A(x) when run with fresh random coins on input .

Let ' denote a fixed, finite alphabet of symbols (for example Unicode codepoints).
Throughout this text we will use monospace fonts to denote characters in X, e.g.: P or
Q. By X* we denote the set of strings over Y. We use the list-encoding function (-) like
in the GNUC paper [22]: If a1, .. .,a,, € X*, then (a1, . . ., a,) is a string over X that
encodes the list (a1, . ..,a,) in some canonical way.

If AP is aset, AP < k is a shorthand notation for inserting & into it: AP <— AP Uk.

If V is an associative array, then V[k] < v denotes the insertion of the value v into
the array under the identifier k. By v’ < V/[k], we denote the retrieval of the value
associated with identifier %, and storing that retieved value in the variable v’. In this
paper, we will never insert the same identifier twice in any array, and we will always
use identifiers that were previously input into the array when retrieving a value.

P and Q denote the two parties in an interactive protocol, and .4 the adversary.

2.2 UC and GNUC Models

Protocols constructed for and proven secure in a composability framework can be se-
curely composed in arbitrary ways. To date, there are five such frameworks: Universal
Composability (UC) by Canetti [8], the similar GNUC framework by Hofheinz and
Shoup [22], Reactive Simulatability by Pfitzmann and Waidner [36], IITMs by Kiisters
[28], and Abstract Cryptography by Maurer and Renner [31]]. Even though the UC and
GNUC frameworks differ in their mathematical formalism, they are essentially the same
[22]. To understand this paper, it is sufficient to be familiar with either.

In the UC/GNUC framework, an abstract specification—often called the ideal fun-
ctionality—describing the input and output behaviour of the protocol is given. A crypto-
graphic protocol is then said to securely implement this ideal functionality, if an external
adversary cannot distinguish between a run of the actual protocol and a run where the
ideal functionality is performed by a trusted third party receiving the inputs and gen-
erating the ouputs for all parties. The protocol can now be used instead of the ideal
functionality in any arbitrary complex system.

In this paper we make use of standard ideal functionalities: authenticated channels
(Fach), secure channels (Fg), and zero-knowledge proofs (Fzk) as described in Section
12.1 of the GNUC paper [22]. The first two functionalities are essentially the same as
Canetti’s [8]. The Fzx functionality of GNUC differs from Canetti’s definition in that

http://www.it-ebooks.info/

Practical and Employable Protocols for UC-Secure Circuit Evaluation over Z, 23

the instance of the predicate to be proven is a private input of the prover, and is delivered
to the verifier only in the last message of the protocol: this enables the prover to securely
erase her witnesses before revealing the statement to be proven.

We follow the formalism of GNUC to model common reference strings and system
parameters—see Section 10 of the GNUC paper [22].

2.3 Zero-Knowledge Proofs of Existence

In the UC model, all proofs are necessarily proofs of knowledge. By embracing the
extension to the UC model proposed by Camenisch, Krenn, and Shoup [3], it becomes
possible to perform proofs of existence in addition to proofs of knowledge. The former
are computationally significantly less expensive. To that effect, the paper introduced the
gullible zero-knowledge functionality Fyzx. Roughly speaking, F,zk is similar to the
well-known zero-knowledge proof functionality Fzk, except that not all the witnesses
can be extracted. Fyzx is not an ideal functionality in the UC/GNUC sense, but abstracts
a concrete zero-knowledge proof protocol using secure channels Fg, and a CRS.

When specifying the predicate to be proven, we will use the notation introduced
by Camenisch, Krenn, and Shoup [3]] (which is very similar to the Camenisch-Stadler
notation [7]); for example: Mo 36 : y = ¢g° Az = g*h® s used for proving
the existance of the discrete logarithm of y to the base g, and of a representation of z
to the bases g and h such that the A-part of this representation is equal to the discrete
logarithm of y to the base g. Furthermore, knowledge of the g-part of the representation
(discrete logarithm of the Elgamal plaintext) is proven. Variables quantified by M can be
extracted by the simulator in the security proof, while variables quantified by 3 cannot.

In this paper, we will be proving statements involving encryptions and commitments,
all of which can be easily translated into predicates of the form considered in Camenisch
et al.’s paper [5]]. For predicates of this type, Fyzx can be efficiently realized in the CRS
model.

Ideal functionality Fyzgx. In Camenisch et al’s paper, the F,zx ideal functionality was
formally defined for the UC model, but one can easily port it to the GNUC model. We
provide here only an informal description of Fyzk, and refer their paper for details.

In the following we let R be a binary predicate that maps a triple (z, wg, we) to 0 or
1, where z is called the instance and the pair (wy,, w.) the witness. Fgzk is parametrized
by R and a leakage function ¢ (which for example reports the length of its input). The
functionality also expects an arbitrary label to distinguish different proof instances.

The common input to Fgzk is an arbitrary label. The prover’s input is (z,wy, we)
where R(x,wr,w.) = 1. Next, Fyzx leaks the length of the instance and witness
{(x,wy,) to the adversary A. After an acknowledgement by A, Fzx delivers the in-
stance x to the verifier, while simultaneously erasing the witness (wy, we). In the se-
curity proof, the simulator can extract wy, but not w,. Per convention, Fyzk rejects
malformed messages and messages with duplicate labels.

2.4 Homomorphic Semantically Secure Encryption

Definition. We define the key generation function (pk,sk) <~ KeyGen(n), where n
is a safe RSA modulus of unknown factorization. We define the encryption function

http://www.it-ebooks.info/

24 J. Camenisch, R.R. Enderlein, and V. Shoup

E + Enc(v, pk, r) that takes as input a plaintext v, a public key pk and some random-

ness r, and outputs a ciphertext E. We will also use the shorthand notation (E, r) &
Enc(v, pk) in which the randomness r is chosen inside the Enc function. The corre-
sponding decryption function v’ <+ Dec(E, sk) takes as input the ciphertext and se-
cret key, and outputs the plaintext. We assume that the encryption is homomorphic
with respect to addition over Z,: Yv1,ve2 € Zn,r1,r2 : (pk,sk) € KeyGen(n) —
Dec(Enc(v1, pk, r1) * Enc(ve, pk, ra2),sk) = v1 + va.

We require that correctness of encryption and decryption be efficiently provable
with Fyzk, and that it is possible to efficiently prove knowledge of sk given pk with
Fozx. We will use a shorthand notation to denote such proofs, e.g.: Msk, v : (pk, sk) €
KeyGen(n) A v = Dec(E, sk).

Camenisch-Shoup encryption. An example of such an encryption scheme is the simpli-
fied version of Camenisch-Shoup encryption [6414] with a short private key and short
randomness, described by Jarecki and Shmatikov [26]. The key generation function is:

x & ZLWJ’ g & L7, g 4 g’zn, y < g*; the secret key sk is x, and the public key pk is

(g,y). To encrypt the message v € Zn: r < Z| s u 4= g e < y'(n+1)” (mod n?);
the ciphertext E is (u, e). To decrypt: v + (e/u*)?, v" «+ ”/”T_l (over the integers),
v' + v” - 271 (mod n); output v'. This scheme is semantically secure if Paillier’s
Decision Composite Residuosity Assumption [35] holds.

2.5 Mixed Trapdoor Commitment Scheme

We now construct a commitment scheme which we will use instead of traditional UC
commitment schemes [9] in our circuit evaluation protocol. Our commitment scheme
works well with proofs of existence using Fyzx, resulting in an efficiency gain in the
overall protocoll] To the best of our knowledge, this is a novel scheme.

We define a mixed trapdoor commitment scheme to be a commitment scheme that is
either: perfectly hiding and equivocable; or statistically binding, depending on the dis-
tribution of the CRS. Mixed trapdoor commitments are similar to UC commitments [9]]
in that /) the simulator can equivocate commitments in the security proof without being
caught, even if he has to provide all randomness used to generate the commitment to
the adversary; and 2) the simulator can use an adversary who equivocates commitments
to solve a hard cryptographic problem. However unlike UC commitments, in mixed
trapdoor commitments 3) the simulator does not need to extract the openings or the
committed values from Fgzk.

Definition. Let cp; < ComGen;(n) for i € {0,1} be functions that generate param-
eters for a commitment scheme. If ¢ = 0, the commitment scheme is perfectly hid-
ing (computationally binding), and if ¢ = 1, the commitment scheme is statistically
binding (computationally hiding). For the perfect-hiding setting, we define the function
(cp),t) & ComGen))(n) that additionally outputs a trapdoor t. We further require that
Py, cpp, and cp, are pairwise computationally indistinguishable.

! The efficiency gain due to using proofs of existence instead of proofs of knowledge outweighs
the efficiency loss due to the more complex commitment scheme.

http://www.it-ebooks.info/

Practical and Employable Protocols for UC-Secure Circuit Evaluation over Z, 25

We define the function (€, r) & Comy,y, (v) that takes as input a value v € Zj, to
be committed, and outputs a commitment ¢ and an opening ¢ to the commitment. We
will also use the notation € <— Com,,. (v, r), where the opening is chosen outside of the
function. Conversely, we define the verification function Comeycpi (€, r,v) that checks
whether the tuple (&, r) is one of the possible values generated by Com;, (v). The com-
mitments are homomorphic with respect to addition over Z,: Comeycpi (C1,11,01) A
Comeycpi (Co,12,02) = Comeycpi (€1%Cq, r1 412, v1 +v2). With a trapdoor t it is
possible to efficiently equivocate commitments in the perfect-hiding setting: Vo' € Z,;
Yo Trapdoorc%(t, ¢ r,u,0): Comeyc%(Q, L) = Comeycpé(Q, v,

We require that verifying a commitment be efficient with Fgzk.

In the sequel, we drop the subscript cp, if it clear which parameters need to be used.

Construction based on Elgamal. We now provide the construction of a mixed trapdoor
commitment scheme based on Elgamal encryption. We construct ComGen; as follows:
1) find the first prime p such that p = k-n+1 for some & € N— according to a heuristici
by Wagstaff [38]: p < n-(logn)?; 2) find a generator g of a subgroup of Z,, of order n; 3)
select a, t, m at random from Z,; 4) compute h < g%, v < g™b*, u < g',i.e., (n,u)is
the Elgamal encryption of g™ with the public key (g, b); 5) output cp; + (p, g, b, v, u).
In practice, where we want to select a random common reference string cp,, it is also
possible to randomly sample b, v, and u from the subgroup generated by g. With high
probability, we have that ged(a,n) = ged(m,n) = ged(t,n) = 1, which means that
b, n, u are all of order n. We construct ComGeng similarly, except that in step 3, we set
m < 0. The function ComGen, additionally outputs t.

To commit to v € Zj, one sets ¢ E T € — §hE; € «— ugh and € + (€, Co).
The latter is a re-randomized encryption of g™ . Verification is trivial. Finally, if m = 0
and one knows the trapdoor information t, one can open the commitment € to a different
value v’ € Z, by settingt’ < (v —v') - t+1r.

3 Our Ideal Functionality F,gg

In this section, we will give a short informal definition of the ideal functionality Fapp
(arithmetic black box) for doing computation over Z,. We give the formal definition in
the full version [4].

The functionality Fagp reacts to a set of instructions. Per convention, both parties
must agree on the instruction and the shared input before F5pp executes it. An instruc-
tion may require P and Q to send multiple messages to Fagp in a specific order, how-
ever Fapp may run other instructions concurrently while waiting for the next message.
More precisely P and Q can: provide inputs to Fagg; ask it do to a linear combination
or multiplication of previous inputs or intermediate results; ask it to output a value to
one of them; and do an arbitrary zero-knowledge proof involving inputs/outputs to/from
the circuit and external witnesses. These instructions can be arbitrarily interleaved, in-
termediate results output and new inputs be provided. The input values provided by P
and Q may depend on output values obtained. Following the GNUC formalism, each
message sent to Fapp is prefixed with a label which contains, among others, the name

2 We confirmed this experimentally for 250 randomly generated 1248-bit safe RSA moduli.

http://www.it-ebooks.info/

26 J. Camenisch, R.R. Enderlein, and V. Shoup

of the instruction to execute, the current step in the instruction this message refers to,
and the shared input (; the private inputs are always part of the message body.

State. The ideal functionality Fapp is stateful. It maintains an associative array V,
mapping identifiers (in X*) to integer values (in Z,).

Instructions. These are the instructions supported by Fagg:

e [nput from P: P’s private input is the value v. Fapp parses the shared input ¢ as
(k), where k will be the identifier associated to the value v, and sets V[k] « v.
o [Input from Q: Q’s private input is v. Fapp parses ¢ as (k), and sets V[k] « v.
Linear combination: Fapg parses o as (m, ko, vo, (k1,v1), .. ., (km—1,Vm—1)) and
sets: V[ko] < vo + Z:i_ll V[ki] - v;.
Multiplication: Fapp parses ¢ as (ko, k1, k2) and sets: V[ko] < V[k1] - V[k2].
Output to P: Fapp parses ¢ as (k), and sends V[k] (as a delayed output) to P.
Output to Q: Fapg parses ¢ as (k), and sends V[k]| (as a delayed output) to Q.
Proof by P: This instruction can be used to prove a statement about values that
were input/output to/from from the circuit (Fapp) and witnesses from a higher-level
protocol. P’s private input is (x,wy). Fags parses ¢ as (m, (ko, . . ., km—1), R),
where is I is a binary predicate that is compatible with Fyzx and which can involve
1) values that were input by P to Fagp, 2) values that were output to P from Fags,
and 3) witnesses external to Fapg; « is an instance for R; wy is a list of witnesses
that are external to the circuit whose knowledge are proven; and ko, . .., k,,—1 are
identifiers of values in the circuit that were input by P or output to P. Fapp checks
if the predicate holds, i.e., if R(xz, wiU(Vlko],..., V[km—1])) = 1; and sends (z)
(as a delayed output) to Q. In the full version [4], we define an extention of Fagp
denoted Fgapp Which also allows for proofs of existence inside this functionality.
e Proof by Q: Similar to Proof by P , with the roles of P and Q reversed.
e Dynamic corruption: Fapp accepts a special corrupt message from P or Q. From
then on, all input and output of the corrupted party is redirected to the adversary A,
and A may recover all of the corrupted party’s input (by asking Fapp for it).

Treatment of invalid input. In case Fapp receives a message it does not expect, a mes-
sage that it cannot parse, or a message with a label it has seen previously from the same
party, it simply ignores the message.

Comments. The value of n is not an input to Fapp, nor is it modeled as a CRS. Rather, it
is modeled in the GNUC framework as a system parameter. Roughly speaking, this is a
special type of ideal functionality to which all parties, including the environment, have
common access. The value of n is generated by a trusted party, and no other party learns
its factorization. Furthermore, the modulus n can be re-used across different protocol
instances. In the setting of credential-authenticated identification [3] this is completely
natural, as one can use a modulus generated by the credential issuer. In a different con-
text, we can also imagine using the modulus n of a well-known and respected certificate
authority (e.g., the modulus in Verisign’s root certificate).

Our ideal functionality Fapp shares some similarity with Nielsen’s arithmetic black
box (ABB) [32], and Damgard and Orlandi’s Fampc [19]. The major difference is that
our Fapp includes the Proof instruction, allowing values from higher-level protocols
to be input and output securely. This instruction is crucial as it allows meaningful

http://www.it-ebooks.info/

Practical and Employable Protocols for UC-Secure Circuit Evaluation over Z, 27

composition with other protocols (see Introduction). Unlike Fampc, we do not support
random number generation in the vanilla Fapp for simplicity; see Section 5 of the full
version [4]] for an algorithm generating these that uses only our core set of instructions.

4 Construction

We now show how to construct a protocol ITapp for circuit evaluation modulo n. Our
protocol uses two ideal functionalities: F,cn (authenticated channels) and Fyzx (zero-
knowledge proofs). Additionally, we make use of a system parameter, the modulus n of
unknown factorization; and a CRS, consisting of the output of ComGen; (statistically-
binding commitment).

High-level idea. The high-level idea of our construction is that P and Q generate ad-
ditive shares of all the values (inputs and intermediate results) in the circuit. Identifiers
are used to keep track of the values and the cryptographic objects associated with them.
Like for Faps, parties agree on the instruction to be performed by sending a message
containing an identical instruction name and identical common input to the protocol
II5pg. The instructions of I1xpp are implemented as follows: Input is achieved by one
party setting her share to the input, and generating a commitment to that share; the
other party sets his share to zero. Output is achieved by one party sending her share to
the other party. For the Linear combination instruction, each party does a linear com-
bination of their shares locally. For the Multiplication instruction, we make use of two
instances of a 2-party subroutine I1y,,;: on P’s input a, and Q’s input b, Iy, outputs u
to P and v to Q such that u+ v = a-b. The Proof instruction can be done with the help
of a zero-knowledge proof functionality Fyzx. To ensure security against malicious ad-
versaries, both parties update the commitments to the shares in each instruction, and
prove in zero-knowledge that all their computations were done honestly.

The I, subroutine makes use of a homomorphic (modulo n), semantically secure,
public-key encryption scheme, along with our mixed trapdoor commitment scheme. To
achieve security against adaptive corruptions, new encryption/decryption keys need to
be generated for every multiplication. To do this in a practical way, we use the semanti-
cally secure version of Camenisch-Shoup encryption [6414126] with a short private key
and short randomness, as described in Section 2.4l One key feature of this scheme is
that key generation is fast: just a single exponentiation modulo n?. Another key feature
is that many encryption/decryption keys can be used in conjunction with the same n,
which is crucial. Our commitment scheme is also used extensively in the overall prot-
col. We use the construction presented in Section[2.5]and work in the group of integers
modulo a prime of the form & - n + 1. The homomorphic properties of the commitment
scheme makes this choice of prime particularly useful and practical. Another tool we
make heavy use of is UC zero-knowledge. Because of the proposed implementations
of encryption and commitment schemes, these proof systems can all be implemented
using the approach proposed by Camenisch et al. [5]. Because the encryption and com-
mitment schemes are both homomorphic modulo n, all of our cryptographic tools work
very well together, and yield quite practical protocols. We also stress that our protocols
are designed in a modular way: they only make use of these abstract primitives, and not
of ad hoc algebraic constructions.

http://www.it-ebooks.info/

28 J. Camenisch, R.R. Enderlein, and V. Shoup

‘P proceeds as follows: Q proceeds as follows:

P’s input is (p, v) with v € Z,. Q’s input is ().

Parse ¢ as (k) with k € X*. Abortif k € AP. ||Parse ¢ as (k) with k € X*. Abortif k € AQ.
Mark the identifier as assigned: AP < k. Mark the identifier as assigned: AQ <+ k.

Set shares: SP[k] < v and SQIk] < 0. Set own share: SQ[k] < 0.

Commit to share: (CP[k], XP[k]) < Com(v). ||Commit: CQ[k] <— Com(0, 0); XQ[k] - 0.

P proves the following to Q using Fyzx with label (ip,):
Mv 3XP[k] : ComVfy(CP[k], XP[k],v) .
The value CP[k] is delivered to Q via Fyzk.
Set other’s commitment: CQ[k] < Com(0, 0).
Mark value as ready: RP <+ k. Mark value as ready: RQ <+ k.
Mark it as known: KP < k. Mark it as known by P: KP <+ k.

Fig. 1. Input from P

4.1 Realizing IT,pp

‘P and Q each maintain the following global state: several associative arrays mapping
the identifier of a value in the circuit (in X*) to a variety of cryptographic objects: SP
and SQ map to the shares of P and Q of the values in the circuit (in Z,), respectively;
CP and CQ map to the commitment of the corresponding shares; XP (maintained by P
only) and XQ (Q only) map to the opening of the commitments. For the Proof function-
ality, both parties maintain lists of identifiers corresponding to values that are known to
P and Q: KP and KQ, respectively. Additionally, to ensure “thread-safety”, they also
maintain: lists of assigned identifiers AP (P only) and AQ (Q only) to avoid assigning
the same identifier to several variables; and lists of identifiers RP (P only) and RQ (Q
only) corresponding to values that are ready to be used in other instructions. The array
that one would obtain by summing the entries of SP and SQ corresponding to values
that are ready (i.e., {(k,v)|k € RP N RQ A v = SP[k] + SQ[k]}), corresponds to the
array V of the ideal functionality, that maps identifiers to values in the circuit.

All other variables that we will introduce are local to one instance of a instruction
or an instance of the Il subroutine. Several instructions may be active at the same
time, however we assume (following the GNUC model) that all operations performed
during an activation (the time interval between starting to process a new input message
and sending a message to another functionality) happen atomically.

Input from ‘P. In this instruction, P inputs a value v into the circuit and associates it
with the identifier k: P sets her own share to v, and O sets his share to 0. Then P
generates a commitment to her share, which she sends (along with proof) to Q. See
Figure[dl for the construction.

Input from Q. Similar to the previous instruction, with the roles of P and Q reversed.

Output to Q. In this instruction, Q retrieves the value identified by k from the circuit:
P sends her share to Q together with a proof of correctness. See Figure[2l

Output to P. Similar to the previous instruction, with the roles of P and Q reversed.

Linear combination. In thisinstruction, a linear combination of values in the circuit (plus
an optional constant) is computed: V[ko] < vy + Z:’;}l V[k;] - v;. Concretely, both

http://www.it-ebooks.info/

Practical and Employable Protocols for UC-Secure Circuit Evaluation over Z,

29

‘P proceeds as follows:

|| Q proceeds as follows:

Both parties’ input is (). It is parsed as ¢ =

(k) with k € X*.

Wait until £ € RP.

||Wait until £ € RQ.

IXP[k] :

P proves the following to Q using Fyzx with label (oq,):
ComVfy(CP[k|, XP[k], SP[k]) .
The value SP[k] is delivered to Q via Fyzk.

Mark value as known to Q: KQ <+ k. ‘

Save SP[k], and mark as known: KQ <« k.
Q returns (SP[k] + SQIk]).

Fig. 2. Output to Q

‘P proceeds as follows:

||Q proceeds as follows:

Both parties’ input is (). It is parsed as ¢ =
m € N*, Vi e N, :

<m, ko,vo, <l’€1,v1>7 RN <km71,vm71>> with

k; € 2* and Vi eN,, :v; € Zn.

Abort if kg € AP. Mark identifier: AP < kq.
Wait until Vi € N,,, : k; € RP. Update
own share: SP[ko] < vo + >.7" ;" SP[ki] - vy

opening: XP[ko] < 37" " XP[k;] - vy
Q’s commitment: CQlko] + [1"]" CQ[ki]"

com.: CP[ko] ¢ Com(vo, 0) * [["," CP[k;]"%;

Abort if kg € AQ. Mark identifier: AQ <+ ko.
Wait until Vi € N,,, : k; € RQ. Update
own share: SQ[ko| + Z:’;l SQIk:] - vi;
commitment: CQ ko] + H:n_ll CQlki]"
opening: XQ[ko] + 77" XQ[ks] - vi;

i, Psc..CP[kd(—Com(vo, 0«1 L CP[k;]e

‘P sends the empty string to Q using Ficn with label (1,¢) to ensure that they agree on .

Mark value as ready: RP < kq.

[Mark value as ready: RQ < ko.

Fig. 3. Linear combination

parties perform local operations on their shares. Additionally, P sends an empty message
to Q to ensure that both parties agree on the shared input . See Figure 3

Multiplication. In this instruction, the product of two values in the circuit is computed:
V(ko] < V[k1] - V[kz2]. We can rewrite this as:
SP[ko] + SQlko] <= SP[k1]:SP[k2] + SP[k1]SQ (k2] + SQ[k1]SP[k2] + SQ[k1]-SQ[k-]

D (a+0) (u+w) q
where we introduce p, ¢, @, U, u, v to simplify the discussion. The idea of this protocol
is for P and Q to compute p and ¢, respectively, using their private shares. They then
jointly compute % and v using the Il subroutine, which we introduce for clarity and
which we describe in Section B2l Afterwards, u and v are computed using a second
instantiation of IT,. Finally, P sets SP[ko| < p+u+wu and Q sets SQ ko] < §+0+wv.
See Figure M for the construction.

One can optimize the protocol in Figure [by using the same homomorphic encryp-
tion key for both instances of I1,, and merging the proofs inside and outside of 17
whenever possibleH We can thus save one proof of correctess for the encryption key,
and save on some overhead in Fgzk.

3 Concretely, one would merge the proofs with the following labels: /) (m5,p), (cm1,(m7,¢))
and (cml,(m8,p)); 2) (mb,p), {(cm2,(m7,p)), and (cm2,(m8,¢)); 3) {(cm3,(m7,p)) and
(cm3,(m8,p)); 4) (cm4,(m7,)) and (cm4 ,(m8,¢)).

http://www.it-ebooks.info/

30

J. Camenisch, R.R. Enderlein, and V. Shoup

‘P proceeds as follows:

|| Q proceeds as follows:

Both parties’ input is (¢). It is parsed as

Y= <k‘o,k1, k‘z) with k:o,k‘l,kz c X,

Abort if kg € AP. Mark identifier as assigned:
AP <+ ko. Wait until kl, k2 € RP.

P < SP[k1] - SP[ka]: (€5,15) €~ Com(p).

Abort if ko € AQ. Mark identifier as assigned:
AQ < ko. Wait until k1, ks € RQ.

G« SQ[k1] - SQ[ka]; (€4,1q) & Com(q).

The instructions in the next four rows can be run in parallel in multiple threads.

3;;3, SP[le SPUCQL XP[kl], Xp[kz]
ComVfy(CPl[k1], XP[k1], SP[k1]) A

‘P proves the following to Q using Fyzx with label (m5,¢):

: ComVfy(Cys,1p, SP[k1] - SP[ka]) A
ComVfy(CPlks], XP|ks], SP[ka]) .

The value €; is delivered to Q via Fzk.

3?47 SQ[kIL SQ Um]v XQ[kl]v XQ[kQ]
ComVfy(CQ[k1], XQ[k1], SQ[k1]) A

Q proves the following to P using Fgzx with label (m6,p):

: COmey(@g, L4, SQ[kl} : SQ[kQ]) A
ComVfy(CQ[k2], XQ[k2], SQ[k2]) .

The value € is delivered to P via Fyzxk.

Run [Ty with @ with input
(P, SP[k1], CP[k1], XP[k1], CQlk2], (m7,p))
and get (@, €4, ra, €5) as output.

Run 1 with P with input
(Q: SQ [kQL CQ[kQL XQ [k2]7 CP[le <m7)4)0>)
and get (0, €5, 13, Cg) as output.

Run I1ny with @ with input
(Pa SP[k2]7 CP[k‘Q],XP[kJQ], CQ[kl]a <m83<p>)
and get (u, €y, ru, €,) as output.

Run 1 with Q with input
(Q, SQ[k1], CQ[k1], XQ[k1], CP[k2], (m8,p))
and get (v, €y, v, €,) as output.

Wait until all four threads are done before proceeding.

Compute own share: SP[ko] <+ p + @ + u;
commitment: CP[ko] < €5 % €5 % €3
opening: XP[ko] < tp + ta + Lu -

Q’s commitment: CQko] < €4 % €5 x €, .
Mark value as ready: RP < ko.

Compute own share: SQ[ko] + ¢+ 0 + v;
commitment: CQ[ko] <+ €4 * €5 x €y}
opening: XQlko] < rg + s + Lo -

P’s commitment: CP[ko] <— €5 % €z x &, .
Mark value as ready: RQ < ko.

Fig. 4. Multiplication. The subroutine [Ty is defined in Section.2]and Figure [6]

‘P proceeds as follows:

Q proceeds as follows:

P’s input is (p, x, M, wk).

She parses ¢ like Q; x is an instance for R;
m € N; wr, = (Wk,0, -, Wk,m—1) is a list of
witnesses.

Q’s input is (), where

¢ = (m,(ko, ..., km-1), R);

R is a predicate that is compatible with Fyzk;
meN;andVi € N, : k; € X™.

Wait until Vi € N,,, : k; € KP.

Wait until Vi € N,,, : k; € KP.

ka,o, e

R(l’, (wk,g, ey Whm—1) U (
The instance of the statement to be p:

‘P proves the following to Q using Fzx parametrized with R and with label (pp,¢):
w1 3V[ko, ..., VIkm_1], XP[ko, ..., XP[k_1] :
Aot ComVAy (CPlk:], XP[ki], V[ki] — SQ[ki]) A

Viki], ..., V[kmfl])) =1.
roven, x, is delivered to Q via Fyzx.

|Q returns .

Fig. 5. Proof by P

Proof by P. 1In this instruction, P proves to Q in zero-knowledge some statement in-
volving /) witnesses outside of the circuit, 2) values that P input into the circuit, and 3)
values that P got as an output from the circuit. See Figure [for the construction.

Proof by Q. Similar to the previous instruction, with the roles of P and Q reversed.

http://www.it-ebooks.info/

Practical and Employable Protocols for UC-Secure Circuit Evaluation over Z, 31

‘P proceeds as follows: Q proceeds as follows:

P’sinputis (P, a,Cq,ta, €, \). Q’s input is (Q, b, €y, v, Cay A).

(pk, sk) & KeyGen(n); w < Zn; $E Loy tE T

(Ew, rw) € Enc(w, pk) . (€s,15) & Com(s); (€,x:) <& Com(t) .

P proves the following to Q using Fgzx with label (cml1,\):
Mw sk : (pk,sk) € KeyGen(n) A w = Dec(Ew, sk) .

The values E.,,, pk are delivered to Q via Fyzx after PP securely erases r,.
ca—w . [(Ei,re) & Enc(t,pk); E, « (Eu)® *E: .
Q proves the following to P using Fyzx with label (cm2,A):

Ms 3t 1s, 1e, 1 : ComViAy (€5, 15, 5) A ComVify (€4, 14,t) A Ey = (Ew)® * Enc(t, pk,re) .
The values €, €; and E, are delivered to P via Fyzx after Q securely erases r;.

y < Dec(Ey,sk); (€y,1y) & Com(y) . ||5 —b—s; s Ib—1Ls -

‘P proves the following to Q using Fgzx with label (cm3,\):
Jy, w, by, ta,sk : ComVFy(€y, 1y, y) Ay = Dec(Ey, sk) A w = Dec(Ew, sk)A
(pk, sk) € KeyGen(n) A ComVfy(€q,ta,w +0) .
The values €, o are delivered to Q via Fyzx after P securely erases sk.

Q proves the following to P using Fyzx with label (cmd \):
Jrs : ComVfy(&, (Qs)fl,m,é) .
The value ¢ is delivered to P via Fyzk.

Compute own share: u <— § - a + y; Compute own share: v <— 0 - s — t;

opening: ry < o - 0 + Ly opening: r, < rs - 0 — Lt;

and commitment: ¢, < (@a)‘S * €y and commitment: €, < (€,)7 (Qt)_l.
Compute Q’s commitment: €,<(¢,)%(¢;) ™ .||Compute P’s commitment: €, < (€,)° * €,.
P returns (u, €y, tu, Cy). Q returns (v, €y, v, Cy).

Fig. 6. The Il protocol

4.2 The I, Subroutine for Multiplication of Committed Inputs

We now give the construction of the 2-party Fyzx-hybrid protocol 11, for multiplica-
tion of committed inputs, which we use as a subroutine in I7xgp in the multiplication
instruction. In a nutshell: on P’s private input a and Q’s private input b, I, outputs
shares to the product: u to P and v to Q, such that u +v = a - b.

The protocol draws on ideas from Ishai et al’s 79T protocol—defined in Appendix
A.2 of the full version of their paper [23]—and uses a similar approach as many two-
party computation protocols (e.g., Damgard and Orlandi’s 7, protocol [20]). We
fleshed out the details of Ishai et al.’s protocol to make it secure against active ad-
versaries, improve its efficiency, and integrate it into our overall protocol.

The basic idea of the protocol is for P and Q to first obtain shares y and (—t) on the
product of two random values w and s, respectively: y —t = w - s; second to erase all
intermediate state used in the previous step; third to exchange the values o = (a — w)
and 6 = (b — s); and finally to obtain shares on the product of the actual input values
a and b by outputtinguw = § - a + y and v = o - b — ¢, respectively. Commitments and
relevant proofs are used during all steps. We refer to Figure[@] for the construction.

The erasure in Step 2 is needed to ensure security against adaptive adversaries:
since the encryption scheme used in our protocol is not receiver—non-committing [[10],

http://www.it-ebooks.info/

32 J. Camenisch, R.R. Enderlein, and V. Shoup

the simulator cannot produce a convincing view of the first step for any other value of
w. In fact, there are no known practical receiver—non-committing schemes that satisfy
our requirements. By erasing state in Step 2, the simulator is dispensed with producing
that view in Step 3.

4.3 Efficiency Considerations for the Zero-Knowledge Proofs in I7T5pp

Careful design enables us to achieve a very efficient and practical construction. In par-
ticular, we minimize the amount of computation required inside the realization 7 of
the zero-knowledge proof functionality Fyzx, which accounts for the majority of the
runtime of our protocol, as follows.

1) Instead of using the Paillier encryption scheme as in Camenisch et al. [3]] to ver-
ifiably encrypt the witnesses whose knowledge is proven in m, we use the Camenisch-
Shoup encryption scheme with short keys, short randomness, and with modulus n?.
Paillier encryption implies the use of a different modulus, since the simulator needs to
know its factorization to extract the witnesses.

2) We use homomorphic commitment and encryption schemes that work with groups
of the same order n. Most of the witnesses used in Fyzx therefore live in a group of
known order n, and most operations inside 7 stay inside groups of order n. We there-
fore do not need to encrypt values larger than n in 7, and can avoid expensive integer
commitments in 7 [5].

3) We use the cheaper proofs of existence [3]] instead of proofs of knowledge wher-
ever possible. This reduces the number of verifiable encryptions needed inside 7.

4) Finally, we use an encryption scheme in I, where the proof of correctness of
key generation is cheap. (For Camenisch-Shoup encryption with full key length and
Paillier encryption, this proof is very expensive.)

5 Security Proof (Main Ideas)

For reasons of space, we provide the security proof in the full version [4] and explain
only the main ideas here.

We use the standard approach for proving the security of protocols in the UC or
GNUC models: we construct a straight-line simulator S such that for all polynomial-
time—-bounded environments Z and all polynomial-time-bounded adversaries A, the
environment Z cannot distinguish a protocol execution with A and ITagg in the (Fych,
]-'gZK)—hybrid “real” world from a protocol execution with & and Fagp in the “ideal”
world. We prove that Z cannot distinguish these two worlds by defining a sequence
of intermediate “hybrid” worlds (the first one being the real world and the last one the
ideal world) and showing that Z cannot distinguish between any two consecutive hybrid
worlds in that sequence. We follow the formalism of the GNUC framework to deal with
CRS’s and system parameters (see Section 10 of the GNUC paper [22]).

The main difficulties in constructing the simulator S are as follows: /) S has to
extract the inputs of all corrupted parties; 2) S has to compute and send commitments
and ciphertexts on behalf of the honest parties without knowing their inputs, i.e., S
cannot commit and encrypt the right values; 3) when an honest party gets corrupted
mid-protocol, S has to provide to A the full non-erased intermediate state of the party,
in particular the opening of the commitments and the randomness of the encryptions.

http://www.it-ebooks.info/

Practical and Employable Protocols for UC-Secure Circuit Evaluation over Z, 33

To address the first difficulty, recall that the parties are required to perform a proof
of knowledge of all new inputs to the circuit. The simulator S can therefore recover the
input of all corrupted parties with the help of Fyzx. In the first few hybrid worlds, the
statistically binding commitments ensure that the values in the circuit stay consistent
with the inputs. In the subsequent hybrid worlds, the computational indistinguishability
of the two types of CRS ensure that the adversary cannot equivocate commitments even
when S uses the perfectly-hiding CRS with trapdoor.

We now address the second and third difficulty. Upon corruption of a party, S is
allowed to recover the original input of that party from Fagg. By using the perfectly-
hiding CRS with trapdoor, S can equivocate all commitments it made so far to ensure
that the committed values are consistent with the view of the adversary. By construction,
S never needs to reveal the randomness used for an encryption for which it does not
know the plaintext. Recall that in I, the parties first encrypt a random offset, then
erase the decryption key and the randomness used to encrypt, and only then deliver the
encryption of the offset plus party’s input to the adversary (recall that Fyzx allows the
erasure of witnesses before delivering the statement to be proven to the other party).
The simulator S can adjust the offset so that the view delivered to the adversary is
consistent. See also Appendix A.2 of Ishai et al.’s paper [23]].

The rest of the security proof is now straightforward.

6 Related Work and Comparison

There is an extensive literature on the subject of multi-party computation (MPC); how-
ever, most of these settings consider only the case of an honest majority, which is not
helpful for the two-party case.

Canetti et al. [[12] present the first MPC protocols for general functionalities that
are secure with dishonest majority in the UC framework; however, these protocols are
rather a proof of concept, i.e., they are not at all practical, as they rely on generic zero-
knowledge proofs.

More efficient MPC protocols for evaluating boolean circuits, secure with dishon-
est majority, have been designed [29/30I34/37]]. Impressive results have been obtained
in particular for the evaluation of the AES block cipher [37415016127/33]]. While such
protocols could be used to evaluate arithmetic circuits modulo n, a heavy price would
have to be paid: each gate in the arithmetic circuit would “blow up” into many boolean
gates, resulting in an impractical protocol.

The first practical protocols for evaluating arithmetic circuits modulo n were pre-
sented by Cramer et al. [13] (CDN-protocol) and Damgard and Nielsen [18] (DN-
protocol). While both protocols assume an honest majority, they can be shown to be
secure in the two-party case (as noted by Ishai et al. [24)23]]) if one relaxes the require-
ment for fair delivery of messages (fair delivery is impossible in the two-party case).
Both protocols have stronger set-up assumptions than ours: they assume the existence
of a trusted third party that distributes shares of the secret key to all parties. The CDN-
protocol is only statically secure and is not UC-secure, and we therefore exclude it from
our comparison. The DN-protocol is adaptively secure (with erasures) in the UC model
(secure without erasures only in the honest majority case), and is slightly (about 30%)
slower than ours.

http://www.it-ebooks.info/

34 J. Camenisch, R.R. Enderlein, and V. Shoup

Ishai et al. [23l24] present protocols for evaluating arithmetic circuits in several al-
gebraic rings, including one for the ring Z, for a composite n. These protocols achieve
security with a dishonest majority, and are secure with respect to adaptive corruptions
(assuming erasures), but only against honest-but-curious adversaries. They note that
standard techniques can be used to make their protocols secure also for malicious ad-
versaries, however it is not clear if the resulting construction will be practical. Our
protocol draws on ideas from their construction, however we are able to achieve a sig-
nificant speed-up compared to a naive implementation using “standard techniques” by
ensuring that all commitments live in Z,, and by using the short-key variant of the ho-
momorphic encryption scheme.

Damgard and Orlandi [[19] (DO-protocol), as well as Bendlin et al. [2] (BDOZ-
protocol), give protocols for evaluating arithmetic circuits modulo a prime p. Damgard
et al. [21]] (SPDZ-protocol) later improved upon the BDOZ-protocol. These protocols
divide the workload into a computationally intensive pre-processing phase and a much
lighter on-line phase. The pre-processing phase is statically secure, however the on-line
phase can be made adaptively secure (in the UC-model) [[19/2121]]. These papers opti-
mize the runtime of the on-line phase (the BDOZ- and SPDZ-protocols make use of
local additions and multiplications only). In the pre-processing phase of these proto-
cols, it is necessary to prepare for many multiplications gates (about 80 in the BDOZ-,
several hundred in the DO-, and tens of thousands in the SPDZ-protocol) making these
protocols impractical for small circuits. This pre-processing phase takes several minutes
even for reasonable security parameters. Our protocol is better suited for small circuits.

Even for large circuits, the computational complexity of our protocol is about 3.3
times lower than that of the BDOZ- and DO-protocols. It must be noted that the BDOZ-
and DO-protocols have slightly weaker setup assumptions than ours: they only require a
random string as the CRS, while we also need an RSA modulus with unknown factoriza-
tion as a system parameter. (This is not a huge drawback of our protocol, see Section[3l)

The SPDZ-protocol is about an order of magnitude faster than our protocol, however,
unlike the BDOZ-, DO-, and our protocols, it cannot evaluate reactive circuits, severely
limiting its applicability in the real world. It also requires a trusted key setup, which is
a stronger setup assumption than ours. (Concurrently to our work, Damgard et al. [17]]
lifted the restriction on reactive circuits, but only in the random oracle model. They also
lifted the restriction on the trusted key setup but only for covert security.)

None of the UC-secure protocols discussed have an equivalent to the Proof instruc-
tion in their ideal functionality. This makes it hard to compose them with other protocols
because of the issue with non-committed inputs in a 2-party setting, as dicussed in the
introduction, thus negating some of the advantages of working in the UC model.

6.1 Efficiency Comparison

Table [Tl summarizes the amortized runtimes per multiplication gate of our protocol, the
DN- (when run as a 2-party protocol), the DO-, and the BDOZ-protocols. We assume
that the runtime of an exponentiation with a fixed modulus length scales linearly with
the size of the exponent. Let exp.n denote the runtime per bit in the exponent of an ex-
ponentiation modulo n or modulo pﬂ and similarily exp.n? for exponentiations modulo

* In practice, exponentiations modulo p are only a few percent slower than modulo n.

http://www.it-ebooks.info/

Practical and Employable Protocols for UC-Secure Circuit Evaluation over Z, 35

Table 1. Estimated amortized runtime per multiplication in various protocols. The numbers in
the last column are for s = 80, Ibn = 1248, exp.n = 1.3 us, and exp.n®> = 4.8 ps. Results for
our work use the optimized variant of our Multiplication instruction. Results for the DO-protocol
and the BDOZ-protocol are for circuits having a multiple of 4.8 - s and s multiplication gates,
respectively; the performance of these protocols degrades dramatically for smaller circuits. For
the DO-protocol we used parameters A = 0.25 and B = 3.6 - s.

Amortized runtime per multiplication gate withs= 80|
This work (90 -s+200-1bn) exp.n+ (66-s-+ 40.5-1bn)exp.n®| 602 ms
2-party DN [[18] (216 -5 4130 -1lbn)exp.n?| 862 ms
DO-protocol [19] [(2004 - s + 151 -s?) exp.n+ (84-s+ 88 -Ibn)exp.n?| 2025 ms
BDOZ-protocol [2] (256 -5+ 368 -1bn) exp.n?| 2303 ms

n2. Let Ibn be equal to log,(n). Let s be the security parameter. For each protocol, we
counted the number of exponentiations with an exponent of at least s bits. Faster opera-
tions, in particular multiplications and divisions, are ignored. We also ignored the time
needed for secure channel setup, did not consider multi-exponentiations, and ignored
network delay. We provide an estimate of the runtime when run with the “smallest gen-
eral purpose” security level of the Ecrypt-Il recommendations [1] (s = 80,1bn = 1248)
on a standard laptop with a 64-bit operating system

For a fair comparison, we replace all Paillier encryptions [35]] in the protocols we
compare with by Paillier encryptions with short randomness. The encryption function
is thus changed as follows: r <- Zy fups ¢ < (1 +n)"g" (mod n2); output c. (Where
g = (g')" is pre-computed and part of the public key.)

Acknowledgements. We are grateful to Stephan Krenn and to the anonymous review-
ers for their comments. This work was supported by the European Community through
the Seventh Framework Programme (FP7), under grant agreements n°257782 for the
project ABC4Trust and n°321310 for the project PERCY.

References

1. Babbage, S., Catalano, D., Cid, C., de Weger, B., Dunkelman, O., Gehrmann, C., Granboulan,
L., Giineysu, T., Hermans, J., Lange, T., Lenstra, A., Mitchell, C., Ndslund, M., Nguyen, P.,
Paar, C., Paterson, K., Pelzl, J., Pornin, T., Preneel, B., Rechberger, C., Rijmen, V., Robshaw,
M., Rupp, A., Schliffer, M., Vaudenay, S., Vercauteren, F., Ward, M.: ECRYPT II Yearly
Report on Algorithms and Keysizes (2011)

2. Bendlin, R., Damgérd, I., Orlandi, C., Zakarias, S.: Semi-homomorphic Encryption and Mul-
tiparty Computation. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp.
169-188. Springer, Heidelberg (2011)

3. Camenisch, J., Casati, N., Gross, T., Shoup, V.: Credential Authenticated Identification and
Key Exchange. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 255-276. Springer,
Heidelberg (2010)

> The computer used for the benchmarks had an Intel i7 Q820 processor clocked at 1.73 GHz.
We used version 5.0.2 of the GNU Multiple Precision Arithmetic Library.

http://www.it-ebooks.info/

36

16.

17.

18.

20.

21.

22.

23.

J. Camenisch, R.R. Enderlein, and V. Shoup

Camenisch, J., Enderlein, R.R., Shoup, V.: Practical Universally Composable Circuit Evalu-
ation over Z,,. IACR Cryptology ePrint Archive, 2013:205 (2013)

. Camenisch, J., Krenn, S., Shoup, V.: A Framework for Practical Universally Composable

Zero-Knowledge Protocols. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS,
vol. 7073, pp. 449-467. Springer, Heidelberg (2011)

. Camenisch, J., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Log-

arithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126-144. Springer, Hei-
delberg (2003)

. Camenisch, J., Stadler, M.: Proof Systems for General Statements about Discrete Logarithms.

Institute for Theoretical Computer Science, ETH Ziirich, Tech. Rep., 260 (1997)

. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Proto-

cols. IACR Cryptology ePrint Archive, 2000:67 (2000)

. Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.)

CRYPTO 2001. LNCS, vol. 2139, pp. 19-40. Springer, Heidelberg (2001)

. Canetti, R., Halevi, S., Katz, J.: Adaptively-Secure, Non-interactive Public-Key Encryption.

In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 150-168. Springer, Heidelberg (2005)

. Canetti, R., Kushilevitz, E., Lindell, Y.: On the Limitations of Universally Composable Two-

Party Computation Without Set-Up Assumptions. J. Cryptology 19(2), 135-167 (2006)

. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally Composable Two-Party and

Multi-Party Secure Computation. In: STOC, pp. 494-503 (2002)

. Cramer, R., Damgard, 1., Nielsen, J.B.: Multiparty Computation from Threshold Homomor-

phic Encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280-299.
Springer, Heidelberg (2001)

. Damgard, 1., Jurik, M.: A Length-Flexible Threshold Cryptosystem with Applications. In:

Safavi-Naini, R., Seberry, J. (eds.) ACISP 2003. LNCS, vol. 2727, pp. 350-364. Springer,
Heidelberg (2003)

. Damgard, 1., Keller, M.: Secure Multiparty AES. In: Sion, R. (ed.) FC 2010. LNCS,

vol. 6052, pp. 367-374. Springer, Heidelberg (2010)

Damgérd, 1., Keller, M., Larraia, E., Miles, C., Smart, N.P.: Implementing AES via an Ac-
tively/Covertly Secure Dishonest-Majority MPC Protocol. In: Visconti, 1., De Prisco, R.
(eds.) SCN 2012. LNCS, vol. 7485, pp. 241-263. Springer, Heidelberg (2012)

Damgérd, 1., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical Covertly
Secure MPC for Dishonest Majority — Or: Breaking the SPDZ Limits. In: Crampton, J., Jajo-
dia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1-18. Springer, Heidelberg
(2013)

Damgérd, I., Nielsen, J.B.: Universally Composable Efficient Multiparty Computation from
Threshold Homomorphic Encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729,
pp. 247-264. Springer, Heidelberg (2003)

. Damgard, I., Orlandi, C.: Multiparty Computation for Dishonest Majority: From Passive to

Active Security at Low Cost. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 558—
576. Springer, Heidelberg (2010)

Damgérd, 1., Orlandi, C.: Multiparty Computation for Dishonest Majority: from Passive to
Active Security at Low Cost. IACR Cryptology ePrint Archive, 2010:318 (2010)

Damgérd, 1., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty Computation from Somewhat
Homomorphic Encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS,
vol. 7417, pp. 643-662. Springer, Heidelberg (2012)

Hoftheinz, D., Shoup, V.: GNUC: A New Universal Composability Framework. IACR Cryp-
tology ePrint Archive, 2011:303 (2011)

Ishai, Y., Prabhakaran, M., Sahai, A.: Secure Arithmetic Computation with No Honest Ma-
jority. IACR Cryptology ePrint Archive, 2008:465 (2008)

http://www.it-ebooks.info/

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Practical and Employable Protocols for UC-Secure Circuit Evaluation over Z, 37

Ishai, Y., Prabhakaran, M., Sahai, A.: Secure Arithmetic Computation with No Honest Ma-
jority. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 294-314. Springer, Heidelberg
(2009)

Jarecki, S., Liu, X.: Efficient Oblivious Pseudorandom Function with Applications to Adap-
tive OT and Secure Computation of Set Intersection. In: Reingold, O. (ed.) TCC 2009. LNCS,
vol. 5444, pp. 577-594. Springer, Heidelberg (2009)

Jarecki, S., Shmatikov, V.: Efficient Two-Party Secure Computation on Committed Inputs.
In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 97-114. Springer, Heidelberg
(2007)

Kreuter, B., Shelat, A., Shen, C.: Towards Billion-Gate Secure Computation with Malicious
Adversaries. IACR Cryptology ePrint Archive, 2012:179 (2012)

Kiisters, R.: Simulation-Based Security with Inexhaustible Interactive Turing Machines. In:
IEEE Computer Security Foundations Workshop, pp. 309-320 (2006)

Lindell, Y., Pinkas, B.: An Efficient Protocol for Secure Two-Party Computation in the Pres-
ence of Malicious Adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp.
52-78. Springer, Heidelberg (2007)

Lindell, Y., Pinkas, B., Smart, N.P.: Implementing Two-Party Computation Efficiently with
Security Against Malicious Adversaries. In: Ostrovsky, R., De Prisco, R., Visconti, L. (eds.)
SCN 2008. LNCS, vol. 5229, pp. 2-20. Springer, Heidelberg (2008)

Maurer, U., Renner, R.: Abstract Cryptography. In: ICS, pp. 1-21 (2011)

Nielsen, J.B.: On Protocol Security in the Cryptographic Model. PhD thesis, BRICS, Com-
puter Science Department, University of Aarhus (2003)

Nielsen, J.B., Nordholt, P.S., Orlandi, C., Burra, S.S.: A New Approach to Practical Active-
Secure Two-Party Computation. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012.
LNCS, vol. 7417, pp. 681-700. Springer, Heidelberg (2012)

Nielsen, J.B., Orlandi, C.: LEGO for Two-Party Secure Computation. In: Reingold, O. (ed.)
TCC 2009. LNCS, vol. 5444, pp. 368-386. Springer, Heidelberg (2009)

Paillier, P.: Public-Key Cryptosystems Based on Composite Degree Residuosity Classes. In:
Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-238. Springer, Heidelberg
(1999)

Pfitzmann, B., Waidner, M.: A Model for Asynchronous Reactive Systems and its Applica-
tion to Secure Message Transmission. In: IEEE Security & Privacy, pp. 184-200 (2001)
Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure Two-Party Computation Is
Practical. In: Matsui, M. (ed.) ASTACRYPT 2009. LNCS, vol. 5912, pp. 250-267. Springer,
Heidelberg (2009)

Wagstaff Jr., S.S.: Greatest of the Least Primes in Arithmetic Progressions Having a Given
Modulus. Mathematics of Computation 33(147), 1073-1080 (1979)

http://www.it-ebooks.info/

Privacy-Preserving Accountable Computation

Michael Backes!-2, Dario Fiore', and Esfandiar Mohammadi?

! Max-Planck Insitute for Software Systems, Saarbriicken, Germany
fiore@mpi-sws.org
2 Saarland University, Saarbriicken, Germany
{backes,mohammadi}@cs.uni-saarland.de

Abstract. Accountability of distributed systems aims to ensure that
whenever a malicious behavior is observed, it can be irrefutably linked
to a malicious node and that every honest node can disprove false ac-
cusations. Recent work, such as PeerReview and its extensions, shows
how to achieve accountability in both deterministic and randomized sys-
tems. The basic idea is to generate tamper-evident logs of the performed
computations such that an external auditor can check the system’s ac-
tions by mere recomputation. For randomized computations it is more
challenging: revealing the seed of the pseudo-random generator in the
logs would break the unpredictability of future values. This problem
has been addressed in a previous work, CSAR, which formalizes a no-
tion of accountable randomness and presents a realization. Although all
these techniques have been proven practical, they dramatically (and in-
evitably) expose a party’s private data, e.g., secret keys. In many scenar-
ios, such a privacy leak would clearly be unaccepable and thus prevent
a successful deployment of accountability systems.

In this work, we study a notion of privacy-preserving account-
ability for randomized systems. While for deterministic computations
zero-knowledge proofs offer a solution (which is even efficient for some
computations), for randomized computations we argue that efficient so-
lutions are less trivial. In particular, we show that zero-knowledge proofs
are incompatible with the notion of accountable randomness considered
in CSAR if we aim at efficient solutions. Therefore, we propose an alter-
native definition of accountable randomness, and we use it as a building
block to develop the new notion of privacy-preserving accountable ran-
domized computation. We present efficient instantiations for interesting
classes of computations, in particular for digital signature schemes as the
arguably most important cryptographic primitive.

1 Introduction

In distributed systems, checking whether a node’s operation is correct or faulty
is a major concern. Indeed, faulty actions can occur for many reasons: a node
can be affected by a hardware or software failure, a node can be compromised

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 38-F6] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.it-ebooks.info/

Privacy-Preserving Accountable Computation 39

by an attacker, or a node’s operator can deliberately tamper with its software.
Detecting such faulty nodes is often very difficult, in particular for large-scale
systems.

Recent work proposed accountability as a paradigm to ensure that whenever
an incorrect behavior is observed, it can be linked to a malicious node. At the
same time, honest nodes gain the ability to disprove any false accusations. Ex-
amples of these accountability systems include PeerReview [I5] and its extension
[2]. The basic idea of PeerReview is that every user generates a tamper-evident
log which contains a complete trace of the performed computations. Later, an
auditor (in PeerReview any other node in the distributed system) can check
the correctness of the user’s operations by inspecting the logs, replaying the
execution of the user using a reference implementation, and finally comparing
its result. The above approach is however restricted to deterministic systems.
Indeed, in order to enable the replay of a randomized computation one should
publish the seed of the pseudo-random generator in the logs. Clearly, this would
completely destroy the unpredictability of future pseudo-random values. This
issue was addressed by CSAR, an extension of PeerReview [2]. More specifically,
the main contribution in [2] is to formalize a notion of accountable random-
ness, called strong accountable randomness, and to present the construction of
a pseudo-random generator satisfying this property. Informally, strong account-
able randomness consists of the following requirements: (i) the pseudo-random
generator generates values that look random, even to the party who computes
them; (ii) it is possible to verify that the values were computed correctly; (iii)
the unpredictability of future values (i.e., those for which a proof was not yet
issued) does not get compromised; and (iv) the above properties are fulfilled
even if a malicious party is involved in the seed generation.

While the approach of PeerReview and CSAR is very general and has been
proven practical, these techniques have an inherent drawback: they inevitably
expose a party’s private data. In many scenarios such a privacy leak is unac-
ceptable and might thus discourage the adoption of accountability systems. For
instance, consider a company that runs its business using a specific software.
There are many cases in which companies’ tasks have to comply with legal regu-
lations, and having a system which allows an auditor to check this compliance in
a reliable way would be highly desirable. On the other hand, companies have a
lot of data that they want to keep secret. This data might include, for instance,
business secrets such as internal financial information, or secret keys for digital
signatures or encryption schemesE

In spite of its utter importance, the idea of providing accountability while
preserving the privacy of the party’s data has not been yet properly explored in
previous work.

! While in principle such a problem can be solved by using generic secure multi-
party computation techniques (SMPC) [10], all known SMPC protocols require the
verifier to participate in the computation, which is infeasible in practice, whereas in
our setting the verifier only participates in the verification by checking the tamper-
resistant log, which is much better suited for practice.

http://www.it-ebooks.info/

40 M. Backes, D. Fiore, and E. Mohammadi

1.1 Owur Contribution

We address this important open problem in the area of accountability providing
three main contributions:

— We formalize a notion of privacy-preserving accountability for randomized
systems. At a high level, our notion requires that a user is able to produce
a log that convinces an auditor of the correctness of (1) the outcome of
a computation (e.g., that y = P(z)), and (2) the generated randomness.
At the same time, the contents of the log neither compromise the secrecy of
specific inputs of the computation nor the unpredictability of the randomness
generated in the future. Our notion is defined in the UC framework, and thus
allows for arbitrary composabilityﬂ

— We focus on efficient realizations of privacy-preserving accountability for ran-
domized systems. We show that a construction can be obtained by using the
non-interactive proof system by Groth and Sahai [I3] which supports state-
ments in the language of pairing-product equations, and a pseudorandom
function, due to Dodis and Yampolskiy [9], which works in bilinear groups
and is thus compatible with this language. With the above proof system we
can characterize a variety of computations: efficient solutions exist for the
case of algebraic computations with equations of degree up to 2, but also
arbitrary circuits can be supported [12].

— We show interesting applications of privacy-preserving accountability for
randomized systems to digital signatures. We present a signature scheme
in which the signer can show that the secret key and the signatures are gen-
erated “correctly”; i.e., by using accountable randomness. This essentially
ensures that a signature has been created using a specific algorithm.

Our Contribution in Detail. In this section we give a high level explanation
of the technical ideas and the approaches used in this paper.

OUR NOTION AND ITS RELATION WITH STRONG RANDOMNESS. In the case of de-
terministic computations the notion of privacy-preserving accountability would
essentially fall into the well-known application area of zero-knowledge proofs
[11]. However, we model randomized computations: consequently we want that
even the randomness is accountable, i.e., correctly generated. While such a no-
tion, called strong accountable randomness, has already been introduced in [2],
we show that it is not realizable without random oracles (see Section B.T]).
Recall that strong accountable randomness requires that the pseudo-
randomness of the generated values must hold even against the party who knows
the seed. Clearly, this is a very strong property. A random oracle helps its realiza-
tion as it essentially destroys any algebraic properties or relations that one may
recognize in such values. But without the help of this “magic” tool, it is clear
that the party computing the values knows at least how they were computed.

2 We are aware that the UC framework has flaws. Our results, however, can be straight-
forwardly migrated to other simulation-based composability frameworks [23|I8/16].

http://www.it-ebooks.info/

Privacy-Preserving Accountable Computation 41

Our impossibility result left us with two opportunities: (1) either define
privacy-preserving accountability for randomized computations in the strongest
possible way (i.e., so as to imply strong randomness) but be aware that it would
be realizable only using random oracles, or (2) define a slightly weaker version
of accountable randomness. Although the first option would be preferable, a
careful analysis revealed that its efficient realization is very unlikely. Indeed, any
meaningful notion of privacy-preserving accountable computation fulfilling the
properties we have in mind will need zero-knowledge proofs in order to be re-
alized. At the same time, these proofs would have to involve a pseudo-random
generator that satisfies strong randomness by using a hash function modeled
as a random oracle. We are not aware of any hash function that allows for
efficient zero-knowledge proofs and whose actual implementation maintains un-
predictability properties close to the ideal ones of a random oracle (i.e., its use in
a scheme does not fall prey to trivial attacks). This is why we decided to follow
the second approach.

ON REALIZING ACCOUNTABLE SIGNATURES. While focusing on more specific ap-
plications of our accountability system, we asked how to efficiently prove state-
ments that involve the randomness generated by our system. For instance, many
cryptographic protocols rely on correctly distributed randomness, but such ran-
domness usually cannot be revealed (thus CSAR is not a solution). In particular,
this property is very interesting for digital signatures as it would allow for the
accountability of this primitive, namely the signer could show that the secret
key and the signatures are generated correctly (i.e., by using accountable ran-
domness) and at the same time the signer does not leak such confidential data
to the auditor.

Towards this goal, the technical challenge is that for the combination of Groth-
Sahai proofs and our specific pseudo-random generator random values that need
to be hidden can only be group elements [We are not aware of any signature
scheme, from the literature, in which all random values (e.g., the secret key and
the randomness) can be computed using our pseudo-random generator. In this
work we propose the construction of such a signature scheme which thus satisfies
our notion of accountability.

2 Preliminary: The UC Framework

In this work, we formulate and prove our results in a composable, simulation-
based model, in which the security of a protocol is obtained by comparison
with an idealized setting where a trusted machine is available. More specifically,
we use the UC framework [6]. Our results also apply to other simulation-based
composability frameworks, such as II'TM [18], RSIM [23], or GNUC [I6].

We consider attackers that are global, static and active, i.e., an attacker that
controls some parties and that controls the entire network. Such attackers are
typically modelled in the UC framework by only considering protocols parties
that have a designated communication tape for directly passing messages to

3 In particular, every known pseudo-random function compatible with Groth-Sahai
outputs group elements.

http://www.it-ebooks.info/

42 M. Backes, D. Fiore, and E. Mohammadi

the attacker. Since the attacker controls the network, it can decide whether,
in which order, and to whom network message are passed. Additionally every
protocol party has a communication tape for directly passing messages to the
so-called environment, a PPT machine that represents any user of the protocol,
such as the web-browser or an operating system.

The security of a protocol is defined by comparing the execution of the proto-
col, i.e., of all protocol parties, with an idealized setting, called ideal world. The
ideal world is defined just as the real world except for the existence of designated,
incorruptible machines, called ideal functionalities. These ideal functionalities
represent a scenario in which the same functionality is executed using a trusted
machine to whom all parties have direct access. Formally, an ideal functional-
ity directly communicates with the environment via so-called dummy parties,
which forward all messages as instructed. This ideal functionality characterizes
the leakage of the protocol and the possibilities of the attacker to influence the
outcome of the protocol.

The security of a protocol 7 is defined by comparison with its corresponding
ideal functionality F as follows: a protocol m UC-realizes an ideal functionality F
if for all probabilistic polynomial-time (PPT) attackers A (against the protocol)
there is a PPT attacker S (against the ideal functionality) such that no PPT
machine (the environment &) can distinguish an interaction with 7 and A from
an interaction with F and S. A protocol 7 is considered UC-secure if it UC-
realizes the corresponding ideal functionality.

For modeling setups, such as a PKI or a CRS, often ideal functionalities,
such as Fcrs, are used in description of the protocol. A setting in which both
ideal functionalities and protocols occur is called a hybrid world. These ideal
functionalities directly communicate with the protocol parties, since (formally)
the protocol parties are part of the environment from the perspective of these
ideal functionalities. These hybrid world can also be used to abstract away from
cryptographic subprotocols, such as authenticated channels.

3 Defining Accountable Computation

In this section, we introduce a rigorous definition of accountable computation.
As discussed in the introduction, this notion has to work for randomized systems,
and thus have to guarantee accountable randomness. Towards this goal, we will
first show that the previous notion of accountable randomness considered in [2]
cannot be realized in the standard model. Then we will introduce our relaxed
definition, for which we discuss efficient realizations in Section [l

We consider a setting with a party VE, called the auditor, that performs
the audit and a computation party that performs the computation and, upon
request, produces proofs that the computation has been correctly performed.
Assuming an evaluation function EVAL for computing results, an accountable
computation scheme is a collection of three algorithms: SETUP is run to generate
the system’s parameters that are distributed to every party and to the verifier;
Prov is run by the party to prove statements about a computation and it
produces a log; V is run by the verifier on input the log to check its correctness.

http://www.it-ebooks.info/

Privacy-Preserving Accountable Computation 43

On (init) from & On (comp, i, sid) from £ for malicious
for honest P P
draw random values send (comp, i, sid) to A
T1yeeyn < {0,1}7 wait for a response (output,re,b,sid")
store (randy,...,rand,) := from A
(ri,...,7n) store proofs(sid’, i) := (re, b)
send (init) to A output (output) to €

output (initd) to &£
On (vr,i, sid) from & for honest Ve
On (getrand,i) from A let (re,b) := proofs(sid, i)
send rand; to A if b=1
then output (rand;,4,1) to &

On (comp, i, sid) from & else output (re,7,0) to £

for honest P On (vr, i, sid) from £ for malicious Ve

set re := (rand;) send (vr, i, sid) to A

store proofs(sid, 1) := (re, 1) walit for a response m from A
send (re, i, sid) to A and & output m to &

Fig. 1. The ideal functionality Fs for strong randomness generation

For deterministic computations and for proofs that should not hide any secrets
(e.g., decryption keys) previous work offers efficient solutions [I5IT4]. In the case
of randomized computations, however, the computing party additionally needs
to prove that the randomness has been honestly generated, e.g., in order to
prove that signature key does not intentionally leave a trapdoor for malicious
third parties. Therefore, randomized accountable computation needs a fourth
algorithm INIT, that is run in a trusted set-up phase and in which the computing
party gets a secret seed and the auditor a corresponding public seed.

Backes, Druschel, Haeberlen, and Unruh studied the problem of accountable
randomness and introduced the notion of strong randomness [2]. The authors
even presented an efficient construction that satisfies this property; however,
their realization guarantees strong randomness only in the random oracle model.
In the next section, we show that realizing their notion in the standard model
is impossible.

NOTATION. In the description of the ideal functionalities and the protocol tem-
plate, we use for persistently stored variables the font variable and for values the
font wvalue.

3.1 Strong Randomness Is Not Realizable

Backes, Druschel, Haeberlen, and Unruh define strong randomness by means of
an ideal functionality Fg. This ideal functionality (formally explained in Figure

http://www.it-ebooks.info/

44 M. Backes, D. Fiore, and E. Mohammadi

) basically offers an interface for a computing party P to send commands to
compute a pseudo-random generator, and Fg offers an interface for auditors
VE to verify that these (pseudo-)random values are correctly distributed and
unpredictably for the party that computes them. In addition, Fg; has an ini-
tialization phase, in which random values rand; are drawn uniformly at random,
and Fg offers the attacker A a randomness oracle: upon a query (getrand, i),
Fsr responds with rand;.

The Ideal Functionality Fs,. Beside an initialization phase (via the command
init), Feg offers two commands comp and vr. If a party is malicious, Fgg allows
the attacker to determine the behavior for these commands. For honest parties,
upon (comp, 7, sid) the pseudo-random element with the index ¢ is generated (and
internally stored in proofs(sid,#)). For honest parties, the flag b in proofs(sid, 7)
is set to 1 and for malicious parties, the flag is set to 0. Upon (vr,i, sid), Fsr
reads proofs(sid,i) and if b = 1 then it outputs the real random element and
otherwise the stored element re.

For any (reasonable) two-party protocol IT, we show how the environment &
can, in the standard model, easily distinguish whether it is communicating with
IT and the real attacker A or Fg; and a simulator. Assume that the computing
party P is compromised. Recall that £ knows all secrets of P, in particular, any
secret information used to compute the pseudorandom generator. We assume
A to be the dummy attacker that simply forwards everything. £ performs the
following steps:

1. Send the command (comp, ¢, sid) to P.

2. Since P is compromised, A has to answer for P. Since A is the dummy
attacker, A forwards this duty to £.

3. & computes the honest output (re,i) of that party P on its own, typically

the output of a pseudo-random function on some seed and input i.

& sends the honestly computed output (re, %) as a response to A.

A dutifully forwards the output (re,i) to the compromised P.

P sends the honestly computed output (re,4) over the network, i.e., to A.

A simply delivers the message to VE.

€ sends (vr, i, sid) to VE and waits for a response ((re’,i’),b)

€ outputs 1 if (re,i) = (re/,') and b = 1; otherwise output 0

© XN o

In the ideal setting, the attacker A will actually be the simulator. Now, if
the simulator behaves differently from the attacker in steps Bl Bl or [(i.e., it
does not let & compute the answer for P, does not forward the output (re,?)
to the compromised P, or it does not deliver the message in step 7), then £
can use this unexpected behavior to distinguish the two settings. Thus, the
simulator has to act towards £ as the dummy attacker (see step[l). At this point
we have two possible cases for the answer of Fg to the environment upon the
command (vr,i, sid): (i) either b = 0, or (i) b = 1. In the case when b = 0,
the environment will output 0 regardless of the value re’. If b = 1, recall that
Fsr outputs (re’,i’) = (rand;,), where rand; is uniformly chosen. Namely, Fgg
replaces the value re sent by the simulator. Since rand; is uniformly chosen, with

http://www.it-ebooks.info/

Privacy-Preserving Accountable Computation 45

overwhelming probability we have that rand; # re. Hence, in the ideal setting £
will output 0 with overwhelming probability. In contrast, in the real setting the
environment always outputs 1 if b =1 and 0 if b = 0.

We stress that in the random oracle model, this argument does not go through.
Indeed, to compute re in step Bl £ might have to query the RO. At that point
the simulator could program the output of the RO such that it coincides with
the uniformly chosen randE. The main problem with this notion of strong ran-
domness is realizing it against such a strong distinguisher (i.e., the environment)
in UC. Since the seed of a pseudo-random function cannot be hidden from the
environment, the latter can easily distinguish random values from the output of
the pseudorandom function. We remark that the ideal functionality given in [2] is
presented in a simplified setting where prover and verifier are the same machine.
This can be done by assuming that the verifier is always honest (as verification
is a public procedure). It is not hard to see that our counter-example works for
this simplified setting as well. Indeed, we are not making any assumption on the
honesty of the verifier.

3.2 Our Notion of Accountable Computation

In the standard model, it is not possible to realize strong randomness (see Sec-
tion B]). The main problem is that the output of the pseudo-random generator
has to be unpredictable even to the party that performs the computation. Unsur-
prisingly, such a result cannot hold in the standard model. Therefore, we weaken
the definition of strong randomness in order to adapt it and make it realizable
in the standard model. To do so, intuitively we require that the outputs of the
pseudo-random generator be indistinguishable from random as long as the seed
remains hidden. However, since our main goal is to provide accountability for
the computations performed by the system, we directly integrate this (weaker)
definition of strong randomness into a fully-fledged definition of accountable
randomized computation.

Protocol Template for Real Accountable Computation. The core of an
accountable computation scheme are four algorithms (SETUP, INIT, PROV, V)
that will be used by the parties P and VE in a canonical protocol.

This protocol template assumes authenticated channels between party P
and auditor VE. This assumption corresponds to the common assumption that
accountable systems have to maintain a tamper-evident record that provides
non-repudiable evidence of all the actions that are sent via these authenticated
channels. This authenticated channel is abstracted as an ideal functionality Fyyru
that guarantees that the network attacker cannot send messages on behalf of P.
Typically, such an authenticated channel is realized using a PKI and by attaching
a digital signature to every messageﬁ. Moreover, we introduce two set-up func-
tionalities. The first set-up is a standard CRS functionality Fers that is needed

* Roughly speaking, this is the approach taken by the proof in [Z].
5 The functionality Faymu is standard, we do not present its definition here. We refer
the interested reader to previous work [6].

http://www.it-ebooks.info/

46 M. Backes, D. Fiore, and E. Mohammadi

for creating non-interactive zero-knowledge proofs. Technically, Fczs runs the
SETUP algorithm and distributes its output to all parties. The second set-up
assumption models the initial trusted phase in which P receives a seed, for gen-
erating pseudorandom values, and VE receives a corresponding public informa-
tion, which will enable VE to later check whether the pseudorandom values are
generated correctly. This set-up assumption is modeled as a functionality Fpir
that internally runs the INIT algorithm and accordingly distributes the result,
i.e., the seed to P and the public information to VE. The goal of having Fpyr is
to ensure that the seed is generated truly randomly, even at a malicious party
P. In practice this assumption can be realized in several ways, e.g., P and VE
run a parallel coin tossing protocol, INIT is executed in a trusted hardware or
in a phase of the protocol where P is guaranteed to behave honestly, or INIT is
externally executed by a trusted entity who securely distributes the output. We
stress that, even if not very efficient, this phase has to be run only once.

The computing party P is initialized before its first run (via init), and then
it can be invoked (via comp) as a subroutine for computing programs (storing
proofs about the execution) and publicly announcing the results. Moreover, P
reacts to network requests (via vr) to prove statement about its announced
results. The auditor VE is invoked by Fpyr for the initialization of P (via init),
and then can be invoked (via vr) as a subroutine to verify publicly announced
results. Last, VE reacts to network announcements of P (via cp) that a result
has been computed. The computing party P, upon init, queries both set-up
functionalities Fcrs and Fpkr in order to receive the public parameters and the
seed for the pseudo-random generator. Upon an invocation (comp, p, s, sid) with
a program p and secret inputs s, P computes the program, adds a proof to the
log and publicly announces the result. Upon a network message (vr,re, p, sid)
from the authenticated channel with VE, P outputs the corresponding proof, or
an error message if such a proof does not exist.

The auditor VE, upon being called by an initialization message (init) from
the seed generation, queries in turn Fcgg for the CRS and then stores all values.
Upon a network message (prf,re, p, cnt, sid) over the authenticated channel
Faurn with P, VE stores the message and notifies the environement. Upon an
invocation (vr,re,p, cnt, sid), the auditor first asks via Fuyrmy the computing
party P for a proof, and then verifies this proof and outputs the result to the
environment.

Ideal Functionality for Accountable Computation. The desired security
properties for accountable randomized computation are captured by the ideal
functionality described in Figure 2l The functionality offers the same interface to
the environment as the protocol template and represents the “ideal” behavior of
the protocol. In addition, however, the functionality explicitly allows the attacker
to intercept messages, and it internally maintains a randomness function RAge
for modeling pseudorandomness.

The ideal functionality has interfaces to both the channel from the environ-
ment to P and the channel from the environment to VE. Therefore, we distinguish

http://www.it-ebooks.info/

Privacy-Preserving Accountable Computation 47

On (init) from & Ras.: When called on (cnt)

for honest P if P is honest then
se & {0,1}" r & Rg(F); output r
se:=se;cnt:=0 else
send (init) to A r:= EVAL(F, ent, se); output r
output (initd, cnt))
to £ from P On (vr,re,p, cnt, sid) from & for hon-

est Ve

On (comp, p, s, sid)

if (re, p, cnt) = sta(sid) then
from & for honest P

send (vr, re, p, cnt, sid) to A

if p € Lr then wait for a response (deli, s’, sid)
store tc := cnt if P is honest
run re := EvaL™(p, cnt, s) then secr := wit(re, p, cnt, sid)
sta(sid) := (re, p, cnt) else secr := s’
wit(re, p, cnt, sid) := s if (re,pg) = (re,p) A re =
pe(sid) := (prf, re, p, tc, sid) EvAL™=(p, tc, secr, se)
cnt:=cnt +1 then output (re, p,1) to &
send (prf,re, p,tc, sid) to A else output (re, pg,0) to £

P outputs (re, p, tc, sid) to €

On (deli, sid) from A
let (prf,re, p, cnt, sid) := pe(sid)
store sta(sid) := (re, p, ent)
VE outputs (cp, re, p, ent, sid) to &€

Fig. 2. The ideal functionality for accountable computation

from which of these channels an environment message comes and to which we
output messages. Moreover, the functionality maintains internal (shared) data-
structures, such as sta and wit which are used for verification, and se which is used
for pseudo-random values.

Upon (init) for P, the functionality honestly draws a random seed and no-
tifies the attacker that it has been initialized. Upon (comp, p, s, sid), the ideal
functionality computes the program on the inputs, stores the secret inputs for
later verification, and publicly announces the result. Upon a message (deli, sid)
by the attacker, the statement is registered in pg and the environment is notified.
Upon (vr, re, p, ent, sid), the functionality recomputes the result with the stored
witness. We stress that for malicious parties the attacker is allowed to give the
witnesses for the statement in the deli message. Otherwise, the simulator does
not work, because the real protocol does not reveal the proof earlier.

In contrast to the real protocol, for honest P the functionality returns truly
random values as a result of RAge, instead of the result of the pseudorandom
function. This basically models that the pseudo-random generation should satisfy
the usual notion of pseudorandomness, in which the challenger is always honest.

http://www.it-ebooks.info/

48 M. Backes, D. Fiore, and E. Mohammadi

We stress that for dishonest parties P (and honest VE) our ideal functionality
still guarantees that the PRF has been honestly computed. Malicious parties in
the ideal model are canonically modeled by merely forwarding the input to the
attacker and storing its results in the internal data-structures, such as sta.

4 Instantiations of Accountable Computation Schemes

Now that we have a clear definition of accountable randomized computation, we
will show how it can be realized by means of suitable cryptographic tools. First,
we describe below a generic paradigm to achieve this notion. However, since
in the most generic case this generic construction may lead to rather inefficient
instantiations, we will then show how to realize efficient accountable randomized
computation for a significant class of computations.

A GENERIC CONSTRUCTION. The basic idea is to use UC-secure protocols for
non-interactive zero-knowledge proofs, a perfectly binding commitment, and a
pseudorandom function. Moreover, we assume the availability of ideal function-
alities for the generation of the common reference string, the random sampling of
a seed for the PRF, and for implementing authenticated channels (e.g., using sig-
natures). At a high level, the generic scheme works as follows. In the setup phase,
the parties ask for the common reference string for the NIZK proof system. Next,
to initialize the system, every user invokes the ideal functionality in order to ob-
tain a random seed se of a pseudorandom function Fl.. It also samples random
coins open,,, and computes a commitment C' = CoM(se; open,), which is pub-
lished in the authenticated log. The pair se, open,, is instead maintained by the
party. Later, whenever a party is asked to compute a function p on inputs s, it
will compute re = p(s) and will create a proof 7 using the NIZK proof system for
the NP statement “Js : output = p(s)”. To prove correctness of randomness gen-
eration, i.e., that r = Fs.(ent), the user can use the same approach and generate
a proof for the statement “I(se,opense) : r = Fye(ent) AC = Com(se; opens.)”.
The proof IT = (p,re,n, cnt) is published in the log. Finally, the auditor can
verify proofs by running the verification procedure of the NIZK proof system.

4.1 Useful Tools and Definitions

Before describing our efficient instantiation, here we introduce the algebraic tools
and the cryptographic primitives that will be useful in our construction.

BILINEAR GROUPS. Let G(1¥) be an algorithm that on input the security pa-
rameter 1¥ outputs a tuple ppg,; = (p, G1, Ga, Gr, €) such that: p is a prime of
at least k bits, G1,Go, G are groups of order p, and e : G; X Go — G is an
efficiently computable and non-degenerate bilinear map.

The ¢-Decisional Diffie-Hellman Inversion (¢-DDHI, for short) problem in G4
(same definition would hold in G3) is defined as follows.

Definition 1 (¢-DDHI). Let (p, Gy, Gy, Gr,e) & G(1%), g1 € Gy be a genera-
tor, and x & Z,, be chosen at random. Let T' be the tuple (gl,g‘f,gcfQ, . ,gfq),
and Z be a randomly chosen element of Gy1. We define the advantage of an

http://www.it-ebooks.info/

Privacy-Preserving Accountable Computation 49

adversary A in solving the g-Decisional Diffie-Hellman Inversion problem as
Adv?ADDHI(k:) = |Pr[A(p,T,g"/*) = 1] — Pr[A(p, T, Z) = 1]|, where the proba-
bility is taken over the random choices of G,x,Z and the random coins of A.

We say that the g-DDHI Assumption holds in Gy if for every PPT algorithm A,

and for any q polynomial in k, the advantage AdvilDDHI(k) s negligible.

GROTH-SAHAI PROOF SYSTEM. Groth and Sahai [13] describes a way to generate
efficient, non-interactive, witness-indistinguishable proofs for statements in the
language Lgs of so-called “pairing product equations”. If {X;}", € Gy and
{Vi}7=, € Gy are variables, and {A;}7, € G, {B;}*, € G2, a;; € Zp and
tr € Gr are constants, Lgs is the language of equations of the following form:

n

[Te(A;) He(')(ia B) [T 11 e,y =tr

i=1 i=1j=1

The Groth-Sahai proof system can be instantiated in prime order groups by
assuming its security based on either the SXDH or Decision Linear assumptions.

The main technique behind Groth-Sahai proofs is the use of specific commit-
ment schemes that allow to commit to elements in Gy or Gs. In particular, the
proof system generates a common reference string which can be of two different
and indistinguishable forms. When the CRS is instantiated for perfect soundness,
the commitment is perfectly binding, whereas in the witness-indistinguishability
setting the CRS leads to a perfectly hiding commitment. More importantly, the
two modes of generation are computationally indistinguishable under the SXDH
(resp. DLin) assumption, and both modes allow trapdoors that work as fol-
lows. In the perfectly binding setting, commitments have the form of ElGamal
(resp. Boneh-Boyen-Shacham) ciphertexts, and the trapdoor is the decryption
key, which thus allows to make the commitments eztractable. In the perfectly
hiding setting, instead, the trapdoor allows to equivocate the commitments, i.e.,
to create a commitment to some (random) value g7, and to later open it to a
different value g7. These trapdoors are usually referred to as the extraction and
simulation trapdoor respectively.

For lack of space, we refer the interested reader to [I3] for a detailed
and formal description of the Groth-Sahai proof system. Here we recall that
such a scheme is defined by three algorithms (GS.SETUP, GS.PROVE, GS.VER)
that allow to, respectively, generate the parameters, create proofs and ver-
ify proofs. Moreover, for security, the system is also equipped with “ex-
traction” and “simulation” algorithms (GS.EXTRACTSETUP, GS.EXTRACT,
GS.SIMSETUP, GS.SIMPROVE). In its basic instantiation, the Groth-Sahai
scheme provides witness-indistinguishable proofs. However, Groth and Sahai in-
terestingly show that for certain cases these techniques can be used to achieve
zero-knowledge [I3]. A significant case is the one in which all the equations being
simultaneously satisfied have the constant value t7 = 1, the identity element in
Gr. Other statements have been shown to be modifiable in order to obtain zero-
knowledge-friendly statements. We refer the interested reader to [I3] for more
details. For the sake of our work, we denote this subset of Lgs that allows for
zero-knowledge proofs as Lgs_zk.

http://www.it-ebooks.info/

50 M. Backes, D. Fiore, and E. Mohammadi

THE PSEUDORANDOM NUMBER GENERATION. As a tool for generating the ran-
domness in our acclountable computation we use the following pseudorandom
function Fs(c) = g;*°, which is also known as Boneh-Boyen weak signature [5],
and Dodis-Yampolskiy PRF [9]. The function is proven pseudo-random under
the ¢-DDHI assumption in G, and for a domain D of size ¢ where ¢ is polyno-
mial in the security parameter. We observe that the restriction on the domain’s
size is not a severe limitation in our setting as we will use the function in a
stateful way to generate a sequence of values Fi(1), Fs(2),.... The number of
values is bounded by the the system’s running time which is polynomial in the
security parameter. More importantly for our application, the function is known
to allow for efficient Groth-Sahai proofs. The idea of using zero-knowledge proofs
to show the correctness of the outputs of a pseudorandom function is somewhat
similar to the notion of simulatable verifiable random functions [7], with the only
exception that in the latter case proofs do not need to be fully zero-knowledge.
Belenkiy, Chase, Kohlweiss, and Lysyanskaya point this out [3] and propose a
construction based on Groth-Sahai proofs.

4.2 An Efficient Instantiation of Accountable Computation

In this section we show how to realize accountable randomized computation for
the language Lgs_zk of pairing product equations with zero-knowledge state-
ments. It is worth noting that using Lgs_zk one can prove the simultaneous
satisfiability of multiple algebraic equations whose degree is up to 2. In the de-
scription of our scheme we give an explicit description of the algorithms F and
F.PROVE for the generation and the verification of the generated pseudorandom
values. These algorithms are however a specific case of computations and proofs.

— SETUP(1¥): generate the description of bilinear groups ppg, =
(p,G1,G2,Gr, g1, 92,€) and the parameters ppgg & GS.SETUP(ppg,,) Of
the Groth-Sahai proof system. Return pp = (ppgas, PPas)-

— INIT(pp): as a seed, sample a random value s & Z, and random opening
openg. The party keeps a secret key fsk = (s, open,) while a public verifica-
tion key is fpk = CoM(g35; opens) is published to the log.

— Prov(pp, fsk, p, s): compute re = p(s), run = & GS.PROVE(ppgg, St, w)
where the statement St is created from the program p and the result re,
whereas the witness is the secret input s. Output IT = (p, re, 7, cnt).

s+cnt

— F(pp, fsk, cnt): increment the counter cnt < cnt + 1, and output y = g¢;

— F.PROVE(pp, fsk, cnt): proving the correctness of a pseudorandom value y =
F(pp, fsk, cnt) basically consists in creating a composable NIZK proof 7 for
the language Lprr = {fpk, cnt,y : Is, open, : fpk = CoM(g5; open,) Ay =

1

g }E Output IT = (F,y, 7, ent).

— V(pp, fok,II): parse II as (p,re,m,cnt). Use the verification algorithm
of Groth-Sahai to verify the proof m with respect to (public) values
frk, p, re, ent.

5 Belenkiy et al. show in [3] how to create such a proof using Groth-Sahai.

http://www.it-ebooks.info/

Privacy-Preserving Accountable Computation 51

In terms of performances, the efficiency of the above instantiation heavily
depends on the efficiency of the Groth-Sahai scheme. It is worth noting that
although at the end our solution is not as efficient as CSAR, it is though the
first providing such a strong privacy guarantee.

To prove the security of our accountable computation we will show that it
realizes the ideal functionality of accountable randomized computation. In using
the above instantiation in our protocol template we require the generation of
different GS parameters ppgg for every prover party. Generating different GS
parameters, i.e., a different CRS, for every party avoids the need of being able
to extract and simulate with the same CRS, which in turn allows us to use more
efficient GS constructions. We stress that it is possible to use a strengthened GS
proof system that allows for simultaneous simulation and extraction with the
same CRS, and then to use only one CRS for all parties. However, since in our
scenario we anyway assume the distribution of a public key for every prover, our
restriction of using many CRS would not significantly weaken the set-up model.

Theorem 1. Let IT be our protocol’s template instantiated with the algorithms
from Section and let F be the ideal functionality from Figure [@ If the q-
DDHI assumption holds in Gy and Groth-Sahai is secure, then II securely UC-
realizes F.

For lack of space, the proof of this theorem appears in the full version.

5 Using Verifiable Randomness Privately: Signatures

The previous section describes an accountable randomized computation for the
language Lgs—zk of pairing product equations (of a certain form), and for a
specific pseudorandom function Fg(z). It is worth noting that the generated
(pseudo)randomness have a specific structure: the values are elements of the
group Gi. While in general one can use a suitable hash function in order to
generate, e.g., binary strings out of group elements, such an arbitrary use of
the randomness does not always allow for efficient zero-knowledge proofs. To be
more concrete, if one wants to prove the correctness of a certain computation
in which a value R generated using Fs(cnt) is one of the secret inputs, then R
must be a variable in the language Lgs_zk, i.e., R must be in G1.

Such a situation leaves us with an open question about the uses of the ac-
countable randomness generated by our protocol. In this section, we address this
problem and we propose an application to an important cryptographic primitive:
digital signatures. In digital signatures, randomness is usually used to: (1) gen-
erate the secret signing key, (2) create the signature. If the randomness source is
bad, the signature might be forgeable. Our scheme assumes a good randomness
seed and given that seed proves that all signatures use “good” randomness.

5.1 An Accountable Signature Scheme

In this section, we tackle this problem and we propose a signature scheme that
fits the setting of our accountable randomized computation, i.e., that of bilin-
ear pairings. To achieve this goal, the faced technical challenge is that virtually

http://www.it-ebooks.info/

52 M. Backes, D. Fiore, and E. Mohammadi

“

all existing constructions use either secret keys or random values that are “in
the exponent”. We solved this problem by proposing a new scheme which has
the desired property, namely both the secret key and the randomness used in the
signing algorithm are group elements. The proposed construction works within
the accountable computation system. In particular, it uses the same pseudoran-
dom generator and shares the same state.

The Security Model. Our signature scheme is stateful, in the sense that
every message is signed with respect to a counter which gets incremented every
time (in particular, the same counter is never re-used), and the signature is
verified against the counter. For security, we consider the standard notion of
unforgeability under chosen message attack in the stateful setting. This model
considers an adversary that has access to a signing oracle and whose goal is to
produce a forgery that either verifies against a “new” counter (i.e., a counter
greater than the one in the system after the last query), or it verifies for an
“old” counter (i.e., one for which a signature was obtained from the oracle) but
for a message that is different from the one asked to the oracle.

Since our signature scheme is part of the accountability system (i.e., it shares
the same parameters) we have to model the fact that an adversary may ob-
tain additional information. For instance, it might ask for proofs about arbi-
trary statements. For this reason, we consider an extension of the unforgeability
game, in which the adversary is granted access to an additional oracle O(-)
which can be either one of the algorithms PrRoOv(pp, fsk, -, s), F(pp, fsk, cnt),
F.PROVE(pp, fsk, cnt). We assume that F and F.PROVE are computed on the
next counter, whereas PROV is evaluated on a program p chosen by the adver-
sary. For lack of space, a formal definition of our unforgeability experiment will
appear only in the full version.

Our Construction. Before describing our construction, we give a high level
description of our techniques. Our starting point is an idea, earlier proposed
by Bellare and Goldwasser, for building signature schemes from zero-knowledge
proofs [4]. Roughly speaking, Bellare-Goldwasser’s scheme works as follows. The
key generation consists of generating the seed s of a PRF and publishing its
commitment C' as the public verification key. Next, to sign a message m one
computes the PRF on the message, y = fs(m), and proves in zero-knowledge
that y = fs(m) and s is the same value in the commitment C'.

In our case, the pseudorandom function is computed on a state, the counter,
and thus we cannot apply it to an arbitrary message m. To solve this issue
we create a signature on m by using the randomness R = F,(ent) € Gy and
computing a value ¢ = h™ - R, where h is also random value that is kept as
the secret key. The actual signature is o together with a zero-knowledge proof
that o is indeed created as h"™ - Fs(cnt). The security relies on the soundness
and zero-knowledge properties of the proof system, and the observation is that
such value o is essentially an information theoretic one-time MAC on m (if one
assumes that h is random and so is every R).

http://www.it-ebooks.info/

Privacy-Preserving Accountable Computation 53

More in detail, our construction works as follows. Let pp be the public pa-
rameters of the system consisting of a tuple pp = (p, G1, G2, Gr, 91, 92, €, PPs)
where ppgg are the parameters of a NIZK Groth-Sahai proof system.

— SIGKEYGEN(pp): use the pseudorandom function to generate h <
F(pp, fsk,cnt) € G;. Next, commit to h using random coins openy,, set
vk = CoM(h, openy,) and sk = (h, openy,).

— SIGN(pp, fsk, sk,m). Let m € Z, \ {0} be the message, and let cnt be the
system’s counter for randomness generation. A signature on m is generated
as follows. First, use the pseudorandom function to generate randomness
R < F(pp, fsk, cnt). Next, compute o < h™ - R, C; = CoMm(h; open},) Cr =
CoM(R; openg), C = COM(R, openy), a composable NIZK proof m; for the
statement 3(h, open},, R, open’y) : 0 = R™ - RAC} = CoM(h, open)) ANCp =
CoM(R; open'y), a composable NIZK proof m that 3(g3, opens, R, open,) :
Cr = CoM(R;opengr) A R = Fs(cnt), and composable NIZK proofs wr and
7, proving that Cr and C%, and vk and C} commit to the same values.
Output X' = (0,Cr,Cy, C},, 71, T2, Th, TR).

— SIGVER(pp, vk, m,cnt, X): use the verification algorithm of Groth-Sahai to
verify proofs my, wo, TR, Th.

Theorem 2. If the Groth-Sahai proof system is secure, and the function Fg(x)
1s pseudorandom, then the signature scheme is unforgeable.

For lack of space, the proof appears only in the full version.

6 Related Work

Previous work proposed the use of accountability for several goals, such as to
achieve real-world security [19], to incentivize cooperative behavior [§], to foster
innovation and competition in the Internet [20J1], and to design dependable
networked systems [24]. Systems have been built to provide accountability for
both deterministic and randomized systems. In the previous section we already
mentioned PeerReview [I5] and its extension, CSAR [2]. Another example is
CATS [25], a network storage service with strong accountability properties. The
basic idea of CATS is to use a trusted publishing medium for publishing the
logs and to ensure their integrity. The logs are then checked against a set of
rules that describe the expected behavior of a node. Another system, repeat and
compare [22], uses the accountability approach to guarantee content integrity in
a peer-to-peer content distribution network built over untrusted nodes. Its basic
idea is to use a set of trusted nodes that locally reproduce a random sample
of the generated content and compare it to the one published by the untrusted
nodes. Recently, another system, NetReview [14], successfully built upon the idea
of PeerReview to enable the detection of faults caused by ISPs in the Border
Gateway Protocol (BGP).

http://www.it-ebooks.info/

54 M. Backes, D. Fiore, and E. Mohammadi

On the definitional side, Kiisters, Truderung, and Vogt introduced a definition
of accountability and compared it to the notion of verifiability [I7]. They show
that verifiability is weaker than accountability as the former does not require that
a malicious party is always detectable. We notice that our definition implicitly
assumes authenticated channels. Hence, it does not only capture verifiable com-
putation, but also accountable computation.

The idea of generating accountable randomness is closely related to the notion
of verifiable random functions (VRFs) [21], and simulatable VRFs [7]. In a nut-
shell, VRF's are pseudo-random functions that allow for publicly verifiable proofs
about the correctness of the function’s outputs. Moreover, all values for which
a proof has not been issued are guaranteed to remain pseudorandom. Although
this is intuitively the same requirement as in our case, there are a couple of dif-
ferences due to some technical details. The difference mainly deals with the fact
that our notion is simulation-based in a composability framework, and should
not reveal any information about the seed, a property which is not necessarily
captured by (simulatable) VRFs. To this extent, our techniques are related to
the extension of simulatable VRFs proposed by Belenkiy, Chase, Kohlweiss, and
Lysyanskaya [3], from which we borrow some of the technical ideas.

7 Conclusion and Future Work

In this paper we have investigated the notion of accountability for systems that
execute randomized computations and want to keep the inputs of these compu-
tations private. We formalized a rigorous definition that models all the essen-
tial security properties, and we showed an efficient instantiation for interesting
classes of computations based on techniques of the Groth-Sahai proof system.
Furthermore, we proposed a digital signature scheme that enjoys the accountabil-
ity properties of our system: the signer can convince an auditor that the secret
signing key and the signatures are correctly generated (i.e., by using good ran-
domness), and the auditor neither learns the signature key nor the randomness
used for the signatures. For future work, it would be interesting to explore exten-
sions of our scheme to provide accountability for other important cryptographic
primitives, such as encryption, as well as to investigate efficient instantiations
for richer classes of computations.

References

1. Argyraki, K., Maniatis, P., Irzak, O., Ashish, S., Shenker, S.: Loss and delay ac-
countability for the internet. In: IEEE International Conference on Network Pro-
tocols, ICNP 2007, pp. 194-205 (October 2007)

2. Backes, M., Druschel, P., Haeberlen, A., Unruh, D.: Csar: A practical and provable
technique to make randomized systems accountable. In: Proceedings of the Network
and Distributed System Security Symposium, NDSS 2009 (2009)

http://www.it-ebooks.info/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Privacy-Preserving Accountable Computation 55

Belenkiy, M., Chase, M., Kohlweiss, M., Lysyanskaya, A.: Compact e-cash and sim-
ulatable VRFs revisited. In: Shacham, H., Waters, B. (eds.) Pairing 2009. LNCS,
vol. 5671, pp. 114-131. Springer, Heidelberg (2009)

Bellare, M., Goldwasser, S.: New paradigms for digital signatures and message
authentication based on non-interactive zero knowledge proofs. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 194-211. Springer, Heidelberg (1990)
Boneh, D., Boyen, X.: Short signatures without random oracles and the sdh as-
sumption in bilinear groups. Journal of Cryptology 21, 149-177 (2008)

Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. IACR Cryptology ePrint Archive, 2000:67 (2000)

Chase, M., Lysyanskaya, A.: Simulatable VRF's with applications to multi-theorem
NIZK. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 303-322.
Springer, Heidelberg (2007)

Dingledine, R., Freedman, M.J., Molnar, D.: Accountability. In: Peer-to-Peer: Har-
nessing the Power of Disruptive Technologies. O’Reilly and Associates (2001)
Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and
keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416-431. Springer,
Heidelberg (2005)

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: Pro-
ceedings of the 19th Annual ACM Symposium on Theory of Computing, STOC
1987, pp. 218-229. ACM (1987)

Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. STAM J. Comput. 18(1), 186-208 (1989)

Groth, J.: Short pairing-based non-interactive zero-knowledge arguments. In: Abe,
M. (ed.) ASTACRYPT 2010. LNCS, vol. 6477, pp. 321-340. Springer, Heidelberg
(2010)

Groth, J., Sahai, A.: Efficient noninteractive proof systems for bilinear groups.
SIAM Journal on Computing 41(5), 1193-1232 (2012)

Haeberlen, A., Avramopoulos, 1., Rexford, J., Druschel, P.: NetReview: Detecting
when interdomain routing goes wrong. In: Proceedings of the 6th Symposium on
Networked Systems Design and Implementation, NSDI 2009 (2009)

Haeberlen, A., Kuznetsov, P., Druschel, P.: PeerReview: Practical accountability
for distributed systems. In: Proceedings of the 21st ACM Symposium on Operating
Systems Principles, SOSP 2007 (2007)

Hofheinz, D., Shoup, V.: Gnuc: A new universal composability framework. TACR
Cryptology ePrint Archive, p. 303 (2011)

Kiisters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship
to verifiability. In: Proceedings of the 17th ACM Conference on Computer and
Communications Security, CCS 2010, pp. 526-535 (2010)

Kiisters, R.: Simulation-based security with inexhaustible interactive turing ma-
chines. In: Proc. 19th IEEE Computer Security Foundations Workshop, pp. 309—
320 (2006)

Lampson, B.W.: Computer security in the real world. In: Proc. Annual Computer
Security Applications Conference (December 2000)

Laskowski, P., Chuang, J.: Network monitors and contracting systems: competi-
tion and innovation. In: Proceedings of the 2006 Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications, SIGCOMM
2006, New York, NY, USA, pp. 183-194 (2006)

http://www.it-ebooks.info/

56

21.

22.

23.

24.

25.

M. Backes, D. Fiore, and E. Mohammadi

Micali, S., Rabin, M.O., Vadhan, S.P.: Verifiable random functions. In: 40th FOCS,
New York, New York, USA, October 17-19, pp. 120-130 (1999)

Michalakis, N.; Soulé, R., Grimm, R.: Ensuring content integrity for untrusted
peer-to-peer content distribution networks. In: Proceedings of the 4th USENIX
Conference on Networked Systems Design & Implementation, NSDI 2007, p. 11
(2007)

Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its
application to secure message transmission. IEEE Symposium on Security and
Privacy, p. 0184 (2001)

Yumerefendi, A.R., Chase, J.S.: Trust but verify: accountability for network ser-
vices. In: Proceedings of the 11th Workshop on ACM SIGOPS European Workshop,
EW 11, New York, NY, USA (2004)

Yumerefendi, A.R., Chase, J.S.: Strong accountability for network storage. In: 5th
USENIX Conference on File and Storage Technologies (2007)

http://www.it-ebooks.info/

Verifying Web Browser Extensions’ Compliance
with Private-Browsing Mode*

Benjamin S. Lerner, Liam Elberty, Neal Poole, and Shriram Krishnamurthi

Brown University

Abstract. Modern web browsers implement a private browsing mode
that is intended to leave behind no traces of a user’s browsing activity
on their computer. This feature is in direct tension with support for
extensions, which can silently void this guarantee.

We create a static type system to analyze JavaScript extensions for
observation of private browsing mode. Using this type system, extension
authors and app stores can convince themselves of an extension’s safety
for private browsing mode. In addition, some extensions intentionally
violate the private browsing guarantee; our type system accommodates
this with a small annotation overhead, proportional to the degree of
violation. These annotations let code auditors narrow their focus to a
small fraction of the extension’s codebase.

We have retrofitted type annotations to Firefox’s APIs and to a sample
of actively used Firefox extensions. We used the type system to verify
several extensions as safe, find actual bugs in several others (most of
which have been confirmed by their authors), and find dubious behavior
in the rest. Firefox 20, released April 2, 2013, implements a finer-grained
private browsing mode; we sketch both the new challenges in this imple-
mentation and how our approach can handle them.

1 Introduction

Modern web browsers are feature-rich systems, providing a highly customizable
environment for browsing, running web apps, and downloading content. People
use browsers for a wide variety of reasons, and now routinely conduct sensitive
transactions with them. Accordingly, recent browsers have added support for
so-called private browsing mode, in which the browser effectively keeps no record
of the user’s activities: no history or cache is preserved, no cookies are retained,
etc. The precise guarantee provided by private browsing mode is, however, rather
more subtle, since a strict policy of retaining absolutely no record would preclude
standard browsing activities such as downloading any files.

Ensuring the correctness of private browsing mode is therefore challenging on
its own, but the situation is trickier still. Most browsers support extensz’ons
written in JavaScript (JS), that allow users to customize the browser with third-
party code—which run with the browser’s full privileges and can hence also save

This work is partially supported by the US National Science Foundation.
These are distinct from plugins such as Flash or Java; we exclude plugins here.

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 57-r4] 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://www.it-ebooks.info/

58 B.S. Lerner et al.

files or other traces of the user’s activity. In short, the presence of extensions
can completely undermine the browser’s privacy efforts.

The extension community is vibrant, with over 60 million daily extension
users, and billions of total installations [16]. The potential privacy harm from
faulty extensions is correspondingly huge. Unfortunately, all three involved
parties—browser authors, extension authors, and end-users—have difficulty prop-
erly protecting end-users from these problems. For browser authors, there is no
universally safe default: running extensions automatically is clearly unsafe, but
disabling them by default would also disable extensions such as AdBlock, which
serve to enhance the overall privacy of the browser! Moreover, users currently
have no way to make an informed decision about which extensions to re-enable.
And worse still, even extension authors do not fully understand what private
browsing mode entails: in the course of this work, for instance, one extension
author we contacted replied, “when I wrote [the extension], the private browsing
stuff didn’t exist (to be honest, I'm only peripherally aware of it now).”

To date, browser vendors—primarily Mozilla and Google, whose browsers fea-
ture the most sophisticated extension support—provide extension authors with
only rather vague guidelines on proper behavior when in private browsing mode.
Mozilla enforces its guidelines via manual code audits on all the extensions up-
loaded to their site. Unfortunately, these audits are a bottleneck in the otherwise-
automated process of publishing an extension [34, 35]. It is also possible for
violations—sometimes flagrant ones [23]—to slip through, and our work finds
more violations, even in extensions that have passed review and been given a se-
curity check. Moreover, if policies ever changed, Mozilla would face the daunting
task of re-auditing thousands of extensions.

Contributions

We propose a new mechanism for verifying that extensions behave properly
in private browsing mode. Our approach uses a lightweight type system for JS
that exposes all potentially privacy-violating actions as type errors: the lack of
type errors proves the extension is privacy-preserving. Authors can tell the type-
checker precisely which errors to ignore, and only these annotations must then
be audited in a security review. This paper makes the following contributions:

— We design a type system that segregates “potentially unsafe” code from
“provably safe” code. Our system is lightweight—we typecheck only the code
that may run in private browsing mode, and extension authors must only
annotate code that is not provably safe. Most utility code is easily safe and
requires no annotation. (Section Elf;

— We implement our approach for the extension APIs found in Mozilla Firefox.
Ascribing types to Firefox’s APIs is non-trivial; the types must match their
quirky idioms with high fidelity in order to be useful. (Section E)

— We evaluate our system by retrofitting type annotations onto 12 real-world
extensions. Relatively few annotations are needed. We verify six extensions
as safe, finding private-browsing (but not necessarily privacy) violations in
the rest; three were confirmed by their authors as bugs. (Section)

http://www.it-ebooks.info/

Verifying Web Browser Extensions’ Compliance 59

Due to page limits, we necessarily elide detailed examples of our approach;
full details can be found in the companion technical report [20)].

2 Background: Extensions and Privacy

Browser extensions define both Ul and behavior, the former written in markup
that varies between browsers and the latter written in JavaScript. Though inter-
esting in its own right [18], the UI code is essentially inert markup and therefore
largely irrelevant for our security concerns here. We present a brief overview of
how extensions are written in Firefox and Chrome.

2.1 Classic Firefox Extension Model

Firefox extensions define their functionality in JS, and trigger it via event han-
dlers in the markup of their Ul. These event handlers can use the same DOM meth-
ods as typical web pages, but in addition, they are given a suite of APIs providing
low-level platform features such as file-system access and process management,
as well as access to history and preferences, and many other functions. These
APIs are obtained via a factory; for example, the following constructs a file object:

var file = Components
.classes["@mozilla.org/file/local;1"]
.createInstance(Components.interfaces.nsILocalFile);

The Components.classes array contains “contract IDs” naming various avail-
able object types, mapped to factories for constructing instances. As of ver-
sion 13, Firefox defines 847 contract IDs and 1465 interfaces: a huge API surface.

One of these APIs, Components.interfaces.nsIPrivateBrowsingService, al-
lows code to check if it is running in private-browsing mode, and to cause the
browser to enter or exit private-browsing mode. The former check is essential
for writing privacy-aware code; the latter methods are particularly troublesome
(see Section [3).

2.2 Chrome and Jetpack Extension Model

The traditional security response to such a situation is to lock down and nar-
row the API surface area. Chrome’s architecture has done so. The back-end of
a Chrome extension is written against a much smaller API: a mere 26 objects
to access bookmarks, cookies, tabs, etc [11]. Though there are no APIs to access
the filesystem directly, there are experimental APIs for local storage, and exten-
sions have unrestricted access to cross-origin XHR: extensions can still persist
state. This relatively spartan API means Chrome extensions are inherently less
capable than Firefox ones, and despite that they can still violate incognito-mode
guarantees. In particular, an extension can create an implicit channel that leaks
sensitive data from an incognito tab to a concurrent public one; from there the
data can easily be saved to disk. See Section 3.9 for further discussion.

http://www.it-ebooks.info/

60 B.S. Lerner et al.

In a similar vein, Firefox has been working on a new extension model, known as
“jetpacks” or “SDK addons”. These extensions are a hybrid: they have access to a
small API similar to Chrome’s, but if necessary can get access to the Components
object and access the rest of the platform. Such access is discouraged, in favor
of enhancing the SDK APIs to obviate the need.

3 Subtleties of Private Browsing Mode

The intuitive goals of the various private browsing mode implementations are
easy to state, but their precise guarantees are subtly different. In particular,
the security versus usability trade-offs of private browsing mode are particularly
important, and impact the design.

3.1 Usability Trade-Offs in Specifying Private Browsing Mode

Private browsing mode is often described as the browser “not remembering any-
thing” about the current session. One implementation approach might be to pro-
hibit all disk writes altogether. Indeed, the initial planning for Firefox’s private
browsing mode [22] states, “The bullet-proof solution is to not write anything
to disk. This will give users maximum confidence and will remove any possible
criticism of the feature from security experts.’ﬂ

However, the high-level intent of private-browsing mode is a statement about
the state of users’ computers after their sessions have terminated; it says nothing
about what happens during their sessions. In particular, a user might reasonably
expect the browser to “work like normal” while browsing, and “forget” everything
about the session afterward. Such a private-browsing implementation might well
handle many forms of persistent state during the session on behalf of the user,
such as history, cookies, or cache. Additionally, a user can ask the browser ex-
plicitly to take certain stateful actions, such as downloading a file or updating
bookmarks. Therefore, simply turning off persistence APIs is not an option.

3.2 Mode Concurrency and Switching

How isolated is private browsing? Chrome (and now Firefox; see Section) allows
users to have both “normal” and “incognito” windows open concurrently; can
this concurrency be exploited to leak data from private browsing? Similarly, can
an extension hoard data in private browsing mode, and then release it when the
window switches to normal mode?

The mitigation for this attack differs in its details between the two browsers,
but amounts to isolating extensions’ state to within a single window, which is
then the unit of normal or private modes. In particular, all the scripts that imple-
ment the behavior of Firefox windows run in the context of each window § When

2 Even these precautions may not suffice: virtual memory might swap private browsing

mode information to persistent storage [3].

The Firefox expert might know about “backstage pass” contexts, which can persist.
Such contexts are internal to Gecko and to our knowledge cannot be intentionally
accessed by script. Even if they could, we can reflect this in our typed APIs.

http://www.it-ebooks.info/

Verifying Web Browser Extensions’ Compliance 61

earlier versions of Firefox transition between modes, they close all currently-open
private windows and re-open the public ones from the prior session. Crucially,
this means extensions’ state is effectively destroyed and re-initialized as these
windows are opened, so extensions cannot passively hoard data and have it auto-
matically leak into public mode. Instead, they must actively use APIs to persist
their data, and we detect and flag such uses.

In Chrome, extensions are partitioned into two pieces: a background task
running in a standalone context, and content scripts running in the context of
individual pages. The background task can execute privileged operations, but
cannot obtain data about the user’s open pages directly. Instead, the content
script must send such data to the background task over a well-specified API, and
again we can detect and flag such uses.

In short, browsers are engineered such that there is no implicit communica-
tions channel between private-mode windows and public ones. Persisting any
data from one to the other requires explicitly using an API to do so, and our
system is specifically designed to raise warnings about just those APIs. Accord-
ingly, for the remainder of this paper, we can safely assume that the presence
or absence of private mode is effectively constant while analyzing an extension,
because it is constant for the duration of any given JS context. (We describe how
our approach may adapt to Firefox’s new design in Section)

4 Our Approach: Type-Based Extension Verification

We assume that the browser vendor has correctly implemented private-browsing
mode and focus on whether extensions violate it. We perform this analysis
through a type system for)JS. In particular, any accesses to potentially harm-
ful APIs must be syntactically marked in the code, making the reviewers’ job a
simple search, rather than a reading of the entire extension. Furthermore, we
define an affirmative privacy burden: rather than require all developers to an-
notate all code, we require annotations only where code might violate private
browsing expectations. Our type system is based on TeJaS, a type system for
JS [14], with several variations.

4.1 Informal Description

Type systems are program analyses that determine whether a semantic property
holds of a given program, based on that program’s syntactic structure. A type
system is comprised of three parts: a type language for describing the types of
expressions in the program, a type environment assigning types to the predefined
APIs, and a type checker that takes as input a program to be checked and the
type environment, and then attempts to validate the program against a set of
rules; programs that pass the typechecker possess the desired semantic property.

Our particular type language defines a type, @Unsafe, which our environment
assigns to the potentially-unsafe ApPIs (e.g., file.create) to prevent them from
being called, and to the potentially-unsafe objects (e.g., localStorage) to pre-
vent their properties from being accessed. This can be quite refined: objects may

http://www.it-ebooks.info/

62 B.S. Lerner et al.

contain a mix of safe and unsafe methods. For example, in our system, it is per-
fectly fine to open and read from existing files, but it is unsafe to create them;
therefore, only the first line below causes an error:

file.create(NORMAL_FILE_TYPE, 0x644);
var w = file.isWritable();

The type checker will complain:
Cannot dereference an @Unsafe value at 1:0-11 (i.e., file.create).

In response, the programmer can: 1) rewrite the code to eliminate the call to
file.create, or 2) prove to the type checker that the code is never called in
private browsing mode, or 3) “cheat” and insert a typecast, which will eliminate
the error report but effectively flag the use for audit. Often, very simple changes
will suffice as proof:

if (WeAreNotInPrivateBrowsingMode()) {
file.create(NORMAL_FILE_TYPE, 0x644);
}

var w = file.isWritable();

(We show in Section[4.4 how to implement WeAreNotInPrivateBrowsingMode().)

4.2 The Type System Guarantee

Extensions that have been annotated with types and pass the typechecker enjoy
a crucial safety guarantee. This guarantee is a direct consequence of TeJaS’s
own type-safety theorem [14], the soundness of Progressive Types |29], and the
correctness of our type environment:

If an extension typechecks successfully, using arbitrary type annota-
tions (including @Unsafe), and if an auditor confirms that any “cheat-
ing” is in fact safe, then it does not violate the private-browsing
mode invariants. Moreover, the auditor must check only the “cheat-
ing” code; all other code is statically safe.

In the following subsections, we explain how the typechecker recognizes the
example above as safe, and make precise what “cheating” is and why it is some-
times necessary.

4.3 Type System Ergonomics

A well-engineered type system should be capable of proving the desired proper-
ties about source code and be flexible enough to prove others, with a minimum
of invasive changes to the code. Typically, these properties are phrased as preser-
vation and progress guarantees: respectively, well-typed programs preserve their
types at each step of execution, and can make progress without runtime error.
Our goal here is a relatively weak progress guarantee: we only prevent extensions

http://www.it-ebooks.info/

Verifying Web Browser Extensions’ Compliance 63

from calling @Unsafe APIs; other runtime errors may still occur, but such errors
cannot cause private-browsing violations.

As a strawman, one inadequate approach to proving privacy-safety might
be to maintain a list of “banned words”—the names of the unsafe Apis—and
ensure that the program does not mention them or include any expressions that
might evaluate to them. Such an approach inflexiblly prohibits developers from
naming their functions with these banned words. It also proscribes much of JS’s
expressiveness, such as using objects as dictionaries (lest some subexpression
evaluate to a banned word which is then used as a field name).

Another approach might graft checks for @Unsafe calls onto a more tradi-
tional, stronger progress guarantee. This is costly: for example, consider the
information needed to ensure the (safe) expression 1+o.m("x") makes progress.
The type system must know that o is an object with a field m that is a safe func-
tion that accepts string arguments and returns something that can be added to
1. Conveying such detailed information to the type system often requires sub-
stantial annotationf]. But this is overkill in our setting: if any of the facts about
the expression above were false, it would likely cause a runtime error, but still
would not call anything @Unsafe .

Instead, we design a type system that can support such precise types, but that
does not force them upon the developer. We provide a default type in our system
that can type everything except the unsafe APIs: code that never calls anything
unsafe does not need any annotation. Using such a type relaxes the progress
guarantee to the weaker one above: nonsensical expressions may now typecheck,
but still will never call @Unsafe APIs. Developers that want the stronger progress
guarantee can add precise type annotations gradually to their code. The next
subsection explains how our type system achieves this flexibility.

4.4 The Private-Browsing Type System

Preliminaries. Our type system contains primitive types for numeric, null and
undefined values, variadic function types with distinguished receiver parame-
ters (the type of this within the function), regular expressions, and immutable
records with presence annotations on fields. It also contains type-level functions,
equi-recursive types, and reference cells. On top of this, we add support for (un-
ordered) union and (ordered) intersection types. In particular, the type Bool is
the union of singleton types (True + False).

Safe Types. We define a (slightly-simplified) extension type that includes all
possible JS values [31]):

type Ext = rec e . Num + Bool + Undef + Str + Null + Ref {

__proto__ :! Src { },
__code__ :? [e]l e ... => e,
x 17 e

1 Type inference for objects is of little help, as it is often undecidable [23].

http://www.it-ebooks.info/

64 B.S. Lerner et al.

In words, values of type Ext may be null, boolean, or other base types, or muta-
ble objects whose fields, if present, are also of this type. The __proto__ field is
a read-only object (about whose fields we know nothing), while __code__ (when
present) models JS functions, which are objects with an internal code pointer.
Ext is the default type for all expressions, and any Ext-typed code need not be
annotated, justifying our “lightweight” claims. As Section mentioned, devel-
opers are free to add more precise types to their code gradually. Any such types
will be subtypes of Ext, meaning that richly-typed code will successfully interop-
erate with Ext-typed code without having to modify the Ext-typed code further.

Marking APIs with the @Unsafe Type. We define a new primitive type
@Unsafe that is ascribed in our initial type environment to all potentially-harmful
APIs. This type is unrelated by subtyping to any other types besides Top, Bot
or intersections or unions that already contain it. Accordingly, any attempts to
use values of this type will cause type errors: because it is distinct from function
types it cannot be applied; because it is distinct from object types it cannot be
dereferenced, etc. @Unsafe values can be assigned to variables or fields, provided
they have also been annotated as @Unsafe.

Checking for Private-Browsing Mode. Our efforts to segregate @Unsafe
values from safe Ext code are overzealous: we do not need to prevent all usages
of @Unsafe values. Recall the revised example from Section [4.1: code that has
checked that it is not in private-browsing mode may use @Unsafe values.

To capture this intuition, we define the typechecking rules for if statements
as follows:

Ir-TRUE Ir-FALSE IrF-OTHER
I'Fc:True I'F c: False I'F c:Bool
I't:7 I'=f:7 I't:7 I'=f:7

I'-ifctf:r I'ifctf:r I'ifct f:r

For conditionals where we statically know whether the condition is True or
False, we only typecheck the relevant branch: the other branch is statically
known to be dead code. Otherwise, we must typecheck both branches. Under
these rules the dead code could be arbitrarily broken; nevertheless it will never
run. Note that here, “dead code” really means “not live in private-browsing
mode”.

This leads to our key encoding of the nsIPrivateBrowsingService API’s
privateBrowsingEnabled flag. Normally, this flag would have type Bool. But
we only care when it is true; when it is false, it is fine to use @Unsafe values. We
therefore give it the type True. [E=TRUE then permits the example in Section [1
to typecheck without error.

“Cheating”. As pointed out in Section @, we may want to allow extensions
to use @Unsafe APIs even in private-browsing mode, to preserve “normal oper-
ations”. This may be because they do not store “sensitive” information, or be-
cause they are run only in response to explicit user action. Statically determining

http://www.it-ebooks.info/

Verifying Web Browser Extensions’ Compliance 65

whether information is sensitive is an information-flow problem, a thorny (and
orthogonal) one we deliberately avoid. Moreover, the control flow of browsers is
quite complex [19], making it challenging to link code to the event that triggered
it. We are not aware of any successful efforts to apply static information flow to
real-world JS, and certainly none that also apply to the browser’s control flow.
Instead, we require extension authors to annotate all those uses of @Unsafe val-
ues that cannot statically be shown to be dead code. To do this, we introduce
one last type annotation: cheat 7. When applied to an expression, it asserts the
expression has type 7 and does not actually check its type.

Obviously, cheating will let even unsafe extensions typecheck. Therefore all
cheat typecasts must either be manually audited by a human to confirm their
safety, or verified by more sophisticated (perhaps expensive) runtime systems.
For now we assume a human auditor; by having these annotations we let future
researchers focus on the remaining problems of fully-automated audit.

5 Theory to Practice in Firefox

We have laid out our technique that developers would ideally use from the out-
set as they develop new extensions, and the theorem in Section [4.1] ensures that
their efforts would be worthwhile. In this section, we explain the details of in-
stantiating our system for Firefox’s Apls. The companion technical report [20]
contains additional details and worked examples.

5.1 Translating Typed Interfaces

Most of Mozilla’s APIs are defined in typed interface files (written in a variant
of WebIDIEl), which we parse into our type language. The translation begins
smoothly: each interface is translated as a read-only reference to an object type;
this ensures that extensions cannot attempt to delete or redefine built-in meth-
ods. Functions and attributes on interfaces are then translated as fields of the
appropriate type on the translated object types.

However, these IDL files have three problems: they can be overspecific, un-
derspecific, or incomplete. For example, a function declared to expect a string
argument can in fact be given any JS value, as the glue code that marshals JS
values into C++ will implicitly call toString on the value. By contrast, func-
tions such as getElementsByClassName return an nsIDOMNodelList, whereas the
semantics of the method ensure that all the nodes in that list are in fact of
the more specific type nsIDOMElement. Finally, the contents of the Components
object are not specified in any interface, but rather dynamically constructed in
C++ code; similarly, some XUL elements are defined entirely dynamically by XBL
code. We need a mechanism to address each of these difficulties.

Rather than hard-code a list of corrections, we can exploit two existing IDL
features for a flexible resolution. First, IDL permits “partial” interfaces, which

5 http://www.w3.0rg/TR/WebIDL/

http://www.w3.org/TR/WebIDL/
http://www.it-ebooks.info/

66 B.S. Lerner et al.

are simply inlined into the primary definition at compilation time. Second, IDL
syntax includes “extended attributes” on interface members, functions and their
parameters, which may affect the translation to types: for instance, [noscript]
members are not included in the JS environment, and [array] parameters are of
type Array<7r> rather than 7. For missing types, we create a “type-overrides” file
and add new type definitions there. For over- and under-specific types, we define
a new extended attribute [UseType(7)] to replace the type specified by the
IDL, and in the type-overrides file define partial interfaces whose sole purpose
is to revise the shortcomings of the input IDL. For example, we define a “DOM-
ElementList” type, and override getElementsByClassName to return it instead.

5.2 Encoding @Unsafe Values and the Flag for Private
Browsing Mode

We define two more IDL attributes, [Unsafe] and [PrivateBrowsingCheck],
and use them to annotate the relevant properties in the Mozilla environment.
Per Section @, these are translated to the types @Unsafe and True, respectively.

As mentioned in Section |ﬂ, the nsIPrivateBrowsingService object also
allows extensions to switch Firefox into and out of private browsing mode. Even
though Firefox does not wholly restart, it does effectively recreate all JS contexts.
Nevertheless, we consider exiting private-browsing mode to be poor behavior for
extensions, so we mark these APIs as @Unsafe as well. Any benign uses of this
API must now be cheated, and their use justified in a security review.

5.3 Encoding the Components Object
All of Mozilla’s APIs are accessed via roughly this idiom:
Components.classes[cID].createInstance(Components.interfaces.interfaceName)

An accurate but imprecise type for this function would simply be nsIJSIID ->
nsISupports: the argument type is an “interface ID”, and the result is the root
type of all the Mozilla interfaces. But this function can return over 1400 differ-
ent types of objects, some (but not all) of which are relevant to private-browsing
mode. We therefore need a more precise return type, and since this function is
used ubiquitously by extension code, we must avoid requiring developer anno-
tations. The key observation is that the set of possible return types is known
a priori, and the specific return type is selected by the provided interface ID
argument. This is known as “finitary overloading” |26], and is encoded in our
system with intersection typesﬁ

6 Case Study: Verifying Firefox Extensions

To evaluate the utility and flexibility of our type system, two of the authors (both
undergraduates with no experience with engineering type systems) retrofitted

6 Firefox 3’s new API, Component.utils.import("script.js", [objl), is not

amenable to similar static encoding and consequently requires manual audits.

http://www.it-ebooks.info/

Verifying Web Browser Extensions’ Compliance 67

Extension Size Violates Confirmed Violates
PBM? by author? privacy?

The Middle Mouse Button v1.0 51 No

Print v0.3.4 59 No

Rapidfire v0.5 119 No

Commandrun v0.10.0 147 Yes Yes Yes

Open As Webfolder v0.28 153 Yes No No

CheckFox v0.9.2 188 No

The Tracktor Amazon Price Tracker v1.0.7 232 No

Fireclam v0.6.7 437 Yes No No

Cert Viewer Plus v1.7 974 Yes No Yes

Textarea Cache v0.8.5 1103 No

ProCon Latte Content Filter v3.3 2015 Yes Yes Yes

It’s All Text v1.6.3 2623 Yes Yes Yes

Total 8101 6 3 4

Fig. 1. Extensions analyzed for private-browsing violations: note that not all private-
browsing violations are actual privacy violations. The technical report |20] has more
details on the extensions and annotations, and provides more excerpts.

type annotations onto 12 existing Firefox extensions, chosen from a snapshot of
Firefox extensions as of November 2011. Some were selected because we expected
them to have non-trivial correctness guarantees; the rest based on their brevity
and whether they mentioned unsafe APIs. All extensions had passed Mozilla’s
security review: ostensibly they should all comply with private-browsing mode.
We had no prior knowledge of the behavior or complexity of the extensions
chosen beyond their description.

The results are summarized in Fig. . we analyzed 6.8K non-comment lines
of code (8.1KLOC including comments and our type definitions), and found
private-browsing violations in 6 of the 12 extensions—of which only 4 truly vi-
olate privacy. Below, we highlight interesting excerpts from some of these ex-
tensions.

6.1 Accommodating Real-World Extension Code

Our type system is designed to be used during the development process rather
than after, but existing extensions were not written with our type system in
mind. We therefore permitted ourselves some local, minimal code refactorings
to make the code more amenable to the type checker. These changes let us avoid
many typecasts, and (arguably) make the code clearer as well; we recommend
them as best practices for writing new code with our type system.

First, we ensured that all variables were declared and that functions were
defined before subsequent uses. Additionally, developers frequently used place-
holder values of the wrong type—null instead of -1, or undefined instead of
null—that we corrected where obvious.

Second, our type system infers the type of variables from the type of their
initializer, for which it infers the strictest type it can. For instance, initializers of

http://www.it-ebooks.info/

68 B.S. Lerner et al.

false, "foo" and null yield types False, /foo/ (the regular expression match-
ing the literal string), and Null respectively—rather than Bool, String, and
whichever particular object type is eventually used. This can be useful: distin-
guishing True from False values lets us elide dead branches of code and thereby
check for private browsing mode, and similarly, distinguishing string literals from
each other enables support for JS objects’ first-class field names [28]. Sometimes,
however, this is overly-specific. For instance, a truly boolean-valued variable
might be initialized to true and later modified to false; if its type was inferred
as True, the subsequent assignment would result in a type error! In such cases,
we therefore manually annotate the initializers with their more general types.

Third, we replaced the idiomatic field-existence check if (!foo.bar) with if
(!("bar" in foo)), as the typechecker will complain when the field does not
exist in the former, whereas the latter has the same dynamic effect but does
not impose any type constraints. (When the field name is known to exist, this
idiom also checks whether the field’s value is not null, zero or false; we did not
rewrite such usages.)

Additionally, we permitted ourselves two other refactorings to accommodate
weaknesses in our current prototype system. First, our system does not model
the marshaling layer of Mozilla’s API bindings; for instance, passing a non-string
value where a string parameter is expected will yield a type error. We therefore
added (""+) to expressions to ensure that they had type Str.

Second, Mozilla APIs include QueryInterface methods that convert the pro-
vided value from one interface to another. Code using these functions effectively
changes the type of a variable during the course of execution. Our type system
cannot support that; we refactored such code to use auxiliary variables that
each are of a single type.

6.2 Example Extensions

In the process of making these extensions pass the type checker, we were forced
to cheat 38 call-sites to @Unsafe functions as innocuous. Those 38 call sites are
potential privacy violations appearing in five extensions, of which we think four
truly violate private browsing mode (the other uses @Unsafe functions to setup
initial preferences to constant—and therefore not privacy-sensitive—values). We
have contacted the authors of these extensions, and two have responded, both
confirming our assessment. A sixth extension uses cheats slightly differently, and
the process of typechecking it revealed a large security hole that we reported: it
was confirmed by its author and by Mozilla, and was promptly fixed. We high-
light three of these extensions—one (almost) safe and two not—to highlight how
subtle detecting privacy violations can be. The companion technical report [20,
section VI] contains full details of the necessary annotations.

Almost Safe: Textarea Cache [32]. This extension maintains backups of
the text entered by users into textareas on web pages, to prevent inadvertently
losing the data. Such behavior falls squarely afoul of Mozilla’s prohibition against

http://www.it-ebooks.info/

Verifying Web Browser Extensions’ Compliance 69

recording data “relating to” web pages in private browsing mode. The developer
was aware of this, and included a check for private-browsing mode in one of
the extension’s core functions:

textareaCache.inPrivateBrowsing = function () {
if (this._PBS) return this._PBS.privateBrowsingEnabled;
else return true; // N.B.: used to be false

}

textareaCache.beforeWrite = function(node) {
if (this.inPrivateBrowsing()) return;

this.writeToPref(node);
}

Our system recognizes that inPrivateBrowsing has type () -> True, and there-
fore determines the @Unsafe call on line 9 is dead code. (Note that this is strictly
more expressive than checking for the literal presence of the private-browsing
flag at the call-site of the @Unsafe function: the flag has been wrapped in a
helper function that is defined arbitrarily far from the beforeWrite function,
yet beforeWrite is itself correctly typechecked as safe.) Several other unguarded
code paths, however, result in writing data to disk, and these are all flagged as
type errors by our system. Tracing carefully through these calls reveals that
they are all writing only pre-existing data, and not recording anything from
the private session.

An interesting subtlety arises in this code due to backward-compatibility:
This extension is intended to be compatible with old versions of Firefox that
predate private browsing mode, and in such versions, clearly inPrivateBrowsing
is false. Accordingly, the default on line 4 used to be false, which prevents
the function from having the desired return type. Annotating and typechecking
this code directly revealed this mismatch; once changed to true, the modified
code validates as safe.

A cleaner, alternate solution exists if we allow ourselves to refactor the ex-
tension slightly. As written, the _PBS field is initialized lazily, and so must have
type nsIPrivateBrowsingService + Undef. That Undef prevents the type sys-
tem from realizing the return false is dead code. If we rewrite the initializer
to be eager, then _PBS has type nsIPrivateBrowsingService, which is never
undefined, and again the function typechecks with the desired return type.

Unsafe: ProCon Latte Content Filter [24]. This “featured” (i.e., nomi-
nated as top—qualityﬁ) extension maintains keyword-based white- and black-lists
of sites. A user can add URLSs to these lists that persist into subsequent brows-
ing sessions; this persistence is achieved by APIs that store preferences in the
user’s profile. These APIs all are flagged by the typechecker as @Unsafe—and
as we annotated this extension, we determined that these APIs were reachable
from within private browsing mode. In other words, the type checker helped

7 https://addons.mozilla.org/en-us/developers/docs/policies/recommended

https://addons.mozilla.org/en-us/developers/docs/policies/recommended
http://www.it-ebooks.info/

70 B.S. Lerner et al.

determine that URLs could be added to these lists even while in private brows-
ing mode, a clear (or possibly deliberate) policy violation. The extension author
confirmed that this behavior is a bug: URLs were not intended to persist past
private browsing mode.

Unsafe: Commandrun [1]. It is obvious that the Commandrun extension
must be unsafe for private browsing. In fact, it is egregiously unsafe, as it allows
an arbitrary website to spawn a process (from a whitelist configured by the user)
and pass it arbitrary data. (Even worse, the version of this extension we analyzed
had a further flaw that would allow websites to bypass the whitelist checking.)
Yet counterintuitively, this extension produces no errors about calling @Unsafe
functions: no such calls are present in the source of the extension! Instead, the
extension creates an object that will launch the process, and then injects that
object into untrusted web content (edited for brevity):

CommandRunHandler = function() {
this.run = /x:cheat @Unsafe*Afunction(command, args){ ... }h
this.isCommandAllowed = function(command, args){ ... };

b
CommandRun = {
onPageload: function(event) {
var win = [event.originalTarget.defaultView.wrappedJSObject];
win.CommandRun = new CommandRunHandler();

h

The CommandRunHandler.run function (line 2) is annotated as @Unsafe, but it
is never directly called from within this extension, so it does not directly cause
any further type errors.

The true flaw in this extension occurs where the object is leaked to web content
on lines 7 and 8, and our type system does raise an error here. Gecko, by default,
surrounds all web-content objects in security wrappers to prevent inadvertent
tampering with them, but exposes the actual objects via a wrappedJSObject
field on the wrappers. Our type environment asserts that such wrapped objects
must only contain fields of type Ext, but the CommandRunHandler object has
an @Unsafe field, and therefore the assignment on line 8 causes a type error.
The only way to make this code type-check is to cheat either the reference to
wrappedJSObject or to the CommandRunHandler, thereby exposing this flaw to
any auditor. We contacted the author of this extension, who promptly confirmed
and fixed the bugs.

7 Related Work

Our work clearly builds upon a rich area of security research and a growing
body of work analyzing JS. We consider each in turn.

http://www.it-ebooks.info/

Verifying Web Browser Extensions’ Compliance 71

7.1 Security-Related Efforts

Many recent projects relate to extension security, authoring, or analysis. Several
entail pervasive changes within the browser [5,I8-10]; we focus on techniques that
do not need such support, and briefly describe the most relevant such projects.
None of them handle our present use cases.

ADsafety. The closest relative of our work is ADsafety [27], which uses Te-
JaS [14] to verify the correctness of ADsafe [2]. That work focused primarily
on verifying the ADsafe sandbox itself, and then used a type similar to our
Ext to typecheck “widgets” running within that sandbox. Unlike extensions
here, the environment available to widgets is entirely Ext-typed; indeed, the
whole purpose of a sandbox is to eliminate all references to unsafe values! The
extension-safety problem here is more refined, and permits such unsafe values
in non-private execution.

IBEX. Guha et al. [13] develop Fine, a secure-by-construction language for
writing extensions. Fine is pure, dependently-typed, and bears no resemblance
to idiomatic JS. Extensions must be (re-)written entirely in it in order to be
verified. Accordingly, the barrier to entry in their system is quite high, and they
explicitly do not attempt to model the browser APIs available besides the DoM.

VEX. Bandhakavi et al. [4] design a system that statically attempts to discover
unsafe information flows in extension code, for instance from unsanitized strings
to calls to eval. By their own admission, their system is neither sound nor
complete: they explicitly check only for five flow patterns in extensions and so
miss any other potential errors, and any errors they raise may still be false
positives. This provides no reliable guarantee for browser vendors. Additionally,
they do not address the conditional safety of API usage which is the hallmark
of the private-browsing mode problem.

Beacon. Karim et al. [17] design an analysis for Mozilla Jetpack extensions
(see Section @) to detect capability leaks, where privileged objects (such as
unmediated filesystem objects) are exposed to arbitrary extension code. While
laudable, this approach does not work for detecting private-browsing violations:
filesystem capabilities are entirely permitted in public mode. Additionally, their
tool is unsound, as it does not model reflective property accesses.

7.2 Language-Level Analyses

Progressive Types. As mentioned, our type system is based on that of Guha
et al. [14], with enhancements that simplify reasoning about our relaxed progress
guarantees. These enhancements are a form of progressive typing [29], in which
the programmers using a type system can choose whether to defer some static
type checks until runtime, in exchange for a easier-to-satisfy type checker.

http://www.it-ebooks.info/

72 B.S. Lerner et al.

Type Systems for JS. TeJaS is one of a handful of type disciplines for JS. The
two most fully-featured are the Closure compiler |12] and Dependent JS [7]. The
former is informally defined, and makes no claims that its type system entails
a soundness guarantee. Further, the type language it uses is too coarse to help
with the problem examined here. Dependent JS, by contrast, uses dependent
types to capture challenging idioms in JS, such as the punning between arrays
and dictionaries, and strong updates that change variables’ types. However, the
largest example the authors checked using Dependent]S is barely larger than
the third-smallest extension we examine. Moreover, their language imposes huge
annotation overheads: the type annotations are comparable in length to the
original program! In short, while powerful, such a system is impractical and
overkill for our purposes, and we can achieve our desired guarantee without the
proof obligations entailed by dependent type systems.

Language-Based Security. Schneider et al. |30] survey the broad area of
language-based security mechanisms. Cappos et al. [6] build a language-based
sandbox for Python, such that even privileged scripts cannot access resources
they should not. And other sandboxes exist for JS along the lines of ADsafe [2, 121,
33] to try to corral web programs. But none of these approaches explicitly address
the modal nature of enforcement that we need for private-browsing guarantees.

Certified Browsers. Jang et al. [15] present an implementation of a browser
kernel implemented in Coq, which allows them to formalize desirable security
properties of the browser kernel such as non-interference between separate tabs,
and the absence of cookie leakages between sites. Their current development
is for a fixed-function browser; enhancing it to support extensions and private-
browsing mode are intriguing avenues of future work.

8 Breaking News: It Gets Worse!

Firefox 20—released on April 2, 2013—has adopted per-window private browsing
granularity (a la Chrome). Unfortunately, existing Firefox APIs enable extensions
to access all windows, which now include both public and private ones; we have
confirmed that this allows sensitive data to leak. Moreover, one such API is used
over 6,400 times in our corpus: we expect that extensions using this API—even
those using it safely in earlier Firefox versions—may now inadvertently violate
privacy. We have contacted Mozilla, who indicate that closing this leak (and
others) may not be technically feasible.

However, we believe our approach still works. Instead of ignoring non-private-
browing code, we must analyze it. We can define another type environment in
which inPrivateBrowsing is now False and a different set of APIs (e.g., window
enumeration) are marked either as @Unsafe or as returning potentially-@Unsafe
data. Running the type checker in this environment will then flag potential
leakage of private data to public scope.

http://www.it-ebooks.info/

Verifying Web Browser Extensions’ Compliance 73

References

1]
[2]
3]

[4]

[6]

[7]

[9]
[10]
[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

Abeling, A.: Commandrun:: Add-ons for Firefox (November 2011),
https://addons.mozilla.org/en-us/firefox/addon/commandrun/| (retrieved)
ADsafe (November 2009), |http://www.adsafe.org/| (retrieved)

Aggrawal, G., Bursztein, E., Jackson, C., Boneh, D.: An analysis of private brows-
ing modes in modern browsers. In: USENIX Security Symposium. USENIX Asso-
ciation, Berkeley (2010)

Bandhakavi, S., King, S.T., Madhusudan, P., Winslett, M.: VEX: vetting browser
extensions for security vulnerabilities. In: USENIX Security Symposium, p. 22.
USENIX Association, Berkeley (2010)

Barth, A., Felt, A.P., Saxena, P., Boodman, A.: Protecting browsers from ex-
tension vulnerabilities. In: Network and Distributed System Security Symposium
(NDSS) (March 2010)

Cappos, J., Dadgar, A., Rasley, J., Samuel, J., Beschastnikh, I., Barsan, C., Kr-
ishnamurthy, A., Anderson, T.: Retaining sandbox containment despite bugs in
privileged memory-safe code. In: ACM Conference on Computer and Communi-
cations Security, CCS, pp. 212-223. ACM, New York (2010)

Chugh, R., Herman, D., Jhala, R.: Dependent types for JavaScript. In: ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA, pp. 587-606. ACM, New York (2012)

Dhawan, M., Ganapathy, V.: Analyzing information flow in JavaScript-based
browser extensions. In: Annual Computer Security Applications Conference, AC-
SAC, pp. 382-391. IEEE Computer Society, Washington, DC (2009)

Djeric, V., Goel, A.: Securing script-based extensibility in web browsers. In:
USENIX Security Symposium. USENIX Association, Berkeley (2010)
Fredrikson, M., Livshits, B.: RePriv: Re-envisioning in-browser privacy. Tech. rep.,
Microsoft Research (August 2010)

Google. chrome.* APIs — Google Chrome extensions (April 2012),
http://code.google.com/chrome/extensions/api_index.html| (retrieved)
Google. Closure tools — Google developers (November 2012),
https://developers.google.com/closure/compiler/| (retrieved)

Guha, A., Fredrikson, M., Livshits, B., Swamy, N.: Verified security for browser
extensions. In: IEEE Symposium on Security and Privacy (Oakland), pp. 115-130.
IEEE Computer Society, Washington, DC (2011)

Guha, A., Saftoiu, C., Krishnamurthi, S.: Typing local control and state using flow
analysis. In: Barthe, G. (ed.) ESOP 2011. LNCS, vol. 6602, pp. 256-275. Springer,
Heidelberg (2011)

Jang, D., Tatlock, Z., Lerner, S.: Establishing browser security guarantees through
formal shim verification. In: USENIX Security Symposium. USENIX Association,
Berkeley (2012)

Jostedt, E.: Firefox add-ons cross more than 3 billion downloads! Written (July
2012), [https://blog.mozilla.org/blog/2012/07/26/
firefox-add-ons-cross-more-than-3-billion-downloads/

Karim, R., Dhawan, M., Ganapathy, V., Shan, C.-C.: An analysis of the Mozilla
Jetpack extension framework. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol. 7313,
pp. 333-355. Springer, Heidelberg (2012)

Lerner, B.S.: Designing for Extensibility and Planning for Conflict: Experiments
in Web-Browser Design. Ph.D. thesis, University of Washington Computer Science
& Engineering (August 2011)

https://addons.mozilla.org/en-us/firefox/addon/commandrun/
http://www.adsafe.org/
http://code.google.com/chrome/extensions/api_index.html
https://developers.google.com/closure/compiler/
https://blog.mozilla.org/blog/2012/07/26/firefox-add-ons-cross-more-than-3-billion-downloads/
https://blog.mozilla.org/blog/2012/07/26/firefox-add-ons-cross-more-than-3-billion-downloads/
http://www.it-ebooks.info/

74

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]
[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

B.S. Lerner et al.

Lerner, B.S., Carroll, M.J., Kimmel, D.P., de la Vallee, H.Q., Krishnamurthi, S.:
Modeling and reasoning about DOM events. In: USENIX Conference on Web
Application Development, WebApps. USENIX Association, Berkeley (2012)
Lerner, B.S., Elberty, L., Poole, N., Krishnamurthi, S.: Verifying web browser
extensions’ compliance with private-browsing mode. Tech. Rep. CS-13-02, Brown
University (March 2013)

Miller, M.S., Samuel, M., Laurie, B., Awad, 1., Stay, M.: Caja: Safe active content
in sanitized JavaScript. Tech. rep., Google Inc. (2008)

Mozilla. PrivateBrowsing — MozillaWiki (April 2012),
https://wiki.mozilla.org/PrivateBrowsing| (retrieved)

Newton, S.: Ant video downloader firefox addon tracking my browsing (May 2011),
http://iwtf.net/2011/05/10/ant-video-downloader-firefox
-addon-tracking-my-browsing/| (written)

Paolini, H.: ProCon latte content filter :: Add-ons for Firefox (November 2011),
https://addons.mozilla.org/en-us/firefox/addon/procon- latte/| (retrieved)
Pierce, B.C.: Bounded quantification is undecidable. In: ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL, pp. 305-315. ACM
Press, New York (1992)

Pierce, B.C.: Types and Programming Languages. The MIT Press (2002)

Politz, J.G., Eliopoulos, S.A., Guha, A., Krishnamurthi, S.: ADsafety: type-based
verification of JavaScript sandboxing. In: USENIX Security Symposium, p. 12.
USENIX Association, Berkeley (2011)

Politz, J.G., Guha, A., Krishnamurthi, S.: Semantics and types for objects with
first-class member names. In: Workshop on Foundations of Object-Oriented Lan-
guages, FOOL (2012)

Politz, J.G., de la Vallee, H.Q., Krishnamurthi, S.: Progressive types. In: ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Pro-
gramming and Software, Onward! 2012, pp. 55-66. ACM, New York (2012)
Schneider, F.B., Morrisett, G., Harper, R.: A language-based approach to security.
In: Wilhelm, R. (ed.) Informatics: 10 Years Back, 10 Years Ahead. LNCS, vol. 2000,
pp. 86-101. Springer, Heidelberg (2001)

Scott, D.: Lambda calculus: Some models, some philosophy. In: The Kleene Sym-
posium, pp. 223-265 (1980)

Sun, H.: Textarea cache :: Add-ons for Firefox (November 2011),
https://addons.mozilla.org/en-us/firefox/addon/textarea-cache/
(retrieved)

The Caja Team. Caja (November 2009), http://code.google.com/p/google-caja/
(written)

Villalobos, J.: The add-on review process (February 2010),
http://blog.mozilla.org/addons/2010/02/15/
the-add-on-review-process-and-you| (written)

Villalobos, J.: Queue weekly status 2012-04-20 (April 2012),
https://forums.mozilla.org/addons/viewtopic.php?f=21&t=8719 (written)

https://wiki.mozilla.org/PrivateBrowsing
http://iwtf.net/2011/05/10/ant-video-downloader-firefox-addon-tracking-my-browsing/
http://iwtf.net/2011/05/10/ant-video-downloader-firefox-addon-tracking-my-browsing/
https://addons.mozilla.org/en-us/firefox/addon/procon-latte/
https://addons.mozilla.org/en-us/firefox/addon/textarea-cache/
http://code.google.com/p/google-caja/
http://blog.mozilla.org/addons/2010/02/15/the-add-on-review-process-and-you
http://blog.mozilla.org/addons/2010/02/15/the-add-on-review-process-and-you
https://forums.mozilla.org/addons/viewtopic.php?f=21&t=8719
http://www.it-ebooks.info/

A Quantitative Evaluation of Privilege Separation
in Web Browser Designs

Xinshu Dong, Hong Hu, Prateek Saxena, and Zhenkai Liang

Department of Computer Science, National University of Singapore
{xdong, huhong, prateeks, liangzk}@comp .nus.edu.sg

Abstract. Privilege separation is a fundamental security concept that has been
used in designing many secure systems. A number of recent works propose re-
designing web browsers with greater privilege separation for better security. In
practice, however, privilege-separated designs require a fine balance between
security benefits and other competing concerns, such as performance. In fact,
performance overhead has been a main cause that prevents many privilege sepa-
ration proposals from being adopted in real systems. In this paper, we develop a
new measurement-driven methodology that quantifies security benefits and per-
formance costs for a given privilege-separated browser design. Our measurements
on a large corpus of web sites provide key insights on the security and per-
formance implications of partitioning dimensions proposed in 9 recent browser
designs. Our results also provide empirical guidelines to resolve several design
decisions being debated in recent browser re-design efforts.

Keywords: Privilege separation, browser design, measurement.

1 Introduction

Privilege separation is a fundamental concept for designing secure systems. It was first
proposed by Saltzer et al. [31] and has been widely used in re-designing a large number
of security-critical applications [9,112,28]]. In contrast to a monolithic design, where
a single flaw can expose all critical resources of a privileged authority, a privilege-
separated design groups the components of a system into partitions isolated from each
other. According to the principle of least privilege, each partition is assigned the mini-
mum privileges it needs for its operation at run-time. Intuitively, this reduces the risk of
compromising the whole system, because the attacker only gains a small subset of priv-
ileges afforded by the compromised component. Common intuition suggests that the
more we isolate components, the better. We question this intuition from a pragmatic
standpoint, and systematically measure the security benefits and costs of privilege-
separating large-scale systems (such as a web browser) retroactively. Our empirical
data suggests that “the more the better” premise is not categorically true. Instead, we
advocate that practical designs may need to balance several trade-offs in retrofitting
least privilege to web browsers.

Web browsers are the underlying execution platform shared between web applica-
tions. Given their importance in defeating threats from the web, web browsers have
been a prime area where privilege separation is being applied. For instance, numerous

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 75-p3] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.it-ebooks.info/

76 X. Dong et al.

clean-slate browser proposals [9[18120,21,23/24,|33/|35]] and commercial browsers like
Bromium [2] and Invincea [3] are customizing privilege separation boundaries in web
browsers. However, excessive isolation between code components also incurs perfor-
mance cost. Ideally, a practical browser design should balance security gains and the
additional performance costs incurred by a new design. In browser design proposals,
many important design dimensions are actively being debated. Should browsers put
each web origin in its own partition? Should browsers host sub-resources (such as im-
ages, SVG, PDF, iframes) of a web page in separate partitions? Should sub-resources
belonging to one origin be clubbed into the same partition? Should two code units (say,
the JavaScript engine and the Document Object Model (DOM)) be assigned to different
partitions? A systematic methodology to understand the empirical benefits and costs
achieved by a partitioning strategy is important, but has not been investigated in depth.

Our Study. In this work, we study security and performance implications of choosing
one or more of these partitioning dimensions in browser designs. To do this, we first
extract a conceptual “blueprint” of the web browser that captures the logical compo-
nents of a typical web browser. Then, we empirically measure a variety of parameters
that measure security gains and performance costs of separating these logical compo-
nents. This measurement is performed on a real web browser (Mozilla Firefox) using
a large-scale test harness of the Alexa Top 100 web sites. Our measurements enable us
to estimate the security benefits gained against the performance costs that arise when
choosing a partitioning strategy.

Based on empirical data, we draw several inferences about the benefits and costs of
design dimensions proposed in 9 recent browser design proposals. Our measurements
lend pragmatic insights into some of the crucial design questions on how to partition
web browsers. For example, we find that using separate OS processes to load cross-
origin sub-resources requires 51 OS processes per web site, while giving marginal im-
provement in security for the increased performance cost. As another example, we find
that isolating the JavaScript engine and the DOM creates a performance bottleneck,
but also affords significant security gains. Many such empirical results are quantified
in Section [5l Our measurements identify key performance bottlenecks in the browser
designs we study, and we find that several of the bottlenecks identified correlate well
with browser implementation efforts for design proposals that have public implementa-
tions. We hope our results and methodology serve as a baseline for further research on
the problem, and are instructive in identifying early bottlenecks in upcoming browser
designs.

Methodology. Browsers are examples of large-scale systems, with millions of lines-
of-code. For example, the browser we choose as the blueprint in this work (Firefox)
has a development history of 8 years and comprises of over 3 million lines of code. If
a security architect is tasked with privilege-separating an existing browser (like
Firefox), how does she estimate security gains and performance bottlenecks of any
particular privilege-partitioning configuration? In this paper, we take a step towards
quantitatively studying this question with empirical data measurements. In previous
research on privilege-separated browsers, performance measurements have been “after-
the-fact”, i.e., after a chosen partitioning configuration has been implemented. In this
work, we develop and report on a more rigorous measurement-based methodology

http://www.it-ebooks.info/

A Quantitative Evaluation of Privilege Separation in Web Browser Designs 77

that estimates the security benefits and performance costs, without requiring a time-
intensive implementation. Our methodology precisely formulates back-of-the-envelope
calculations that security architects often use, and thereby systematizes a typical se-
curity argument with empirical rigor. Most prior works on browser re-design report
performance on a small scale (typically on 5-10 sites). Our data-driven methodology
leads to design decisions that are backed by a large-scale dataset.

Our methodology only aims to estimate weak upper bounds on the performance in-
curred by a proposed browser partitioning scheme. We recognize that these estimates
can, of course, be reduced in actual implementations with careful optimizations and
engineering tricks. However, our methodology lets us identify the likely bottlenecks
where significant engineering effort needs to be invested. The metrics we evaluate in
this work are not new and, in fact, we only systematize the measurement of quantities
that prior works base their security arguments on. For instance, most prior works (some-
what informally) argue security based on two artifacts: (a) the reduction in size of the
trusted computing base (TCB), and (b) the reduction in number of known vulnerabil-
ities affecting the TCB after the re-design. To unify the security arguments previously
proposed, we systematically measure these quantities using real-world data — 3 million
lines of Firefox code and its corresponding bug database (comprising 8 years of Firefox
development history).

Contributions. Our goal in this paper is not to suggest new browser designs, or to
undermine the importance of clean-slate designs and measurement methodologies pro-
posed in prior work. On the contrary, without extensive prior work in applying privilege
separation of real systems, the questions we ask in the paper would not be relevant.
However, we argue to “quantify” the trade-offs of a privilege-separated design and en-
able a more systematic foundation for comparing designs.

In summary, we make the following contributions in this paper:

— We propose a systematic methodology to quantify security and performance pa-
rameters in privilege-separated designs, without requiring an implementation of
the design.

— We perform a large-scale study on Firefox (>3 million LOC) on the Alexa Top 100
web sites.

— We draw inferences on the likely benefits and costs incurred by various partition-
ing choices proposed in 9 recent browser designs proposals, giving empirical data-
driven insights on these actively debated questions.

2 Overview

In this section, we introduce the concept of privilege separation, and then discuss
privilege-separated designs in web browsers, including their goals and various design
dimensions.

2.1 Privilege Separation in Concept

Privilege separation aims to determine how to minimize the attacker’s chances of ob-
taining unintended access to other part of the program. We consider each running

http://www.it-ebooks.info/

78 X. Dong et al.

instruction of a software program belongs to a code unit and a run-time authority. A
code unit is a logical unit of program code, such as a software component, a function
or a group of statements. The run-time authority can be a user ID or a web session, etc.
Specifically, let p; be the probability for any code unit or authority other than ¢ to get
unintended access to resources r; belonging to . From a purely security perspective, the
goal is to minimize the attacker’s advantage. We can model this advantage using a va-
riety of mathematical functions. For instance, an attacker’s worst-case advantage from
compromising a single vulnerability may be defined as max(p;); a privilege-separated
design is good if it yields a large value of (1 — mazx(p;)) [l. However, as we argue in
this paper, a practical privilege-separated design often departs significantly from this
conceptual formulation. We argue that this purely security-focused viewpoint ignores
the implicit performance costs associated with partitioning. Rather than focusing on
mathematical modeling, we focus on the key methodology to quantify the benefits of a
privilege partitioning scheme in this work.

2.2 Privilege Separation in Browsers

Blueprint. To discuss trade-offs in partitioning, we use a conceptual blueprint that
shows the various code units in a typical browser. We have manually extracted this
from Mozilla Firefox, a popular web browser, and we show it in Figure [MB. We have
confirmed that this conceptual blueprint is also consistent with WebKit-based browsers
and models sufficient details for comparing prior works on browser re-design. This
blueprint intuitively explains the processing of web pages by various browser compo-
nents. A web page is first received by the Network module that prepares content to be
parsed by the HTML parser. The HTML parser creates a DOM, which can then invoke
other execution engines such as the JavaScript engine, CSS, and so on. The legitimate
flow of processed content between components is illustrated by arrows in Figure [T} for
brevity, we skip explaining the details. In a single-process browser, all these compo-
nents execute in the same partition. Web browser designs utilize privilege separation to
isolate the resources owned by different authorities, which are defined next.

Isolating Authorities. Web browsers abstractly manage resources owned by one of the
following authorities: web origins, the system authority, and the user authority. Web
origins correspond to origins [4] of HTML pages, sourced scripts, CSS and so on. The
system authority denotes the privilege of the browser core, also referred to as the chrome
privilege. It has access to sensitive OS resources, such as the file system, network,
display, etc. We associate the user authority to UI elements of the browser, which convey
necessary security indicators to allow them to make sensible security decisions, such as
security prompts, certificate warnings, access to preferences and settings [30].

! Alternative definitions of attacker’s advantage are easy to consider—for example, considering
the average case with avg rather than maxz. We can assign additional weights to the resources
r; via a severity function S(j,r;) if failure protect r; from j has more severity than other
resources, etc.

2 Security analysts can pick different blueprints in their design; our methodology is largely ag-
nostic to the blueprint used.

http://www.it-ebooks.info/

A Quantitative Evaluation of Privilege Separation in Web Browser Designs

TCP, SSL,...
IP...

7y

Receive response

0 1 Send request
i

Network

(¥ Load web page

Create
XMLHttpRequest

Feed page e
contef

Parser

Load external
resources

JavaScript Engine

Process scrip Call event

handlers /
Process
script

ead/write
DOM

Store style,
attributes @

@ Reflect

¥ structure

Layout

@ Trigger event
processing

Browser Event Manager

(1]

| BrowserAdd-ons |

<canvas> [to events
1 WebGL

Web Browser

[File System] [

Libraries]

Operating Systemi

Fig. 1. Browser Blueprint. It shows typical interactions between browser components in process-
ing a web page.

Security Threats. Security vulnerabilities can result in one authority gaining unin-

tended access to resources of another. In web browsers, we can classify threats based
on which authority gains privileges of which other authority.

— CROSS-ORIGIN: Cross-Origin Data & Privilege Leakage, due to vulnerabilities
such as missing security checks for access to JavaScript objects or XMLHttpRe-
quest status, and capability leaks [[11]].

— WEB-TO-SYS: Web-to-System Privilege Escalation, via vulnerable JavaScript APIs
exposed by the browser components or plugins.
— WEB-TO-COMP: Web-to-Component Privilege Escalation, allowing attackers to

run arbitrary code in vulnerable browser components, consisting of different mem-
ory corruption errors in the browser code.

There are also other categories of browser vulnerabilities. For completeness, we list
them below. However, these are beyond the scope of the same-origin policy and we do
not measure the security benefits of applying privilege separation to mitigate them.

— USER: Confusion of User Authority. These vulnerabilities may allow attackers to
manipulate user interfaces to confuse, annoy, or trick users, hijacking their abilities
in making reasonable security decisions. Recent incidents of mistakenly accepting
bogus or compromised certificates [36]] also belong to this category.

79

http://www.it-ebooks.info/

80

X. Dong et al.

Table 1. Privilege Separation in Browsers The table explains different partitioning dimensions in
browser designs. For the right part of the table, same symbols denote the corresponding compo-
nents are in the same partition.

Browser ISO.lat.l(.)ll Partitioning Dimension Plugins JS HTML DOM |Layout |NetworkStorage
Primitive Parser
Firefox |Process [Nil Separate ® |D (&) (&) D (&)
. .. With Hosting Page
Chrome |Process |By Origin, By Component or Separate D |DP &3] 7] o o
Tahoma |VMs By Origin With Hosting Page | |6 D] (&) b
. By Origin, By Sub-resource, -
Gazelle |Process By Component Separate Per Origin [¢ P P o o
B .. Separate Per Origin
OP Process By Origin, By Component & Plugin @ |o o oQ o ©
By Origin, By Sub-resource, ..
oP2 Process By Component Separate Per Origin |® @ D D o ©
With Hosting Page
1E8/9 Process |Per Tab (ActiveX) o |D 52] 2] @ ®
By Origin, By Sub-resource,
IBOS Process By Component Separate D | D D [} @
WebShield Host Nil With Hosting Page [[[[@o)

— INTRA-ORIGIN: Intra-Web-Origin Data & Privilege Leakage. This category of

browser vulnerabilities results in running code within the authority of a web ori-
gin. These include bugs in parsing malformed HTML content, identifying charsets,
providing HTTP semantics and so on. They can introduce popular forms of web
attacks, such as XSS, CSRF and so on.

Partitioning Dimensions. 9 recent browser designs propose several ways of partition-
ing to mitigate the aforementioned threats. In this paper, we apply systematic method-
ology to study the security and performance trade-offs in these partitioning dimensions.
Table [Tl summarizes the design dimensions considered in each browser design, and we
explain these dimensions below.

— By origin: Each origin has a separate partition. This mitigates CROSS-ORIGIN

vulnerabilities between web pages. For example, IBOS [33]], Gazelle [35]], Google
Chrome [9]], OP [20] and OP2 [21] all isolate primarily on origins H In Chrome’s
default setting, web pages from different origins but belonging to the same “site
instance’f] are exceptions to this isolation rule.

By sub-resource: When an origin is loaded as a sub-resource in another origin, say as
an iframe or as an image, web browsers can isolate the sub-resources. This provides
additional isolation between cross-origin resources, especially in mashups that inte-
grate contents from various origins, and prevents CROSS-ORIGIN vulnerabilities
from sub-sources explicitly included by an origin. For example, Gazelle [35]] allo-
cates a separate process for each destination origin of the resource and IBOS [33]
uses a separate process for each unique pair of requester-destination origins; Chrome
does not isolate sub-resources.

3 OP and OP2 propose isolating web pages within the same origin, but the same-origin policy

does not recognize such intra-origin boundaries and permits arbitrary access between web
pages of the same origin. From a security analysis perspective, we treat them as the same.

* Connected web pages from the domains and subdomains with the same scheme. [17].

http://www.it-ebooks.info/

A Quantitative Evaluation of Privilege Separation in Web Browser Designs 81

— By component: Different components are isolated in different partitions. Web
browsers have proposed isolating individual components that are inadvertently ex-
posed across origins, but do not need the full privileges of the system authority. For
example, the OP browser [20] isolates the HTML parser and the JavaScript engine
in different partitions. This prevents exploits of a WEB-TO-COMP vulnerabilities.
Browsers also isolate components that need heavy access to resources of the system
authority (such as the file system, network) from components that need only access
to web origin resources. For example, Google Chrome [9] and Gazelle [35] separate
components into web components (renderers) and system components (browser
kernels). Partitioning along this dimension prevents WEB-TO-SYS vulnerabilities
in the codebase of renderer partitions.

3 Quantifying Trade-Offs with Empirical Measurements

How do we systematically evaluate the security and performance trade-offs of a given
partitioning configuration? To answer this question, we measure several security and
performance parameters. Our methodology places arguments made previously on a
more systematic foundation backed by empirical data.

3.1 Security Parameters

The goal of measuring security improvements is to estimate the reduction in the like-
lihood of an attacker obtaining access to certain privileged resources, which we in-
troduced as probabilities p; in Section 2.1l Estimating the resilience of software to
unforeseen future has been an open problem [22L25/129]. In this work, our goal is not to
investigate new metrics or compare with existing ones; instead, we aim to systematize
measurements of metrics that have already been proposed in works on privilege separa-
tion. Security analysts argue improvements in security using two metrics: (a) reduction
in TCB, i.e., the size of code that needs to be trusted to protect resource r;, and (b)
reduction in impact of previously known security vulnerabilities Bl. Next we explain the
intuitive rationale behind the parameters we adopt in our evaluation. We leave details
on how we measure them to Section

S1: Known Vulnerabilities in Code Units. One intuitive argument is that if a com-
ponent A has more vulnerabilities historically than B, then A is less secure than B.
Therefore, for a given partitioning scheme, we can compute the total number of vul-
nerabilities for code units in one partition as the vulnerability count for that partition.
The smaller the count, the less is the remaining possibility of exploiting that partition
to gain unintended access to its resources.

S2: Severity Weightage. It is important to characterize the impact or severity of vul-
nerabilities. As we discuss in Section[2.2] different vulnerabilities give access to differ-
ent resources. For instance, WEB-TO-SY'S vulnerabilities give web attackers full access
to system resources (including all other origins), so they are strictly more severe than

5 Note that these metrics are instances of reactive security measurement, which have been de-
bated to have both advantages [10] and disadvantages [29].

http://www.it-ebooks.info/

82 X. Dong et al.

CROSS-ORIGIN vulnerability. To measure this, we categorize security vulnerabilities
according to their severity.

S3: TCB Reduction. An intuitive argument is that if the code size of a trusted partition
is small, it is more amenable to rigorous formal analysis or security analysis by human
experts. If a resource r;, such as the raw network access, is granted legitimate access
to one component, then the size of the partition containing that component is the attack
surface for accessing r;. In security arguments, this partition is called the trusted com-
puting base (TCB). By measuring the total code size of each partition, we can measure
the relative complexity of various partitions and compute the size of TCB for different
resourced.

3.2 Performance Parameters

The precise performance costs of a privilege-separated design configuration can be
precisely determined only after it has been implemented, because various engineer-
ing tricks can be used to eliminate or mitigate performance bottlenecks. However, im-
plementing large re-designs has a substantial financial cost in practice. We propose a
systematic methodology to calculate upper bounds on the performance costs of imple-
menting a given partitioning configuration. These bounds are weak because they are
calculated assuming a straightforward implementation strategy of isolating code units
in separate containers (OS processes or VMs), tunneling all communications over inter-
process calls as proposed in numerous previous works on browser re-design. This strat-
egy does not discuss any engineering trick that can be used in the final implementation.
We argue that such a baseline is still useful and worthy of systematic investigation.
For instance, it lets the security analyst identify parts of the complex system that are
going to be obvious performance bottlenecks. Our methodology is fairly intuitive and,
in fact, often utilized by security architects in back-of-the-envelope calculations to es-
timate bottlenecks. We explain the performance cost parameters C1-C7 we are able
to quantitatively measure below. Mechanisms for measuring these parameters and the
inference from combining them are discussed in Section

C1: Number of Calls between Code Units. If two code units are placed in separate
partitions, calls between them need to be tunneled over inter-partition communication
channels such as UNIX domain sockets, pipes, or network sockets. Depending on the
number of such calls, the cost of communication at runtime can be prohibitive in a
naive design. If a partitioning configuration places tightly coupled components in sep-
arate partitions, the performance penalty can be high. To estimate such bottlenecks, we
measure the number of calls between all code units and between authorities when the
web browser executes the full test harness.

C2: Size of Data Exchanged between Code Units. If two code units are placed in
separate partitions, read/write operations to data shared between them need to be mir-
rored into each partition. If the size of such data read or written is high, it may create

® We do not argue whether code size is the right metric as compared to its alternatives [1526]); of
course, these alternatives can be considered in the future. We merely point out that it has been
widely used in previous systems design practice and in prior research on privilege separation.

http://www.it-ebooks.info/

A Quantitative Evaluation of Privilege Separation in Web Browser Designs 83

a performance bottleneck. Two common engineering tricks can be used to reduce these
bottlenecks: (a) using shared memory or (b) by re-designing the logic to minimize data
sharing. Shared memory does not incur performance overhead, but has trades-off secu-
rity to an extent. First, as multiple parties may write to the shared memory regions, it is
subject to the time-of-check-to-time-of-use (TOCTTOU) attack [37]]; second, complex
data structures with deep levels of pointers are easily (sometimes carelessly) shared
across partitions that makes sanitization of shared data error-prone and difficult to im-
plement correctly. To estimate the size of inter-partition data exchange, we measure the
size of data that are exchanged between different code units. This measurement identi-
fies partition boundaries with light data exchange, where Unix domain sockets or pipes
are applicable, as well as boundaries with heavy data exchange where performance bot-
tlenecks need to be resolved with careful engineering.

C3: Number of Cross-Origin Calls. Client-side web applications can make cross-
origin calls, such as postMessage, and via cross-window object properties, such as
window.location, window. top, and functions location.replace,
window.close (), and so on. We measure such calls to estimate the inter-partition
calls if different origins are separated into different partitions.

C4: Size of Data Exchanged in Cross-Origin Calls. Similar to C2, we also measure
the size of data exchanged between origins to estimate the size of memory that may
need to be mirrored in origin-based isolation.

C5: Number & Size of Cross-Origin Network Sub-resources. One web origin can
load sub-resources from other origins via network interfaces. If the requester is sep-
arated in a different partition than the resource loader, inter-partition calls will occur.
We measure these number and size of sub-resources loading to evaluate the number of
partitions and size of memory required for cross-origin sub-resource isolation.

C6: Cost of an Inter-partition Call under Different Isolation Primitives. Partition-
ing the web browser into more than one container requires using different
isolation primitives, such as processes and VMs. These mechanisms have different per-
formance implications when they are applied to privilege separation. We measure the
inter-partition communication costs of 3 isolation primitives in this work: Linux OS
processes, LAN-connected hosts, and VMs; other primitives such as software-based
isolation (heap isolation [8]], SFI [34]) and hardware-based methods (using segmenta-
tion) can be calculated similarly.

C7: Size of Memory Consumption for a Partition under Different Isolation Prim-
itives With different isolation primitives, memory overhead differs when we create
additional partitions in privilege separation. This is also an important aspect of per-
formance costs dependent on design choices.

4 Measurement Methodology

To measure the outlined parameters above, we take the following as inputs: /) an exe-
cutable binary of a web browser with debug information, 2) a blueprint of the browser,

http://www.it-ebooks.info/

84 X. Dong et al.

including a set of code units and authorities for partitioning, and 3) a large test harness
under which the web browser is subject to dynamic analysis.

We focus our measurements on the main browser components and we presently ex-
clude measurements on browser add-ons and plugins. Our measurements are computed
from data measured during the execution of the test harness dynamically, since com-
puting these counts precisely using static analysis is difficult and does not account for
runtime frequencies. Based on measurement data, we compare with partitioning choices
in recent browser design proposals, and evaluate the security benefits and performance
costs in those design dimensions.

In this work, we perform the measurement on a debug build of Firefox, a blueprint
manually abstracted from Firefox and WebKit designs, historical Firefox vulnerabilities
retrieved from Mozilla Security Advisories [27]], and Alexa Top 100 web sites.

Since the engineering effort required to conduct such a large-scale study is nontrivial,
we develop an assistance tool to automate our measurement and analysis to a large ex-
tent. Especially for the measurement of inter-partition function calls and data exchange
sizes, we develop an Intel Pin tool. It applies dynamic instrumentation on the Firefox
browser to intercept function calls and memory access. By maintaining a simulated call
stack structure, we capture the caller-callee relationships during browser execution over
test harness web pages. Before our experiments, we register accounts for the Alexa Top
100 web sites, when applicable, and log into these web sites using a vanilla Firefox
browser under a test Firefox profile. Then we manually run Firefox instrumented by the
Pin tool to browse the front pages of the web sites under the same test profile, so that
contents requiring authentication are also rendered. As Firefox is slowed down by the
Pin tool, it took one of the authors around 10 days to finish the browsing of the 100 web
sites.

5 Experimental Evaluation

We conduct empirical measurements to obtain the data for evaluating browser designs.
Our measurements are mainly conducted on a Dell" server running Ubuntu 10.04
64bit, with 2 Xeon® 4-core E5640 2.67GHz CPUs and 48GB RAM. For the mea-
surement of inter-partition communication overhead, we connected two Dell desktop
machines with a dual-core i5-650 3.2GHz CPU and 4GB RAM via a 100 Mbps link.

5.1 Measurement Goals

Our measurements aim to measure the following:

Goal 1. Security benefits of isolating a browser component with regard to the number
of historical security vulnerabilities that can be mitigated by privilege separation.

Goal 2. Worst-case estimation of additional inter-partition calls and data exchange
that would be incurred by isolating a component, and by isolating an authority (web
origin).

Goal 3. Memory and communication overhead incurred by different isolation
primitives.

http://www.it-ebooks.info/

A Quantitative Evaluation of Privilege Separation in Web Browser Designs 85

Table 2. Kilo-lines of Source Code in Firefox Components. In our experiments, we consider the
following components: 0. NETWORK, 1. JS, 2. PARSER, 3. DOM, 4. BROWSER, 5. CHROME,
6. DB, 7. DOCSHELL, 8. EDITOR, 9. LAYOUT, 10. MEMORY, 11. MODULES, 12. SECURITY,
13. STORAGE, 14. TOOLKIT, 15. URILOADER, 16. WIDGET, 17. GFX, 18. SPELLCHECKER,
19. NSPR, 20. XPCONNECT, and 21. OTHERS.

Comp# [0 |1 [2 [3 [4 [5 [6 [7 [8 [0 [10 [11 [12 [13 [14 [15 [16 [17 [18 [19 |20
LOC__ [136[367]74 [155[32 [3_[131]21 |77 [366]10 [269 76317 [223]24 [137]478]24 [188]53

0123456 76893 101112131415161718192021

o e e

@ WEB-TOCOMP, 277

10
WEB-TO-SYS, 11
I[SYS, 1s,88 = DOM, 59 11
M Layout, 43 B GFX, 22 12
Plug-ins, 12 ® Modules, 10 13
-CROSS'OR‘G'N' 58 XPConnect, 10 ® Network, 7 14
W Security, 5 Internationalization, 4 15
Widget, 4 Editor, 3 16
INTRA-ORIGIN, 14 " N

l ’ Accessible, 2 XPCOM, 2 17
® DocShell, 1 General, 1 18

.USER 2 Media, 1 NSPR, 1 19 EEEEE
i Toolkit, 1 URILoader, 1 20

s W \

o 50 100 150 200 250 300

(a) Number of Historical Security Vulnerabilities in (b) Gray-scaled Chart of Call Counts

Firefox, Categorized by Severity and Firefox Compo- across Code Units. Components are num-

nents bered as with Table 2] Each cell at (i,)
denote the number of calls from Compo-
nent ¢ to Component j.

Fig. 2. Summary of Vulnerability Study and Performance Measurement

5.2 Measurement over Alexa Top 100 Web Sites

Next, we explain how we measure these metrics and present their results.

For Goal 1: Security Benefits. We measure the number of historical security vulnerabil-
ities in each Firefox component according to each severity category (Security Parameters
81, S2) and the size of source code in Firefox components (Security Parameter S3).
We implement a Perl utility with 95 lines of code to crawl and fetch Firefox bug
reports online [27]. According to the blueprint of browser components, and our classi-
fication of vulnerability severity, we count the 362 vulnerabilitiesﬂ we have access to,
by 1) browser component, and 2) severity category. Figure depicts the number of
Firefox vulnerabilities with our categorization outlined in Section 2.2l We can see that
76.5% of the security vulnerabilities are WEB-TO-COMP vulnerabilities (277), which
can lead to code execution. There is also a large amount of CROSS-ORIGIN vulnera-
bilities (38), whereas the number of other categories is much smaller. Among browser
components, the JavaScript engine has the largest number of vulnerabilities (88). The
Layout module (43) and DOM (59) also have large amount of vulnerabilities. These are

72 of them are uncategorized due to insufficient information.

http://www.it-ebooks.info/

86 X. Dong et al.

all major components consisting of complex browser logic. On the other hand, more
peripheral components have less vulnerabilities. For example, the Editor has only 3
WEB-TO-COMP vulnerabilities. Such results are in line with our intuition that more
complex and critical components tend to have more vulnerabilities discovered.

We use the wc utility to measure the lines of source code for all .h, .cand .cpp
files in Firefox components. Table [2] lists the lines of source code we measure for dif-
ferent components in Firefox. Components such as JavaScript, Layout and Security,
etc. have large size code size. These data reflect the (relative) complexity of different
browser components (See S3).

For Goal 2: Performance Costs. We dynamically measure performance costs corre-
sponding to Performance Parameters C1-C5, respectively.

Inter-code-unit Call Overhead. For Performance Parameters C1 and C2, we apply
our Pin tool on Firefox to browse Alexa Top 100 web sites, counting the number of
function calls whose caller and callee belong to two different components, and the size
of data exchanged during the function calls. We briefly discuss the results below, and
the detailed measurement data can be found online at [[1]].

The numbers of inter-code-unit function calls (in 1000s) between different browser
components are illustrated in Figure[2(b)] These calls may become inter-partition calls
after privilege separation. Thus, the larger the number is between the two components,
the higher is the communication cost if they are isolated into different partitions. We
find that there are 4,270,599,380 times of calls between the Layout engine and the
DOM during our measurements, 369,305,460 times between the GFX rendering engine
and the Layout engine, and 133,374,520 times between the JavaScript engine and the
DOM. Heavy calls between these components correspond to tight interactions during
run time, such as DOM scripting and sending layout data for rendering.

We also measure data exchange sizes between components. For example, the DOM
and the Layout engine have larger data exchange than other components: 172,206.36
Kilobytes over the 100 web sites.

Cross-Origin Call Overhead. Similarly, for calls and data exchange between different
web origins (Performance Parameters C3 and C4), we intercept the calls to client-side
communication channels in Firefox, retrieve the caller and callee origins, and record
the size of data passed in postMessage calls. For Performance Parameter C5, we
intercept all network responses to Firefox, and identify whose requester and destination
origins are different. We record such cases with the size of data passed in the HTTP re-
sponse body. Table B]summarizes the number of client-side calls to access other origins
and the size of data exchanged in such calls.

More Results on Sub-resource Loading To evaluate in more detail the performance
implications in using separate partitions for sub-resource loading, we measure the num-
ber of cross-origin sub-resources for each of the Alexa Top 100 web sites. Figure
illustrates the significant differences in the number of different origins of network sub-
resource requests for each web page we measured. In our measurement, the largest
number is 51, with www . sina. com. ci. Figure[3(b)shows that the reoccurrence rate
of unique pairs of different requester and destination origins is very small. More than

www.sina.com.cn
http://www.it-ebooks.info/

A Quantitative Evaluation of Privilege Separation in Web Browser Designs 87

Table 3. Cross-Origin Calls & Sub-Resource Loading

Cross-Origin Access |Number of Calls|Data Size Exchanged in Calls (KB)
postMessage 4,031 587
. location 9 -
Browser Side window.parent 24 -
window. frames 3,330 -
Network sub-resource | Images, CSS, etc. 10,745 131,920
#Unique Dest Origins #Pairs of the Occurrence Frequency

. ull
”””””””””” SYSIHRRCIGRRRRAVBEAISG a § ER 1357 91113151719212325272931333537394143454749515355575961636567697173757779818385

(a) Number of Different Destination Ori- (b) Occurrence Frequencies of Unique Pairs of Dif-
gins of Cross-Origin Resource Requests ferent Requestor-Destination Origins 746 unique
The largest number of different destination pairs only occur once, while only 164 unique pairs
origins from one site is 51, while the small- occur more than 15 times.

est number is 1.

Fig. 3. Sub-resource Loading Measurements

746 pairs occur only once. In fact, there are in total 1,515 such unique pairs, averaged
to 1,515/ 100 = 15 pairs for each page.

For Goal 3: Isolation Primitive Overhead. We measure the performance overhead
under different isolation primitives, in communication cost for Performance Parameter
C6, and in memory consumption for Performance Parameter C7.

We use a simple client-server communication program to measure the inter-partition
call costs between Unix domain sockets, between hosts connected via LAN, and be-
tween virtual machines on the same VM host. We average over 10,000 rounds of each
primitive with message lengths varying from 50 to 8K bytes. Table d] summarizes our
measurements on round trip times for inter-partition communications with the three
isolation primitives. Unix domain sockets are 6-10 times more efficient than cross-VM
communications.

Table 4. Round-Trip Time (RTT) of Unix Domain Socket, Network and Cross-VM Communica-
tions, in nanoseconds, Averaged over 10,000 Runs Each

Size of MSG (in bytes) Average RTT for Unix|Average RTT for|Average RTT for

Domain Socket Network Comm Cross-VM Comm
50 4673 87642 252008
500 5045 176160 288276
1000 5145 276841 252107
2K 5821 367356 251605
4K 6838 449262 269845
8K 9986 638598 336999

http://www.it-ebooks.info/

88 X. Dong et al.

By checking the size of an empty process on different hosts, we estimate that the
memory used by an almost-empty process is about 120k-140K. As this number stays
very stable across different runs, we take this as the memory consumption of creating
processes. For the Ubuntu guest OS we create, the writeable/private memory used by
VirtualBox is about 25M bytes and the memory used by guest OS running in VirtualBox
is about 90M bytes. We take 90M as the size of memory cost with a VM partition or a
single host, and 25M as the memory overhead from a VM daemon in our quantification.
Therefore, a Linux process incurs 90M / 130K =709 times lower memory overhead than
a VM.

5.3 Inference from Measurement Data

In this section, we summarize the high-level findings from our detailed measurements.
Specifically, we revisit the partitioning dimensions outlined earlier and evaluate their
security-performance trade-offs. We also summarize the performance bottlenecks that
our measurements highlight.

Table 5. Security Benefits and Performance Costs of Partitioning Dimensions Performance costs
are per page, averaged over Alexa Top 100 web sites

L . . #Vulnerabilities L .. Comm |Data Exchanges|Memory
Partitioning Dimension Migitated Lines of Code Partitioned Cost Cost Cost
Single Process 0 N.A. 0 0 0.13K
One Process per Origin (w/o Cross-

Origin Sub-Resource Isolation) 0 N.A. 0 0 130K
One Process per Origin (with Cross- .

Origin Sub-Resource Isolation) B N-A. 0.37ms |5.87MB 1.4MB
One Process per Pair of Requester-) 3 NA. 0.91ms |7.19MB 2.1IMB
Destination of Sub-Resource

Renderer/Browser Division 81 1,863K 2.59min|3.54MB 130KB
JS/DOM Separation (Process) 147 JS:367K DOM:155K 6.67s [572.6KB 130KB
JS/DOM Separation (Network) 147 JS:367K DOM:155K 3.78min|572.6KB 90MB
Layout/Window Manager Layout:367K

(GFX+Widget) Separation 0 GFX+Widget:615K 19155 1739.3KB 130KB
DOM/Layout Separation 102 DOM:155K Layout:367K [3.56min|1.68MB 130KB

Table |3 summarizes the estimated security benefits and performance costs for each
design point along the dimensions being debated in present designs. The values in the
table for performance costs are per web page, if applicable, averaged over the Top 100
Alexa pages.

Origin-Based isolation. One process per origin without separating cross-origin sub-
resources have no security benefits. If contents from another origin hosted as sub-
resources (such as PDF) can be processed in the same partition, security vulnerabilities
can still permit unintended escalation of privileges. This is consistent with the observa-
tions made by several browser designs that propose hosting sub-resources in separate
containers. Doing so, mitigates the CROSS-ORIGIN vulnerabilities (38 out of 362).

Sub-resource Isolation. Several browsers propose isolating each pair of requester-
destination of sub-resources to be further isolated in separate partitions. Our data sug-
gests that (a) this has no further security benefit in our model, and (b) it has a large

http://www.it-ebooks.info/

A Quantitative Evaluation of Privilege Separation in Web Browser Designs 89

performance cost. For instance, the memory cost of creating several partitions (using
processes) is large and will be a performance bottleneck. In our measurement, one
web page can include up to 51 third-party sub-resources. If all these cross-origin sub-
resources are to be isolated by different processes, and consider a typical browser pro-
cess need 20 Megabytes [5]], then around 1 Gigabyte memory overhead will be incurred
just for loading third-party resources for this single web page. Therefore, although sub-
resource isolation can mitigate 38 CROSS-ORIGIN vulnerabilities, browsers may need
to optimize memory usage for processes that load sub-resources before they can practi-
cally adopt this proposal.

It is interesting to compare our identified bottlenecks to choices made by today’s
web browsers. For instance, Google Chrome does not suffer from this performance bot-
tleneck by making a security-performance trade-off. It adopts a different strategy by
grouping resources according to a site-instance of the hosting page, which significantly
reduces the number of processes created [[17]. We leave the detailed definition and dis-
cussion of this strategy out of scope; however, we believe that our methodology does
identify realistic practical constraints.

Component-Based Isolation. Isolation by components mitigates WEB-TO-COMP vul-
nerabilities. For example, the JavaScript engine and the DOM have 147 such vulnera-
bilities. At the same time, the 367K of source code (TCB) in the JavaScript engine
can be isolated, which is 10% of the entire browser. Nevertheless, since they have fre-
quent interactions, such isolation costs prohibitively high communication and memory
overhead. Hence, although beneficial for security, such a partitioning dimension is less
practical for adoption. For instance, designers of OP redacted the decision to isolate
JavaScript engine and the HTML parser within one web page instance in OP2; our
measurement identifies this high overhead as a bottleneck.

Renderer/Browser Kernel Isolation. We also take a popular architecture of render-
er/browser kernel division for evaluation. We evaluate our methodology on the Google
Chrome design model to measure the security benefits and performance costs. Such a
partitioning dimension would prevent WEB-TO-COMP vulnerabilities in the renderer
process, and WEB-TO-SYS vulnerabilities. If we apply the Firefox code size to this
design, the size of TCB in the kernel process would be around 1,863K, i.e., 53.5% of
the browser codebase. Note that this is just a rough estimation based on our blueprint
of coarse-grained components. Further dividing components can reduce the necessary
code size that needs to be put into the browser kernel process.

Our measurements identify potential performance bottlenecks that correlate with ac-
tual browser implementations. Specifically, we find that isolation between components
in the renderer processes and the browser kernel process, as in Chrome, would incur
very high performance overhead, such as between the GFX and the Layout engine.
However, such performance bottlenecks do not appear in Chrome. Over the past few
years, a substantial amount of efforts [[7] have been spent on improving and securing
the inter-partition communications in the Chrome browser. Besides, Chrome also uses
GPU command buffers and other engineering tricks to improve performance of render-
ing and communication [[16]. This verifies our observation that potential performance
bottlenecks need to be re-engineered to reduce their overhead.

http://www.it-ebooks.info/

90 X. Dong et al.

Component Partitioning with High Security Benefits. We identify a few browser
components that have high security benefits to be isolated from other components.
For example, the JavaScript engine is a fairly complex component with 367K lines of
source code, has 88, i.e., 31.8% of, WEB-TO-COMP vulnerabilities. Isolating it from
other browser components will mitigate a large faction of vulnerabilities. Other typ-
ical example components include the Layout engine with 367K lines of source code
and 43 (15.5%) WEB-TO-COMP vulnerabilities, as well as GFX, the rendering com-
ponent for Firefox, with 478K lines of source code and 22 (7.9%) WEB-TO-COMP
vulnerabilities.

Component Partitioning with High Performance Costs. We identify the main
browser components that have tight interactions with other browser components. Thus,
isolating them from others would incur high performance costs. For example, our mea-
surements find 133,374,520 function calls between the JavaScript engine and the DOM,
and 369,305,460 calls between the GFX rendering engine and the Layout engine. To
show why they can become performance bottlenecks, here is a simple calculation. Sup-
pose they are separated by processes, a single RTT with Unix domain sockets would
cost a delay of around 5000 nanoseconds. If there is no additional optimization is in
place, these numbers correspond to 133,374,520 * 5000 nanoseconds / 100 pages =
6.67 seconds/page and 18.47 seconds/page, respectively. Such performance overhead
is prohibitively high. Security architects should either avoid such partitioning, or take
further measures to optimize these performance bottlenecks.

6 Related Work

Privilege Separation. The concept of privilege separation in computer systems was
proposed by Saltzer et al. [31]]. Since then it has been used in the re-design of sev-
eral legacy OS applications [12,128]] (including web browsers) and even web applica-
tions [5,18L19]. Similar to our goals in this work, several automated techniques have
been developed to aid analysts to partition existing applications, such as PrivTrans [14],
Jif/Split [38], and Wedge [13]. Most of these works have focused on the problem of
privilege minimization, i.e., inferring partitions where maximum code executes in par-
titions with minimum or no privileges, while performance is measured “after-the-fact”.
Our work, in contrast, aims to quantify performance overhead with privilege-separated
designs with only a blueprint without the actual implementations. Our work also differs
with them by performing measurements on binary code, rather than source code.

Privilege Separation in Browsers. Our work is closely related to the re-design of
web browsers, which has been an active area of research [9,/18.,1201121,123,124|33,135]].
Our work is motivated by the design decisions that arise in partitioning web browsers,
which performs a complex task of isolating users, origins and the system. Among them,
IE uses tab-based isolation, Google Chrome [9] isolates web origins into different ren-
derer processes, while Gazelle [35]] further isolates sub-resources and plugins. Our mea-
surements have shown that some web pages may include 51 sub-resources of different
destination origins. Our data quantifies the number of partitions that may be created in
such designs as well as in further partitioned browsers, such as OP [20] and OP2 [21]]. In
addition, our measurements also evaluate the performance costs in VM-based isolation,

http://www.it-ebooks.info/

A Quantitative Evaluation of Privilege Separation in Web Browser Designs 91

such as Tahoma [18]], and memory consumption from separate network processes for
sub-resources in IBOS [33] design. Our work advocates privilege-separated browsers
for better security, and identifies potential performance bottlenecks that need to be op-
timized to trim their performance costs.

Evaluation Metrics. Estimation of security benefits using bug counts is one way of
quantifying security. Riscorla et al. discuss potential drawbacks of such reactive mea-
surement [29]. Other methods have been proposed, but are more heavy-weight and re-
quire detailed analysis of source code [22,125,132]. Performance measurement metrics
such as inter-partition calls and data exchange have been identified in the design of iso-
lation primitives such as SFI [34]. We provide an in-depth empirical analysis of these
metrics in a widely used web browser (Mozilla Firefox).

7 Conclusion

In this paper, we propose a measurement-based methodology to quantify security bene-
fits and performance costs of privilege-partitioned browser designs. With an assistance
tool, we perform a large-scale study of 9 browser designs over Alexa Top 100 web sites.
Our results provide empirical data on security and performance implications of various
partitioning dimensions adopted by recent browser designs. Our methodology will help
evaluate performance overhead in designing future security mechanisms in browsers.
We hope this will enable more privilege-separated browser designs to be adopted in
practice.

Acknowledgments. We thank anonymous reviewers for their valuable feedback. This
research is partially supported by the research grant R-252-000-519-112 from Ministry
of Education, Singapore.

References

1. Additional tables on performance evaluation,
http://compsec.comp.nus.edu.sg/bci/additional-tables.pdf

2. Bromium, http://www.bromium.com/

3. Invincea, http://www.invincea.com/

4. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a formal foundation of
web security. In: Proceedings of the 23rd IEEE Computer Security Foundations Symposium,
CSF 2010 (2010)

5. Akhawe, D., Saxena, P., Song, D.: Privilege separation in html5 applications. In: Proceedings
of the 21st USENIX Security Symposium (2012)

6. Alexa: Top sites (2012), http://www.alexa.com/topsites (retrieved)

7. Azimuth Security: The chrome sandbox part 2 of 3: The IPC framework,
http://blog.azimuthsecurity.com/2010/08/
chrome-sandbox-part-2-of-3-ipc.html

8. Barth, A., Felt, A.P,, Saxena, P., Boodman, A.: Protecting browsers from extension vulnera-
bilities. In: Proceedings of the 17th Annual Network and Distributed System Security Sym-
posium, NDSS 2010 (2010)

http://compsec.comp.nus.edu.sg/bci/additional-tables.pdf
http://www.bromium.com/
http://www.invincea.com/
http://www.alexa.com/topsites
http://blog.azimuthsecurity.com/2010/08/chrome-sandbox-part-2-of-3-ipc.html
http://blog.azimuthsecurity.com/2010/08/chrome-sandbox-part-2-of-3-ipc.html
http://www.it-ebooks.info/

92

13.

14.

15.

16.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

X. Dong et al.

. Barth, A., Jackson, C., Reis, C.: The Google Chrome Team: The security architecture of the

chromium browser. Tech. rep. (2008)

. Barth, A., Rubinstein, B.I.P., Sundararajan, M., Mitchell, J.C., Song, D., Bartlett, P.L.: A

learning-based approach to reactive security. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052,
pp- 192-206. Springer, Heidelberg (2010)

. Barth, A., Weinberger, J., Song, D.: Cross-origin javascript capability leaks: detection, ex-

ploitation, and defense. In: Proceedings of the 18th USENIX Security Symposium (2009)

. Bernstein, D.J.: Some thoughts on security after ten years of gmail 1.0. In: Proceedings of

the 2007 ACM Workshop on Computer Security Architecture, CSAW 2007 (2007)

Bittau, A., Marchenko, P., Handley, M., Karp, B.: Wedge: splitting applications into reduced-
privilege compartments. In: Proceedings of the Sth USENIX Symposium on Networked Sys-
tems Design and Implementation, NSDI 2008 (2008)

Brumley, D., Song, D.: Privtrans: automatically partitioning programs for privilege separa-
tion. In: Proceedings of the 13th USENIX Security Symposium (2004)

Certification Authorities Software Team (CAST): What is a “decision” in application of
modified condition/decision coverage (mc/dc) and decision coverage (dc)?,
http://www.faa.gov/aircraft/air cert/design_approvals/
air_software/cast/cast_papers/media/cast-10.pdf

Chromium: GPU command buffer, http: //www.chromium.org/
developers/design-documents/gpu-command-buffer

. Chromium: Process models — process-per-site-instance,

http://www.chromium.org/developers/design-documents/
process-models#1_Process_per_Site_Instance

. Cox, R.S., Gribble, S.D., Levy, H.M., Hansen, J.G.: A safety-oriented platform for web ap-

plications. In: Proceedings of the 2006 IEEE Symposium on Security and Privacy (2006)

. Felt, A.P., Finifter, M., Weinberger, J., Wagner, D.: Diesel: applying privilege separation to

database access. In: Proceedings of the 6th ACM Symposium on Information, Computer and
Communications Security, ASTACCS 2011 (2011)

Grier, C., Tang, S., King, S.T.: Secure web browsing with the op web browser. In: Proceed-
ings of the 2008 IEEE Symposium on Security and Privacy (2008)

Grier, C., Tang, S., King, S.T.: Designing and implementing the op and op2 web browsers.
ACM Transactions on the Web (2011)

Hart, T.E., Chechik, M., Lie, D.: Security benchmarking using partial verification. In: Pro-
ceedings of the 3rd USENIX Workshop on Hot Topics in Security, HotSec 2008 (2008)
IEBlog: Tab isolation, http://blogs.msdn.com/b/ie/archive/
2010/03/04/tab-isolation.aspx

Li, Z., Tang, Y., Cao, Y., Rastogi, V., Chen, Y., Liu, B., Sbisa, C.: Webshield: Enabling
various web defense techniques without client side modifications. In: Proceedings of the
Network and Distributed System Security Symposium, NDSS 2011 (2011)

Lie, D., Satyanarayanan, M.: Quantifying the strength of security systems. In: Proceedings
of the 2nd USENIX Workshop on Hot Topics in Security, HotSec 2007 (2007)

McCabe, T.J.: A complexity measure. In: Proceedings of the 2nd International Conference
on Software Engineering, ICSE 1976 (1976)

Mozilla Foundation: Mozilla foundation security advisories,
http://www.mozilla.org/security/announce/

Provos, N., Friedl, M., Honeyman, P.: Preventing privilege escalation. In: Proceedings of the
12th USENIX Security Symposium (2003)

Rescorla, E.: Is finding security holes a good idea? IEEE Security and Privacy 3(1), 14-19
(2005)

http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-10.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-10.pdf
http://www.chromium.org/developers/design-documents/gpu-command-buffer
http://www.chromium.org/developers/design-documents/gpu-command-buffer
http://www.chromium.org/developers/design-documents/process-models#1_Process_per_Site_Instance
http://www.chromium.org/developers/design-documents/process-models#1_Process_per_Site_Instance
http://blogs.msdn.com/b/ie/archive/2010/03/04/tab-isolation.aspx
http://blogs.msdn.com/b/ie/archive/2010/03/04/tab-isolation.aspx
http://www.mozilla.org/security/announce/
http://www.it-ebooks.info/

30.

31.

32.

33.

34.

35.

36.

37.

38.

A Quantitative Evaluation of Privilege Separation in Web Browser Designs 93

Roesner, F., Kohno, T., Moshchuk, A., Parno, B., Wang, H.J., Cowan, C.: User-driven access
control: Rethinking permission granting in modern operating systems. In: Proceedings of the
2012 IEEE Symposium of Security and Privacy (2012)

Saltzer, J.H., Schroeder, M.D.: The protection of information in computer systems. Proceed-
ings of the IEEE (1975)

Ta-Min, R., Litty, L., Lie, D.: Splitting interfaces: Making trust between applications and
operating systems. In: Proceedings of the 7th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2006 (2006)

Tang, S., Mai, H., King, S.T.: Trust and protection in the illinois browser operating system.
In: Proceedings of the 9th USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI 2010 (2010)

Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault isolation.
ACM SIGOPS Operating Systems Review 27(5), 203-216 (1993)

Wang, H.J., Grier, C., Moshchuk, A., King, S.T., Choudhury, P., Venter, H.: The multi-
principal os construction of the gazelle web browser. In: Proceedings of the 18th USENIX
Security Symposium (2009)

Wikipedia: DigiNotar, http://en.wikipedia.org/wiki/DigiNotar

Wikipedia: Time of check to time of use,
http://en.wikipedia.org/wiki/Time_of_check_to_time_of_use
Zdancewic, S.A.: Programming languages for information security. Ph.D. thesis, Cornell
University (2002)

http://en.wikipedia.org/wiki/DigiNotar
http://en.wikipedia.org/wiki/Time_of_check_to_time_of_use
http://www.it-ebooks.info/

Estimating Asset Sensitivity by Profiling Users

Youngja Park®, Christopher Gates?, and Stephen C. Gates'

L IBM T.J. Watson Research Center, Yorktown Heights, NY 10598, USA
2 Purdue University, Indiana, USA
{young_park, scgates}@us .ibm.com, gates2@purdue.edu

Abstract. We introduce algorithms to automatically score and rank information
technology (IT) assets in an enterprise, such as computer systems or data files,
by their business value and criticality to the organization. Typically, information
assets are manually assigned classification labels with respect to the confidential-
ity, integrity and availability. In this paper, we propose semi-automatic machine
learning algorithms to automatically estimate the sensitivity of assets by profil-
ing the users. Our methods do not require direct access to the target assets or
privileged knowledge about the assets, resulting in a more efficient, scalable and
privacy-preserving approach compared with existing data security solutions rely-
ing on data content classification. Instead, we rely on external information such as
the attributes of the users, their access patterns and other published data content
by the users. Validation with a set of 8,500 computers collected from a large com-
pany show that all our algorithms perform significantly better than two baseline
methods.

Keywords: Asset Sensitivity, Criticality, Data Security, Information Security.

1 Introduction

Recently, a growing number of advanced persistent threats (APTs) [7] and insider
threats [[18] have demonstrated the capability of attacking specific highly sensitive en-
tities in a government or company. The computer security community has recognized
that not all IT assets have the same value or importance to the company, and, therefore,
they require different levels of protection corresponding to their sensitivity and value.
By prioritizing the security efforts and budget to better protect highly sensitive assets,
organizations can reduce the security risk. Further, quantitative measurement of the sen-
sitivity of IT assets enables other important applications such as intelligent file backup
and business continuity planning.

To achieve this vision, all assets in an organization need to be assigned a sensitiv-
ity value that properly indicates the business value and criticality to the organisation.
Currently, the asset classification is primarily done manually by the system administra-
tors with respect to the confidentiality, integrity and availability of the assets. However,
there are critical limitations in the manual approach. First, it is very hard for a large or-
ganization to assign appropriate labels to all the assets in the organization. The number
of assets in a large organization can grow huge, and, often, the assets are created and
managed independently in different departments, so it is extremely hard to catalog and
centrally manage all the assets. Second, most of the guidelines are descriptive and can

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 94-[[10] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.it-ebooks.info/

Estimating Asset Sensitivity by Profiling Users 95

be interpreted subjectively. Therefore, the classification of assets can differ significantly
by different human judges. Third, they typically measure the sensitivity using a coarse-
grained (3 to 5-scale) rating as in the Bell-LaPadula model [3] ranging from the most
sensitive (e.g., Top Secret) to the least sensitive (e.g, Un-classified).

In this paper, we explore methods for semi-automatically scoring various assets
within an enterprise using information about the users. To our knowledge, there has
been little effort to automatically quantify the sensitivity of IT assets. Previous studies
mostly focus on a specific type of assets, e.g., data files [4J12l13]] or network assets [3]],
or propose a ranking method using a small number of manually generated features [10].
We propose a new method for determining asset values using automatically extracted
features that are generic to various asset types including data and network assets. We
use only information about the users of the target asset including attributes of the users,
their access patterns and externally published data by the users such as personal and
project webpages and files shared by the users. Note that this information can be easily
extracted and does not require direct access to the target asset or detailed knowledge
about the asset, such as the owner of the asset and the sensitivity of the data in the asset.

Further, we note that there are many different aspects for an asset being considered
sensitive, and the criterion can change over time. For instance, a computer is considered
very sensitive because it stores sensitive data (i.e., confidentiality), or it hosts important
applications for the business (i.e., availability). Based on these observations, we ap-
ply instance-based learning approaches, making the system domain independent and
easy to adapt to new sensitive asset types. Given a small set of known sensitive assets,
we learn their characteristics and score other sensitive assets using the models. In this
work, we explore a kNN (Nearest Neighbor)-based method, a clustering-based method
and the kNN-based method with distance metric learning techniques. We validate the
algorithms using a real-world data set comprising about 8,500 computers. Our experi-
ments show that all our algorithms perform significantly better than the baseline cases,
and the kKNN-based method with distance metric learning techniques outperform the
other algorithms. The main contributions of this paper are as follows.

— Previous studies presented solutions for a specific IT asset type such as data, servers
or computer networks, forcing companies to manage multiple heterogenous ap-
proaches. Our methods rely on meta-level information that can be extracted from
most IT assets in the same way. This domain-independent set of features makes our
methods applicable to many different IT asset types.

— Further, extraction of the meta-level features does not require direct access to the
target assets or privileged knowledge about the assets, and, thus, our method is very
efficient and can be easily scalable to a large set of heterogeneous assets.

— Our system assigns a quantitative value to each asset rather than a coarse-grained
set of labels, allowing companies to adopt more fine-grained security measures.

— A major obstacle in applying machine learning methods to computer security prob-
lems is the lack of labeled data. In this work, we propose new semi-supervised
machine learning methods that learn the characteristics of sensitive assets from a
small number of examples.

— We validate our approaches with a large set of real data. Experimental results con-
firm that the proposed algorithms can retrieve sensitive assets with high ranks pro-
ducing higher precision and recall than baseline methods.

http://www.it-ebooks.info/

96 Y. Park, C. Gates, and S.C. Gates

2 Meta-level Features of Assets

As discussed in the introduction, a main goal of this study is to identify a set of features
that can be uniformly used for different asset types and be extracted without having
to access the target asset or privileged knowledge about the asset. This set of features
may not be as accurate as a small set of features carefully produced by domain experts,
but it makes the system very efficient and scalable and can provide a good estimate for
potentially sensitive assets.

In this study, we investigate 72 features from three kinds of knowledge — who ac-
cesses the asset (user features), how they access the asset (usage features) and what
kinds of tasks or projects the users work on (external content features). Table [I] de-
scribes the high-level feature categories used in this study.

Table 1. Features for estimating the sensitivity of IT assets

Feature Categories Feature Definition

User Features

Manager vs. NonManager Is the user a manager or a non-manager employee

Job Roles Job roles in the organization such as S/W Developer and Finance
Rank in the organizational The distance from the highest-ranked employee to the user in the
hierarchy organization hierarchy

Usage Features

Access Frequency the total number of accesses by a user (heavy or light)

Access Pattern the patterns of the accesses (e.g., regular, semi-regular, irregular)

External Content Features

External Data Content Topics discovered from the externally published data content
such as papers, patent and webpages of the users

2.1 User Features

User attributes such as job roles and the rank in the organization may affect the sen-
sitivity of the asset. For instance, an asset used primarily by executives would elevate
the sensitivity of the asset. In this work, we leverage these types of user attributes for
sensitivity estimation.

To extract the attributes of the users, we first need to identify the users of the asset
in the access logs. Some access logs, such as logs for a file repository or a system log-
on, typically contain the user accounts, thus, identifying the users is straightforward for
these assets. For computer network assets, user accounts are generally not available in
the logs (e.g., DNS logs). Instead, the logs contain the IP address from which the lookup
was requested. The process of determining which user is performing a DNS lookup is
not a trivial task. In most situations, we first need to find the most likely candidate user
who is assigned to a specific IP address during a specific time period. The resolution

http://www.it-ebooks.info/

Estimating Asset Sensitivity by Profiling Users 97

of an IP address to a user, while easy in a simple system, becomes more challenging in
a dynamic system with many different ways to access the network and with a large set
of users. Users can log into the network over WiFi or using an ethernet cable, or from
remote locations via VPN (virtual private network).

For computers in a network, we perform the IP to user mapping using various sources
including media access control (MAC) addresses, application (e.g., internal web por-
tals) logs, and WiFi logs. If the MAC address is present, then, during a DHCP session
setup, we can correlate the MAC address used for that session to the IP address that
is assigned, which, in turn, can give us an IP to user mapping. However, the MAC
addresses are not reliable for users using OS X and are often unavailable when new
devices are introduced. To alleviate the limitations, we also use application and WiFi
logs for the user mapping. The application level logs can correlate the act of a user
logging into an application (such as an internal web portal) to an IP address. The WiFi
logs can correlate a user establishing a connection to the WiFi with the authentication
credentials that are used to log in to the system. Since the user to IP mapping is not
perfect, we discard all DNS lookups for which we are unable to identify the user and
all logs that are resolved to more than one user (i.e., ambiguous logs) for our study.

After obtaining the set of users of an asset, we extract various user attributes that
can indicate the users’ job roles and the sensitivity of the data they generate. The high-
level categories of the user attributes used in this work are shown in Table[Il We extract
26 user attributes in total including Manager, NonManager, Rank-High, Rank-Middle,
Rank-Low, and 21 different job roles defined in the company such as IT Specialist,
Human Resources and Finance. Note that these attributes can be extracted from most
companies’ employee directory. The feature value of each feature is the number of users
who possess the attribute. For instance, if 100 managers, 500 non-manager employees
and 1 high-rank employee accessed the asset, the asset is represented Manager=100,
NonManager=500 and Rank-High=1.

2.2 Usage Features

The access patterns of the users add additional insights on the sensitivity of an asset. For
instance, a user who occasionally uses the asset will have less impact than a user who
uses the asset frequently. On the other hand, if a user’s access pattern is very regular
(e.g., every day at Sam), that may indicate that the user is running an automated job
(e.g., file backup), so the accesses should not affect much on the asset’s sensitivity.
Figure [l shows typical daily DNS lookup activities.

In this work, we analyze access logs with the timestamps to discover the frequency
of a user’s access and the patterns of the accesses. We first group the logs by each pair of
a user and an asset, and record the number of log entries as the access frequency of the
user to the asset. We categorize the access frequency into Heavy or Light using a pre-
defined threshold. Further, we determine if a connection to the asset is done through an
automated access or a manual access (i.e., access pattern). We observe that automated
accesses tend to be regular, for instance, once a day at 4am or once every hour, while
human accesses are more sporadic. In other words, automated accesses are more pre-
dictable while human accesses are more uncertain. Based on this observation, we apply

http://www.it-ebooks.info/

98 Y. Park, C. Gates, and S.C. Gates

Number of Users

Fig. 1. Number of unique domains accessed per user in a single day. The data show that most
users access 20 to 30 different domains in a day, while a few users connect to over 200 different
domains.

the Shannon entropy, H (X), which measures the uncertainty in a random variable [16]
to determine the access patterns.

H(X)=- Zp(xi) log(p(x:))

Now, we explain in detail how we measure the entropy of user accesses. First, for
each user and asset pair, we split all the accesses over each hour of the day (i.e., grouping
accesses into 24 time slots). For instance, we count how many accesses a user initiated
at the 9am-9:59am period in the logs collected over a long period time. Figure 2l shows
two sets of access patterns over the 24 time slots. Figure illustrates cases where
the accesses were made at the same time periods repeatedly, while Figure shows
cases where the accesses spread across many different time slots. After obtaining a

(a) Regular Access Pattern (b) Irregular Access Pattern
Fig. 2. Access Patterns
24-dimensional count vector for a user-asset pair, we then normalize the counts into

probability distributions and compute the entropy. If an access distribution produces
a low entropy, then the accesses are regarded as automated accesses. We divide access

http://www.it-ebooks.info/

Estimating Asset Sensitivity by Profiling Users 99

patterns into three categories—Regular, SemiRegular and Irregular-based on the entropy
values (i.e., high, medium and low respectively).

By combining the access frequency and the access pattern features, we generate 6
usage features: RegularHeavy, RegularLight, Semi-regularHeavy, Semi-regularLight,
IrregularHeavy and IrregularLight. If the accesses by a user to an asset exhibit a regular
pattern (i.e., low entropy), and the user has a large number of accesses, it is considered
as RegularHeavy. On the other hand, if the access pattern is irregular (i.e., high entropy)
and the access count is low, then it is considered as IrregularLight. Similarly to the user
features, the number of users that exhibit a certain access pattern is the feature value
for the asset, i.e., how many users access the asset using RegularHeavy or RegularLight
pattern.

2.3 External Content Features

The sensitivity of an asset is dependent largely on how sensitive the data in the asset are,
and, thus, the topics of data in the assets can be good indicators of the asset sensitivity.
When content inspection can be performed, the sensitivity can be measured by the tech-
niques presented in [[12/13]]. When direct content inspection is not feasible, we propose
to use external data contents generated by the users as a substitute. External contents of
a user can include any documents or data sources the user produced outside the target
asset, such as papers, patents, and project webpages. These external contents are used
to conjure the user’s job responsibilities and the tasks the user is working on. Note that
we only extract the contents that can be accessed without an access permission to the
host system. Some examples of external data content include:

Published documents such as patents and papers

Titles of files the user has shared in a file-sharing site
Wiki or project websites where the user is a member of
Personal webpages

Blogs created by the user

Tags the users added on webpages

Document of a User: We combine all the external data published by a user and gen-
erate a document for the user using the bag-of-word representation. We then remove
stop words [l and count the occurrences of each word in the user document. The ba-
sic assumption is that more frequently used words indicate the topics of the user more
strongly than less frequently used words.

Document of an Asset: We then generate a hypothetical document for an asset by
combining the documents of its users. Furthermore, we assume that the users who ac-
cess the asset more frequently influence the content of the asset more than the users
who uses it occasionally. We scale the frequency of words in the user documents based
on the frequency of the user’s access, which is defined as the number of days the user
accessed the asset. Figure 3] depicts the high level process of generating documents for
assets, and Definition[Il provides a formal description.

55

! Stop words are very commonly used words in most documents such as prepositions (e.g., “to”,
“in”) and pronouns (e.g., “I”, “this”).

http://www.it-ebooks.info/

100 Y. Park, C. Gates, and S.C. Gates

Fig. 3. High level description of content generation for assets using external user contents and
the users’s access counts to the assets. The words in an asset document come from external
contents generated by the asset users, and the counts of the word occurrences in the document are
determined based on both the word counts in the user documents and the users’ access counts for
the asset.

Definition 1. Let asset A have n users, U = {u1, - ,u,}, and the document of
a user u; be D(u;). Then, the document of asset A, D(A), is defined as D(A) =
Uu, et Uw, eD(uy) Wi Further, the count of a word in D(A), c(w;) , is computed as

c(wy) = Z 8; - c(wji)

c(wj;) is the count of word w; in D(u;), and 0; is the weight of user u,; for the asset A
and defined as log(#days(u;, A)).

Topic Discovery: Once we generate a document representation of an asset, a set of
assets can be considered as a collection of documents. The document collection for
all assets in an organization typically contain a large number of words. Treating indi-
vidual words as features will result in a very high dimensional feature space and data
sparseness issues. Instead, we can group the words into topics and use the topics as the
content features. Each asset can then be represented as the probability distributions over
the discovered topics.

In this work, we apply Latent Dirichlet Allocation (LDA) [6], a generative topic
modeling technique, to discover the topics from a collection of documents. LDA is a
probabilistic generative model for collections of discrete data such as text collections.
Each document in a corpus is modeled as a finite mixture over underlying set of topics,
and each topic is, in turn, modeled as a distribution over words. LDA allows for multiple
topic assignments to a document (i.e., probabilistic clustering) and, thus, better explains
the underlying topic distributions in the given corpus.

http://www.it-ebooks.info/

Estimating Asset Sensitivity by Profiling Users 101

LDA assumes the following generative process for creating a document d in a col-
lection of document D:

1. For each document d € D, a distribution over topics is sampled from a Dirichlet
distribution, 6 ~ Dir(«).

2. For each word w in a document, select a topic, z, according to the distribution,
Multinomial(9).

3. Finally, a word is chosen from a multinomial probability conditioned on the topic,
p(w|z, 8). B is a matrix of word probabilities over topics which is to be estimated
from the training data.

LDA requires the number of topics to be discovered as an input parameter. In this
work, we run LDA with 40 topics, and, therefore, each asset is represented as a proba-
bility distribution over the 40 topics. Table[2lshows three sample topics discovered from
our data set.

Table 2. Sample topics discovered from document representations of computer servers. Topic5
indicates Speech Recognition, Topic28 is related to related to Analytics and Business Intelligence.
BAMS stands for business analytics and management. Topic37 is related to Computer Security.

Topics Most Relevant Words

Topic5 speech, recognition, system, using, models, language, translation, based, detec-
tion, arabic, transcription, model, speaker

Topic28 business, community, management, analytics, method, system, supply, project,
BAMS, data, performance, applications, research

Topic37 system, computing, virtual, security, community, secure, method, research, data,

trusted, applications, operating

2.4 Feature Normalization

The selection of features is critical for machine learning methods, as the data are repre-
sented as points in a multi-dimensional feature space, where a feature corresponds to an
axes. Another important consideration is the range of feature values. Most data mining
and machine learning algorithms rely on a metric or a distance function to evaluate how
similar two data points are in the feature space. When there is a large difference in the
range of the feature values along different axes, these metrics implicitly assign higher
weights to features with larger ranges. To mitigate the effect, a feature normalization
technique is often applied and converts all features into an equal range.

In this study, the values of the user and usage features are the counts of the features
in the target asset, while the content topic features are the probabilities in range of [0,
1]. The raw count values, especially for the usage features, can grow very large when
the data set is collected over a long time period. We normalize the user and usage fea-
tures using the cumulative distribution function (CDF) following the findings by Aksoy
and Haralick [[1]] @ CDF-based feature normalization is performed as follows. Given a

2 We experimented with other feature normalization techniques such as linear scaling, unit range
normalization and rank normalization, and the CDF normalization performed best for our data.

http://www.it-ebooks.info/

102 Y. Park, C. Gates, and S.C. Gates

random variable z € R with cumulative distribution function F(z), the normalized
feature value, Z, of « is defined as & = F, () which is uniformly distributed in [0, 1].

3 Sensitivity Estimation Algorithms

In this section, we present our algorithms for estimating the sensitivity of assets. As
noted earlier, there are many different aspects that make an asset sensitive to the or-
ganization. For instance, an asset is considered sensitive because it contains sensitive
business data, or it hosts important applications. Based on these observations, we apply
instance-based learning approaches, in which we learn the characteristics of sensitive
assets from a small number of known sensitive assets. Therefore, our methods do not
require any prior knowledge about the domain or the target assets, making the algo-
rithms very flexible and easy to adapt to new domains. In this work, we explore three
semi-supervised machine learning approaches: a kNN-based method, a clustering-based
method, and the kKNN method with distance metric learning techniques.

3.1 kNN-Based Method

The k-nearest neighbor classification is a type of instance-based learning which assigns
a new data point to the majority class among its k nearest neighbors from the training
data set [8]]. The kNN approach is extremely flexible and non-parametric, and no as-
sumption is made about the probability distribution of the features. The similarity is
computed based on the distances between feature vectors in the feature space.

More formally, let X = {x1,...,x, } be the training data set,and Y = {y1,...,yc}
be the set of classes. In the basic kNN classification, the class for a new data point x is
defined as arg maxj<;<c Z§=1 1(yi,y;) , where y; is the class of the j-th neighbor,
and 1(y;, y;) is an indicator function that returns 1 if y; = y; and O otherwise. In many
applications, the vote is weighted by the distance between the new point and a neighbor,
and the decision is influenced more by closer neighbors.

k

arg e, " wlde.) 10

where w(d(z, x;)) is a weight function that is inversely related to the distance d(x, x;).

In this work, we extend the weighted kNN approach and compute the sensitivity of a
new asset based on the distance to its kNN assets in the training data and the sensitivity
scores of the kNN assets. When the sensitivity scores are not provided for the training
data, we can assign the same value to all the training data. The sensitivity of a new asset
A, V(A), is then defined as a weighted average score of its k-nearest neighbors among
the known sensitive assets, {S1, ..., Sk}

k
V(A) =) eSS (1)
i=1

V(S;) is the sensitivity value of S;, and e~ #(A:5) is the weight function where d(A, S;)
is the Euclidean distance of the two assets. The kNN-based sensitivity estimation is
described in Algorithm[l

http://www.it-ebooks.info/

Estimating Asset Sensitivity by Profiling Users 103

Algorithm 1. Sensitivity Estimation based on k-Nearest Neighbors

1: Input: Unlabeled assets A = {Ai,...,An}, a set of known sensitive assets S =
{81, ...,8m}, and, optionally, the sensitivity scores of S, V = {V(S1),...,V(Sm)}

: Output: Ordered list of assets A" = {A], ..., A}, }, where V(A]) > V(Aj,,)

: for A; € Ado

ENN(A;) < {Si,...,Sk}, k assets from S that are closest to A;

Compute the sensitivity of A;, V(A;) using Equation (1)

: Sort A in descending order of V(.A;)

QA WN

3.2 Clustering-Based Method

The clustering-based method considers that the assets are from many different business
units such as product development groups, HR or Finance department, and, therefore,
they will naturally form distinct groups. Suppose only one sensitive asset from the HR
department is included in the training data. With the kNN method with & > 1, the
sensitivity of assets from the HR department will be measured with assets from other
departments. By taking into account the subgroups in the dataset, we can determine the
sensitivity level of an asset using the sensitive assets from the same subgroup.

First, a clustering technique is used to discover these underlying subgroups in the
data set. We then generate the centroid of the sensitive assets in each cluster, which is
the the mean of the sensitive assets in the cluster. Similarly to the kNN-based method,
we measure the sensitivity of an asset A as the weighted average score of the k-nearest
centroids as described in Algorithm[2l The difference of the kNN-based approach and
the clustering-based approach is illustrated in Figure 4l

(a) kNN-based method where k=2 (b) Nearest centroid-based method

Fig. 4. Illustrations of the KNN and Clustering-based methods for sensitivity estimation. The
circle symbols denote known sensitive assets and the square symbols denote unlabeled assets.
The diamond symbols in [4(b)| represent the centroid of the sensitive assets in each cluster. Note
that the sensitivity of the light-colored (yellow) square is measured with a sensitive asset from a
different cluster in Figure

http://www.it-ebooks.info/

104 Y. Park, C. Gates, and S.C. Gates

Algorithm 2. Sensitivity Estimation based on k-Nearest Centroids

1: Input: Unlabeled assets A = {Ai,..., A}, a set of known sensitive assets S =
{S1,...,Sm}, and, optionally, the sensitivity scores of S,V = {V(S1),...,V(Sm)}
: Output: Ordered list of assets A" = {A], ..., A}, where V(A]) > V(Aj,,)
: Cluster all assets, AU S, into K subgroups, C = {C1,...,Cx}.
for C; € C do
St anS // the set of sensitive assets in C;
C; + the centroid of S*
V(C;) < the mean sensitivity value of S*
: for A; € Ado
Let C = {C1,...,C)} be the k nearest centroids from .A;
V(A) ¢ 305, e 1A V(0
: Sort A in descending order of V(.A;)

R A Ul

—_
- O

3.3 kNN Method with Distance Metric Learning

The accuracy of many machine learning algorithms including both kNN classification
and clustering is heavily dependant on the distance (or similarity) metric used for the
input data. However, when the data are in a high-dimensional space, the selection of an
optimal distance metric is not intuitive. Distance metric learning is a machine learning
technique that aims to automatically learn a distance metric for the input data from a
given set of labeled data points. The basic idea is to learn a distance metric that puts
instances from a same class closer to each other and instances from different classes
far apart. Recently, many studies have demonstrated that an automatically learned dis-
tance metric significantly improves the accuracy of classification, clustering and re-
trieval tasks [17/14420].

Distance metric learning algorithms are further divided into global distance metric
learning and local distance metric learning. Global distance metric learning algorithms
learn a distance metric that satisfy all the pairwise constraints, i.e., keep all the data
points within the same classes close, while separating all the data points from different
classes. Local distance metric learning algorithms, on the other hand, learn a distance
metric satisfying local constraints, and has been shown to be more effective than global
distance learning for multi-modal data.

In this study, we apply a global distance learning algorithm and a local distance
metric learning algorithm to transform the feature space. For global learning, we ap-
ply Relevant Component Analysis (RCA) [17] to learn a distance metric as proposed
in [2]. The RCA-based distant metric learning algorithm learns a Mahalanobis distance
metric using only equivalence constraints (i.e., instances in the same class) and finds a
new feature space with the most relevant features from the constraints. It maximizes the
similarity between the original data set X and the new representation Y constrained by
the mutual information 7(X,Y"). By projecting X into the new space through feature
transformation, two data objects from the same class have a smaller distance in Y than
in X. For local distance metric learning, we apply the Large Margin Nearest Neighbor
(LMNN) distance learning algorithm [[14]. The LMNN algorithm also learns a Maha-
lanobis distance metric, but it identifies k-nearest neighbors, determined by Euclidean

http://www.it-ebooks.info/

Estimating Asset Sensitivity by Profiling Users 105

distance, that share the same label and enforces the k-nearest neighbors belong to the
same class while instances from different classes are separated by a large margin.

After the feature space projection using the distance metric learning algorithms, we
apply the kNN-based sensitivity estimation method described in section[3.1]

4 Experimental Results and Evaluation

To validate the algorithms, we conducted experiments with a real life data set com-
prising about 8,500 computers. In this section, we describe in detail the experimental
settings and evaluation results. Henceforth, we denote the kNN-based method using
the original feature space as kNN, the centroid-based method as Centroid, the kNN
method with the LMNN distance metric learning as LM NN, and the kNN method with
the RCA distance metric learning as RCA.

4.1 Data

The computers used in the experiments were extracted from DNS logs collected in
the authors’ organization over 3.5 months from April, 1, 2012 to July, 15, 2012. We
extracted 12,521 unique computers for which we were able to identify the user but dis-
carded the computers with only one user or fewer than three look-up requests, resulting
in 8,472 computers. We use the 8,472 computers for training and evaluation of our
models—80% of the computers for training and 20% for evaluation respectively. Using
the mapping of IP address to user described in section 2.1 we identified 2,804 unique
users for the 8,472 computers.

In a separate effort, the company had attempted to manually compile a list of servers,
for the purpose of disaster recovery and business continuity, that host important appli-
cations of the company. The list provides the server names and their business criticality
value (BCV) assigned manually by domain experts. Each computer is assigned with a
BCV from five BCV categories—BCV1 to BCV5-and each BCV category is associated
with a numeric value from 10 (BCV1) to 50 (BCV5). We found 253 servers from this
list in our collected data set, and, thus, use the 253 servers as the labeled (i.e., ground
truth) data for this study. The ground truth data account for about 3% of the experi-
mental data, and we use the data set for both training and evaluation of the algorithms.
Table[5and Figure[@lshow the size of the experimental data, the size of the ground truth
set, and the distribution of the ground truth data over the five BCV categories.

4.2 Evaluation Metrics

We observe that the problem of identifying sensitive assets can be cast as an informa-
tion retrieval (IR) problem — finding relevant (sensitive) assets in a large collection of
assets and ranking them according to their relevance. This allows us to apply the evalu-
ation metrics developed for IR such as recall, precision and discounted cumulative gain
(DCG) [1911119] to validate the performance of our algorithms.

http://www.it-ebooks.info/

106 Y. Park, C. Gates, and S.C. Gates

No. of computers 8,472
No. of unique users 2,804
No. of known sensitive computers 253

Fig. 5. Experimental data set

Fig. 6. Distribution of the ground truth data
across the business criticality values

Precision and Recall: Precision and recall are widely used metrics for binary decision
problems including information retrieval and pattern recognition. In a binary decision
problem, a system labels data samples either positive or negative. Precision measures
the fraction of samples classified as positive that are truly positive, and recall measures
the fraction of positive samples that are correctly classified.

|{true positives in the result}| Recall — |{true positives in the result}|

|{all samples in the result}| |{all positive samples}|

Precision =

In a ranked retrieval context as in our study and in most web search engines, pre-
cision and recall are typically measured at the top n results. Further, when the class
distribution is skewed, Precision-Recall (PR) curves are often used. A PR curve is gen-
erated by plotting the precision at different levels of recall rates, and provides a more
comprehensive view on the system’s performance.

Discounted Cumulative Gain (DCG): In addition to ranking the results, when the
relevance of an instance is measured using a multi-scale rating (e.g., from completely
relevant to completely irrelevant), the quality of the results can be more precisely mea-
sured using a graded relevance scale of the results. For instance, two search engines can
produce the same precision and recall, but the search engine that retrieves documents
with a higher relevance scale at the top of the results is more useful.

DCG measures the usefulness (or gain) of a search result based on its position in a
search result list. The gain of each result is discounted logarithmically proportional to
its position in the ranked list, and the DCG of a system is defined as the accumulated
gain from the top of the result list to the bottom [9].

n

EL
DCG:RELH—Z REL,
r=2

logy ()

where REL, is the relevance score of the result at rank r, and n is the number of
instances in the result.

For IR systems, the relevance of a search result is typically judged using a 5-scale
rating from O (completely irrelevant) to 4 (completely relevant). For our study, we use

http://www.it-ebooks.info/

Estimating Asset Sensitivity by Profiling Users 107

the five BCVs as the relevance scores of computer assets by mapping the BCVs of [10,
50] into [1, 5], and by assigning O to all other computer assets.

4.3 Baseline Methods

We designed two hypothetical baseline methods to compare our algorithms with. The
first baseline produces a random ordering of the assets (hereafter denoted as Random).
The second baseline is based on the assumption that assets used by high-rank employees
are more sensitive than those used by low-rank employees. This method (denoted as
OrgRank) produces a ranking of the assets by sorting the assets in descending order by
Rank-High, Rank-Middle, and Rank-Low (the Rank features described in Table [T).

4.4 Experimental Results

In the experiments, each algorithm produces a ranked list of the computer assets, and
we compare the six algorithms based on precision, recall and DCG. We set k to 3 for all
kNN-based methods, and, for the clustering-based method, we generated 150 clusters
for the data and & = 1 for similarity estimation. The evaluation is conducted using 5-fold
cross validation methods. In a 5-fold cross validation, the ground truth data is randomly
divided into 5 equally sized subgroups, and each of the subgroups is used for evaluation.
At i-th validation (1 < ¢ < 5), the i-th subgroup (i.e., 20% of the data) is withheld to
evaluate the model’s performance, and the remaining four subgroups (i.e., 80% of the
data) are used to train the model. Since cross validation does random splitting of the
ground truth data, we conducted 5-fold cross validation 10 times, and all the results
reported here are the average performance of the 10 runs. The results of the Random
baseline system is also the average performance from 10 random orderings.

Precision and Recall: First, we show the precision-recall curves of the algorithms.
The precisions are measured at 20 different recall rates ranging from 0.05 to 1 as shown
in Figure[7(a)] All four algorithms yield significantly higher precision up to recall=0.2
than the baseline systems, with LM NN outperforming the others. We notice that the
precision drops rapidly as the recall increases. This is mainly due to the high skew in
the class distribution in our data set (only 0.6% of samples are positive).

Next, we examine recall in more detail, as high recall is more desirable for the ap-
plications with highly imbalanced data. Figure shows the recall levels measured at
the top n% (5% < n < 30%) of the most sensitive assets in the ranked lists. As we
can see, our algorithms produce much higher recall than the baseline systems, and the
distance metric learning methods outperform the other algorithms across all levels of n.
For instance, RCA achieves about 300% and 57% higher recall than Random at top 5%
and top 30% respectively. Interestingly, OrgRank performs very poorly and produces
much lower precision and recall than Random.

Discounted Cumulative Gain: Figure [§] shows the DCG values at each rank in the
ranked list of the data. As noted, DCG is a better metric for applications where the
relevance is judged in multi-scales. The comparison of DCG clearly show that our

http://www.it-ebooks.info/

108 Y. Park, C. Gates, and S.C. Gates

(a) Precision-Recall Curve (b) Recall

Fig. 7. Comparison of the precision and recall. Figure [7(a)] shows the precision at different recall
levels. Figure [7(b)] shows the recall measured at top n% of the ranked data.

Fig. 8. The discounted cumulative gains of different algorithms. The x-axis represents the ranks
of the data in descending order, i.e., x=1 represents the most sensitive computer ranked by each
algorithm.

algorithms perform significantly better than the baseline methods, and LM NN performs
slightly better than the other algorithms. Further, our algorithms converge much more
quickly achieving high DCGs early in the ranked list. This shows that our algorithms
are able to assign high ranks to highly sensitive assets. We also notice that the OrgRank
method performs better than Random when measured by DCG.

5 Related Work

There have been little work on automatically measuring the sensitivity (or criticality) of
IT assets. A related body of work has been studied by [3110/12113U15]. Park et al. [[12/13]]

http://www.it-ebooks.info/

Estimating Asset Sensitivity by Profiling Users 109

and Beaver et al. [4]] proposed methods for scoring the value of the information stored in
host computers using text processing and classification. While these methods are very
useful for data security, they can not be applied to other types of IT assets. Further, these
methods require direct access to the assets to crawl the data, thus, they are harder to ap-
ply to a large scale heterogenous environment. Beaudoin and Eng presented a method
for computing the values of network assets based on the network topology, systemic de-
pendencies among the network assets and the interfaces between the network [3]. They
manually assign the initial values to some of the sources called “user services”, and
percolate the values from the user services back to the supporting assets using a graph
mining algorithm. Sawilla and Ou presented AssetRank, a generalization of the PageR-
ank algorithm, which calculates the importance of an asset to an attacker [15]. Their
approach uses the dependency relationships in the attack graph and the vulnerability
attributes to compute the relative importance of attacker assets rather than the impor-
tance of the asset itself. Kim and Kang [[10] described a method for scoring and ranking
cyber assets using a small number of hand-crafted features. They utilize three types of
features — static factors (e.g., the criticality of application on the asset and value of data
on the asset), static value-sensitive factors (e.g., who owns the machine) and dynamic
value-sensitive factors (e.g., who is currently logged onto the machine). Crucially, their
features are hard to extract automatically, and, thus, they extract the feature values in
five-point scale from domain experts using a user survey.

6 Discussion and Conclusions

In this paper, we proposed algorithms for automatically scoring IT assets with a mini-
mum of human intervention. Our algorithms provide several technical advantages that
make our system more efficient, scalable, and privacy preserving than other existing
methods. First, our methods do not require access to the assets or any detailed knowl-
edge about the targets. Second, the features are very domain-independent and can be
mostly extracted from access logs. Third, we apply semi-supervised machine learning
approaches to minimize human efforts.

We confirmed through experiments that our algorithms perform much better than a
random ordering or a simple hypothesis-based approach. Further, the performance im-
provement was larger when the multi-scale sensitivity values were taken into account.
This indicates that our algorithms were able to retrieve assets with higher scores at
higher ranks. The experiments also demonstrated that distance metric learning tech-
niques improves the accuracy of the algorithms.

The system envisions to provide fine-grained security on high-value enterprise as-
sets and help large enterprises manage the security risks associated with these assets.
Firstly, the fine grained estimation of sensitivity values can be used to define access
control policies based on the sensitivity levels. For instance, we can define access con-
trol policies granting access to assets with sensitivity levels up to a defined threshold.
Another application of the dynamic computation of sensitivity values is in risk-based
security methods. These methods typically rely on bounding the worst case damage
caused by incorrect access control decisions. The ability to dynamically estimate the
sensitivity values would make risk based methods effective and applicable in practice.

http://www.it-ebooks.info/

110

Y. Park, C. Gates, and S.C. Gates

References

1.

2.

12.

13.

15.

18.

20.

Aksoy, S., Haralick, R.M.: Feature normalization and likelihood-based similarity measures
for image retrieval. Pattern Recognition Letters 22(5), 563-582 (2001)

Bar-Hillel, A., Hertz, T., Shental, N., Weinshall, D.: Learning distance functions using equiv-
alence relations. In: Proceedings of International Conference on Machine Learning, ICML,
pp. 11-18 (2003)

. Beaudoin, L., Eng, P.: Asset valuation technique for network management and security.

In: Proceedings of the Sixth IEEE International Conference on Data Mining Workshops,
ICDMW 2006, pp. 718-721. IEEE Computer Society (2006)

. Beaver, J.M., Patton, R.M., Potok, T.E.: An approach to the automated determination of host

information value. In: IEEE Symposium on Computational Intelligence in Cyber Security,
CICS, pp. 92-99. IEEE (2011)

. Bell, D.E., LaPadula, L.J.: Secure computer systems: Mathematical foundations. MITRE

Corporation, 1 (1973)

. Blei, D., Ng, A., Jordan, M.: Latent dirichlet allocation. Journal of Machine Learning Re-

search 3, 993-1022 (2003)

. Cole, E.: Advanced Persistent Threat: Understanding the Danger and How to Protect Your

Organization. Syngress (2012)

. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on Information

Theory 13(1), 21-27 (1967)

. Jarvelin, K., Kekalainen, J.: Cumulated gain-based evaluation of ir techniques. ACM Trans-

actions on Information Systems (4), 422-446 (2002)

. Kim, A., Kang, M.H.: Determining asset criticality for cyber defense. Technical Report

NRL/MR/5540-11-9350, NAVAL RESEARCH LAB WASHINGTON (2011)

. Manning, C.D., Raghavan, P., Schiitze, H.: Introduction to Information Retrieval. Cambridge

University Press (2008)

Park, Y., Gates, S.C., Teiken, W., Chari, S.N.: System for automatic estimation of data sensi-
tivity with applications to access control and other applications. In: Proceedings of The ACM
Symposium on Access Control Models and Technologies, SACMAT (2011)

Park, Y., Gates, S.C., Teiken, W., Cheng, P.-C.: An experimental study on the measurement of
data sensitivitys. In: Proceedings of Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security, BADGERS, pp. 68-75 (2011)

. Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metriclearning for large margin nearest

neighbor classification. In: Proceedings of the Neural Information Processing Systems Con-
ference, NIPS (2005)

Sawilla, R.E., Ou, X.: Identifying critical attack assets in dependency attack graphs. In: Jajo-
dia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 18-34. Springer, Heidelberg
(2008)

. Shannon, C.E.: A Mathematical Theory of Communication. Bell System Technical Journal

(1948)

. Shental, N., Hertz, T., Weinshall, D., Pavel, M.: Adjustment learning and relevant component

analysis. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV.
LNCS, vol. 2353, pp. 776-790. Springer, Heidelberg (2002)

Stamati-Koromina, V., Ilioudis, C., Overill, R., Georgiadis, C.K., Stamatis, D.: Insider threats
in corporate environments: a case study for data leakage prevention. In: Proceedings of the
Fifth Balkan Conference in Informatics, BCI 2012, pp. 271-274 (2012)

. Voorhees, E.M.: Variations in relevance judgments and the measurement of retrieval effec-

tiveness. In: Proceedings of the 21 st Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, vol. 24, pp. 315-323 (1998)
Yang, L.: Distance metric learning: A comprehensive survey (2006)

http://www.it-ebooks.info/

Practical Secure Logging:
Seekable Sequential Key Generators

Giorgia Azzurra Marson' and Bertram Poettering?

! CASED & TU Darmstadt
2 Information Security Group at Royal Holloway, University of London

Abstract. In computer forensics, log files are indispensable resources
that support auditors in identifying and understanding system threats
and security breaches. If such logs are recorded locally, i.e., stored on the
monitored machine itself, the problem of log authentication arises: if a
system intrusion takes place, the intruder might be able to manipulate
the log entries and cover her traces. Mechanisms that cryptographically
protect collected log messages from manipulation should ideally have
two properties: they should be forward-secure (the adversary gets no
advantage from learning current keys when aiming at forging past log
entries), and they should be seekable (the auditor can verify the integrity
of log entries in any order, at virtually no computational cost).

We propose a new cryptographic primitive, a seekable sequential key
generator (SSKG), that combines these two properties and has direct
application in secure logging. We rigorously formalize the required se-
curity properties and give a provably-secure construction based on the
integer factorization problem. We further optimize the scheme in various
ways, preparing it for real-world deployment. As a byproduct, we develop
the notion of a shortcut one-way permutation (SCP), which might be of
independent interest.

Our work is highly relevant in practice. Indeed, our SSKG implemen-
tation has become part of the logging service of the systemd system
manager, a core component of many modern commercial Linux-based
operating systems.

1 Introduction

Pseudorandom generators. A pseudorandom generator (PRG) is an unkeyed
cryptographic primitive that deterministically expands a fixed-length random
seed to a longer random-looking string [I8]. Most often, PRGs find application
in environments where truly random bits are a scarce resource; for instance, once
a system managed to harvest an initial seed of, say, 128 uniformly distributed bits
from a suitable (possibly physical) entropy source, a PRG can securely stretch
this seed to a much larger number of bits. While such mechanisms are indis-
pensable for constrained devices like smartcards, (variants of) PRGs are also
long-serving components of modern PC operating systems. A well-known exam-
ple is the /dev/urandom device available in virtually all current Linux/UNIX
derivates.

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 111-{[28] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.it-ebooks.info/

112 G.A. Marson and B. Poettering

Other applications exploit the feature that the output of PRGs can be re-
generated: as PRGs are deterministic primitives, the entire output sequence can
be reconstructed from the initial seed, whenever needed. This directly allows
employment of PRGs for symmetric encryption (formally, one could view stream
ciphers like RC4Y or AES-CTR as PRGs with practically infinite output length),
but also in distributed systems, where locally separate agents can synchronously
generate identical sequences of (pseudo-)random bits.

For PRGs with very large output length (e.g., stream ciphers) we introduce
the notion of seekability; a PRG is seekable if, for a fixed seed, ‘random access’
to the output sequence is possible. For example, the PRG obtained by operating
a block cipher in counter mode is seekable: one can quickly jump to any part of
the output string by setting the counter value to the right ‘address’. In contrast,
RC4 is not known to be seekable: presumably, in order to jump to position k in
the output string, one has to iterate the cipher k times.

Forward security. The concept of forward security (FS), best-known from the
context of cryptographic key establishment (KE), expresses the inability of an
adversary to gain advantage from the ‘corruption’ of entities. For example, con-
sider an instance of a two-party public key-authenticated KE protocol. We say
that the established session key enjoys forward secum’tzﬂ if an adversary can-
not obtain any useful information about that key, even if participants, after
completing the protocol instance, surrender their respective secret keys. In key
exchange, forward security is recognized as one of the most fundamental security
goals [30U8].

Although less commonly seen, the notion of forward security extends to other
cryptographic settings and primitives. For instance, in forward-secure public key
encryption (FS-PKE, [7]), time is subdivided into a discrete number of epochs
to,t1,..., and messages are encrypted in respect to a combination (pk,t;) of
public key and time epoch. Recipients, starting in epoch ¢y with an initial key skg,
use an update procedure sk;11 < f(sk;) to evolve the decryption key from epoch
to epoch. An FS-PKE is correct if a recipient holding key skj can decrypt all
ciphertexts addressed to corresponding epoch tg; it is forward-secure if secrecy
of all messages addressed to ‘past’ epochs t;,7 < k, is preserved even if the
adversary obtains a copy of skg. Clearly, FS-PKE only offers a security advantage
over plain public key encryption if users securely erase ‘expired’ decryption keys.

Similarly to FS-PKE, also forward-secure signature schemes [2] work with
time epochs and evolving keys; briefly speaking, their security properties ensure
that an adversary holding an epoch’s signing key skj cannot forge signatures for
prior epochs t;,j < k (i.e., ‘old’ signatures remain secure).

Secure logging. Computer log files, whether manually or mechanically evaluated,
are among the most essential resources that support system administrators in

! In fact, practical distinguishing attacks against RC4 are known [I1]; RC4 is hence a
PRG only ‘syntax-wise’.

% in the context of key establishment also known as ‘forward secrecy’

http://www.it-ebooks.info/

Practical Secure Logging: Seekable Sequential Key Generators 113

their day-to-day business. Such files are generated on hosts and communication
systems, and record a large variety of system events, including users logging on or
off, network requests, memory resources reaching their capacity, malfunctioning
of disk drives, and crashing software.

While regular analysis of system logs allows administrators to maintain sys-
tems’ health and long uptimes, log files are also indispensable in computer foren-
sics, for the identification and comprehension of system intrusions and other
security breaches. However, if logs are recorded locally (i.e., on the monitored
machine itself) the problem of log authentication arises: if a system intrusion
takes place, the intruder might be able to manipulate the log entries and cover
her traces. So-called ‘log sanitizers’ aim at frustrating computer forensics and
are known to be a standard tool in hackers’ arsenal.

Two approaches to avert the threat of adversarial modification of audit logs
seem promising. One such option is the deployment of online logging. Here,
log messages are transferred over a network connection to a remote log sink
immediately after their creation, in the expectancy that entries caused by system
intrusions have reached their destination before they can be tampered with. As
a side effect, online logging might also ease security auditing by the fact that
log entries are concentrated at a single point. However, as every local buffering
of log records increases the risk of their suppression by the intruder, full-time
availability of the log sink is an absolute security requirement in this setting.
But observe that the intruder might be able provoke downtimes at the sink (e.g.,
by running a DOS attack against it) or might disrupt the network connection
to it (e.g., by injecting reset packets into TCP connections, jamming wireless
connections, etc.). An independent problem comes from the difficulty to select
an appropriate level of granularity for the events to be logged. For instance, log
files created for forensic analysis might ideally contain verbose information like
an individual entry for every file opened, every subprocess started, and so on.
Network connections and log sinks might quickly reach their capacities if events
are routinely reported in such a high resolution. This holds in particular if log
sinks serve multiple monitored hosts simultaneously.

Storing high volume log data is less an issue in secured local logging where
a networked log sink is not assumed. In such a setting, log messages are pro-
tected from adversarial tampering by cryptographic means. It cannot be ex-
pected that standard integrity-protecting primitives like message authentication
codes (MAC) or signature schemes on their own will suffice to solve the problem
of log authentication: a skilled intruder will likely manage to extract correspond-
ing secret keys from corrupted system’s memory. Instead, forward-secure signa-
tures and forward-secure message authentication schemes have been proposed for
secure logging [2912434]. Clearly, local logging can never prevent the intruder
from deleting stored entries. However, cryptographic components might ensure
that such manipulations are guaranteed to be indicated to the log auditor.

http://www.it-ebooks.info/

114 G.A. Marson and B. Poettering

1.1 Contributions, Organization, Applications

The key contribution of this paper is the development of a new cryptographic
primitive: a seckable sequential key generator (SSKG). Briefly, a sequential key
generator (SKG) is a stateful PRG that outputs a sequence of fixed-length strings
— one per invocation. The essential security property is indistinguishability of
these strings from uniformly random. For SSKG, we additionally require seek-
ability, i.e., the existence of an efficient algorithm that allows to jump to any
position in the output sequence. For both, SKG and SSKG, we demand that
indistinguishability hold with forward security.

This paper is organized as follows. We start in Sections 2l and [B] by formaliz-
ing the functionality and security properties of SKG and SSKG. We show that
a related primitive by Bellare and Yee securely instantiates an SKG; however, it
is not seekable. Aiming at constructing an SSKG, we introduce in Section H] an
auxiliary primitive, a shortcut one-way permutation (SCP), that we instantiate
in the factoring-based setting. In Section [}l we expose our SSKG; it is particularly
efficient, taking only one modular squaring operation per invocation. We con-
clude in Section [6l by proposing further optimizations that substantially increase
efficiency of our SSKG, making it ready for deployment in practice.

We argue that a (seekable) SKG is the ideal primitive to implement a secured
local logging system, as described above. The construction is immediate: the
strings output by the SKG are used as keys for a MAC which is applied to all
log messages. After each authentication tag has been computed and appended
to the particular log message, the SKG is evolved to the next state, making the
described authentication forward-secure. The log auditor, starting with a copy
of the SKG’s original seed, can recover all MAC keys and verify authenticity of
all log entries. Typically, log auditors will require random access to these MAC
keys — SSKGs provide exactly this functionality.

Further applications for SKGs and SSKGs. Potential applications of SKG and
SSKG are given not only by secure logging, but also by digital cameras, voice
recorders and backup systems [29]. In more detail, digital cameras could be
equipped with an authentication mechanism that individually authenticates ev-
ery photo taken. Such cameras could support modern journalism that, when
reporting from armed conflict zones, is more and more reliant on amateurs for
the documentation of events; in such settings, where post-incidental (digital) ma-
nipulation inherently has to be anticipated, cryptographic SKG-like techniques
could support the verification of authenticity of reported images.

1.2 Related Work

Secured local logging. An early proposal to use forward-secure cryptography to
protect locally-stored audit logs is by Kelsey and Schneier [2002TJ29]. The core
of their scheme is an (evolving) ‘authentication key’: for each time epoch ¢;
there is a corresponding authentication key A;. This key is used for multiple
purposes: as a MAC key to authenticate all log messages occurring in epoch t;,

http://www.it-ebooks.info/

Practical Secure Logging: Seekable Sequential Key Generators 115

for deriving an epoch-specific encryption key K; by computing K; + Hp(A4;),
and for computing next epoch’s authentication key via iteration A; 41 + Hi(A;)
(where Hy, Hy are hash functions). An implementation of [29] in tamper-resistant
hardware is reported by Chong, Peng and Hartel [9]. Unfortunately, the scheme
by Kelsey and Schneier lacks a formal security analysisﬁ

The first rigorous analysis of forward-secure secret key cryptography was given
by Bellare and Yee [3]. They propose constructions of forward-secure variants of
PRGs, symmetric encryption schemes, and message authentication codes, and
analyze them in respect to formal security models. We anticipate here that our
security definitions are strictly stronger than those from [3], capturing a larger
class of application scenarios.

The work of Holt [14] can be seen as an extension of [29]. With logcrypt, the
author proposes a symmetric scheme and an asymmetric scheme for secure log-
ging. While the former is similar to [29] (but apparently offers provable security),
the latter bases on the forward-secure signature scheme by Bellare and Miner [2].
Holt also discusses the efficiency penalties experienced in the asymmetric vari-
ant. We finally note that [14] suggests to store regular metronome entries in
log files in order to thwart truncation attacks where adversary cuts off the most
recent set of log entries.

Ma and T'sudik propose deployment of forward-secure sequential aggregate sig-
natures for integrity-protected logging [23124]. Their provably-secure construc-
tion builds on compact constant-size authenticators with all-or-nothing security
(i.e., if any single log message is suppressed by the adversary, this will be no-
ticed). Such aggregate signatures naturally defend against truncation attacks,
making Holt’s metronome entries disposable.

Waters et al. [32] identify searchable audit logs as an application of identity-
based encryption. Here, in order to increase users’ privacy, log entries are not
only authenticated but also encrypted. This encryption is done in respect to a
set of keywords; records encrypted towards such keywords are identifiable and
decryptable by agents who hold keyword-dependent private keys.

Another interesting approach towards forward-secure logging was proposed by
Yavuz and Ning [33], and Yavuz, Ning, and Reiter [34]. In their scheme, the key
evolving procedure and the computation of (aggregatable) authentication tags
take not more than a few hash function evaluations and finite field multiplications
each; these steps are hence implementable on sensors and other devices with
constrained computing power. However, the required workload on verifier’s side
is much higher: one exponentiation per log entry.

An IETF-standardized secure logging scheme is signed syslog messages by
Kelsey, Callas, and Clemm [19]. The authors describe an extension to the stan-
dard UNIX syslog facility that authenticates log entries via a regular signature
scheme (e.g., DSA). The scheme, however, does not provide forward security.

We conclude by recommending Itkis’ excellent survey on methods in forward-
secure cryptography [16].

3 It is, in fact, not difficult to see that the scheme is generically insecure (i-e., a security
proof cannot exist).

http://www.it-ebooks.info/

116 G.A. Marson and B. Poettering

Seekable PRGs. We are not aware of any work so far that focuses on the seeka-
bility of PRGs. The observation that block ciphers operated in counter mode can
be seen as seekable PRGs, in contrast to most other stream ciphers, is certainly
folklore. We point out that the famous Blum-Blum-Shub PRG [4l5] is forward-
secure. Moreover, its underlying number-theoretic structure seems to allow for
seekability. Unfortunately it is not efficient: the computation of each individual
output bit requires one modular squaring.

2 Sequential Key Generators

We introduce sequential key generators (SKG) and their security properties. Note
that a similar primitive, stateful generator, was proposed by Bellare and Yee [3].
However, our syntax is more versatile and our security models are stronger, as
we will see. We extend SKGs to (seekable) SSKGs in Section

2.1 Functionality and Syntax

An SKG consists of four algorithms: GenSKG generates a set par of public pa-
rameters, GenState0 takes par and outputs an initial state stg, update procedure
Evolve maps each state st; to a successor state st;11, and GetKey algorithm de-
rives from any state st; a corresponding (symmetric) key K;. Keys Ko, K1, ... are
supposed to be used in higher level protocols, for example as keys for symmetric
encryption or message authentication schemes.

Typically, SKG instances are not run in a single copy; rather, after distributing
‘clones’ of initial state sty to a given set of parties, several copies of the same SKG
instance are run concurrently and independently, potentially on different host
systems, not necessarily in synchronization. If Evolve and GetKey algorithms are
deterministic, respective sequences Ky, K1, ... of computed symmetric keys will
be identical for all copies. This setting is illustrated in Figure [I] and formalized
as follows.

Definition 1 (Syntax of SKG). A sequential key generator is a tuple SKG =
{GenSKG, GenState0, Evolve, GetKey} of efficient algorithms as follows:

— GenSKG(1%). On input of security parameter 1*, this algorithm outputs a
set par of public parameters.

— GenStateO(par). On input of public parameters par, this algorithm outputs an
initial state stg.

— Evolve(st;). On input of state st;, this deterministic algorithm outputs ‘next’
state st;y1. For convenience, for any m € N, by Evolve™ we denote the m-fold
composition of Evolve, i.e., Evolve™ (st;) = stitm.

— GetKey(st;). On input of state st;, this deterministic algorithm outputs key
K; € {0, 1}50‘), for a fixed polynomial £. For convenience, for any m € N,
we write GetKey™ (st;) for GetKey(Evolve™ (st;)).

We also pose the informal requirement on Evolve algorithm that it securely erase
state st; after deriving state st; 41 from it. Note that secure erasure is generally
considered difficult to achieve and requires special care [12].

http://www.it-ebooks.info/

Practical Secure Logging: Seekable Sequential Key Generators 117

st3

Evolve Evolve Evolve

(N
o

Evolve st
J

[GenSKG]p—ar{ GenState0

t t
Evolve H Evolve Evolve W S ‘(Evolve W s

) U0

Fig. 1. Interplay of GenSKG, GenState0, and Evolve algorithms of an SKG. The figure
shows two copies of the same SKG instance running in parallel. GetKey algorithm can
be applied to each intermediate state st; to derive key K.

2.2 Security Requirements

The fundamental security property of SKGs is the indistinguishability of keys K;
from random strings of the same length. Intuitively, for any n of adversary A’s
choosing, target key K, is required to be indistinguishable from random even if A
has access to all other keys K;, i # n. This feature ensures generic composability
of SKGs with applications that rely on uniformly and independently distributed
keys K;. In addition to the indistinguishability requirement, forward security
demands that an ‘old’ key K, remain secure even when A learns state st,,, for
any m > n (e.g., by means of a computer break-in).

We give two game-based definitions of these indistinguishability notions: one
with and one without forward security.

Definition 2 (IND and IND-FS Security of SKG). A sequential key generator
SKG is indistinguishable against adaptive adversaries (IND) if for all efficient
adversaries A = (A1, A2) that interact in experiments Expt'NP? from Figure @
the following advantage function is negligible, where the probabilities are taken
over the random coins of the experiment (including over A’s randomness):

AdVISNKDG’A()\) = ’Pr [ExptISNKDGlA(l)‘) = 1} —Pr {Exptls'\&%’&(lk) = 1} ’
The SKG is indistinguishable with forward security against adaptive adversaries
(IND-FS) if analogously defined advantage function Adv'SNKDG'j()\) is negligible.

It is not difficult to see that the IND-FS notion is strictly stronger than the
IND notion. The proof of Lemma[I] appears in the full version [25, Appendix A].

Lemma 1 (IND-FS = IND). Any sequential key generator SKG that is indis-
tinguishable with forward security against adaptive adversaries is also indistin-
guishable against adaptive adversaries.

2.3 Comparison with Stateful Generators

Stateful generators, first described by Bellare and Yee [3, Section 2.2], aim at
similar applications as SKGs. Syntactically, the two primitives are essentially

http://www.it-ebooks.info/

G.A. Marson and B. Poettering

Exptay 4 (1%): Exptgge 4 (1%):
(a) KList < 0 (a) KList < 0
b) par <pr GenSKG(1*) b) par <r GenSKG(1*)

(b)
(c) sto «r GenStateO(par)
(d) (state,n) <r A?Ksy(par)
— If A queries Okey(?):
(a) KList + KList U {i}
(b) K; <+ GetKey'(sto)
(c) Answer A with K;
(e) K§ < {0,1}*™
(f) K} + GetKey™(sto)
(g) b r A (state, KD)
— Answer Okey queries as above

(
(
(

c
d) (state,n,m) <r A?Key(Par)

)
) sto < r GenStateQ(par)

— Answer Oke, queries as in Expt™P
) Ky +r {0,1}%
) K. < GetKey"(sto)

e
f

g) stm + Evolve™(sto)
h)

b g ASKEY (state,stm, K
— Answer Okey queries as in Expt'ND
Return 0 if n € KList or m < n

)
i) Return b’

(h) Return 0 if n € KList
(i) Return b’

Fig. 2. Security experiments for SKG without and with forward security

identical. However, the security definition of stateful generators is weaker and
less versatile than the one of SKGs. Concretely, in the (game-based) security
definition for stateful generators, after having incremental access to a sequence
ko, k1, ... of keys that are either all real (i.e., k; = K; Vi) or all random (i.e., k; €r
{0,1}¥N)4), the adversary eventually requests to see the ‘current’ state st,,
and, based upon the result, outputs a guess on whether keys ko, ..., kn_1 were
actually real or random. Important here is the observation that an adversary that
corrupts a state st,,, cannot request access to keys K;, ¢ > m, before making this
corruption (in contrast to our model). This is a severe limitation in contexts
where multiple parties evolve states of the same SKG instance independently of
each other and in an asynchronous manner; for instance, in the secure logging
scenario, the adversary might first observe the log auditor verifying MAC tags
on ‘current’ time epochs and then decide to corrupt a monitored host that is
out of synchronization, e.g., because it is powered down and hence didn’t evolve
its state. As such concurrent and asynchronous conditions are not considered in
the model by Bellare and Yee, in some practically relevant settings the security
of the constructions from [3] should not be assumed.

2.4 A Simple Construction

It does not seem difficult to construct SKGs from standard cryptographic prim-
itives. Indeed, many of the stateful generators proposed in [3], constructed from
PRGs and PRFs, are in fact IND-FS-secure SKGs. For concreteness, we repro-
duce a simple PRG-based design. Its security is analysed in [3, Theorem 1].

Construction 1 (PRG-based SKG [3]) Let G : {0,1}* — {0, 1}}N) pe o
PRG, where for each v € {0,1}* we write G(z) as G(z) = Gr(x) || Gr(z)
with Gr(x) € {0,1}* and Gr(z) € {0,1}N. Let then GenSKG output the
empty string, GenStateO sample sty +—r {0, 1}*, Evolve(st;) output G (st;), and
GetKey(st;) output GR(st;).

http://www.it-ebooks.info/

Practical Secure Logging: Seekable Sequential Key Generators 119

3 Seekable Sequential Key Generators

We have seen that secure SKGs exist and are not too difficult to construct. More-
over, the scheme from Construction [lis efficient. Indeed, if it is instantiated with
a hash function-based PRG, invocations of Evolve and GetKey algorithms take
only a small (constant) number of hash function evaluations. However, this as-
sessment of efficiency is adequate only if SKG’s keys K; are used (and computed)
in sequential order. We argue that in many potential fields of application such
access structures are not given; instead, random access to the keys is required,
likely implying a considerable efficiency penalty if keys need to be computed it-
eratively via K; « GetKey(sty). The following examples illustrate that random
access patterns do not intrinsically contradict the envisioned sequential nature
of SKGs.

Consider a host that uses SKG’s keys K; to authenticate continuously in-
curring log messages. A second copy of the same SKG instance would be run
by the log auditor. From time to time the latter might want to check the in-
tegrity of an arbitrary selection of these messages@. Observe that this scenario
does not really correspond to the setting from Figure [} While the upper SKG
copy might represent the host that evolves keys in the expected linear order
K; — K,11, the auditor (running the independent second copy) would actually
need non-sequential access to SKG’s keys.

For a second example in secure logging, assume SKG’s epochs are coupled to
absolute time intervals (e.g., one epoch per second). If a host is powered up after
a long down-time, in order to resynchronize its SKG state, it is required to do
a ‘fast-forward’ over a large number of epochs. Ideally, an SKG would support
the option to skip an arbitrary number of Evolve steps in short timd.

A variant of SKG that explicitly offers random access capabilities is introduced
in this section. We claim that many practical applications can widely benefit from
the extended functionality. Observe that the advantage of SSKGs over SKGs is
purely efficiency-wise; in particular, the definition of SSKG’s security will be
(almost) identical to the one for SKGs.

3.1 Functionality and Syntax

When comparing to regular SKGs, the distinguishing property of seekable se-
quential key generators (SSKG) is that keys K; can be computed directly from
initial state stg and index i, i.e., without executing the Evolve procedure i times.
The corresponding new algorithm, Seek, and its relation to the other SKG algo-
rithms is visualized in Figure Bl For reasons that will become clear later, when
extending SKG’s syntax towards SSKG, in addition to introducing the Seek
algorithm we also had to slightly adapt the signature of the GenSKG algorithm:

4 For example, after a zero-day vulnerability in a software product run on the mon-
itored host becomes public, the log auditor might want to retrospectively look for
specific irregularities in log entries related to that vulnerability.

® Clearly, a (fast-)forward algorithm with execution time linear in the number & of
skipped epochs is trivially achievable. The question is: can we do better than O(§)?

http://www.it-ebooks.info/

120 G.A. Marson and B. Poettering

Definition 3 (Syntax of SSKG). A seekable sequential key generator is a
tuple SSKG = {GenSSKG, GenState0, Evolve, Seek, GetKey} of efficient algorithms
as follows:

— GenSSKG(1*). On input of security parameter 1*, this algorithm outputs a
set par of public parameters and a seeking key sk.

— GenState0, Evolve, GetKey as for SKGs (cf. Definition[).

— Seek(sk, stg,m). On input of seeking key sk, initial state stg, and m € N, this
deterministic algorithm returns a state st,,.

[GenStateO]To{ Evolve } st { Evolve } i stm,l{ Evolve } st { Evolve Jm

par

sk

GenSSKG

par Seek

[GenStateO]i(’){ Evolve } o, Stinlfl{ Evolve } St { Evolve }St:",“

Fig. 3. Interplay of the different SSKG algorithms. The figure shows two independent
SSKG instances running in parallel. Given seeking key sk and respective instance’s
initial state sto, one can seek directly to any arbitrary state st,,. As in SKGs, GetKey
algorithm can be applied to any intermediate state st; to derive key K;.

In contrast to SKGs, for SSKGs we need to explicitly require consistency of
keys computed with Seek and Evolve algorithms:

Definition 4 (Correctness of SSKG). A seekable sequential key generator
SSKG is correct if, for all A € N, all (par, sk) <~ GenSSKG(1*), and all sty +r
GenStateO(par), we have that Seek(sk, sto, m) = Evolve™ (sto) for all m € N.

Remark 1 (Security notions IND and IND-FS for SSKG). Indistinguishability
of SSKGs is defined in exactly the same way as for regular SKGs, with one
purely syntactical exception: As the new GenSSKG algorithm outputs the auxil-
iary seeking key, the experiments in Figure 2 need to be adapted such that the
par < GenSKG(1?*) line is replaced by (par,sk) +r GenSSKG(1%). However,
seeking key sk is irrelevant for the rest of the experiment.

Ezample 1 (Practical SSKG setting). We describe a practical setting of secured
local logging with multiple monitored hosts. The system administrator first runs
GenSSKG algorithm to establish system-wide parameters; each host then runs
GenState0 algorithm to create its individual initial state stg, serving as a basis

http://www.it-ebooks.info/

Practical Secure Logging: Seekable Sequential Key Generators 121

for specific sequences (st;);en and (K;);en. The log auditor, having access to
seeking key sk and to initial states stq of all hosts, can reproduce all corresponding
keys K; without restriction. Observe that, as the SSKG instances run on different
hosts are independent of each other, authenticated log messages from one host
cannot be ‘replayed’ on other hosts.

In practice, it might be difficult to find ‘the right’ frequency with which keys
should be evolved. Recall that, even if forward-secure log authentication is in
place, an intruder cannot be prevented from manipulating the log entries of the
epoch in which he got access to a system. This suggests that keys should be
updated at least every few seconds — and even more often to obtain protection
against fully-automated attack tools. On battery-powered mobile devices, how-
ever, too frequent wakeups from system’s sleep mode with the only purpose of
evolving keys will noticeably contribute to draining devices’ energy reserves.

Remark 2 (On the necessity of seeking trapdoors). For standard SKGs, the secret
material managed by users is restricted to one ‘current’ state st;. In contrast, for
SSKGs, we introduced additional secret information, sk, required to perform the
seek operation. One might ask whether this step was really necessary. We fixed
the syntax of SSKGs as given in Definition [3 for a technical reason: the SSKG
construction we present in Section [is factoring-based and its Seek algorithm
requires knowledge of modulus’ factorization n = pq. However, as knowledge
of p and ¢ thwarts the one-wayness of designated Evolve operation, we had to
formally separate the entities that can and cannot perform the Seek operation.
While this property slightly narrows the applicability of SSKGs, it is irrelevant
for the intended secure logging scenario as described in Example [l

4 Shortcut Permutations

We introduce a novel primitive, shortcut one-way permutation (SCP), as a build-
ing block for our SSKG construction in Section[Bl Consider a finite set D together
with an efficient permutation 7 : D — D. Clearly, for any z € D and m € N,
it is easy to compute the m-fold composition 7™ (x) = m o --- o w(z) in linear
time O(m), by evaluating the permutation m times. In shortcut permutations,
we have the efficiency requirement that the value 7™ (x) can be computed more
efficiently than that, using a dedicated algorithm. In addition, we require one-
wayness of 7: given y € D, it should be impossible to compute 7~ (y).

While we will rigorously specify the one-wayness requirement of SCPs, we do
not give a precise definition of what ‘more efficiently’ means for the computation
of ™. The reason is that we aim at practicality of our construction, and, in
general, practical efficiency strongly depends on the concrete parameter sizes
and computing platforms in use. However, we anticipate that the SCPs that we
construct in Section {1l have algorithms that compute 7™ (x) in constant time.

We next formalize the syntax and functionality of SCPs. For technical reasons,
the definition slightly deviates from the above intuition in that the algorithm
which efficiently computes 7™ also requires an auxiliary input, the shortcut in-
formation.

http://www.it-ebooks.info/

122 G.A. Marson and B. Poettering

Definition 5 (Syntax of SCP). A shortcut permutation is a triple SCP =
{GenSCP, Eval, Express} of efficient algorithms as follows:

— GenSCP(1%). This probabilistic algorithm, on input of security parameter 17,
outputs public parameters pp and a corresponding shortcut information sc.
We assume that each specific value pp implicitly defines a finite domain
D = D(pp). We further assume that elements from D can be efficiently
sampled with uniform distribution.

— Eval(pp, z). This deterministic algorithm, given public parameters pp and a

value © € D, outputs a value y € D.

Express(sc, z,m). This deterministic algorithm takes shortcut information sc,

an element x € D, and a non-negative integer m, and returns a value y € D.

A shortcut permutation SCP is correct if, for all A € N and all (pp,sc) +gr
GenSCP(1*), we have that (a) Eval(pp, -) implements a bijection © : D — D,
and (b) Express(sc,x,m) = #™(x), for all x € D and m € N.

As the newly introduced shortcut property is solely an efficiency feature, it
does not appear in our specification of one-way security. In fact, the one-wayness
definitions of SCPs and of regular one-way permutations [I8] are essentially the
same. Observe that we model one-wayness only for the case that the adversary
does not have access to shortcut information sc.

Definition 6 (One-wayness of SCP). We say that a shortcut permutation
SCP is one-way if the probability

Pr[(pp,sc) «r GenSCP(1%);y < D(pp); = < r B(pp,y) : Eval(pp,z) = y]
is negligible in X, for all efficient adversaries B.

Remark 3 (Comparison of SCPs and TDPs). The syntax of (one-way) SCPs is,
to some extent, close to that of trapdoor permutations (TDPs, [I8]). However,
observe the significant difference between the notions of ¢rapdoor and shortcut.
While a TDP’s trapdoor allows efficient inversion of the permutation (i.e., com-
putation of 771), a shortcut in our newly defined primitive allows acceleration
of the computation of 7™ for arbitrary m. In particular, for SCPs, there might
be no way to invert 7 even if the shortcut information is available. We admit,
though, that in our number-theory-based constructions from Section EI] one-
wayness does not hold for adversaries that obtain the shortcut information: any
party knowing the shortcut can also efficiently invert the permutation.

4.1 Constructions Based on Number Theory

We propose an efficient number-theoretic SCP construction: FACT-SCP.

Let N be a Blum integer, i.e., N = pq for primes p,q such that p = ¢ =
3mod 4. Let QRy = {22 : x € Z);} denote the set of quadratic residues mod-
ulo N. It is well-known [26] that the squaring operation z — z? mod N is a
permutation on @ Ry. Moreover, computing square roots in Q Ry, i.e., inverting
this permutation, is as hard as factoring N. This intuition is the basis of the
following hardness assumption.

http://www.it-ebooks.info/

Practical Secure Logging: Seekable Sequential Key Generators 123

Definition 7 (SQRT assumption). For probabilistic algorithms GenSQRT that
take as input security parameter 1* and output tuples (N,p, q, p) such that N =
pq, factors p and q are prime and satisfy p = ¢ = 3mod 4, and ¢ = ¢(N) =
|ZX |, the SQRT problem is said to be hard if for all efficient adversaries A the
success probability

Pr [(N,p,q,go) R GenSQRT(l)‘);y +r QRN;z Rr A(N,y) : z? = y mod N]

18 negligible in A\, where the probability is taken over the random coins of the
experiment (including A’s randomness). The SQRT assumption states that there
exists an efficient algorithm GenSQRT for which the SQRT problem is hard.

The construction of an SCP based on the SQRT assumption is now straight-
forward:

Construction 2 (FACT-SCP) Construct SQRT-based SCP as follows: Let
GenSCP(1*) run GenSQRT(1*) and output pp = N andsc = ¢, let D = QRy, let
Eval(N, z) output 2> mod N, and let Express(p, z,m) output (3" ™°4 %) mod N.

Remark 4 (Correctness and security of FACT-SCP). Observe that the specified
domain D is efficiently samplable (take z <—r Zx and square it), that correct-
ness of the SCP follows from standard number-theoretic results (in particular [26]
Fact 2.160] and [26], Fact 2.126]), and that every Express operation takes about
one exponentiation modulo N. Further, comparing the experiments in Defini-
tions [6] and [l makes evident that FACT-SCP is one-way if the SQRT problem is
hard for GenSQRT, i.e., if integer factorization is hard [26], Fact 3.46].

Similarly to FACT-SCP, in the full version [25, Appendix C] we define the
RSA-based RSA-SCP. Observe that both constructions rely on different, though
related, number-theoretic assumptions. In fact, while the security of FACT-SCP
can be shown to be equivalent to the hardness of integer factorization, RSA-SCP
can be reduced ‘only’ to the RSA assumption. Although equivalence of the RSA
problem and integer factorization is widely believed, a proof has not been found
yet. Hence, in some sense, SQRT-based schemes are more secure than RSA-based
schemes. In addition to that, our SQRT-based scheme has a (slight) performance
advantage over our RSA-based scheme (squaring is more efficient than raising to
the power of e). The only situation we are aware of in which RSA-SCP might
have an advantage over FACT-SCP is when the most often executed operation
is Express, and deployment of multiprime RSA is acceptable (e.g., N = pqr).
Briefly, in the multiprime RSA setting [I7/13], private key operations can be
implemented particularly efficiently, based on the Chinese Remainder Theorem
(CRT). Observe that Definition 8 in [25, Appendix C] is general enough to cover
the multiprime setting.

5 Seekable Sequential Key Generators from Shortcut
Permutations

We construct an SSKG from a generic SCP. Briefly, the Evolve operation cor-
responds to the Eval algorithm, the Seek algorithm is implemented via SCP’s

http://www.it-ebooks.info/

124 G.A. Marson and B. Poettering

Express procedure, and keys K; are computed by applying a hash function (mod-
eled as a random oracle in the security analysis) to the corresponding state st;.

Construction 3 (SCP-SSKG) Let SCP = {GenSCP, Eval, Express} be a shortcut
permutation, and let H : {0,1}* — {0,1}XN be a hash function, for a polyno-
mial £. Then the algorithms of our seekable sequential key generator SCP-SSKG
are specified in Figure [

GenSSKG(1*): GenState0(par): Seek(sk, sto, m):
(a) (pp,sc) «<—r GenSCP(1*) (a) pp < par (a) sc <« sk
(b) (par,sk) (pp,5c) (b) 0 < D(pp) (b) (PP, 0,0) sto
(¢) Return (par,sk) (c) sto + (pp,0,z0) (¢) zm « Express(sc,zo,m)
(d) Return stg (d) stm < (pp,m,Tm)
(e) Return st
Evolve(st;): GetKey(st;):
(a) (pp,d,@:i) < st (a) (pp, i, @) < sti
(b) wit1 < Eval(pp, x:) (b) K; < H(pp,i,x;)
(c) stit1 < (pp,t+1,Tit1) (¢) Return K;

(d) Return st

Fig. 4. SCP-based SSKG construction SCP-SSKG

Correctness of Construction [follows by inspection. We state IND-FS secu-
rity of SCP-SSKG in Theorem [} the corresponding proof appears in the full
version [25], Appendix D]. Recall that IND security follows by Lemma [Tl

Theorem 1 (Security of SCP-SSKG). The SSKG from Construction[3 offers
IND-FS security if SCP is a one-way shortcut permutation, in the random oracle
model.

6 Implementing Seekable Sequential Key Generators

Let FACT-SSKG denote the factorization-based SSKG obtained by combining
ConstructionsPland Bl Some implementational details that increase the efficiency
and versatility of this construction are discussed next.

We first propose a small tweak to the scheme that affects the storage size
of the initial state. Recall that, in foreseen applications of SSKGs, the initial
state sto is first created by (randomized) GenState0 algorithm and then copied
to other parties (cf. discussion in Section [ZT]). In FACT-SSKG, between 1024 to
4096 bits would have to be copied, depending on the desired level of security [,
just counting the size of xg € QRy. However, in the specific application we
are aiming at, described in detail in Section [G.I] that much bandwidth is not
available. We hence propose to make GenState0 algorithm deterministic, now
providing it with an explicit random seed of short length (e.g., 80-128 bits);
all randomness required by the original GenState0 algorithm is deterministically
extracted from that seed via a PRG, and only 128 bits (or less) have to be
shared with other parties. We implement this new feature by introducing an

http://www.it-ebooks.info/

Practical Secure Logging: Seekable Sequential Key Generators 125

auxiliary algorithm, RndQR, that deterministically maps seed € {0,1}* to an
element in QR such that the distribution of RndQR(XV, seed) with random seed
is negligibly close to the uniform distribution on QRy. The new GenState0 and
RndQR algorithms are shown in Figure Bl The admissibility of proposed RndQR
construction is confirmed by [10] and [27, §B.5.1.3], in the random oracle model.

The second modification of FACT-SSKG improves the efficiency of the Seek
operation. A standard trick [I7J6] to speed up private operations in factoring-
based schemes is via the Chinese Remainder Theorem (CRT). For instance,
if an exponentiation y < z* mod N is to be computed and the factorization

N = pq is known, then y can be obtained by CRT-decomposing z into x,

zmod p and z, < x mod g, by computing y, xk mod ¢(p)

k mod ¢(q)
Tq

mod p and y, +
mod ¢ independently of each other, and by mapping (y,,yq) back to
Zn (by applying the CRT a second time). The described method to compute z*
is approximately four times faster than evaluating the term directly, without the
CRT [26], Note 14.75]. The correspondingly modified Seek algorithm is shown in
Figure Bl

GenSSKG(1*): GenStateO(par, seed): Seek(sk, seed, m):
(a) (N,p,q,¢) <r GenSQRT(1*) (a) N < par (a) (N,p,q) < sk
(b) par+ N (b) zo < RndQR(N, seed) (b) zo < RndQR(NV, seed)
(c) sk« (N,p,q) (c) sto « (N,0,z0) (¢) (xp,xq) < CRTDecomp(zo,p, q)
(d) Return (par, sk) (d) Return sto (d) kp 2" modp—1
(e) kg 2" modq—1
Evolve(st;): GetKey(st;): () @p,m < (2p)* mod p
(a) (N,i,z;) + st; (a) (N,i,z;) + st; (8) Zgm (wq)’“q mod ¢
(b) zit1 < (2:)? mod N (b) Ki < H(N,i,x;) (h) @m + CRTComp(Zp,m,Tg,m: P q)
(c) stit1 + (Nyi+1,ziq1) (¢) Return K; (i) stm — (N,m,m)
(d) Return st;qq (i) Return st,,
RndQR(N, seed): CRTDecomp(z, p, q): CRTComp(zp, zq,p,q):
(a) h <+ H'(N,seed) (a) xp + x mod p (a) u 4+ p~' mod ¢
(b) h <+ hmod N (b) zq + @ mod ¢ (b) a <+ u(zq — zp) mod ¢q
(¢) s+ h®mod N (c) Return (zp,zq) (c¢) @< xp+pa
(d) Return s (d) Return z

Fig.5. Algorithms of optimized FACT-SSKG, together with auxiliary RndQR,
CRTDecomp, and CRTComp algorithms. In the specification of RndQR we assume a
hash function H' : {0,1}* — {0,...,2" — 1}, where ¢t = [log, N + 128.

We combine Remark] Theorem [Il and Lemma [I] to obtain:

Corollary 1 (Security of FACT-SSKG). Under the assumption that integer
factorization is hard, our seekable sequential key generator FACT-SSKG offers
both IND and IND-FS security, in the random oracle model.

6.1 Deployment in Practice

We implemented FACT-SSKG (incorporating the tweaks described above) [28§].
In fact, the code is part of the journald logging component of the systemd system
and service manager, the core piece of many modern commercial Linux-based
operating systems [31]. The SSKG is used as described in the introduction: it is

http://www.it-ebooks.info/

126 G.A. Marson and B. Poettering

combined with a cryptographic MAC in order to implement secured local logging,
called Forward-Secure Sealing in journald. Generation of initial state sty takes
place on the system whose logs are to be protected. The corresponding seed is
shown on screen only (hence the restriction on seed’s size), both in text and
as QR code [15]; the latter may be scanned off the screen with devices such as
mobile phones. The separation between on-disk storage of public parameters and
on-screen display of the seed is done in order to ensure the latter will not remain
on the system. Each time the SKG state is evolved, a MAC tag protecting the
data written since the previous MAC operation is appended to the log file. An
offline verification tool that checks the MAC tag sequence of log files taken from
a system is provided. If a log file is corrupted, the verification tool will determine
the time range where the integrity of the log file is intact. When the SKG state is
evolved, particular care is taken to ensure the previous state is securely deleted
from the file system and underlying physical storage, which includes techniques
to ensure secure removal even on modern copy-on-write file systems.

On the technical side, our implementation supports modulus sizes of 512—
16384 bits (1536 bits is recommended), uses SHA256 for key derivation, and
relies on HMAC-SHA256 for integrity protection. The code links against the
gerypt library [22] for large integer arithmetic and the SHA256 hash function,
and is licensed under an Open Source license (LGPL 2.1).

Conclusion

We review different cryptographic schemes for log file protection and point out
that they all lack an important usability feature: seekability. In short, seekability
allows users of sequential key generators to jump to any position in the oth-
erwise forward-secure keystream, in negligible time. We introduce a new prim-
itive, seekable sequential key generator (SSKG), and give two provably-secure
factorization-based constructions. As a side product, we introduce the concept
of shortcut one-way permutations (SCP), which may find independent applica-
tion.

Acknowledgments. The authors thank the anonymous reviewers of
ESORICS 2013 for their valuable comments. Giorgia Azzurra Marson was sup-
ported by CASED and Bertram Poettering by EPSRC Leadership Fellowship
EP/H005455/1.

References

1. Babbage, S., Catalano, D., Cid, C., de Weger, B., Dunkelman, O., Gehrmann, C.,
Granboulan, L., Giineysu, T., Hermans, J., Lange, T., Lenstra, A., Mitchell, C.,
Néaslund, M., Nguyen, P., Paar, C., Paterson, K., Pelzl, J., Pornin, T., Preneel,
B., Rechberger, C., Rijmen, V., Robshaw, M., Rupp, A., Schliffer, M., Vaudenay,
S., Vercauteren, F., Ward, M.: ECRYPT yearly report on algorithms and keysizes
(September 2012), http://www.ecrypt.eu.org/documents/D.SPA.20.pdf

http://www.ecrypt.eu.org/documents/D.SPA.20.pdf
http://www.it-ebooks.info/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Practical Secure Logging: Seekable Sequential Key Generators 127

Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M.
(ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431-448. Springer, Heidelberg (1999)
Bellare, M., Yee, B.S.: Forward-security in private-key cryptography. In: Joye, M.
(ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 1-18. Springer, Heidelberg (2003)
Blum, L., Blum, M., Shub, M.: Comparison of two pseudo-random number gen-
erators. In: Chaum, D., Rivest, R.L., Sherman, A.T. (eds.) CRYPTO 1982, Santa
Barbara, CA, USA, pp. 61-78. Plenum Press, New York (1983)

Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. STAM Journal on Computing 15(2), 364-383 (1986)

Boneh, D., Shacham, H.: Fast variants of RSA. RSA Cryptobytes 5(1), 1-9 (2002)
Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
Journal of Cryptology 20(3), 265-294 (2007)

Canetti, R., Krawczyk, H.: Analysis of key-exchange protocols and their use for
building secure channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453-474. Springer, Heidelberg (2001)

Chong, C.N., Peng, Z., Hartel, P.H.: Secure audit logging with tamper-resistant
hardware. In: Gritzalis, D., di Vimercati, S.D.C., Samarati, P., Katsikas, S.K. (eds.)
SEC. IFIP Conference Proceedings, vol. 250, pp. 73-84. Kluwer (2003)

Desmedt, Y.: Securing traceability of ciphertexts — towards a secure software key
escrow system (extended abstract). In: Guillou, L.C., Quisquater, J.-J. (eds.) EU-
ROCRYPT 1995. LNCS, vol. 921, pp. 147-157. Springer, Heidelberg (1995)
Fluhrer, S.R., Mantin, I., Shamir, A.: Weaknesses in the key scheduling algorithm
of RC4. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259, pp.
1-24. Springer, Heidelberg (2001)

Gutmann, P.: Secure deletion of data from magnetic and solid-state memory. In:
Proceedings of the Sixth USENIX Security Symposium, San Jose, CA, vol. 14
(1996)

Hinek, M.J., Low, M.K., Teske, E.: On some attacks on multi-prime RSA. In:
Nyberg, K., Heys, HM. (eds.) SAC 2002. LNCS, vol. 2595, pp. 385-404. Springer,
Heidelberg (2003)

Holt, J.E.: Logcrypt: forward security and public verification for secure audit logs.
In: Buyya, R., Ma, T., Safavi-Naini, R., Steketee, C., Susilo, W. (eds.) ACSW
Frontiers. CRPIT, vol. 54, pp. 203-211. Australian Computer Society (2006)
International Organization for Standardization (ISO). Information Technology —
Automatic identification and data capture techniques — QR Code 2005 bar code
symbology specification. ISO/TEC 18004:2006 (2006)

Itkis, G.: Forward security, adaptive cryptography: Time evolution (2004)
Jonsson, J., Kaliski, B.: Public-Key Cryptography Standards (PKCS) #1: RSA
Cryptography Specifications Version 2.1. RFC 3447 (Informational) (February
2003)

Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC Press (2007)

Kelsey, J., Callas, J., Clemm, A.: Signed Syslog Messages. RFC 5848 (Proposed
Standard) (May 2010)

Kelsey, J., Schneier, B.: Cryptographic support for secure logs on untrusted ma-
chines. In: Proceedings of the 7th USENIX Security Symposium (1998)

Kelsey, J., Schneier, B.: Minimizing bandwidth for remote access to cryptographi-
cally protected audit logs. In: Recent Advances in Intrusion Detection (1999)
Koch, W.: GNU Privacy Guard — gcrypt library, http://www.gnupg.org/

http://www.gnupg.org/
http://www.it-ebooks.info/

128

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

G.A. Marson and B. Poettering

Ma, D., Tsudik, G.: Extended abstract: Forward-secure sequential aggregate au-
thentication. In: 2007 IEEE Symposium on Security and Privacy, Oakland, Cali-
fornia, USA, May 20-23, pp. 86-91. IEEE Computer Society Press (2007)

Ma, D., Tsudik, G.: A new approach to secure logging. Trans. Storage 5(1), 2:1-2:21
(2009)

Marson, G.A., Poettering, B.: Practical secure logging: Seekable sequential key
generators. Cryptology ePrint Archive, Report 2013/397 (2013),
http://eprint.iacr.org/2013/397

Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. The CRC Press series on discrete mathematics and its applications. CRC
Press (2000); N.W. Corporate Blvd., Boca Raton, FL 33431-9868, USA (1997)
National Institute of Standards and Technology (NIST). Recommendation for
random number generation using deterministic random bit generators (revised)
(March 2007), NIST Special Publication 800-90

Poettering, B.: fsprg — seekable forward-secure pseudorandom generator,
http://cgit.freedesktop.org/systemd/systemd/tree/src/journal/fsprg.c
Schneier, B., Kelsey, J.: Secure audit logs to support computer forensics. ACM
Trans. Inf. Syst. Secur. 2(2), 159-176 (1999)

Shoup, V.: On formal models for secure key exchange. Technical Report RZ 3120,
IBM (1999)

systemd. System and service manager,
http://www.freedesktop.org/wiki/Software/systemd/

Waters, B.R., Balfanz, D., Durfee, G., Smetters, D.K.: Building an encrypted and
searchable audit log. In: NDSS 2004, San Diego, California, USA, February 4-6.
The Internet Society (2004)

Yavuz, A.A., Ning, P.: BAF: An efficient publicly verifiable secure audit logging
scheme for distributed systems. In: ACSAC, pp. 219-228. IEEE Computer Society
(2009)

Yavuz, A.A., Ning, P., Reiter, M.K.: BAF and FI-BAF: Efficient and publicly
verifiable cryptographic schemes for secure logging in resource-constrained systems.
ACM Trans. Inf. Syst. Secur. 15(2), 9 (2012)

http://eprint.iacr.org/2013/397
http://cgit.freedesktop.org/systemd/systemd/tree/src/journal/fsprg.c
http://www.freedesktop.org/wiki/Software/systemd/
http://www.it-ebooks.info/

Request-Based Comparable Encryption

Jun Furukawa

NEC Corporation, Kanagawa 211-8666, Japan
j—furukawa@ay.jp.nec.co.jp

Abstract. An order-preserving encryption (OPE) scheme preserves the
numerical order of numbers under encryption while hiding their original
values in a some extent. However, if all the numbers in a certain domain
are encrypted by an OPE, the original numbers can be restored from
their order. We introduce a notion of novel encryption scheme “request-
based comparable encryption” that provides a certain level of security
even when OPEs cannot. A request-based comparable encryption hides
original values, but it enables any pair of encrypted values to be com-
pared each other when and only when one of them is accompanied by
a “token”. We also consider its weaker notion and a concrete construc-
tion satisfying it. We consider a request-based comparable encryption
complements OPEs and can be an essential security primitive.

Keywords: order-preserving encryption, request-based, database en-
cryption, range query.

1 Introduction

1.1 Background and Motivation

A database (DB) is a system that stores a large amount of data and passes its
portions when requested. It has been an indispensable platform for variety of
services through the network. Since many DBs store sensitive information, they
are potentially vulnerable to abuse, leakage, and theft. Hence, it is important
to unfailingly protect confidentiality of their data. An access control is a fairly
effective approach for it, but it is helpless if the DB is compromised. Hence, it
is desirable to enforce DBs by such an encrypting mechanism that the keys for
decryption are kept by only data owners (not DB). This strategy is considered
to be especially effective for the database-as-service, and can indeed be found
in [1220:21].

Although encrypting data in a DB can be effective in protecting data, it tends
to spoil the availability of the DB since the DB can handle data only in limited
manner. This may require users to retrieve all data in the DB, decrypt them,
find necessary data among them, and process them all by himself. This imposes
a large amount of computation, communication, and the memory on the user.

A searchable encryption [2[5/T7IT9] enables DBs to search necessary data
without decrypting them, and an order-preserving encryption (OPE) [II8I9]
enables DBs to recognize the numerical order of data without decrypting them.

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 129-[[46] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.it-ebooks.info/

130 J. Furukawa

These ability recovers the availability of DBs by enabling them to return only
the ciphertexts of data that are required by the users.

A relational database (RDB) [16], which is the most widely-used database
nowadays, frequently selects data in a certain range from a table. This task
can be done by an OPE even if data are encrypted. Since such selection of
data drastically reduces the amount of computation and communication of the
users, OPE is considered to be one of pivotal primitives for RDB with encrypted
data. This is why the proposal of an OPE [§] immediately received attention
from the applied community [I825126129)31134]. An OPE as well as a searchable
encryption plays an important role for CryptDB [29], an encrypted RDB, to
mark practical efficiency in TPC-C [32] measure.

Boldyreva et al. proposed an OPE [8] and studied the security of OPEs [0] for
its practical use. Their positive result shows that OPEs enjoy reasonable security
as long as the number of ciphertexts is sufficiently small compared to the square
root of size of the domain of relevant numbers. But nothing is guaranteed in the
case the number of ciphertexts is larger than that. Indeed, it is clear, as in the
following example, that OPEs fail to hide anything about encrypted numbers
in some cases. Consider a set of numbers that includes the all numbers in a
domain D and every elements of this set are encrypted by an OPE. If all of
these encrypted numbers are given to an adversary, the adversary is able to
decrypt all the ciphertexts simply by sorting all of them.

That an OPE has a limitation in its secure use causes a serious concern for
encrypted DBs since the OPE is a pivotal primitive for them. Several stronger
primitives such as the committed efficiently-orderable encryption (CEOE) [d]
that exploits a monotone minimal perfect hash function [3], range query meth-
ods in a public key setting [30/IT], and searchable encryptions in a public key
setting [5I6JI0] have been proposed, but these are not sufficient for salvaging
the benefit of DBs in the case described above. An order-preserving encryption
with additional interactions [28] can enhance the security, but most applications
assume that an RDB handles a thread of instructions without such additional in-
teractions. It is now clear that we definitely need a novel cryptographic primitive
so as an encrypted DB to function with practical efficiency and security.

1.2 Request-Based Comparable Encryption

In this paper, we propose a novel notion of cryptographic primitive called
“request-based comparable encryption (comparable encryption for short)” that
complements OPEs. The comparable encryption overcomes the limitation of
OPEs just as the searchable encryption in [I7[I3/22] does the limitation of de-
terministic encryptions. It is a symmetric key encryption with such an additional
mechanism that enables one to compare an encrypted number to other encrypted
numbers if and only if the one is given a token associated to this number. Searches
in [I1] are also triggered by tokens.

Let us consider applying a comparable encryption to an encrypted DB. The
DB stores encrypted numbers only and, upon a range query, it receives tokens for

http://www.it-ebooks.info/

Request-Based Comparable Encryption 131

the edges of the range. Then, the DB is able to compare these stored encrypted
values with the edge values without interacting with the usefl. Thus, the DB is
able to select out the data which the user required via the query. We emphasize
that encrypted values themselves cannot be compared each other unless either
of them is an edge unlike the case of OPE. Although the token does leak some
numerical orders of the data to the DB, what is leaked to the DB is what the DB
needs for processing data with practical efficiency. A protocol such as“private
information retrieval” introduced in [T4J15)23] leaks less data to DB, but such
an approach inevitably requires heavy computational and communicational cost
for DBs. This is not practical for realistic DBs and we thus dismiss such an
approach.

If a user makes a huge number of range queries to a database and this database
accumulates all tokens in these range queries, the database may acquire enough
knowledge to decrypt all ciphertexts in some cases. Our approach is no longer
effective in such an extreme case as OPE is no longer so. However, real users
rarely deposit their data to totally untrusted DBs. The real concerns are that
DBs leak their data because of careless system managers, viruses, via unpatched
vulnerability of the system, design error, or configuration fault. As long as an
intrusion of an adversary is temporal, it succeeds to seize only those tokens that
are in insertion or selection queries which are made at the time of the intrusion.
An example of temporal intrusion is a leakage of the memory data with respect a
query. Such a temporal intrusion only enables the adversary to compare the each
element in the stored data with the encrypted numbers in the query. Since such
a comparison is already delegated to the DB in the query corrupted, leakage of
this result can be considered as the minimum, unavoidable, and acceptable as
long as efficiency is required.

1.3 A Weaker Property and Our Comparable Encryption

The introduced comparable encryption is a very promising primitive for practical
encrypted DBs. However, we have not completely succeeded to propose an ideal
comparable encryption with practical efficiency. We find no definite reason that
it is inherently impossible but we have not. As the DB cannot be practical unless
with practical efficiency literally, we propose a comparable encryption that has a
weaker property than ideal one, but has a stronger security property than OPE
and has practical efficiency. In particular, our comparable encryption is such
that its tokens leak knowledge more than ideally allowed.

To evaluate the difference of security properties between the ideal one and
ours, we first formalized the ideal security requirement and its weaker variant as
well. Then, as a measure of the security level of this weaker variant, we evaluate
the expected ratio between the number of occasions when a token of an ideal
scheme leaks and the number of occasions when a token of a weaker scheme

! Since DB receives a sequence of requests at one time to avoid heavy communication
and incoherent transaction, DB needs to process requests without interacting with
the user.

http://www.it-ebooks.info/

132 J. Furukawa

leaks, which we show to be only at most “2.8”. Suppose a temporal intrusion
leaked a token as well as encrypted numbers. Then, the probability that this
token helps to distinguish any of two encrypted numbers is 2.8 times larger in
our scheme than in an ideal scheme.

Our comparable encryption is proved to satisfies this weaker property in the
standard model but is sufficiently fast. The length of ciphertext is proportional
to the bit length of the maximum number. The size of database shall increase
severely if all data are encrypted with our comparable encryption. However,
if the encryption is limitedly applied to only highly confidential data that re-
quire comparison, the database can remain in moderate size. Such limitation is
common when a current product for database encryption such as [27] is used.
Hence, although to reduce ciphertext length is highly desirable, our comparable
encryption as it is still has practical value. The dominant cost for encryption,
generation of token, and comparison are the cost for computing hash values in
these processes, whose number of computation is again proportional to the bit
length of the maximum number , which cost is very light. Considering the merit
of efficiency that our scheme enjoys, we consider the weakness of our scheme is
not so serious.

1.4 Organization:

The paper is organized as follows: Section [2 introduces the model of comparable
encryption and describes its basic functionality. Section [presents a concrete
scheme of comparable encryption and compares complexity of our scheme with
that of OPE. Section [] introduces the security requirement of ideal comparable
encryptions and its weaker variant. Then it evaluates the difference between the
two security requirements. Section [l concludes the paper and poses an open
problem.

2 Model

We introduce the model of comparable encryption and a basic property. Com-
parable encryption is composed of four algorithms, Gen, Enc, Der, and Cmp.

Gen: A probabilistic algorithm that, given a security parameter x € N and a
range parameter n € N, outputs a parameter param and a master key mkey.
n is included in param.

(param, mkey) = Gen(k,n)

Enc: A probabilistic algorithm that, given a parameter param, a master key
mkey, and a number 0 < num < 2™, outputs a ciphertext ciph.

ciph = Enc(param, mkey, num)

2 The cost for the decryption is constant if we provide this functionality.

http://www.it-ebooks.info/

Request-Based Comparable Encryption 133

Der: A possibly probabilistic algorithm that, given a parameter param, a master
key mkey, and a number 0 < num < 2", outputs a token token.

token = Der(param, mkey, num)

Cmp: An algorithm that, given a parameter param, two ciphertexts ciph and
ciph’, and a token token, outputs —1, 1, or 0.

Cmp(param, ciph, ciph’, token) € {—1,1,0}

Although we call the scheme encryption, it provides no decryption algorithm.
But such iﬁunctionality can be easily provided by appending an ordinary ci-
phertext ciph to each comparable encryption ciphertext ciph as ciph|ciph and
preparing an ordinary decryption algorithm for it. Then, decryption is straight-
forward. Although we consider the decryption algorithm is necessary in practice,
we omit it in our model for the simplicity of the presentation.

We assume ciph and token input to Cmp are related so that they satisfy
ciph = Enc(param, mkey, num) and token = Der(param, mkey, num) for the
same param, mkey, and num. The output of Cmp is —1,1, or 0, respectively,
when num < num’, num > num’, or num = num’. This requirement is formal-
ized in the following property of completeness.

Definition 1. We say a comparable encryption is complete if, for every x € N,
n €N, and 0 < num, num’ < 2", there exist param, mkey, token, ciph, and ciph’
such that

(param, mkey) = Gen(k,n) , token = Der(param, mkey, num)
ciph = Enc(param, mkey, num) , ciph’ = Enc(param, mkey, num’)
-1 4f num < num’
Cmp(param, ciph, ciph’, token) = 1 if num> num’
0 4f num= num’

hold with overwhelming probability. Where probability is taken over the distribu-
tion of random tapes input to Gen, Enc, and Der.

3 Proposed Scheme

3.1 Preliminaries and Overview of Our Scheme

Our construction of comparable encryption exploits prefix-preserving encryption
(PPE) [35l4l24]. PPE considers each message as a sequence of blocks. If two
messages have the same sequence of n blocks as their prefixes, the encryptions
of these messages also have the same sequence of n blocks as their prefixes. But
the rest of blocks are different. Thus, a PPE preserves the equivalence of prefix
blocks. A PPE as-is does not meet the purpose of our comparable encryption
since it enables neither to hide the similarity of two numbers nor to recognize
the numerical order of two numbers from their ciphertexts. Our comparable

http://www.it-ebooks.info/

134 J. Furukawa

encryption is similar to PPE in that it also considers numbers as a sequence of
blocks, where each block is a bit”.

We list here some of the terms necessary in the rest of the paper. Suppose that
n is a given fixed number such that num = 7' 52" and num’ = Y7~ 0,2
with b;,b; € {0,1} for all 0 <i <n—1. We let (by,...,bp_1) and (bf,...,b,_1),
respectively, represent num and num’. We say the most significant prefix (n —
¢ —1) bits of num is (bg+1,...,bn—1). We let MSPBs(num, ¢) = (be+1,...,bp—1)
denotes this relation.

Our comparable encryption uses PPE ciphertext of a number num as the to-
ken of num (token = Der(param, mkey, num)). Note that, if tokens of num and
num’ are, respectively, token = Der(param, mkey, num) and
token’ = Der(param, mkey, num’) and if MSPBs(num,¢) = MSPBs(nun’, /),
then MSPBs(token, /) = MSPBs(token', ¢) holds. Let token = (dy, ... ,d,—1). If
each ¢/-th bit of num, i.e. by, is probabilistically encrypted by dy, then one can
check whether or not MSPBs(num, ¢) = MSPBs(nun’, £) holds for given ¢ (e.g.,
by decrypting them) using either token or token’. But, whether MSPBs(num, £) =
MSPBs(nun?’, £) or not is hidden if the both token and token’ are kept hidden.
This mechanism enables to compare the similarity of encrypted two numbers
only when either of their tokens is given.

When MSPBs(num, ¢) = MSPBs(nun’, £) but
MSPBs(num, ¢ — 1) # MSPBs(num’,¢ — 1), Cmp compares num and num’ by
comparing ¢-th bits of num and num’(b, and b} respectively). For this com-
parison, e; = by + mask, mod 3 is generated with a random looking mask
masky, and encryption of e, is included in the ciphertext of num. Let mask,
and e, be also generated in the same manner for num’ here. Suppose that
mask, and mask), depend on only on MSPBs(num, £) and MSPBs(nun?’, £) respec-
tively (as well as on the master key), then mask, = mask) if MSPBs(num, {) =
MSPBs(num’, £). Then b, and bj, are revealed from e, and €} if by and b}, are dif-
ferent (i.e.,MSPBs(num, ¢ — 1) # MSPBs(num’, ¢ — 1)), since e, — €}, = by — b}, =
1mod 3 if by = 1 but e, — €), = 2 mod 3 if b, = 0. But by and b}, are hidden if
be and b} are the same (i.e., MSPBs(num, ¢ — 1) = MSPBs(num’, ¢ — 1)), since
e — ey = by — b, = 0 mod 3 does not depend on by. b; and b} for ¢ < £ are hidden
if MSPBs(num, ¢ — 1) # MSPBs(nunt, ¢ — 1), since e; — e} mod 3 depends on
mask; — mask; mod 3 which is pseudo-random. If token is designed to reveals
e; and e), one can decide which number (num or num') is greater from their
ciphertexts. Note that b; and b; for none of ¢ # ¢ is revealed.

The above construction of comparable encryption from PPE provides satisfac-
tory functionality of comparable encryption. However, its tokens leak knowledge
more than the numerical order of numbers. Suppose that ciph and ciph’ are,
respectively ciphertexts of two numbers num and num’. From ciph, ciph’, and
the token token of num, one can recognize not only the numerical order of num
and num’ but also the most significant bit at which num and num’ differ. This is
not a scheme with an ideal security property, but this is the best we can provide
at this moment. And we analyze the negative impact of this leakage later.

http://www.it-ebooks.info/

Request-Based Comparable Encryption 135

3.2 Construction
Now we present the specific construction of our comparable encryption below.

Gen: Suppose a security parameter £ € N and the number of digit n. Gen first
randomly chooses a hash function Hash : {0,1}* x {0, 1}4F~t — {0, 1}~
and assigns param = (n, Hash). Next, Gen uniformly and randomly chooses
a master key mkey € {0,1}". Gen outputs param = (n,Hash) and mkey.

er: Suppose that param = (n,Hash), mkey, and a number
num = (bo,b1,...,bp—1) == gcicn_1 b;2" are given. Der generates

d,, = Hash(mkey, (0,07,0))

d; = Hash(mkey, (1,d;+1,b:)) for 1=n-1,...,0
Der outputs the token token = (do,ds,...,dy).
Enc: Supposethat param= (n, Hash), mkey, and anumber num= (bg, b1, ..., bn—1)
are given. Enc first generates (do, d1, . ..,d,) = Der(param, mkey, num) and

then randomly chooses random number I € {0, 1}". Next, Enc generates
C; = Hash(di, (2, I, 0))
e; = Hash(mkey, (4,d;41,0)) + b; mod 3
fi - HaSh(di+17 (5a Ia 0)) + €; mod 3

fori=n— ,0. Enc finally outputs ciphertext

Clph (Ia(Coa'“acnfl)a(f()a-"afnfl))-
Cmp: Suppose that param = (n,Hash), a pair of ciphertexts

Ciph:(Iv(CO>-~- Cn 1) (an-- afn 1)) and

ciph’=(I", (ch, ..., ch_1), (fb, ..., fi_1)), and a token token=(dg,dy, ..., d,)
are given.

1. Cmp searches and find j such that

O0<j<n—1) A
(Vk st. j <k <n, c,=Hash(d,(2,1',0))) A (c;-;éHash(dj, (2,1',0)))
In case
Vk s.t.0<k<n, c, =Hash(dg,(2,1',0))

hold, Cmp outputs 0 and stops.
2. Cmp generates

ej = f; — Hash(d,;+1,(5,1,0)) mod 3
¢; = f; —Hash(d;j11, (5,1',0)) mod 3
3. Cmp outputs

1 if e — ;—1mod3

-1 if e — ’—2mod3

Here, input (c1,...,c¢,) are unnecessary. But we include them in the input
only for the simplicity of the description.

http://www.it-ebooks.info/

136 J. Furukawa

3.3 Completeness of Our Comparable Encryption

The theorem [l below guarantees that our scheme successfully compares en-
crypted numbers.

Definition 2. We say a function Hash : {0,1}" x {0,1}* — {0, 1} is a pseudo-
random function if every poly-time distinguisher D has an advantage in distin-
guishing whether it is accessing Hash(K, -) with randomly chosen key K € {0,1}"
or it is accessing a random function R : {0,1}* — {0, 1} with at most negligible
probability in k.

Theorem 1. The proposed comparable encryption is complete as long as Hash
18 a pseudorandom function.

Proof. Let num = Y1~ 01 b;2¢, num’ = Z?:_Ol bi2%, £ be the largest ¢ such that
MSPBs(num, ¢') = MSPBs(num #) holds, (dy, . .., d,,) = Der(param, mkey, num),
(dy, . ..,d,) = Der(param, mkey, num’),

(I, (coy- - yCn_1), (fo, RV 1)) = Enc(param, mkey, num),

and (I’,(c(),..., 1) (f§y-- -, fr_1)) = Enc(param, mkey, num’). Since d; and
d; depend only on {b;};j=i+1,.. n—1 and {b;'}jzi-i-l,...,n—l respectively and on
mkey, that b; = b} holds for i = £+ 1,...,n — 1 implies that d; = d holds
fori=4¢+1,...,n— 1. Hence, Hash(d}, (2,1',0)) = ¢}, = Hash(dg, (2,1’,0)) for
i=04+1,...,n—1.

If num = num’, Hash(d},(2,1’,0)) = ¢, = Hash(dx,(2,1’,0)) holds for ¢ =
0,...,n—1. Hence, the output of Cmp is 0 if num = num’. If num # num’, then
d¢ = dj, holds with negligible probability. This is because, if collision occurs with
non-negligible probability for a function whose output length is , such a func-
tion can be distinguished from the random function by using collisions. Hence,
Hash(d}, (2,1',0)) = ¢, # Hash(dy, (2,1’,0)) with overwhelming probability. For
this ¢,

er — ey := (fo — Hash(dg41, (5,1,0))) — (f; — Hash(dg+1, (5,1',0))) mod 3

= (Hash(mkey, (4,d¢11,0)) + be) — (Hash(mkey, (4, dy,0)) + by) mod 3
(Hash(mkey, (4,d¢+1,0)) + be) — (Hash(mkey, (4, d¢41,0)) + by) mod 3
= by — by mod 3

Since that num > num’ if by =1 > 0 = b} and that num < num’ if by =0< 1=
by, the output of Cmp is 1 if num > num’ and is —1 if num < num’.

3.4 Efficiency

We compare complexity measures of our scheme with those of OPE. We list them
when numbers num are chosen as 0 < num < 2" in the Table[Il The dominant
cost of computation is computation of hash functions in our scheme. Hence, we
evaluate the computational complexity of our scheme by the number of hash func-
tion Hash. Encryption in OPE [8] requires sampling from negative hypergeometric
distribution, which cost is denoted by “sampling”. This requires rather high cost.

http://www.it-ebooks.info/

Request-Based Comparable Encryption 137

Table 1. Comparison

| [Our Scheme | OPE[S]
ciphertext(text) length (bits)|| (n+ 1)k +2n n + constant
token length (bits) (n+ 1k -

encryption cost (4n + 1) - Hash n - sampling
token generation cost (n+1) - Hash -
comparison cost (n — B 4 2) - Hash|(n — B) - bit-comparison

“bit-comparison” is very light computation and n bit-comparison operations is
usually executed in one operation. B is the largest £ such that MSPBs(num, ¢) =
MSPBs(num’, £) holds.

From the table, we see that OPE is more efficient except for generating cipher-
texts. However, we consider that the cost our comparable encryption requires is
still acceptable for most applications, and a comparable encryption is essential
for data to which OPE cannot be applied securely.

4 Security Analysis

We analyze the security of our scheme. As our scheme is not ideal comparable en-
cryption, we introduce a weaker security requirement of comparable encryption
as well as the ideal one.

We require comparable encryption to be semantically secure under chosen
plaintext attacks as long as no token is generated. When a token token is gener-
ated with respect to a number num, it is best if token only enables to compare
this num with other encrypted numbers. To capture such a requirement, we start
from defining a distinguishing game of comparable encryption. In this game, the
adversary may send the challenger either of two types of test query, that is, type
I and type II. This type indicates whether or not ciphertext in the test query
is accompanied with the corresponding token. Then we define two notions of
resolved games followed by two related definitions of indistinguishability of com-
parable encryption. The first notion captures ideal comparable encryption but
the latter captures comparable encryption with an extra leakage of knowledge.

We chose game-based definition rather than simulation-based definitions (in
[1713I22]) because what each token leaks depends on all issued ciphertexts,
which bothers ideal functionality to check all of them every time a token is
issued. However, game-based definition requires to check if issued tokens have
leaked something crucial only once at the end of the game.

4.1 Ideal Indistinguishability

Definition 3. The distinguishing game is played between challenger C and
adversary A* as in the following. It begins when C' receives a security parameter
k € N and a range parameter n € N, runs (param, mkey) < KeyGen(k,n), and
gives param to A*. C responds to queries from A* in the game as follows;

http://www.it-ebooks.info/

138 J. Furukawa

— Whenever C receives (encrypt, num) for any 0 < num < 2", it returns ciph =
Enc(param, mkey, num).

— Whenever C receives (cmprkey, num) for any 0 < num < 2", it returns
token = Der(param, mkey, num).

— C receives (test, type, numf, num?) such that 0 < numf, num} < 2", numy <
numj, and type € {I,II} only once in the game. On receiving this message, C
randomly chooses b € {0,1} and generates ciph® = Enc(param, mkey, numy)
and token™ = Der(param, mkey, num;). Then C' returns

ciph” if type=1
token™, ciph™ if type=11.

At the end of the game, A sends b’ € {0,1} to C. The result of the game Exp¢ 4
is 1 if b="0'; otherwise 0.

Type I tests indistinguishability of the encryption of numj. Type II tests indis-
tinguishability of the token with respect to numj;. We do not consider chosen-
ciphertext attacks here since encrypt-then-MAC [7] generic construction can
easily make the scheme resistant for them when an ordinary ciphertext is con-
catenated to each ciphertext so as to be decryptable.

The distinguishing game challenges the adversary’s ability to distinguish ci-
phertexts. However, if a certain set of queries is sent to the challenger, it is
inevitable to prevent rational adversaries from distinguishing these ciphertexts.
This is because that tokens enable to compare encrypted numbers inevitably
leaks their orders. Hence, the cases and only the cases when such a leakage triv-
ially helps distinguishing ciphertexts/tokens need to be excluded from the games
to measures the strength of the scheme. For this purpose we introduce the notion
of resolved games.

Definition 4. We say a distinguishing game is resolved if A* queries such
(command, num) that the following relation holds during the game, where command
1s cmprkey if type = I but command is either cmprkey or encrypt if type = I1.

(numg < num < numj) A (numg; # numy), (1)
which relation can be equivalently expressed as
((numf; < num) A (numj ¢ num)) V ((num £ numg) A (num < numy)) .

The first form of the relation in Def.] represents that num is between numy
and numj but the case numf = num = numj is excluded. It is crystal clear that
two test messages can be distinguishable if a token that can distinguish them is
queried (type I). And it is also clear that two test tokens can be distinguishable
if an message that these tokens decide in different way is encrypted (type II).

The second form of the relation in Def. @l represents that num{ and numj are
related to num in different way via the relation “<”. The first and the second
forms are equivalent but the second form has more affinity with distinguishabil-
ity, and we use the second type of form for Def. [fl

http://www.it-ebooks.info/

Request-Based Comparable Encryption 139

Definition 5. We say that a comparable encryption is indistinguishable (Ind)
if, for every polynomial time adversary A*, Adve 4. := |Pr[Expg 4« = 0] —
Pr[Exp¢: a- = 1]| is negligible with respect to x in the game which is not resolved.

We emphasize that numf; and numj are always distinguishable in resolved games
as long as the comparable encryption is complete. In other words, adversaries
are not considered to be successful in distinguishing ciphertexts if and only if
distinguishing them is trivially possible due to the functionality of the scheme.

4.2 Weak Indistinguishability

The indistinguishability in Def.[Blis ideal but the scheme we devised does not sat-
isfy this property. However, the scheme partially achieves this property. Hence,
we need to estimate what and how much it achieves. A token for num in our
scheme leaks one bit for each ciphertext addition to that in an ideal scheme
leaks. As we want estimate the relative impact of this leakage compared to the
impact of what an ideal scheme leaks, we introduce a security notion that include
this leakage in term of indistinguishability. For this purpose, we introduce weak
indistinguishability.

We say num <, num’ if num < num’, MSPBs(num, ¢) = MSPBs(nun?', ¢), and
b¢ # by all hold. Note that “num #£, num’ (the negation of num <, num’) holds
for some £ even if num < num’. We will see how this notion works.

Suppose that num < num’ < num* and MSPBs(num,) = MSPBs(num’,)
and MSPBs(nun, ') = MSPBs(num?, ¢') for ¢ < ¢'. Tt is trivial that token' =

Der(param, mkey, num') and ciph! = Enc(param, mkey, num') enable to dis-
tinguish ciph = Enc(param, mkey, num) and ciph’ = Enc(param, mkey, num’)
if num < num' < num’. In our scheme, token* = Der(param, mkey, num?*)

and ciphi = Enc(param, mkey, num*) also enable to distinguish ciph and ciph'’.
This is because as follows. ciph, ciphi, and tokenddagger reveal that ¢-th bit
of num and num? are different. ciph’, ciphi, and tokenddagger reveal that ¢-th
bit of num’ and num?® are the same. The notion “<,” captures this property by
num <, num* and num’ ¢, num?.

Definition 6. We say a distinguishing game is weakly resolved if A* queries
such (command, num) that the following relation holds during the game, where
command s cmprkey if type = I but command is either cmprkey or encrypt if
type = 11.

(0 <l <n) s.t.
((numg < num) A (numj ¢, num)) V ((num £, numg) A (num <y numy)) .(2)

Here, n is the range parameter given to C at the beginning of the game.

Note that Def. @l and Def. [are different only in that “3¢” is added and that
< is replaced with <. The Fig. [l illustrates this difference between Def. @] and
Def. [l in the case num{ = 9 and numj = 13. The figure consists of nodes of
a tree expressed by dots. The leftmost dot is the root and rightmost dots are

http://www.it-ebooks.info/

140 J. Furukawa

branch point(9,13) t .

b4 b3 b2 bl bO

Fig. 1. Tree Representations of 9 and 13, and the ranges specified by “<” and “3¢, <,”

leaves. Other dots are internal nodes. Each path from the root to a leaf expresses
a number in [0,2°). Each path consists of five edge and each edge represents a
bit. An upward edge represents 1 and downward one represents 0. Hence 13,
which is (by, b3, b2,b1,b9) = (0,1,1,0,1), is expressed as a path that advances
from the root to a leaf by choosing directions (down,up,up,down,up) at nodes
on the path.

In the case of Fig. [Il the game is resolved if (command, num) for m§ = 9 <
num < 13 = mj is queried but the game is weakly resolved if (command, num)
for 8 < num < 15 is queried. Note that these numbers 8,9, 13,15 share the
same node pointed indicated by “branch point(9,13)” in the figure. Here, 8 and
15 are the minimum and the maximum number that share the node where 9
and 13 branch away. Def. [f] forbids numbers in wider range to be queried so as
the game to be not resolved than Def. @ forbids. We consider how much this
range is widened is how much schemes get weaker. In this example, the range
13 -9+ 1 =15 is widened to 15 — 8 + 1 = 8 by the ratio of 8/5 = 1.6. We later
argue that the expected value of this ratio is 2.8.

Definition 7. We say that a comparable encryption is weakly indistinguish-
able (wInd-secure) if, for every polynomial time adversary A*, Adve 4. =

http://www.it-ebooks.info/

Request-Based Comparable Encryption 141

| Pr[Expgy 4« = 0] — Pr[Expg 4« = 1]| is negligible with respect to k in the game
which is not weakly resolved.

Since Def. [[considers that the game is resolved under wider class of queries
than Def. [Bldoes, it provides weaker security. But we consider this difference is in
moderate extent. The impact of difference between Def. [l and Def. [lis analyzed
in Subsection (1.3

Theorem 2. The proposed comparable encryption is weakly indistinguish-
able as long as Hash is a pseudorandom function.

Proof. The proof is straightforward. We replace some of outputs of hash func-
tions with random variable and then simply prove indistinguishability of them.
The proof is given in Appendix [Al

4.3 Comparison of Two Indistinguishability Notions

Although a comparable encryption that are only wlnd-secure leaks more knowl-
edge than ideal ones, ciphertexts in it reveal no knowledge without tokens. Hence,
such a comparable encryption is still effective, unlike OPEs, even when encrypt-
ing numbers that are densely distributed in a table. But, as there is a chance
for an adversary to obtain tokens, it is now essential to evaluate the amount of
knowledge that these tokens leak.

From a simple observation, each token with respect to num leaks where num
and num’ branch away for each encryption of num’. This is a great amount of
information if we insist on semantic security. But it is not clear in the context
of such an encryption schemes that comparisons are already possible. Hence,
we evaluate the how knowledge of these branching bits gives an impact in dis-
tinguishing numbers compared to the ideal comparable encryption. We do not
consider ours is the only way to evaluate the impact and consider a lot of dis-
cussion is necessary. We hope our evaluation opens the problem.

Suppose that 0 < numg, numj < 2™ are given. Let D(numg, num?) be the num-
ber of num that satisfies Eq. (I]) and let N (numg, num?) be the number of num that
satisfies Eq. (). Then R(numyg, num}) = N(numf, numy)/D(num, numy) is the
ratio of “the number of occasions when tokens of a weaker scheme leaks” to “the
number of occasions when tokens of an ideal scheme leaks” , which represents how
much wInd-secure comparable encryption is weak compared to ideal comparable
encryption. When the ratio is one, a wlnd-secure comparable encryption has no
worse than ideal comparable encryptions. But the ratio that is larger than one
signifies the weakness of wlnd-secure comparable encryption.

Since the ratio R(numg, numj) varies over the choice of pair (numf, numy),
the ratio at a single point cannot represents the total security of wlnd-secure
comparable encryptions. Hence, we evaluate its expected value over uniformly
and randomly chosen (num{, numj) and consider it as a measure of the weakness
of wlnd-secure comparable encryptions. Although imposing uniform distribution
is rather crude, we have no reasonable alternative choice.

http://www.it-ebooks.info/

142 J. Furukawa

Let ¢(z,y) be largest £ such that MSPBs(x, £) = MSPBs(y, £) holds. Then, the
expected value of R(numg, numy) is,

2 2
v, 2, " re 2,
O<x<y<2" 0<z<y<2m
26 -1
Z > T

f 0 {zylt(z,y)= l}

2l(z,y) _ 1
y—z

2 = 20— 1

— 2n,1,(
2n(27 —1) Zz:% 0<a§<:25*1 etb+l

2 22 1 22 1
< 2n+1+/ /
~ 2n(2n _ 1) Zzg 22((1) b

9 n—1

n—+14+¢ —

5271(27;%2 2In2=4In2 <28

Therefore, we may conclude that, in average, the number of values that helps
adversary distinguish num{ and numj in wlnd-secure comparable encryption is
at most 2.8 times as large as that of values in ideal comparable encryptions. We
consider this is not a considerable sacrifice for achieving practically efficiency of
comparable encryption in most applications. This measure is based on rather
crude assumption of the distribution but note that tokens are always deleted
after their use.

As well as the expected ratio N(numf, num?)/D(numf, numy), we give two
more measures of comparison in Table 2l The expected value of
D(numg, numy) /N (numg, numy) is almost 1/2. The expected value of
N (num§, numj) divided by the expected value of D(numg, numy) is at most 2.
Although the interpretations of these measures are not as natural as that of
the expected value of ratio N (numg, numy)/D(num, numy), they measures the
security of wlnd-secure schemes in some extent. Both measures indicate better
security as they get closer to 1.

Table 2. Various comparison measures

| Measures | value |
Expected Value of “N(numg, numj)/D(numg, numy)” <238
Expected Value of “D(numg, numy)/N (numg, numy)” <2

“E.V. of N(numg, numi)”/ “E. V. of D(num{, numy)” >1/2

5 Summary and Open Problem

We introduced a novel type of encryption scheme called comparable encryp-
tion, which enables one to compare the numerical order of two encrypted num-
bers only when either of numbers is accompanied by a token. We presented an

http://www.it-ebooks.info/

Request-Based Comparable Encryption 143

ideal property and a weaker but reasonably nice property of comparable encryp-
tion. We also constructed a comparable encryption that satisfies only the weaker
property but is practically efficient. We consider a comparable encryption is a
useful primitive for encrypted DBs and consider proposing an efficient compa-
rable encryption with the ideal property is a remaining important challenge.
Our construction can be its starting point. By comparing efficiency of OPE and
comparable encryption, we suggest to use an OPE in encrypted DBs when its
positive result (shown by [9]) holds but suggest to use a comparable encryption
when that positive result no longer holds.

References

10.

11.

12.

. Agrawal, R., Kiernan, J., Srikant, R., Xu, Y.: Order-preserving encryption for nu-

meric data. In: Weikum, G., Konig, A.C., DeBloch, S. (eds.) SIGMOD Conference,
pp. 563-574. ACM (2004)

Amanatidis, G., Boldyreva, A., O'Neill, A.: Provably-secure schemes for basic query
support in outsourced databases. In: Barker, S., Ahn, G.-J. (eds.) Data and Ap-
plications Security 2007. LNCS, vol. 4602, pp. 14-30. Springer, Heidelberg (2007)
Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Monotone minimal perfect hashing:
searching a sorted table with o(1) accesses. In: Mathieu, C. (ed.) SODA, pp. 785
794. STAM (2009)

Bellare, M., Boldyreva, A., Knudsen, L.R., Namprempre, C.: Online ciphers and
the hash-CBC construction. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139,
pp. 292-309. Springer, Heidelberg (2001)

Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and efficiently searchable
encryption. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 535-552.
Springer, Heidelberg (2007)

Bellare, M., Fischlin, M., O’Neill, A., Ristenpart, T.: Deterministic encryption:
Definitional equivalences and constructions without random oracles. In: Wagner
(ed.) [33], pp. 360-378

Bellare, M., Namprempre, C.: Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In: Okamoto, T. (ed.)
ASTACRYPT 2000. LNCS, vol. 1976, pp. 531-545. Springer, Heidelberg (2000)
Boldyreva, A., Chenette, N., Lee, Y., O’Neill, A.: Order-preserving symmetric en-
cryption. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 224-241.
Springer, Heidelberg (2009)

Boldyreva, A., Chenette, N., O’Neill, A.: Order-preserving encryption revisited: Im-
proved security analysis and alternative solutions. In: Rogaway, P. (ed.) CRYPTO
2011. LNCS, vol. 6841, pp. 578-595. Springer, Heidelberg (2011)

Boldyreva, A., Fehr, S., O’Neill, A.: On notions of security for deterministic en-
cryption, and efficient constructions without random oracles. In: Wagner (ed.) [33],
pp- 335-359

Boneh, D., Waters, B.: Conjunctive, subset, and range queries on encrypted data.
In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 535-554. Springer, Heidel-
berg (2007)

Ceselli, A., Damiani, E., di Vimercati, S.D.C., Jajodia, S., Paraboschi, S., Samarati,
P.: Modeling and assessing inference exposure in encrypted databases. ACM Trans.
Inf. Syst. Secur. 8(1), 119-152 (2005)

http://www.it-ebooks.info/

144

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.
32.
33.

J. Furukawa

Chase, M., Kamara, S.: Structured encryption and controlled disclosure. TACR
Cryptology ePrint Archive, 2011:10 (2011)

Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval.
In: FOCS, pp. 41-50 (1995)

Chor, B., Kushilevitz, E., Goldreich, O., Sudan, M.: Private information retrieval.
J. ACM 45(6), 965-981 (1998)

Codd, E.F.: A relational model of data for large shared data banks. Commun.
ACM 13(6), 377-387 (1970)

Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: improved definitions and efficient constructions. In: Juels, A., Wright,
R.N., di Vimercati, S.D.C. (eds.) ACM Conference on Computer and Communi-
cations Security, pp. 79-88. ACM (2006)

Ding, Y., Klein, K.: Model-driven application-level encryption for the privacy of
e-health data. In: ARES, pp. 341-346. IEEE Computer Society (2010)

Goh, E.-J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003),
http://eprint.iacr.org/

Hacigiimiis, H., Iyer, B.R., Li, C., Mehrotra, S.: Executing sql over encrypted data
in the database-service-provider model. In: Franklin, M.J., Moon, B., Ailamaki, A.
(eds.) SIGMOD Conference, pp. 216-227. ACM (2002)

Hacigiimiis, H., Mehrotra, S., Iyer, B.R.: Providing database as a service. In: ICDE,
pp. 21-38. IEEE Computer Society (2002)

Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Yu, T., Danezis, G., Gligor, V.D. (eds.) ACM Conference on Computer
and Communications Security, pp. 965-976. ACM (2012)

Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval. In: FOCS, pp. 364-373 (1997)

Li, J., Omiecinski, E.R.: Efficiency and security trade-off in supporting range
queries on encrypted databases. In: Jajodia, S., Wijesekera, D. (eds.) Data and Ap-
plications Security 2005. LNCS, vol. 3654, pp. 69-83. Springer, Heidelberg (2005)
Liu, H., Wang, H., Chen, Y.: Ensuring data storage security against frequency-
based attacks in wireless networks. In: Rajaraman, R., Moscibroda, T., Dunkels,
A., Scaglione, A. (eds.) DCOSS 2010. LNCS, vol. 6131, pp. 201-215. Springer,
Heidelberg (2010)

Lu, W., Varna, A.L., Wu, M.: Security analysis for privacy preserving search of
multimedia. In: ICIP, pp. 2093-2096. IEEE (2010)

Oracle. Oracle database 11g, oracle advanced security,
http://www.oracle.com/technology/global/jp/
products/security/db_security/htdocs/aso.html

Popa, R.A., Li, F.H., Zeldovich, N.: An ideal-security protocol for order-preserving
encoding. Cryptology ePrint Archive, Report 2013/129 (2013),
http://eprint.iacr.org/

Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: Cryptdb: protecting
confidentiality with encrypted query processing. In: Wobber, T., Druschel, P. (eds.)
SOSP, pp. 85-100. ACM (2011)

Shi, E., Bethencourt, J., Chan, H.T.-H., Song, D.X., Perrig, A.: Multi-dimensional
range query over encrypted data. In: IEEE Symposium on Security and Privacy,
pp. 350-364. IEEE Computer Society (2007)

Tang, Q.: Privacy preserving mapping schemes supporting comparison (2010)
TPC-C. Transaction processing performance council, http://www.tpc.org/tpcc/
Wagner, D. (ed.): CRYPTO 2008. LNCS, vol. 5157. Springer, Heidelberg (2008)

http://eprint.iacr.org/
http://www.oracle.com/technology/global/jp/products/security/db_security/htdocs/aso.html
http://www.oracle.com/technology/global/jp/products/security/db_security/htdocs/aso.html
http://eprint.iacr.org/
http://www.tpc.org/tpcc/
http://www.it-ebooks.info/

Request-Based Comparable Encryption 145

34. Wang, C., Cao, N., Li, J., Ren, K., Lou, W.: Secure ranked keyword search over
encrypted cloud data. In: ICDCS, pp. 253-262. IEEE Computer Society (2010)

35. Xu, J., Fan, J., Ammar, M.H., Moon, S.B.: Prefix-preserving ip address anonymiza-
tion: Measurement-based security evaluation and a new cryptography-based
scheme. In: ICNP, pp. 280-289. IEEE Computer Society (2002)

A Proof of Theorem

The proof is by contraposition. Suppose that there exists an adversary A* such
that Adv¢, 4. is not negligible with respect to » in the game which is not weakly
resolved. Then, we show that Hash is distinguishable from the random function,
which is against the assumption that they are pseudorandom function. In par-
ticular, we consider a sequence of games by challengers C,Cy, and Cs and then
prove the theorem by the hybrid argument. We let Branch(num, num’) denote
the largest ¢ such that MSPBs(num,) = MSPBs(num’, ¢) holds.

Proof. From two lemmas[land 2land the hybrid argument, [Adv¢, 4. —Adve, 4]
is negligible in x as long as Hash is a pseudorandom function. Since Adv¢, 4. = 0
from Lemma B, Adv¢: 4. is negligible in . Hence, the theorem is proved.

Definition 8. Challenger Cy is the same as the challenger C in Definition [3
except the following:

— At the beginning of the game, C1 discards mkey.

— C1 prepares a table and simulate hash function Hash(mkey, -). That is, when-
ever Cq generates output = Hash(mkey, input) for some input, C; let
output be output’ if an entry (input,output’) is in the table. Otherwise,
Cy randomly chooses output € {0,1}* and writes (input, output) into the
table.

Note that (d;)i=o,....n and (€;)i=o,... » that C1 outputs for every num is completely
random.

Lemma 1. Assume that Hash is a pseudorandom function. For every polyno-
mial time A*, |AdVe, 4 — AdVE 4| is negligible in k.

Proof. Since mkey is used for only input to hash functions and is never revealed
to A*, the lemma follows from the indistinguishability of pseudorandom function.

Definition 9. Challenger Co is the same as the challenger Cy except the fol-
lowing:

— Let (dy,...,d,) and (cfo,...,dn be

~—

(do, . ..,dy) = Der(param, mkey, num)

(do, . ..,dn) = Der(param, mkey, num?).
Note that d; = d; for all i such that Branch(numg, num’f_) <i1<n R
Cy prepares a table and simulate hash function Hash(d;,-) and Hash(d;,-)

for all i such that 0 < i < Branch(numg, num}). The simulation is as is the
before.

http://www.it-ebooks.info/

146 J. Furukawa

Lemma 2. Assume that Hash is a pseudorandom function. For every polyno-
mial time A*, |Adv¢, 4. — AdvE, .| is negligible in k.

Proof. Let num = (bo, ..., bp_1), num?t = (b, ..., by_1), and
B = Branch(numj, numy}). Then b; = b; for all i such that B < i < n. Suppose
that the adversary queries (command, num) for num := (bg, ..., bn—1). If b; = b;

for all ¢ such that B < i < n, then Branch(numj, num) < B. This implies that
the distinguishing game is weakly resolved. Therefore, there exists ¢ such that
b; # b; and that B < i < n, as long as the distinguishing game is not weakly
resolved.

— In the case when type = I, none of dj, . .. ,JB,CZO, .. .,JB is revealed to the
adversary. For such data to be revealed, all d Bt1s-- ., dp needs to be revealed.
But the existence of i such that b; # b; and that B < i < n prevents it.
Since, the values dy, . ..,dg, do, . ..,dg are randomly chosen and unrevealed,
the hardness of dlstlngulshlng random values with outputs of Hash(d;, -) and
Hash(d;, -) for all i such that 0 < i < Branch(numy, num}) = B follows from
the indistinguishability of pseudorandom function. This proves the lemma
in the case type = I.

— In case when type = II, one of tuples (do,...,dg) and (do,...,cZB) is
given to the adversary depending on the value of b unlike the case when
type = 1. We assume b = 0 in the following without lose of generality. Then,
do,...,dp are given to A* in this case. Unlike the case when type = I,
Hash(mkey7 (4,d;11,0)) is used only for generating é; := Hash(mkey, (4,
di+1,0))+b; mod 3 fori = 0,..., B—1in ciph*. Hence, replacing Hash(d; 1,
(5,1,0)) in f; := Hash(d;41, (5,[,0)) + Hash(mkey, (4,d;+1,0)) + b; mod 3
with a random value for i = 1,..., B does not affect the distribution of f;.
This is because the distribution of f; for i = 0, ..., B—1 are already random.
This proves the lemma in the case type = I1.

Lemma 3. For every polynomial time A*, Adv¢, 4. = 0.

Proof. The lemma follows from the fact that ciph® does not depend on b, which
can be shown as follows. The difference in ciph® between numf and numj may

occur only in (¢;, f;) for i = 0,..., B. Since each Hash(d;,-) (we assume b = 0
w.l.g.) for i = 0,..., B is randomly chosen, every ¢; for i = 0,..., B does not
depend on b. Slnce each Hash(d;,-) for i = 0,..., B is randomly chosen, every f;

for i =0,..., B does not depend on b. Therefore, the lemma is proved.

http://www.it-ebooks.info/

Ensuring File Authenticity in Private DFA
Evaluation on Encrypted Files in the Cloud

Lei Wei and Michael K. Reiter

Department of Computer Science
University of North Carolina at Chapel Hill
{1wei,reiter}@cs.unc.edu

Abstract. Cloud storage, and more specifically the encryption of file
contents to protect them in the cloud, can interfere with access to these
files by partially trusted third-party service providers and customers.
To support such access for pattern-matching applications (e.g., malware
scanning), we present a protocol that enables a client authorized by the
data owner to evaluate a deterministic finite automaton (DFA) on a
file stored at a server (the cloud), even though the file is encrypted by
the data owner for protection from the server. Our protocol contributes
over previous work by enabling the client to detect any misbehavior of
the server; in particular, the client can verify that the result of its DFA
evaluation is based on the file stored there by the data owner, and in
this sense the file and protocol result are authenticated to the client.
Our protocol also protects the privacy of the file and the DFA from the
server, and the privacy of the file (except the result of evaluating the
DFA on it) from the client. A special case of our protocol solves private
DFA evaluation on a private and authenticated file in the traditional
two-party model, in which the file contents are known to the server. Our
protocol provably achieves these properties for an arbitrarily malicious
server and an honest-but-curious client, in the random oracle model.

1 Introduction

Outsourcing file storage to clouds is a dominant trend today that appears likely
to continue for the foreseeable future. However, cloud storage comes with in-
creased risks of data manipulation, since the data is stored outside the adminis-
trative control of the data owner. Numerous techniques have thus been developed
to enable third parties who search on the data to confirm that the cloud service
faithfully serves requests using the data owner’s intended data (e.g., [26125121]).

Such techniques, however, typically do not account for the privacy of searches
and the data itself. To protect cloud-resident files from disclosure, it is not un-
common for the data owner to encrypt her files before storing them. Special-
ized cryptographic protocols are then needed to permit third parties to perform
searches on that data. For example, a data owner may wish to enable an an-
tivirus vendor to perform malware scanning on her cloud-resident files without
decrypting the files in the cloud. Similarly, owners of a genome database may

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 147-[[63] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.it-ebooks.info/

148 L. Wei and M.K. Reiter

wish to enable qualified researchers to perform searches on the data (e.g., [1I2]),
again without decrypting the files in the cloud. These applications are espe-
cially challenging if the third parties should be given only limited access to the
data (versus disclosing all of it to them) and because the searches themselves
may be sensitive: malware signatures can be used to develop malware to evade
them [I8J32] and searches on genome datasets may reflect proprietary research
directions.

Protocols for a third-party client to perform private searches on encrypted
data in the cloud, while revealing nothing to the cloud server and nothing but the
search result to the client, do exist for some types of searches (e.g., [27UT1130]).
To our knowledge, however, none also enforces that the cloud server employs
the data that the data owner stored at the cloud server. Indeed, the traditional
notion that a protocol is secure against arbitrarily malicious adversaries provides
no guarantees on what input a malicious party may use in the protocol.

In this paper, we provide a protocol that enables a client to evaluate a de-
terministic finite automaton (DFA) on a file encrypted at the cloud server so
that the authenticity of the file input by the server and the integrity of the
computation result are both enforced. At the same time, the protocol provably
protects the file contents (except for the result of the computation) from an
honest-but-curious client (and heuristically from even a malicious client) and
provably protects both the file contents and DFA from an arbitrarily malicious
server. To our knowledge, our protocol is the first example of performing secure
DFA computation on both encrypted and authenticated data.

Traditionally, one needs to know the file content and the signature to verify the
authenticity of a file, and so the main technical difficulty in our case is to ensure
computation on authenticated (signed) data without disclosing the plaintext
to either party. The most common approach one might first consider to solve
this problem is to leverage zero-knowledge proof techniques. By asking the data
owner to publish commitments of the file character signatures, the server might
then prove that his input used in the protocol is consistent with the published
commitments. In the ways we see to instantiate this intuition, however, it would
require much higher computation and communication costs than our protocol.
Instead, we introduce a new technique to enforce correct server behavior and
the authenticity of the input on which it is allowed to operate, without relying
on zero-knowledge proofs at all. At a high level, the protocol takes advantage of
the verifiability of the computation result to check the correctness of the server
behavior. The protocol is designed so that that legitimate outputs are encoded
in a small space only known to the client, and any malicious behavior by the
server will result in the final output lying outside this space, which is then easily
detected by the client. We prove this property (in the random oracle model) and
the privacy of both the file and the DFA against an arbitrarily malicious server.
We also prove the privacy of the file (except for the result of the DFA evaluation)
against an honest-but-curious client.

The rest of this paper is structured as follows. We discuss related work in Sec-
tion Pl and review our goals in Section [3l We detail our protocol and summarize

http://www.it-ebooks.info/

Ensuring File Authenticity in Private DFA Evaluation 149

its security proof in Sectiondl We discuss the impact of file updates in Section [l
We discuss extensions in Section [6] and conclude in Section [7

2 Related Work

The topic on which we focus in this paper falls into the general paradigm of two-
party secure computation [3TJI5]. The specific problem of private DFA evaluation
was first studied by Troncoso-Pastoriza et al. [29] who presented a protocol for
honest-but-curious adversaries in which one party can evaluate its private DFA
on a string held by another party, without either party leaking any information
about its input beyond what is implied by the outcome of the evaluation. Since
then, the problem has been extensively studied. Frikken [I3] presented a proto-
col that improved on the round complexity and computational costs. Gennaro et
al. [T14] proposed a protocol that is secure against malicious adversaries. Mohassel
et al. [23] presented a protocol that significantly improves on the computational
costs of both participants. Blanton and Aliasgari [4] proposed protocols that
outsource the computation to two computational servers by secret sharing the
DFA and data between them (with extension to multiple servers). The work by
Wei and Reiter [30] is the most relevant to ours. They introduced new proto-
cols in the cloud outsourcing scenario where a client can evaluate a DFA on
the encrypted data stored on a cloud server, once authorized to do so by the
data owner. However, the protocol does not guarantee the authenticity of the
data input by the cloud server. The related problem of secure pattern matching
has also attracted attention [T6/T7II9], though again without treatment of data
authenticity as we consider here.

Secure computation on authenticated input was previously considered in the
context of private set intersection. Several works [7JT0I9I28] studied private inter-
section of certified sets, in which the set elements of each party must be certified
by a trusted third party for use in performing the intersection. However, none
considered the scenario where the data input to one party is only in ciphertext
form and must remain hidden to it. In addition, to our knowledge we are the first
to consider secure computation on authenticated data in the context of private
DFA evaluation.

One of our protocol extensions (Section [secret-shares the file decryption
key between the server and client in order to perform DFA evaluation on the
encrypted data. In this respect, the protocols of Choi et al. [§] are related. They
developed protocols based on a garbled circuit technique that enable two parties
to compute any functionality after a secret decryption key is shared between
them. This work, however, did not enforce authenticity of the protocol inputs.

3 Goals

A deterministic finite automaton M is a tuple (Q, X, §, ginit) where @ is a set
of |Q] = n states; X is a set (alphabet) of |X| = m symbols; § : Q X X — Q
is a transition function; and @i is the initial state. (A DFA can also specify a

http://www.it-ebooks.info/

150 L. Wei and M.K. Reiter

set F' C @ of accepting states; we ignore this here to save space, though our
protocols can easily be adapted to accommodate it, similar to the techniques
suggested in previous work [30].) Our goal is to enable a client holding a DFA
M to interact with a server holding a file ciphertext to evaluate M on the file
plaintext. More specifically, the client should output the final state to which the
file plaintext drives the DFA; i.e., if the plaintext file is a sequence (ox)ke[y
where [{] denotes the set {0,1,...,£ — 1} and where each o, € X, then the
client should output (... d(8(ginit, 00), 01),...,00—1). We also permit the client
to learn the file length ¢ and the server to learn the number of states n in the
client’s DFA. (Indeed, because the DFA output leaks logn bits about the file to
the client, the server should know n to measure the leakage to the client and to
limit the number of DFA queries the client is allowed, accordingly.) However, the
client should learn nothing else about the file; the server should learn nothing
else about the client’s DFA and nothing about the file plaintext.

An additional goal of our protocols — and their main contribution over prior
work — is to ensure that the client detects if the server deviates from the protocol.
More specifically, we presume that a data owner stores the file ciphertext at the
server, together with accompanying authentication data. We require that the
client return the result of evaluating its DFA on the file stored by the data
owner or else that the client detect the misbehavior of the server. In this paper
we do not explicitly concern ourselves with misbehavior of the client, owing to
the use cases outlined in Section [that involve a partially trusted third-party
customer or service provider (e.g., antivirus vendor). That said, we believe our
protocol to be heuristically secure against an arbitrarily malicious client.

4 Private DFA Evaluation on Signed and Encrypted Data

In this section we present a protocol meeting the goals described in Section [3
the client learns only the length of the file and the output of his DFA evaluation
on the file stored at the server; the server learns only the number of states in the
client’s DFA and the length of the file; and the client detects any misbehavior
by the server that would cause him to return an incorrect result. Again, we do
not consider misbehavior of the client here; the client is honest-but-curious only.
In this section we consider the file as static. The impact of file updates will be
discussed in Section

4.1 Preliminaries

Let “<” denote assignment and “s & S” denote the assignment to s of a

randomly chosen element of set S. Let k be a security parameter. Let ParamGen
be an algorithm that, on input 1%, produces (p, G1, Ga, g, €) < ParamGen(1*)
where p is a prime; G; and G2 are multiplicative groups of order p; g is a
generator of G1; and e : G1 X G1 — G5 is an efficiently computable bilinear map
such that e(P", Q") = e(P, Q)" for any P,Q € G and any u,v € Z,.

http://www.it-ebooks.info/

Ensuring File Authenticity in Private DFA Evaluation 151

BLS Signatures. Our protocol makes use of the Boneh-Lynn-Shacham (BLS)
signature scheme [6]. Suppose (p,G1,G2,g,¢e) < ParamGen(1%) and let Hy be
a hash function H; : {0,1}* — G;. The BLS scheme consists of a triple of
algorithms (BLSKeyGen, BLSSign, BLSVerify), defined as follows.

BLSKeyGen(p, G1, G2, g, e): Select x & Zy. Return private signing key (G1,x)
and public verification key (p, G1, G2, g, e, h) where h < ¢*.
BLSSign (g, »)(m): Return the signature Hi(m)®.

BLSVerify ,, ¢,.ca,g.e,0) (1, 8): Return true if e(Hi(m), h) = e(s, g) and false oth-

erwise.

Paillier encryption. Our scheme is built using the additively homomorphic en-
cryption scheme due to Paillier [24]. This cryptosystem has a plaintext space
R where (R,+,.,-,) denotes a commutative ring. Specifically, this encryption
scheme includes algorithms PGen, PEnc, and PDec where: PGen is a randomized
algorithm that on input 1* outputs a public-key/private-key pair (pek, pdk) +
PGen(1*); PEnc is a randomized algorithm that on input public key pek and
plaintext m € R (where R can be determined as a function of pek) produces a
ciphertext ¢ <— PEncyer(m), where ¢ € Cper and Cpey is the ciphertext space
determined by pek; and PDec is a deterministic algorithm that on input a pri-
vate key pdk and ciphertext ¢ € Cper produces a plaintext m < PDecpgy(c)
where m € R. In addition, £ supports an operation +,c; on ciphertexts such
that for any public-key/private-key pair (pek, pdk), PDecygr (PEnCper (m1) +pek
PEncper (m2)) = mq 4, ma. Using + e, it is possible to implement -p.;, for which
PDecpdk(mg ‘pek PEncpek(ml)) =mq xp M2.

In Paillier encryption, the ring R is Zy, the ciphertext space Cy gy is Zy,
and the relevant algorithms are as follows.
PGen(1*): Choose random r/2-bit strong primes p1, pa2; set N < pips; choose
g € Zy» with order a multiple of N; and return the public key (N, g) and private
key (N, g, A(N)) where A(N) is the Carmichael function of N.

PEnc gy (m): Select r & Z% and return g™ mod N2.
L(c*™) mod N?)
L(g*»™®™) mod N2)
that takes input elements from the set {u < N? | v = 1 mod N} and returns
L(u) = 5.

c1 +(n,q) c2: Return cicz mod N2,

PDec/n g x(n))(c): Return m = mod N, where L is a function

m (n,g) ¢: Return ¢ mod N2,

We use Y to denote summation using +pex; D& to denote summation using +;
and [f to denote the product using -, of a sequence.

4.2 Initial Construction without File Encryption

We denote the file stored at the server as consisting of characters o, ..., oy_1,
where each o, € X. Prior to storing this file at the server, however, the data owner

http://www.it-ebooks.info/

152 L. Wei and M.K. Reiter

uses its private BLS signing key (G'1,z) to produce sy, < BLSSign ¢, . (0% ||k) for
each k € [{] — i.e., a per-file-character signature that incorporates the position
of the character in the fild] — and stores these signed characters at the server,
instead. (Here, “||” denotes concatenation.) Note that since s = Hi(og||k)%,
anyone knowing the corresponding verification key (p, G1, G2, g, €, h) cannot only
verify s; but can also extract o, and k, by simply testing for each ¢ € X and
k € [¢] whether e(H;i(o]||k), h) = e(sk,g). As such, while in our initial protocol
description, the data owner stores sg, ..., sy—1 at the server, this implicitly
conveys 0y, ..., 0g—1, as well.

The basic structure of the protocol, which is borrowed from previous work [30],
involves the client encoding its DFA transition function 0 as a bivariate polyno-
mial f(z,y) over R where z is the variable representing a DFA state and y is the
variable representing an input symbol. In our protocol, the client and server then
evaluate this polynomial together, using a single round of interaction per state
transition (i.e., per file character), in such a way that the client observes only
ciphertexts of states and file characters and the server observes only a randomly
blinded state. More specifically, in our protocol, if the current DFA state is g,

then the server observes only 7(q) 4, ¢ for ¢ & R chosen by the client and
where 7w : @ — R maps DFA states to distinct ring elements. The client, with
knowledge of 7 and ¢, can calculate f(z,y) so that f(n(q) +, v,0) = w(d(q,0))
for each ¢ € @Q and o € Y. Then, starting with a ciphertext of 7(q) for the
DFA state ¢ resulting from processing file characters oy, ..., ox—1, the client can
interact with the server to obtain a ciphertext of f(7(q) +, ¥, ox) [30].

The central innovation in our protocol is a technique by which the client, with-
out knowing s, can compute an encoding of the file character o that the server
must use in round k of the evaluation. If the server does not, it “throws off” the
evaluation in a way that the server cannot predict. As a result, if the server devi-
ates from the protocol, the end result of the evaluation will be an unpredictable
element of the ring R, which will not correspond to any state of the DFA with
overwhelming probability. To accomplish this, the client defines the encoding of
character 0 € ¥ and position k € [{] to be 7(o,k,vr) = Ha(e(H1(o||k)¥*, h)),
where Hy is a hash function Hp : Go — R (modeled as a random oracle) and

where ¥y, & Z, is selected by the client in the round for the k-th char-
acter. If the client sends W3, < g¢¥* to the server in the round for the k-th
character, then the server can compute 7(oy, k, ¢y) for the file character oy as
T(0k, k,) = Ha(e(sk,¥r)). However, without v the server will be unable to
compute the encoding 7(o, k,9y) for any o # oy.

The final difficulty to overcome lies in the fact that the client, by altering
the encoding of each character o € X' per round k, must also recompute f(z,y)
to account for this new encoding. As such, the client recomputes f(z,y) to sat-
isty f(m(q) +4 ¢k, 7(0,k,) = w(d(q,0)) per round k, for every ¢ € @ and

! The file name or other identifier could be included along with the character position,
to detect the exchange of characters between files. Similarly, the length ¢ can be
included to detect file truncation. These issues are discussed further in Section

http://www.it-ebooks.info/

Ensuring File Authenticity in Private DFA Evaluation 153

o € X. In our algorithm, we encapsulate this calculation as (a;;)ic[n],jeim]
ToPoly(Q, X, 6, 7, k, ¢k, Br, ¥x) where (aij)ic[n],je[m are the coefficients forming
f, i.e., so that f(x,y) = E?;OI E;’:Ol aij ', y?. (The value) will become
relevant in Section 3 and can be ignored for now.)

This protocol is shown in Figure [[l The protocol is written with the steps
performed by the client listed on the left (lines [CI0THcI20), with those per-
formed by the server on the right (lines EI0THsTT3)), and with the messages ex-
changed between them in the middle (lines [nI0THMIOA). The client takes as
input the data owner’s public verification key (p, G1,Ga2,g,e,h), a public en-
cryption key ek’, and its DFA (Q, X, 6, ginit). (For the moment, ignore the ad-
ditional input dk, which will be discussed in Section F3l) The server takes as
input (p, G1, G2, g, e, h), the DFA alphabet X, and the signed file characters so,

.+, Se—1, L.e., signed with the data owner’s private key (G1,z) corresponding
to (p,G1,G2,g,e, h). (Again, please ignore the by values for now. These will be
discussed in Section E:31) Note that neither the client nor the server receives any
information about the private key dk’, and so values encrypted under ek’ (0
in line [€I04 and p in line [cI09) are never decrypted or otherwise used in the
protocol. These values are included in the protocol only to simplify its proof and
need not be included in a real implementation of the protocol.

At the beginning of the protocol, the server generates the public/private key
pair (pek,pdk) (line EI02) that defines the ring R for the protocol run. The
server conveys pek and the file length ¢ to the client (mI0I)). Upon receiving this
message, the client selects an injection 7 : Q — R at random from the set of all
such injections, denoted Injs(Q — R) (cI03)). The client sends the number n of
states in his DFA in message[mI02l (To simplify our proofs, the client also sends
the chosen injection 7 encrypted under ek’ to server, denoted by 0. We will not
discuss this further here.)

The heart of the protocol is the loop represented by lines for the
client and lines for the server. The client begins each iteration of this
loop with a ciphertext « of the current DFA state, which it blinds with the
blinding term ¢ (€I07) using the additive homomorphic property of Paillier

encryption (CI08). The client also selects ¢, (€II0) and creates ¥, (cIII)) as
described above, and sends the now-blinded ciphertext v and ¥ to the server

(mI03). After decrypting the blinded state v (EI0R) and using ¥, and si to
create the encoding n = 7(0, k, ¢) for the character o being processed in this
loop iteration (I06), the server creates the encryption of 4% -, 7/ for each i € [n]
and j € [m] (SI07HsIII]). After the server sends these values back to the client
(mI04), the client uses them together with the coefficients of f that it computed
as described above (cI13)) to assemble a ciphertext of the new DFA state (c116]).

After this loop iterates £ times, the client sends the state ciphertext to the
server (mI0B). The server decrypts the (random) state (EII3) and returns it
(mI06). The client checks to be sure that the result represents a valid state
([cI18) and, if so, returns the corresponding state as the result (cI20).

http://www.it-ebooks.info/

154 L. Wei and M.K. Reiter

client({p, G1, G2, g,¢, h), server({p, G1,G2,g,¢€,h),
dk,ek',(Q,E,é,qinit>) E, <5k‘7bk>ke[l])
cl0l. n <+ |Q,m + |X| s101. m <+ |X|
s102. (pek, pdk) < PGen(1")
pek L
m101.
cl02. (N,g) < pek, R+ Zy s103. (N, g) < pek, R+ Zn
c103. 7 & Injs(Q —» R)
c104. 0 + Ence (m)
n,0
m102.
cl05. « ¢+ PEncyer (7(ginit))
cl06. for k«+0...4—1 s104. for k<« 0.../—1
c107. Pk &R
c108. @ < & +pek PEncper (¢r)
c109. p < Enco (vr)
c10. ¢ & 7z
clll. Wy« g%+
m103. kil
s105. v + PDecpar ()
s106. 7 H2(€(Sk, !pk))
s107. for i € [n]
s108. for j € [m]
s109. i < PEncper (7" 5 77)
s110. endfor
sl111. endfor
104, (Wig)ien],je[m] Ok
cl12. By + Decy(br)
cl13. (aij)ienl,jelml

<7 T0P0|y(Q7 E? 5’ Tr? k? ka? ﬁk? wk)
cl14. if 34,5 : ai; # 0 Aged(asj, N) > 1
cl15. then abort

n—1 m-—1

cl16. a Zp:ek Ek Qij *pek Mij

i=0 ;=0
cl17. endfor sl12. endfor

m105.

s113. ~* < PDecpar ()

m106.

c118. if v* & {7(q)}eeq
cl19. then abort

c120. else return 7~ !(7*)

Fig. 1. Protocol IT, described in Section @]

http://www.it-ebooks.info/

Ensuring File Authenticity in Private DFA Evaluation 155

4.3 Adding File Encryption

As presented so far, our protocol guarantees the integrity of the DFA evaluation
against a malicious server. However, the confidentiality of the file content is not
protected from the server because the signatures of the file characters are known
to the server. With cloud outsourcing becoming increasingly popular, there is
need to enable a data owner to outsource her file to the cloud while protecting
its privacy, as well, against a potentially untrusted cloud provider. So, in this
section, we refine our protocol so that it provides the same guarantees while also
protecting the confidentiality of the file content from the server.

As we described our protocol so far, the server holds the BLS signature si =
Hi(ok||k)*, which enables him to learn o) by testing for each ¢ € X' whether
e(Hi(ollk), h) = e(sk, g). So, to hide oy, from the server, it is necessary to change
the signature s; to prevent the server from confirming a guess at the value of oy.

To do so, in our full protocol the data owner randomizes the signature by

raising it to a random power, i.e., s; < Hi(o||k)® P where By & Zy. sk
then does not leak information about o to the server because it is randomly
distributed in GG;. However, this randomization also introduces new difficulties
for the server and client to perform the DFA evaluation, since both of them need
to be able to compute the same encoding for each oy, despite s being randomized
in this way.

To facilitate this evaluation, the data owner encrypts §x under a public key
ek of an encryption scheme whose plaintext space includes Z; and provides its
ciphertext, denoted bg, along with si to the server; see the input arguments
to server in Figure [Il Of course, the server should not be able to decrypt by,
since this would again enable him to reconstruct oy. As such, the data owner
provides the corresponding private decryption key dk only to the client; see the
input arguments to the client. Analogous to previous protocols [30], conveying dk
can serve as a step by which the data owner authorizes a client to perform DFA
queries on its file stored at the server. (In Section [6, we summarize an alternative
approach that does not disclose dk or (fx)refq to the client.)

Given this setup, the full protocol IT thus executes the following additional
steps. First, the client defines the encoding of character o € X' and position k € [{]
to be 7(0, k, Br, r) = Ha(e(H1(o||k)?*¥*, b)), where again H, is a hash function

H, : G2 — R (modeled as a random oracle) and where ¥y, i Z;‘ is selected by
the client in the round for character k. Note that the client needs to know % to
compute 7(o, k, Bk, V), and recall that the client needs to know 7(o, k, Bk, 1y) for
each o € X in order to compute f(x,y) to satisty f(n(q) +. ¢r, 7(0, k, Bk, ¥r)) =
m(d(q,0)) for every ¢ € Q and o € X. Therefore, it is necessary for the client to
include Bj as an argument to the ToPoly call (i.e., ToPoly(Q, X, 6, 7, k, vk, Bk, V)
in [cIT3) and to delay that call until after receiving by in [n104] and using it to

obtain Sj (cII2).

http://www.it-ebooks.info/

156 L. Wei and M.K. Reiter

4.4 Communication and Storage

Protocol IT has a communication complexity of O(¢mnk) bits, dominated by
message [M104] consisting of mn elements of Z},, sent by the server in each of
¢ rounds, where pek = (N,g) and N is x bits in length. The storage cost on
the server is dominated by the size of (sy,bx)recig. Now letting x denote the
maximum of the security parameters for the BLS signatures (i.e., the s values)
and the ciphertexts (i.e., the b; values), and assuming that the bit length of
each value type is linear in its security parameter (which is the case for BLS
signatures and, say, Paillier ciphertexts), the storage cost is O(x¢) bits.

4.5 Security

For brevity, we defer a full proof of security for I to a forthcoming technical
report. In this section we simply highlight the central insights and lemmas needed
to complete that proof.

Privacy against server adversaries. The insight needed for arguing file and DFA
privacy against server adversaries is to notice that, aside from (by)e[¢ provided
as input to the server and the encrypted function sent by the client (mI02),
the values observed by the server are independent of the file contents or the
DFA state. That is, each s, = Hy(o||k)®P* is distributed independently of o

because S <i Z;, and the values v <— PDecpgi () that the server recovers in

line are independent of the current DFA state and the file contents, owing
to its blinding by the client (cI07HcIO8). Similarly, v* is independent of the
DFA and file contents because it is simply a random ring element determined
by the random selection of 7 in line [cI03] and no other output from 7 is ever
disclosed to the server. Also note that p and W sent to the server (mI03)) are
independent of the file characters or DFA states. Consequently, any information
leakage about the file or DFA to the server must originate in a leakage either
from the ciphertexts (bx)xefeq or from the ciphertext 6, for which the server holds
neither decryption key. Consequently, it is possible to reduce the DFA and file
privacy against server adversaries to the IND-CPA security [3] of encryption
under ek or ek’, respectively.

Privacy against honest-but-curious client adversaries. The final state v* of the
DFA evaluation is revealed to the client in line [n106] but aside from this value,
the only other values sent to the client are a Paillier public key pek (mIOI),
ciphertexts (i:))ie[n],je[m] encrypted under that public key, and the ciphertext
bi. The plaintext S of by is independent of the file content, and so its disclosure
to the client (cI12]) does not reveal additional information about the file. Con-
sequently, any leakage about the file (beyond the final state v* to which the file
pushed the DFA) must originate from the ciphertexts (ii;)ic[n],je[m] and so can
be used to attack the IND-CPA security [3] of the Paillier encryption scheme.
This reasoning pertains equally well to malicious client-compromising adver-
saries and so we believe our protocol is heuristically secure against malicious

http://www.it-ebooks.info/

Ensuring File Authenticity in Private DFA Evaluation 157

client adversaries, as well. However, the simulation for the client adversary uses
the plaintexts of the values 6 (mI02) and p (MI03)) sent by the client, which are
correct only if the client is honest-but-curious. We could force the correctness
of these values against an arbitrarily malicious client through the addition of
zero-knowledge proofs, but we do not pursue that here.

Detection of server misbehavior. There are essentially two avenues by which
a server might attempt to misbehave while escaping detection. The first is to
create 7(0, k, Br,r) = Ha(e(Hi(o||k)P ¥ b)) for some o # o, and to use
7(0, k, Bk, Y1) as n in the protocol. The second is to cause the client to execute a
state transition into an erroneous state in @ without computing 7(o, k, Sk, V)
for some o # oj,. We first show that the former implies the ability to break the
bilinear computational Diffie-Hellman assumption [6]:

Assumption 1. For any probabilistic polynomial-time adversary A,

(p,G1,G2,g,€) « ParamGen(1%);
8 o«
21,22,23 < Zp;’v<;A(paGlaG239363921>gZ2agZ3)

P(” ~ clg,g)

1s negligible as a function of kA

Lemma 1. Let Hy and Hy be random oracles. Under Assumption [, there is
no probabilistic polynomial time server-compromising adversary S that computes
7(o, k, Bk, ¥i) for some k € [¢] and o # o1 with non-negligible probability, after
interacting with the client in protocol II.

Proof. Suppose such a server adversary S exists. We build an adversary A that
takes in a challenge (p, G1,Ga,g,¢e, g%, g%, ¢%®) as input, interacts with S, and
outputs e(g, g)**#2%3 with non-negligible probability, violating Assumption [l A
is defined as follows, where Z; = ¢g*', Zs = ¢*2 and Z3 = ¢*3:

— Setup: A generates a public/private key pair (ek, dk) for an encryption
scheme, a file length ¢ > 0, an alphabet X' such that |X| > 1, and a se-
quence of plaintext file characters (ox)repg, ox € &. A sets Hi(ox||k) « g*

where u & Z, and then computes the encrypted file sequence (8K, br) relg
such that s, <+ Zfﬁk for B & Zy and by < Encer(Bk). A invokes
S({p,G1,G2,9,¢,Z1), X, (s, bx)ke[q)- Note that the file ciphertext (s, br)res
is well formed because e(sy, g) = e(Z27F, g) = e(g7*P+, g) = e(g, g)"*Pr =
e(g*, g**)%r = e(H1(ox||k), Z1)P*, as in the real protocol. Finally, A chooses
k& [/] and o* & 2\ A{ow-}.

— Simulation for S: After receiving pek and ¢ from S (mIOIl), A chooses

n > 0 arbitrarily and computes € exactly as in the real protocol, using an
encryption key ek’ of its own choosing. A sends n and 6 to S (mI02).

2 A function p is negligible as a function of k if for every positive polynomial p, there
is some ko such that p(k) < 1/p(x) for all Kk > ko.

http://www.it-ebooks.info/

158 L. Wei and M.K. Reiter

In round k € [¢], A computes a to be the ciphertext of random element of
R. If k # k*, then A generates the random challenge ¥, exactly as specified
in [cITOHcTTT] If £ = k*, then A sets Wy, < Z3. In either case, A then sends

a and ¥, to S (mI03).

After ¢ such rounds, A computes « to be the ciphertext of a random
element of R, and sends it to S (mI05).

— Hash queries to Hi: For any query that was previously posed to Hy, A

returns the value returned to that previous query, and for new queries, A

generates a return value as follows. If the query is o*||k*, then A returns Z.

For all other queries, A picks u & Z,, and returns g“.
— Hash queries to Hj: For any query that was previously posed to Hp, A
returns the value returned to that previous query. For new queries, A picks

r i Zy and returns r to S.

The view that A simulates for S is indistinguishable from a real protocol
execution. If § computes

(0%, k*, Be-, i) = Ha(e(H1 (o™ ||k*) %%, Zy))
Ha(e(Z5% %, Z1))
= Ha(e(g, g)*122*5P)

then A can output e(g, g)***2*3 with non-negligible probability by selecting a

random query x that S made of Hy and returning X'BIZ*I mod» The probability
that A outputs e(g, g)**#2%3 is then m times the probability that S
produces 7(o, k, Bk, ¢r) for some k € [{] and o # oy, where #(H>) is the number
of queries that S poses to Hs. If the latter probability is non-negligible, then the
former is, too. O

We now consider the second possibility, i.e., that the server causes the client
to execute a state transition into an erroneous state in () without computing
7(0,k, Bk, ¥r) for some o # of. To prove that this happens with negligible
probability, we leverage properties specific to the Paillier cryptosystem.

Lemma 2. Let Hy be a random oracle, and let S be a server-compromising ad-
versary. If in no round k does S compute (o, k, Bk, i) for some o # oy, then
the client outputs an incorrect state q € @ with probability at most negligibly

n—1
more than *5~.

Proof. In round k, the client transitions to the next DFA state by encoding the
DFA transition function using a polynomial f satisfying f(w(q) +, @k, T (a k,
Bis i) = w(6(q, o)) for every ¢ € Q and o € X let f(z,y) = deiy ! Zm 0 Gijn
xi~myj . To cause a state transition to an erroneous state ¢’ € Q, a server adversary
must therefore produce ciphertexts (i1;;)ien],je[m) With corresponding plaintexts
<Vij>ie[n],je[m] so that

,_.

n—1 m—

R Qij g Vij (1)
7=0

ﬁ,
=1 &

http://www.it-ebooks.info/

Ensuring File Authenticity in Private DFA Evaluation 159

without having any information about (o, k, i, ¥1) for any o # o, (since Hy is
arandom oracle). Note that the distribution of (ai;)ien],je[m] is not independent
of the DFA transition function 6 and the injection 7. That is, once 7 is fixed,
only certain values for (a;j)icin],je[m] are possible.

We argue the result under the conservative assumption that § and 7 uniquely
determine (aij)ic[n),je[m) (Which in general they do not). Even then, for any
i’ € [n] and j' € [m] such that a;;» # 0 and ged(ay -, N) = 1 (lines
abort the protocol if ged(a;;, N) > 1 for some a;; # 0), and for any choices
of (Vij)icin),je[m) €xcepting vy/;/, there is exactly one value for vyj in Zy that
satisfies (). Moreover, prior to the last message sent by the client (mI05]), the
server receives no information about 7. So, the probability S succeeds in selecting
(Vij)iem).je[m) to satisfy () is %, and since there are n — 1 possible erroneous
states ¢’, the probability S succeeds in causing an erroneous state transition to
any ¢’ € Q is at most ”Tfl

Finally, while the server learns m(q) for one ¢ € @ in the last client-to-server
message (mI10B) — if it behaved thus far — it does so only for the correct state
q at this point. Again, it can then guess 7(¢’) for an incorrect ¢’ € @ to return
as v* with probability only ”Tfl O

5 On File Updates

Protocol IT is presented for a static file, and so in this section we consider the
impact of file updates. As we discuss below, these impacts are nontrivial, and so
our protocol is arguably most useful for static files.

To enable protocol II, the data owner signs the file position k along with
o when producing sj to detect the server reordering file characters, i.e., s; <

Hy(o||k)™Pr where By & Z,. Such a representation would require any character
insertion or deletion at position k to further require updating the signature s
for all K’ > k. If the total file length £ is also included as an input to Hj to detect
file truncation, then insertions and deletions may require updating the signatures
sg for all k' < k, as well. This latter cost can be eliminated by not including
£ as an input to Hy but rather to have the data owner sign ¢ and the server to
forward this signature along with £ to the client in message [mI01l The former
cost can be mitigated somewhat by breaking each file into blocks (essentially
smaller files) so that insertions and deletions require only the affected blocks to
be rewritten. In this case, the block index within the file should presumably also
be included as an input to H; to detect block reorderings by the server.

Even with these modifications, there remain other complexities in handling
file updates, in that a server could simply use a stale version of the file when
performing protocol IT with the client, ignoring any earlier updates to the file
by the data owner. Detecting a server that selectively suppresses updates seems
to require additional interaction between the data owner and the client and has
been the subject of much study (for file stores subject to reads and updates
only) under the banner of fork consistency [22]. We leave as future work the

http://www.it-ebooks.info/

160 L. Wei and M.K. Reiter

integration of our DFA evaluation techniques with these ideas, i.e., so that DFA
evaluations performed against stale files are efficiently detected when the client
subsequently interacts with the data owner.

6 Extensions

The protocol IT can be extended in various ways that may be of interest and
that we will discuss here. The first “extension” is simply the removal of the
file encryption step described in Section 3] which is suitable for the standard
two-party model where the server’s input need not be kept secret from the server
himself. This simplification eliminates the dk, 8x and by, values from the protocol,
implicitly setting S, = 1.

A more interesting variant of the protocol addresses the concern that the
protocol as stated in Figure [discloses the decryption key dk and the values
(Br)rele to the client, either of which can be used to decrypt the file from its
ciphertext (si,bx)refq. While this file ciphertext is not disclosed to the client
during the protocol, it seems unnecessarily permissive to disclose its decryption
key to every client that performs a DFA evaluation on the file: if the file ciphertext
were ever unintentionally disclosed, then any such client could decrypt the file
if it retained the key. In the rest of this section we discuss an extension to the
protocol in Figure [l to avoid disclosing dk and the values (Bk)re[q to the client.

In order to avoid disclosing dk to the client, one alternative is for the data
owner to provide shares of dk to both the client and the server, so as to enable a
two-party decryption of each by. Then, rather than sending only by to the client
in message [m104] the server can also send its contribution to the decryption of
b, enabling the client to complete the decryption of by without learning dk itself.

Still, however, this alternative would disclose i to the client, which would
enable it to determine oy, if s were ever disclosed. To avoid disclosing Sy, one
strategy is for the server to first blind Sy with another random value tg, i.e.,
to execute the protocol with ity in place of just Si. Of course, this factor tg
would also then need to be reflected in k-th file character used in the protocol,
i.e., so the server would use s}* = Hy(ok||k)™P* in place of sy in the protocol.
Because the server does not have access to O but rather has access only to its
ciphertext by, it is necessary that the encryption scheme used to construct by
enable the computation of a ciphertext bk from by, and t; such that Decdk(bk)

Brtr mod N’ for some value N’ such that p | N’. In this case, selecting ¢ & AN
suffices to ensure that Bit; mod N’ is distributed independently of 8 and so
hides S from the client when it learns St mod N’.

An encryption scheme meeting our requirements (supporting two-party de-
cryption and homomorphism on ciphertexts) is ElGamal encryption [12] in a
subgroup of Z%;,. However, note that setting N’ = p is inefficient: the security
parameter x and so the size of p required for security is an order of magnitude
less for BLS signing than it would be for ElGamal encryption in a subgroup of
Zy [20], and so setting N’ = p would add considerable expense to the protocol.

http://www.it-ebooks.info/

Ensuring File Authenticity in Private DFA Evaluation 161

As such, a more efficient construction would be to choose N’ = pp’ for another
prime p’. ElGamal encryption is believed to be secure with a composite modulus
even if its factorization is known [5].

7 Conclusion

We presented a protocol by which a data owner can outsource storage of a
file to an untrusted cloud server while still enabling partially trusted third-party
clients (e.g., customers and service providers) to evaluate DFAs on that data. Our
protocol is novel in provably enabling the client to detect the server’s misbehavior
— including the use of a file other than the data owner’s in the protocol — in
the random oracle model, while simultaneously protecting the privacy of the file
and of the DFA from an arbitrarily malicious server. Moreover, our protocol
provably protects the privacy of the file (except for the DFA evaluation result)
from an honest-but-curious client (and heuristically does so from an arbitrarily
malicious one). We accomplish these goals without the use of zero-knowledge
proofs, yielding a protocol that is more efficient than alternatives of which we
are aware. We believe that our protocol has applications to malware scanning or
genome analysis on encrypted, cloud-resident data, and we plan to explore these
applications in ongoing work.

Acknowledgments. This work was supported in part by NSF grant 0910483.

References

1. GenBank, http://www.ncbi.nlm.nih.gov/genbank/

2. United Kingdom National DNA Database,
http://www.npia.police.uk/en/8934.htm

3. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of
security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998.
LNCS, vol. 1462, pp. 26-45. Springer, Heidelberg (1998)

4. Blanton, M., Aliasgari, M.: Secure outsourcing of DNA searching via finite au-
tomata. In: Foresti, S., Jajodia, S. (eds.) Data and Applications Security and Pri-
vacy XXIV. LNCS, vol. 6166, pp. 49-64. Springer, Heidelberg (2010)

5. Boneh, D.: The decision Diffie-Hellman problem. In: Buhler, J.P. (ed.) ANTS 1998.
LNCS, vol. 1423, pp. 48-63. Springer, Heidelberg (1998)

6. Boneh, D., Lynn, B., Shacham, H.: Short signatures from the weil pairing. In: Boyd,
C. (ed.) ASTACRYPT 2001. LNCS, vol. 2248, pp. 514-532. Springer, Heidelberg
(2001)

7. Camenisch, J., Zaverucha, G.M.: Private intersection of certified sets. In: Din-
gledine, R., Golle, P. (eds.) FC 2009. LNCS, vol. 5628, pp. 108-127. Springer,
Heidelberg (2009)

8. Choi, S.G., Elbaz, A., Juels, A., Malkin, T., Yung, M.: Two-party computing with
encrypted data. In: Kurosawa, K. (ed.) ASTACRYPT 2007. LNCS, vol. 4833, pp.
298-314. Springer, Heidelberg (2007)

9. De Cristofaro, E.,; Kim, J., Tsudik, G.: Linear-complexity private set intersection
protocols secure in malicious model. In: Abe, M. (ed.) ASTACRYPT 2010. LNCS,
vol. 6477, pp. 213-231. Springer, Heidelberg (2010)

http://www.ncbi.nlm.nih.gov/genbank/
http://www.npia.police.uk/en/8934.htm
http://www.it-ebooks.info/

162

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

L. Wei and M.K. Reiter

De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with lin-
ear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143-159. Springer,
Heidelberg (2010)

Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryp-
tion: Improved definitions and efficient constructions. In: 13th ACM Conference
on Computer and Communications Security, pp. 79-88 (2006)

ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4), 469-472 (1985)
Frikken, K.B.: Practical private DNA string searching and matching through ef-
ficient oblivious automata evaluation. In: Gudes, E., Vaidya, J. (eds.) Data and
Applications Security XXIII. LNCS, vol. 5645, pp. 81-94. Springer, Heidelberg
(2009)

Gennaro, R., Hazay, C., Sorensen, J.S.: Text search protocols with simulation based
security. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp.
332-350. Springer, Heidelberg (2010)

Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: 19th
ACM Symposium on Theory of Computing, pp. 218-229 (1987)

Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching
with security against malicious and covert adversaries. Journal of Cryptology 23(3),
422-456 (2010)

Hazay, C., Toft, T.: Computationally secure pattern matching in the presence of
malicious adversaries. In: Abe, M. (ed.) ASTACRYPT 2010. LNCS, vol. 6477, pp.
195-212. Springer, Heidelberg (2010)

Higgins, K.J.: Black hat: How to hack IPS signatures (2007),
http://www.darkreading.com/security/perimeter-security/
208804656/black-hat-how-to-hack-ips-signatures.html

Katz, J., Malka, L.: Secure text processing with applications to private DNA match-
ing. In: 17th ACM Conference on Computer and Communications Security, pp.
485-492 (2010)

Lenstra, A.K., Verheul, E.R.: Selecting cryptographic key sizes. Journal of Cryp-
tology 14(4), 255-293 (2001)

Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Authenticated index structures
for aggregation queries. ACM Transactions on Information and System Security
13(4) (December 2010)

Mazieres, D., Shasha, D.: Building secure file systems out of Byzantine storage. In:
21st Symposium on Principles of Distributed Computing, pp. 108-117 (July 2002)
Mohassel, P., Niksefat, S., Sadeghian, S., Sadeghiyan, B.: An efficient protocol for
oblivious DFA evaluation and applications. In: Dunkelman, O. (ed.) CT-RSA 2012.
LNCS, vol. 7178, pp. 398-415. Springer, Heidelberg (2012)

Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223-238.
Springer, Heidelberg (1999)

Pang, H., Zhang, J., Mouratidis, K.: Scalable verification for outsourced dynamic
databases. In: 35th International Conference on Very Large Databases, pp. 802-813
(2009)

Papamanthou, C., Tamassia, R., Triandopoulos, R.: Authenticated hash tables. In:
15th ACM Conference on Computer and Communications Security, pp. 437448
(2008)

Song, D.X., Wagner, D., Perrig, A.: Practical techniques for searches on encrypted
data. In: 2000 IEEE Symposium on Security and Privacy (2000)

http://www.darkreading.com/security/perimeter-security/208804656/black-hat-how-to-hack-ips-signatures.html
http://www.darkreading.com/security/perimeter-security/208804656/black-hat-how-to-hack-ips-signatures.html
http://www.it-ebooks.info/

28.

29.

30.

31.

32.

Ensuring File Authenticity in Private DFA Evaluation 163

Stefanov, E., Shi, E., Song, D.: Policy-enhanced private set intersection: sharing in-
formation while enforcing privacy policies. In: Fischlin, M., Buchmann, J., Manulis,
M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 413-430. Springer, Heidelberg (2012)
Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving error
resilient DNA searching through oblivious automata. In: 14th ACM Conference on
Computer and Communications Security, pp. 519-528 (2007)

Wei, L., Reiter, M.K.: Third-party private DFA evaluation on encrypted files in
the cloud. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS,
vol. 7459, pp. 523-540. Springer, Heidelberg (2012)

Yao, A.C.: Protocols for secure computations. In: 23rd IEEE Symposium on Foun-
dations of Computer Science, pp. 160164 (1982)

Zhuge, J., Holz, T., Song, C., Guo, J., Han, X., Zou, W.: Studying malicious
websites and the underground economy on the Chinese web. In: Workshop on the
Economics of Information Security (June 2008)

http://www.it-ebooks.info/

HI-CFG: Construction by Binary Analysis
and Application to Attack Polymorphism

Dan Caselden!, Alex Bazhanyuk?, Mathias Payer3,
Stephen McCamant*, and Dawn Song?

! FireEye, Inc.
2 Intel Corporation
3 University of California, Berkeley**
4 University of Minnesota,

Abstract. Security analysis often requires understanding both the con-
trol and data-flow structure of a binary. We introduce a new program
representation, a hybrid information- and control-flow graph (HI-CFG),
and give algorithms to infer it from an instruction-level trace. As an
application, we consider the task of generalizing an attack against a pro-
gram whose inputs undergo complex transformations before reaching a
vulnerability. We apply the HI-CFG to find the parts of the program
that implement each transformation, and then generate new attack in-
puts under a user-specified combination of transformations. Structural
knowledge allows our approach to scale to applications that are infeasible
with monolithic symbolic execution. Such attack polymorphism shows
the insufficiency of any filter that does not support all the same trans-
formations as the vulnerable application. In case studies, we show this
attack capability against a PDF viewer and a word processor.

1 Introduction

In security analysis it is often necessary to understand both the information-
flow and control-flow structure of a large code base. Disassemblers concentrate
on recovering control-flow structure, and some research systems [I826]17] re-
verse engineer data structures. But there is insufficient automated support for
understanding the flow of information between data structures, and the relation-
ship between data structures and code. We propose new techniques that combine
information-flow analysis with control-flow graph recovery to scale precise binary
analysis to large software systems, and apply them to generating polymorphic
attacks against programs that support complex input transformations.
Applications are getting larger and more complex due to increasing function-
ality, a more sophisticated software stack, and new abstractions and concepts
that simplify development. These applications are hard to debug and vulnerabil-
ities are becoming more and more complex, e.g., a vulnerable program location
might only be reached after a specific input is passed through several buffers and

** The authors were all at UC Berkeley while performing the primary research.

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 164-[8T] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.it-ebooks.info/

HI-CFG: Construction by Binary Analysis 165

1 // IS0-8859-1 to UTF-8 conversion CFG view Data flow view

2 void trafo(char x*src, > ‘

3 char *dst, int len) { 3y Control flow
4 while (len-- > 0) { | v \ bufo

5 if (*src < 0x80) { 4/

6 *dst++ = *src++; [~

7 } else { y A J Data flow
8 *dst++ = 0xcO | \ ‘5 7, \J v

9 (*src & 0xc0) >> 6; I Tl bufl

10 *dst++ = 0x80 | \ Vv

11 (*src++ & 0x3f); | 9/ Producer/
12 i 4 Consumer
13 } 10

14 }

15 ...
16 trafo (buf0, bufl, 256);

Fig. 1. This example shows both (a) simple transformation and (b) the corresponding
HI-CFG

functions whereas the data can be modified by each function. Symbolic execution
is a great tool to analyze security properties of an application given a potentially
vulnerable program location. Unfortunately, symbolic execution does not scale
well to large contexts and long-running programs with multiple input transfor-
mations, due to the explosion of the number of possible paths that have to be
evaluated and the state that has to be tracked. A simple alternative to sym-
bolic execution is (concrete) fuzzing or fuzz testing. Fuzz testing uses templates
to probabilistically generate input data that tries to trigger a program crash.
A security analyst then analyzes the crash logs to locate vulnerabilities. Due to
the probabilistic input generation fuzz testing is unlikely to reach a vulnerability
that is guarded by complex, low-probability conditions.

This paper introduces a new program representation, a Hybrid Information-
and Control-Flow Graph (HI-CFG), that captures both the information-flow
graph and the control-flow graph of a program. The HI-CFG shows the data
structures within a program as well as the code that generates and uses these
data structures, inferring an explicit connection of producer and consumer edges
between data-flow nodes and blocks in the control-flow graph. [Figure Ij(a) shows
a simple example of a transformation and the corresponding HI-CFG graph. The
transformation that copies data from buffer buf0 to buf1.[Figure I|b) shows the
HI-CFG that contains the control flow graph as well as the data flow graph and
the producer/consumer edges between the two graphs.

Using the information in the HI-CFG about individual data structures (i.e.,
buffers) and transformations enables an iterative, step-by-step analysis of these
buffer transformations. Instead of using monolithic symbolic execution that re-
verses all transformations in a single (but potentially exponentially large) step,
iterative symbolic execution starts from a potentially vulnerable program loca-
tion and reverses each transformation individually. shows a vulnerabil-
ity hidden behind several transformations that can be reversed using iterative
symbolic execution.

http://www.it-ebooks.info/

166 D. Caselden et al.

Program (with vulnerable instruction) é
trafo.

Input trafo. > bufo nafoAl bufl trafo. > buf2 »

inv. trafo. inv. trafo. inv. trafo. inv. trafo.

Symb.Ex. Symb.Ex. Symb.Ex. Symb.Ex.

HI-CFG used to identify transformations
and to connect inversed transformations

Fig. 2. Iteratively reversing a set of data transformations based on information from
the HI-CFG

One possible way to build a HI-CFG is using source-based program analysis.
Unfortunately, in the context of security analysis, the source-code of a program
is usually not available and the program itself might be stripped. This paper
presents an algorithm to build a HI-CFG for a given binary-only program based
on the analysis of an execution trace for a benign input that executes the buffer
transformations but does not necessarily trigger the vulnerability. Prerequisites
for the algorithm are only the (stripped) binary and a benign input that executes
the buffer transformations.

Another advantage of the HI-CFG from an attacker’s perspective is that given
one vulnerability the symbolic execution engine can be used to generate many dif-
ferent exploit paths, leveraging different encodings or different transformations.
Often transformations are many-to-one (e.g., many different deflate compressed
streams decode to the same original data) and the symbolic execution engine can
be used to produce different encodings for a specific target string. Also, many
file formats allow a specific program location to be reached by different chains of
transformations. With file formats that allow recursive objects, an attacker can
choose from an infinite amount of transformations. Such attacks can only be de-
tected if the analysis tool has deep knowledge of the file format and implements
all transformations as well.

We evaluate the feasibility of HI-CFG construction using only a stripped
binary for two case studies: a PDF viewer, and a word processor. For both
programs, we describe the construction of the HI-CFG as well as how symbolic
execution can be used to generate different attacks by inverting transformations
along the HI-CFG buffer chains.

The contributions of this paper are:

1. we introduce a new program representation, a Hybrid Information- and
Control-Flow Graph (HI-CFG), which combines control-flow and data-flow
information by inferring producer/consumer edges;

2. we give algorithms for building a HI-CFG given only a stripped binary pro-
gram and a benign input to that program,;

3. we evaluate the security capabilities of the HI-CFG using two case studies
for large, real-world programs: Poppler and AbiWord.

http://www.it-ebooks.info/

HI-CFG: Construction by Binary Analysis 167

Our symbolic execution approach for attack generation is not a contribution
here; it is described in more detail in a technical report [2I]. Further information
about the project is available on the BitBlaze web site [12].

2 The Hybrid Information- and Control-Flow Graph

For the central program representation used in our approach we propose what we
call a Hybrid Information- and Control-Flow Graph (“HI-CFG” for short, pro-
nounced “high-C-F-G”). The HI-CFG combines information about code, data,
and the relationships between them. Because data structures represent the in-
terface between code modules, a HI-CFG is a suitable representation for many
tasks that require decomposing a large binary program into components.

We start by describing the kinds of nodes and edges found in a HI-CFG (Sec-
tion 2Z]). Then we mention potential variations of the concept and applications
for which they would be suitable (Section 22)).

2.1 Nodes and Edges

A HI-CFG is a graph with two kinds of nodes: ones representing the program’s
data structures, and ones representing its code blocks. Data structure nodes are
connected with information-flow edges showing how information is transferred
from one data structure to another. Code block nodes are connected with control-
flow edges indicating the order in which code executes. Finally, data nodes and
code nodes are connected by producer-consumer edges, showing which informa-
tion is created and used by which code: a producer edge connects a code block to
a data structure it generates, while a consumer edge connects a data structure to
a code block that uses it. A more detailed example HI-CFG is shown in Figure[3l

The subgraph of a HI-CFG consisting of code blocks and control-flow edges
is similar to a control-flow graph or call graph, and the subgraph consisting
of data structure nodes and information-flow edges is similar to a data-flow
graph. However, the HI-CFG is more powerful than a simple combination of a

I Control Flow
v (call shown)

Information
Flow

Producer/
Consumer

Fig. 3. A detailed example of a coarse-grained HI-CFG for a program which parses
two kinds of commands from its input, decodes those commands using lookup tables,
and then performs an appropriate computation for each command.

--+{ state_tbl

http://www.it-ebooks.info/

168 D. Caselden et al.

control-flow graph and a data-flow graph, because the producer-consumer edges
additionally allow an analysis to find the code that is relevant to data or the
data that is relevant to part of the code.

2.2 Generality and Uses

We can create a HI-CFG with differing levels of granularity for code and data.
A fine-grained code representation has one code block per basic block, while
a coarse-grained representation has one code block per function. Analogously,
a fine-grained data representation has a data structure node for each atomic
value (like an integer), while a coarse-grained data representation has one data
structure node per allocated memory region. To record information about finer-
grained structure, we can augment a coarse-grained data structure node with an
inferred type that describes its internal structure.

When an analysis can recover only part of the information about a program’s
structure, such as when combining static and dynamic approaches, we can also
annotate each HI-CFG edge with a confidence value between 0 and 1. A confi-
dence value of 1 represents a relationship that our system knows definitively to
hold, whereas a fractional value indicates an uncertain relationship.

Component Identification. One application of a HI-CFG would be to identify
functional components within a binary. The hierarchical, modular structure of
a program is important at the source level for both developer understanding
and separate compilation, but this structure is lost after a compiler produces
a binary. Below the level of a dynamically linked library, a text segment is
an undifferentiated sequence of instructions. However we would often like to
determine which parts of a binary implement a certain functionality, such as to
extract and reuse that functionality in another application. Caballero et al. [5]
demonstrate the security applications of such a capability for single functions,
but many larger functional components would also be valuable to extract.

An insight that motivates the use of a HI-CFG for this problem is that the
connection between different areas of functionality in code are data structures.
A data structure that is written by one part of the code and read by another
represents the interface between them. Thus locating these data structures and
dividing the code between them is the key to finding functional components.
Given a HI-CFG, the functional structure of the program is just a hierarchical
decomposition of the HI-CFG into connected subgraphs. Data structures con-
nected to multiple areas represent the interfaces of those components.

Information-Flow Isolation. A different kind of decomposition would be valu-
able for programs that operate on sensitive data. In a monolithic binary program,
a vulnerability anywhere might allow an attacker to access any information in the
program’s address space. But often only a small part of an application needs to
access sensitive information directly. Just as automatic privilege separation [4]
partitions a program to minimize the portion that requires operating system priv-
ileges, we would like to partition a program to minimize the portion that requires
access to sensitive information. This problem can again be seen as finding a

http://www.it-ebooks.info/

HI-CFG: Construction by Binary Analysis 169

structure within the HI-CFG, but for information-flow isolation we wish to find a
partition into exactly two components, where there is information flow from the
non-sensitive component to the sensitive one but not vice-versa.

Attack Generation. For this paper, our application of the HI-CFG is to find
the structure of a program’s buffer usage to facilitate efficient attack generation.
For this, we use a relatively coarse-grained HI-CFG. We represent code at the
level of functions, so control-flow edges correspond to function calls and returns.
To represent data structures, we use a level of granularity intermediate between
atomic values and memory allocations: our tool detects buffers consisting of
adjacent memory locations that are accessed in a uniform way, for instance an
array. Our current prototype implementation detects only one level of buffers,
so we do not infer types to represent their internal structure.

Because our HI-CFG construction algorithm, as described in Section Bl is
based on dynamic analysis, each edge in the HI-CFG represents a relationship
that was observed on a real program execution. Thus all edges effectively have
confidence 1.0. The converse feature of this dynamic approach is that relation-
ships that did not occur in the observed execution do not appear in the HI-CFG.
However this is acceptable for our purposes because we base the HI-CFG, and
thus the search for an attack, on an analyst-chosen benign execution. If desired
the analyst can repeat the search with a benign input that exercises different
parts of the program functionality.

3 Dynamic HI-CFG Construction

In this section, we describe our approach to HI-CFG construction: first some in-
frastructure details, then techniques for collecting control-flow information from
dynamic traces, categorizing memory accesses into an active memory model,
grouping data accesses into buffers, tracking information flow via targeted taint
analysis, and merging significantly similar buffers.

3.1 Infrastructure

To construct a HI-CFG via dynamic analysis, we take a trace-based approach.
We use the BitBlaze Tracecap tool to record instruction traces. Tracecap also
records statistics about loaded executables and libraries, and produces a log of
function calls including arguments and return values that we later use to track
standard memory allocation routines.

Our modular trace analysis system interfaces with Intel’s XED2 [I5] library
(for instruction decoding). It includes an offline taint propagation module that
allows for a virtually unlimited number of taint marks, and a configurable num-
ber of taint marks per byte in memory and registers. The implementation of
the trace collection and trace analysis focuses on x86 while the techniques for
HI-CFG construction apply to general architectures.

http://www.it-ebooks.info/

170 D. Caselden et al.

3.2 Control Flow

The HI-CFG construction module primarily identifies functions by observing
call and ret in the instruction trace. At a call instruction, the module updates
the call stack for the current thread and creates a control-flow edge from the
caller to the callee. (This includes indirect call instructions such as those used
for C++ virtual methods.) At a ret, the module finds the matching entry in
the call stack and marks any missed call stack entries as invalidated.

In addition to literal call instructions, our system also recognizes optimized
tail-calls by noticing execution at addresses that have previously been call
targets. A limitation of this approach is that tail-called functions will never be
recognized if not normally called. This limitation of the current implementation
could be addressed by adding a static analysis step to the HI-CFG construction
process, but it has not been a problem so far.

3.3 Memory Hierarchy

The HI-CFG construction records memory accesses in a hierarchical model of
memory which follows the lattice shown in Figure [l space types at the top
of the lattice represent an entire process address space. At the bottom of the
lattice, primitives represent memory accesses observed in the instruction trace.
The categorization of a memory access corresponds to a path from the top of
the lattice to the bottom. Existing entries in the memory model add their own
types as additional requirements in the path. For example, a memory access
under an existing dynamically allocated memory region will at least have the
path space, dynamic region, dynamic allocation, primitive. The memory
model will then insert the memory access and create or adjust layers according
to the types in the path.

Memory structures such as dynamic allocations and stack frames are added to
the memory model as they are identified by one of several indicators. Dynamic

Stack
Region 05 Region Statllc
Region

Dynamic
Region

Dynamic
Alloc.

Fig. 4. The hierarchy of types in the model of memory used in our HI-CFG construction
algorithm

http://www.it-ebooks.info/

HI-CFG: Construction by Binary Analysis 171

allocations are added to the memory model by tracking standard memory alloca-
tion routines such as malloc and free. Stack frames are created by tracking esp
during call instructions and claiming all memory accesses between the base of
the stack frame and the end of the stack region during matched ret instructions.

Memory structures such as stack and dynamic regions are based on memory
pages. The “region” type classification relies on the intuition that most programs
tend to use each page for a single purpose such as for stacks, dynamic alloca-
tions, memory-mapped executables, or operating system structures. Additional
constraints prohibit stack frames and dynamic allocations from appearing in the
memory model without their respective regions.

3.4 Grouping Buffers

Instruction traces contain every individual load and store instruction performed
by the traced program, but for the HI-CFG we wish to group these accesses into
buffers to better understand their structure. We identify buffers as groups of
adjacent memory locations between which the program expresses commonality.

We experimented with several heuristics for identifying buffers and currently
use a combination of two approaches. Our first system recognizes instructions
that calculate memory access addresses by adding an index to a base pointer. The
system searches the operands involved in the address calculation for a suitable
base pointer (which must point to an active page of memory). Upon finding a
suitable base pointer, the system submits a candidate buffer consisting of an ad-
dress equal to the value of the base pointer and a size that extends the buffer from
the base pointer to the end of the observed memory access. For example, analyz-
ing a one-byte memory access of address 0x800000£f by the instruction “movzbl
(%esi,%edx,1), %eax” where the base pointer esi is 0x80000000 would yield
a 0x100-byte candidate buffer from 0x80000000 to 0x800000ff.

The first system often detects both arrays consisting of homogeneous data
types and structures consisting of heterogeneous data types. However, it fails
when the address of the memory access is constructed by pointer arithmetic
across multiple instructions. Our second system addresses this weakness by rec-
ognizing spatially adjacent memory accesses. To reduce the false positive rate of
buffer detections, our second system also tracks the order of memory accesses
within each function. Upon observing a return instruction and updating the call
stack, or freeing a chunk of dynamically allocated memory, the second system
uses the accesses from the returned function or freed memory as starting points
to search through the active memory model for linear access patterns. Specifi-
cally, our system numbers the accesses sequentially and then sorts them by their
address. A long enough run of adjacent accesses (currently 6) form a group if for
each pair of adjacent accesses, the distances between them, both in the sequen-
tial order and in address, match. A pseudocode description of this algorithm,
simplified to omit the treatment of nested functions and some optimizations, is
in Figure Bl An example of the algorithm applied to strcpy can be found in a
companion technical report [8]. Similar access patterns across multiple calls to
the same function, such as by functions that access one byte of a buffer per call,

http://www.it-ebooks.info/

172 D. Caselden et al.

are also recognized by this system. In addition, access patterns are stored within
buffers so that they may grow with subsequent accesses. If found, the system
will submit the candidate buffer for further processing described next.

const MIN_SIZE = 6
for insn in trace
match insn.type of
case CALL: opcount := 0; accesses := []
case LOAD(addr) or STORE(addr):
append(accesses, (addr, opcount++))
case RETURN:
a := sort(accesses, by(addr))
for indexes i in a
group := [ali]]
old_stride := None
for indexes j=i, j+1 in a
new_stride := (a[j+1].addr — a[j].addr, a[j+1].opcount — a[j].opcount)
if (old_stride == None) old_stride := new_stride
if (old_stride # new_stride) break
append(group, a[j+1])
if (group.length > MIN_SIZE) make_group(group)

Fig. 5. Pseudocode for identifying linear access patterns in a trace

Once the two systems have submitted their candidate buffers, the HI-CFG
module combines the sets of discovered buffers (keeping all non-overlapping
buffers, and preferring larger buffers in the case of overlap) and commits them to
the active memory model. Adding a buffer to the active memory model merges
the grouped memory accesses with the new buffer, which summarizes relational
information such as producer and consumer relationships with functions and in-
formation flow to other buffers, which are described in the next subsection. Our
system merges a subsequent buffer with an existing one if the starting or ending
addressing of the new buffer matches either the starting or ending address of the
old one, or if either buffer is completely contained within the other.

3.5 Information Flow

To trace the information flow between buffers, our system primarily uses a spe-
cialized form of dynamic taint analysis [23J24]. We introduce a fresh taint mark
for each buffer as a possible source for information flow. We then propagate these
taint marks forward through execution as the data values are copied into registers
and memory locations, or used in arithmetic or bitwise operations. When a value
with a taint mark is stored into another buffer distinct from the source buffer, we
record an information flow from the source to that target. Like most techniques
based on dynamic taint analysis, this technique will not in general account for
all possible implicit flows. Therefore, we supplement it with an upper-bound

http://www.it-ebooks.info/

HI-CFG: Construction by Binary Analysis 173

technique that constructs a low-confidence information-flow edge whenever the
temporal sequence of buffers consumed and produced by a function would allow
an information flow. (In other words, if a function first reads from buffer A, and
then later writes to buffer B, we create a low-confidence information flow edge
from A to B.)

3.6 Buffer Summarization

Buffers in the active memory model are moved into the historical memory model
when they or their hierarchical parents are deactivated. Primarily, this occurs
for stack allocated buffers (when functions return) and dynamically allocated
buffers (when the allocated chunk is freed). The remaining entries in the active
memory model are deactivated when the HI-CFG construction module analyzes
the last instruction in the trace.

Passthrough buffers, through which information flows without being acted
upon by multiple functions, are not added to the historical memory model af-
ter deactivation. The motivations for this choice are twofold: first, passthrough
buffers are generally less interesting for our analysis and their removal is a slight
optimization; second, passthrough buffers will connect legitimately separate sec-
tions of the HI-CFG with information flow. Removing passthrough buffers im-
proves the precision of the HI-CFG by eliminating cases that would indicate
spurious information flow: for instance, if memcpy copied through an internal
buffer that were not removed, every source of a copy would appear information-
flow connected to every target.

We define passthrough buffers as those that satisfy the following criteria:

— The buffer is not a source of information flow (i.e., it has at least one incoming
information flow edge).

— The buffer is not a sink of information flow (i.e., it has at least one outgoing
information flow edge).

— The buffer is produced and/or consumed by exactly one function.

If all of the criteria are met, the passthrough buffer is removed from the
graph, and new information flow edges connect buffers that were connected by
the passthrough buffer. When deactivated buffers do not meet the criteria for
passthrough buffers, they are moved into the historical memory model and sum-
marized, as we describe next.

The summarization process finds buffers that are related (intuitively, multiple
instances of the “same” buffer), and merges them along with their relational
information. We define when two buffers should be merged by giving each buffer
a value we call a key. Two buffers should be merged if they have both the same
parent and the same key. In the current implementation we store an MD5 hash
of the key material to save space. The key includes an identifier for the type of
an object, and by default it also contains the object’s offset within its parent.

The keys for dynamic allocations and stack frames contain different informa-
tion in addition to a type identifier. Dynamic allocations use the calling context

http://www.it-ebooks.info/

174 D. Caselden et al.

of the allocation site, up to a configurable depth (currently set to 10 calls),
similar to a probabilistic calling context [3]. Stack frames use the address of
the function. As a result, our system is able to identify two local variables or
dynamic allocations as the same across multiple calls to a function and in the
presence of custom memory allocation wrappers.

We use a disjoint-set union-find data structure [13] to manage the identities of
buffers as they are summarized. The merging of buffers corresponds to a union
operation, and we use a find operation with path compression to maintain a
canonical representative, associated for instance with a taint mark. This allows
the tool to efficiently maintain information-flow from historical buffers even after
they are deactivated.

4 Application: Attack Polymorphism

As our primary example of a security application of a HI-CFG, we describe how
to use the transformation structure represented in the HI-CFG to efficiently
produce new attacks that differ in the transformations applied to the input
before reaching a vulnerability. We first describe the technique and how it uses
the HI-CFG, then describe experiments applying the technique to two vulnerable
document-processing applications.

4.1 Transformation-Aware Attack Generation with a HI-CFG

In a large application, an input value will typically undergo a number of trans-
formations before being used in a vulnerable function. Moreover, the sequence
of transformations that apply may vary depending on the input structure. For
instance portions of a document might appear in one of several encoding for-
mats, or they might be compressed. This flexibility is potentially powerful for an
attacker, because it allows for polymorphism: the same underlying attack can be
carried out using a wide variety of input files which look superficially dissimilar.

We show that using the transformation structure available in the HI-CFG,
along with symbolic execution, an attacker can easily generate transformed at-
tack inputs, without a need to understand the transformations. We treat the
generation of transformed inputs as a search problem, and we use the struc-
ture of transformations to guide the search. Symbolic execution does not scale
to generate complete inputs to a large program. But using the transformation
structure, we can apply symbolic execution to search for a pre-image of a single
transformation at a time.

Specifically, our approach generates a HI-CFG from an execution of the vul-
nerable program on a benign input which does not contain an attack, but does
exercise the desired transformations. We also presume that the attacker has
enough knowledge to trigger the attack in the vulnerable function (perhaps also
by symbolic execution); in general this is not enough to directly give a program
input that triggers the vulnerability. Our system uses the transformation struc-
ture from the HI-CFG to determine the relevant transformations performed on

http://www.it-ebooks.info/

HI-CFG: Construction by Binary Analysis 175

Table 1. Set-up of the different test cases. All values are in bytes

|Test 1|Test 2|Test 3|Test 4|Test 5
Hex encoded 10 16 55 125 250
RLE encoded 5 8 25 60 120
Object data 12 10 29 57| 114

the program input to produce the buffer contents used by the vulnerable func-
tion. It then uses repeated searches based on symbolic execution, working back-
ward from the vulnerable function’s input buffer. For each transformation, it
computes a pre-image: buffer contents for a previous buffer, which when passed
through the transformation, yield the contents for the next buffer in the trans-
formation sequence. This process is shown graphically in

A sequence of transformations leading to the function containing a potential
vulnerability will appear in the HI-CFG as a path. The first node in the path is
a buffer representing the program input. The remaining nodes in the path before
the last are additional buffers internal to the program, connected by information-
flow edges. Finally, the path ends with a consumer edge leading to the function
containing the potential vulnerability. There may be multiple such paths, such
as if there are buffers containing both primary data and meta-data. Among all
the paths of the form described above, we choose the path for which the size of
the smallest buffer on the path is maximized, to prefer primary data buffers.

Given the sequence of buffers, the HI-CFG also contains information about
which functions implement each transformation. Specifically, each function that
implements part of the transformation will have a consumer edge from the earlier
buffer and a producer edge to the later buffer. In the case where the transfor-
mation is spread across multiple functions, the nearest call-graph ancestor that
dominates all of the functions connected to both buffers will generally be a func-
tion whose execution performs the transformation.

4.2 Performance Comparison between Iterative and Monolithic
Symbolic Execution

This section empirically evaluates the proposition that iteratively reversing in-
dividual transformation is faster than reversing all transformations in one single
(but more complex) step.

Our test program sets up a chain of two transformations. The input is first hex
decoded (pairs of ASCII characters in the ranges 0-9, a—f, or A—F map into data
bytes, skipping whitespace). The data bytes are then decompressed according
to a byte-level run length encoding (RLE), in which compressed bytes indicate
either a repeat count for a single byte, or a run of bytes to be copied verbatim.
Both encoding schemes are supported for objects in PDF files: in sequence they
encode data that is compressed but still printable.

For our performance evaluation we use three different configurations of the
same application with different input data. See [Table 1] for the different test

http://www.it-ebooks.info/

176 D. Caselden et al.

Table 2. Scalability of iterative symbolic execution compared to monolithic symbolic
execution. All numbers are in seconds, the timeout was set to 12 hours.

| Test 1 [s]|Test 2 [s]|Test 3 [s]|Test 4 [s]|Test 5 [s]
Tterative SE 20 183 77 816] 37635
Monolithic SE 599 14042 35972| Timeout| Timeout

configurations of the data that is used for the two transformations. We then
evaluate both iterative and monolithic symbolic execution. Monolithic symbolic
execution uses the object data as its target and directly recovers the hex encoded
input data. Iterative symbolic execution leverages the HI-CFG representation to
split up the large transformation into two transformations and recovers the RLE
encoded data first and uses the result from the first step as input for the second
step where the RLE encoded data is reversed to hex encoded data.

The experiments use our binary symbolic execution tool FuzzBALL [2I20],
which builds in turn on the Vine library from the BitBlaze framework [27].
To further improve its performance on generating transformation pre-images,
FuzzBALL includes support for pruning unproductive paths, prioritizing paths
by the prefix length they produce, and handling loads and stores to tables with
single large formulas. These are described in detail in a technical report [21], and
the implementation is available from the BitBlaze web site. To isolate the benefit
of the HI-CFG, we enable these other optimizations for monolithic symbolic
execution as well.

[Table 2 shows the different performance for iterative and monolithic symbolic
execution. Even for very short input sequences with only few bytes as object data
iterative symbolic execution clearly outperforms monolithic symbolic execution
by 30x (for Test 1). For larger test cases iterative symbolic execution outperforms
monolithic symbolic execution by up to 78x (Test 2) or 467x (Test 3).

4.3 Case Studies

As case studies, we apply our attack polymorphism to two vulnerable document-
processing systems: the PDF parsing library Poppler and the word processor
AbiWord. These programs are open-source, and we use the source code to verify
our results, but the system does not use the source code or source-level informa-
tion such as debugging symbols.

Poppler. Poppler is a PDF processing library used in applications such as
Evince. The vulnerability for which we generate attacks is cataloged as CVE-
2010-3704 [22]. The vulnerability is an integer overflow in a Type 1 font character
index, which can trigger an arbitrary memory write. The “stream” that contains
an embedded font within a PDF document is typically compressed to save space;
it can also be encrypted if the document uses access control, or transformed using
other filters. By applying our system with benign documents that use various
filters, we can create PDF files where the exploit is transformed in various ways.

http://www.it-ebooks.info/

HI-CFG: Construction by Binary Analysis 177

We can also apply symbolic execution to create the malicious font itself; details
are in a previous technical report [§]. We used a separate benign input and
generated a separate HI-CFG for each sequence of transformations. For space
reasons we give a detailed description of the first; the others were similar.

The most common PDF compression format is FlateDecode, using the De-
flate algorithm of RFC 1951 [10]. As a benign input, we use a PDF file generated
by pdftex applied to a small TEX file, which contains a FlateDecode-compressed
font. The execution trace from the benign execution contains 13,560,478 instruc-
tions, and constructing the HI-CFG took about 1.2 hours (4217 s) on a Xeon
X5670. The HI-CFG contains 1283 functions and 1590 groups.

An excerpt of the relevant portion of the HI-CFG generated by our tool is
shown in Figure [6l Input passes through a sequence of four buffers before the
vulnerable code is triggered, so given contents for the final buffer which trigger
a vulnerability in the font parser, our system compute three levels of preimages.
However, two of the transformations are direct copies for which preimage com-
putation is trivial. Between the second and third buffers our system computes
a preimage under the FlateDecode transformation: a compressed font that de-
compresses to the attack font. One average this requires searching through 111
execution paths, and takes a little less than two hours (6598.69 s over ten runs
dropping the fastest and slowest, on an Intel Core 2 Duo E8400).

Another commonly-used transformation of streams in PDF files is RC4 en-
cryption. It is relatively easy for our symbolic execution system to re-encrypt
modified data by constructing pre-images because RC4 is a stream cipher, and
the key is fixed. We applied our technique to a version of the previously described
sample document with RC4 and an owner password. There is one symbolic path,
and the running time is 20 seconds, mostly devoted to program startup.

Two further transformations supported by Poppler include run-length encod-
ing and a hexadecimal encoding of binary data, as described in We
test inverting these two transformations with a PDF file that again contains the
benign Type 1 font, but run-length encoded and then hex-encoded. As seen with
the implementation in [Section 4.21 these transformations are relatively easy to
invert; the preimage computation requires 143 seconds and 315 symbolic paths.

AbiWord. AbiWord is a word-processing application that supports a number
of file formats. In particular we examined its processing of documents in Office

GfxFont:readEmbFontFile

memcpy (XRef*, int¥)
e T~ L
space alloc - - == alloc alloc
b7f92000 - — = 828b420 |~implicit>| 829f008 -~ - = 82b7550
4096 312 s 34104 9887
—~, N \ é

FlateStream::getHuffmanCodeWord

(FlateHuffmanTab®) FoFiTypel::parse()

Fig. 6. Anexcerpt of the HI-CFG for our Poppler case study showing the buffer sequence.
The input travels from left to right and FoFiTypel::parse contains the vulnerability.

http://www.it-ebooks.info/

178 D. Caselden et al.

Open XML format (used with the extension .docx) from Microsoft Word. An
Office Open XML document is structured as a compressed Zip file containing
multiple XML documents representing the document contents and metadata.

Recent versions of AbiWord (we used 2.8.2) suffer from a crash in XML pro-
cessing that is triggered when a shading tag occurs outside of a paragraph tag;
we have not determined whether this bug is exploitable. The execution trace
collected from the benign execution contains 69,503,117 instructions, and con-
structing the HI-CFG took about 5.8 hours (20910 s). The generated HI-CFG
contains 5379 functions and 5838 groups. Looking at the sequence of buffers in
the HI-CFG, the document data starts in a standard-IO input buffer, and is
then decompressed by the inflate function. The decompressed buffer is then
copied via memmove into a structure called the parser context, which is used
by xmlParseDocument; the function containing the vulnerability is a callback
from this parser. An XML document triggering the crash could be found using
a schema-aware random testing tool, or the details of the attack can also be
completed using symbolic execution of the parser [§].

Given the crash-inducing XML text, our tool finishes the task of producing
an attack .docx file by finding a preimage for the compression used for the
XML text in the .docx file’s Zip encapsulation. In fact, Zip files use the same
DEFLATE algorithm mentioned earlier in the Poppler case study, though an
independent implementation. On average (across 10 runs dropping the fastest
and slowest), the search requires 237 seconds and 92 symbolic paths.

4.4 Discussion

Next we discuss in more detail some of the limitations and implications of the
attack polymorphism capability.

Invertible Transformations. Our approach for computing inverse images via
symbolic execution depends on several features of a transformation implementa-
tion in order to find an inverse efficiently. While common, these features are not
universal. First, our tool is designed for transformations whose input and output
come via contiguous data structures such as arrays that are accessed sequen-
tially. With additional data-structure inference, the approach could be extended
to more complex linked and nested structures. However it must be clear when the
transformation has committed to an output value: our current approach works
when each output location is written exactly once. Second, pruning is most ef-
fective if the transformation’s input and output are closely interleaved, so that
unproductive paths can be pruned early. One example of a class of transforma-
tions that do not satisfy these features, and cannot generally be inverted by our
approach, are cryptographic hash functions.

Implications for Attack Filters. Our results show that it is easy for an
attacker to create variants of an attack that are camouflaged using transforma-
tions supported by an input format, such as the various filters supported in PDF
documents. The consequence for the designers of defenses such as network sen-
sors and anti-virus systems is that in order to recognize all the variants of an

http://www.it-ebooks.info/

HI-CFG: Construction by Binary Analysis 179

attack, these systems would have to duplicate all of the transformations imple-
mented in the system they protect. For instance to recognize all possible variants
of an attack PDF, a defense system would need to include decoders for all the
stream formats supported by Adobe Reader.

5 Related Work

Our techniques for determining which memory accesses constitute a buffer are
most similar to the array detection algorithms of Howard [2625], a tool which
infers data-structure definitions from binary executions. Our algorithms are
somewhat simpler because we do not currently attempt, for instance, to de-
tect multidimensional arrays. Other systems that perform type inference from
binaries include REWARDS [18] which has been used to guide a search for
vulnerabilities, and TIE [I7] which can be either a static or dynamic analysis.
Similar algorithms have also been used for inferring the structure of network pro-
tocols [7]. By contrast, our HI-CFG also contains information about code and
the relationships between code and data, which are needed for our application.

Perhaps the most similar end-to-end approach to attack generation is the
decomposition and restitching of Caballero et al. [6]. They also tackle the prob-
lem of vulnerability conditions which are difficult to trigger because of other
transformations the input undergoes, in their case studies decryption. Though
they use symbolic exploration to find vulnerabilities, they use a different tech-
nique, based on searching for an inverse function in the same binary, to gener-
ate preimages. The decomposition and restitching technique can also recompute
checksums, which is a key capability of TaintScope [28]. TaintScope uses taint-
directed fuzzing to search for vulnerabilities, and a checksum can typically be
recomputed using simple concrete execution. However TaintScope uses symbolic
execution, including lookup tables identified by IDAPro, to find preimages for
simple transformations of the checksum value in a file, such as endian conversions
or decimal/binary translation.

The AEG [I] and MAYHEM [9] systems also generate attack inputs using sym-
bolic execution. AEG automates some additional aspects of exploit generation
not covered in this paper, such as generating some common kinds of jumps to
shellcode. However, these projects do not describe any vulnerabilities as involv-
ing transformation of the input prior to the vulnerable code, which is the key
challenge we address.

The kinds of program information contained in the HI-CFG are available sep-
arately using existing techniques; the focus of our contribution is the extra value
that comes from combining them in a single representation. For instance, hav-
ing both information-flow and producer-consumer edges allows our approach to
characterize a transformation in terms of both the data structures it operates on
and the code that implements it. The program dependence graph (PDG) [I1I14]
also has edges representing both control and data flow, but it is unsuitable for
our application as it has no nodes representing data structures.

Our problem of computing preimages for transformations is similar to the
“gadget inversion” performed by Inspector Gadget [16], which also applies to

http://www.it-ebooks.info/

180 D. Caselden et al.

functionality automatically discovered within a binary. Inspector Gadget’s search
for inverses uses only concrete executions, but it keeps track of which output
bytes depend on which input bytes. Symbolic execution can be seen as a gen-
eralization in that symbolic expressions indicate not just which input values an
output value depends on, but the functional form of that dependence. This often
allows symbolic execution to compute a preimage using many fewer executions.
Our technique is based on searching backwards through the program execution
to see if a vulnerability can be triggered by the input. A similar intuition has
been applied to the control flow of a program (as opposed to information flow
as we consider); examples include the static analysis tool ARCHER [29] and the
call-chain-backward symbolic execution approach of Ma et al. [19].

6 Conclusion

In this paper we introduce a new data structure, the Hybrid Information- and
Control-Flow Graph (HI-CFG), and give algorithms for constructing a HI-CFG
from binary-level traces. The HI-CFG captures the structure of buffers and trans-
formations that a program uses for processing its input. This structure lets us
generate transformed attack inputs efficiently, because understanding the struc-
ture of transformations allows our system to find preimages for them one-by-one.
We show the feasibility and applicability of our approach in two case studies of
the Poppler PDF library and the AbiWord word processor. This demonstrated
ease of constructing attacks using complex transformation sequences implies that
the problem of filtering such attacks is very difficult.

Acknowledgments. We thank Ldszl6 Szekeres and Lenx Tao Wei for sugges-
tions and help related to the experiments and previous papers. This work was
supported by NSF awards CCF-0424422, 0842695, and 0831501; MURI awards
N000140911081 (ONR) and FA9550-09-1-0539 (AFOSR), and DARPA award
HRO0011-12-2-005. However the findings and conclusions are those of the authors
and do not necessarily reflect the views of the NSF or other supporters.

References

1. Avgerinos, T., Cha, S.K., Hao, B.L.T., Brumley, D.: AEG: Automatic exploit gen-
eration. In: NDSS 2011 (2011)

2. Babié¢, D., Martignoni, L., McCamant, S., Song, D.: Statically-directed dynamic
automated test generation. In: ISSTA 2011 (2011)

3. Bond, M.D., McKinley, K.S.: Probabilistic calling context. In: OOPLSA 2007
(2007)

4. Brumley, D., Song, D.: Privtrans: automatically partitioning programs for privilege
separation. In: USENIX Security 2004 (2004)

5. Caballero, J., Johnson, N.M., McCamant, S., Song, D.: Binary code extraction and
interface identification for security applications. In: NDSS 2010 (2010)

6. Caballero, J., Poosankam, P., McCamant, S., Babic, D., Song, D.: Input generation
via decomposition and re-stitching: Finding bugs in malware. In: CCS 2010 (2010)

http://www.it-ebooks.info/

10.
11.
12.
13.
14.

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

HI-CFG: Construction by Binary Analysis 181

Caballero, J., Yin, H., Liang, Z., Song, D.: Polyglot: Automatic extraction of pro-
tocol message format using dynamic binary analysis. In: CCS 2007 (2007)
Caselden, D., Bazhanyuk, A., Payer, M., Szekeres, L., McCamant, S., Song, D.:
Transformation-aware exploit generation using a HI-CFG. Tech. Rep. UCB/EECS-
2013-85, University of California, Berkeley (May 2013)

Cha, S.K., Avgerinos, T., Rebert, A., Brumley, D.: Unleashing MAYHEM on binary
code. In: IEEE S&P 2012 (2012)

Deutsch, P.: DEFLATE compressed data format specification. IETF RFC 1951
(May 1996)

Ferrante, J., Ottenstein, K.J., Warren, J.D.: The program dependence graph and
its use in optimization. TOPLAS 9(3) (1987)

HI-CFG project information page, http://bitblaze.cs.berkeley.edu/hicfg/
Hopcroft, J.E., Ullman, J.D.: Set merging algorithms. STAM J. Comput. 2(4) (1973)
Horwitz, S., Reps, T.W., Binkley, D.: Interprocedural slicing using dependence
graphs. TOPLAS 12(1) (1990)

Intel: Pin website (November 2012), http://www.pintool.org/

Kolbitsch, C., Holz, T., Kruegel, C., Kirda, E.: Inspector Gadget: Automated ex-
traction of proprietary gadgets from malware binaries. In: IEEE S&P 2010 (2010)
Lee, J., Avgerinos, T., Brumley, D.: TIE: Principled reverse engineering of types
in binary programs. In: NDSS 2011 (2011)

Lin, Z., Zhang, X., Xu, D.: Automatic reverse engineering of data structures from
binary execution. In: NDSS 2010 (2010)

Ma, K.-K., Yit Phang, K., Foster, J.S., Hicks, M.: Directed symbolic execution.
In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 95-111. Springer, Heidelberg
(2011)

Martignoni, L., McCamant, S., Poosankam, P., Song, D., Maniatis, P.: Path-
exploration lifting: Hi-fi tests for lo-fi emulators. In: ASPLOS 2012 (2012)
McCamant, S., Payer, M., Caselden, D., Bazhanyuk, A., Song, D.: Transformation-
aware symbolic execution for system test generation. Tech. Rep. UCB/EECS-2013-
125, University of California, Berkeley (June 2013)

MITRE: CVE-2010-3704: Memory corruption in FoFiTypel::parse (October 2010)
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3704

Newsome, J., Song, D.: Dynamic taint analysis: Automatic detection, analysis,
and signature generation of exploit attacks on commodity software. In: NDSS 2005
(2005)

Schwartz, E.J., Avgerinos, T., Brumley, D.: All you ever wanted to know about
dynamic taint analysis and forward symbolic execution (but might have been afraid
to ask). In: IEEE S&P 2010 (2010)

Slowinska, A., Stancescu, T., Bos, H.: Body armor for binaries: preventing buffer
overflows without recompilation. In: USENIX ATC 2012 (2012)

Slowinska, A., Stancescu, T., Bos, H.: Howard: a dynamic excavator for reverse
engineering data structures. In: NDSS 2011 (2011)

Song, D., Brumley, D., Yin, H., Caballero, J., Jager, 1., Kang, M.G., Liang, Z.,
Newsome, J., Poosankam, P., Saxena, P.: BitBlaze: A new approach to computer
security via binary analysis. In: ICISS 2008 (2008) (keynote invited paper)

Wang, T., Wei, T., Gu, G., Zou, W.: TaintScope: A checksum-aware directed
fuzzing tool for automatic software vulnerability detection. In: IEEE S&P 2010
(2010)

Xie, Y., Chou, A., Engler, D.R.: ARCHER: using symbolic, path-sensitive analysis
to detect memory access errors. In: ESEC/FSE 2003 (2003)

http://bitblaze.cs.berkeley.edu/hicfg/
http://www.pintool.org/
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-3704
http://www.it-ebooks.info/

AnDarwin: Scalable Detection of Semantically
Similar Android Applications

Jonathan Crussell, Clint Gibler, and Hao Chen

University of California, Davis
{jcrussell,cdgibler,chen}@ucdavis.edu

Abstract. The popularity and utility of smartphones rely on their vi-
brant application markets; however, plagiarism threatens the long-term
health of these markets. We present a scalable approach to detecting sim-
ilar Android apps based on their semantic information. We implement
our approach in a tool called AnDarwin and evaluate it on 265,359 apps
collected from 17 markets including Google Play and numerous third-
party markets. In contrast to earlier approaches, AnDarwin has four
advantages: it avoids comparing apps pairwise, thus greatly improving
its scalability; it analyzes only the app code and does not rely on other
information — such as the app’s market, signature, or description —
thus greatly increasing its reliability; it can detect both full and partial
app similarity; and it can automatically detect library code and remove
it from the similarity analysis. We present two use cases for AnDarwin:
finding similar apps by different developers (“clones”) and similar apps
from the same developer (“rebranded”). In ten hours, AnDarwin detected
at least 4,295 apps that have been the victims of cloning and 36,106 apps
that are rebranded. By analyzing the clusters found by AnDarwin, we
found 88 new variants of malware and identified 169 malicious apps based
on differences in the requested permissions. Our evaluation demonstrates
AnDarwin’s ability to accurately detect similar apps on a large scale.

1 Introduction

As of March 2012, Android has a majority smart phone marketshare in the
United States [I5]. The Android operating system provides the core smart phone
experience, but much of the user experience relies on third-party apps. To this
end, Android has an official market and numerous third-party markets where
users can download apps for social networking, games, and more. In order to
incentivize developers to continue creating apps, it is important to maintain a
healthy market ecosystem.

One important aspect of a healthy market ecosystem is that developers are
financially compensated for their work. Developers can charge directly for their
apps, but many choose instead to offer free apps that are ad-supported or contain
in-app billing for additional content. There are several ways developers may lose
potential revenue: a paid app may be “cracked” and released for free or a free
app may be copied, or “cloned”, and re-released with changes to the ad libraries

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 182-[[J9] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.it-ebooks.info/

AnDarwin: Scalable Detection of Semantically Similar Android Applications 183

that cause ad revenue to go to the plagiarist [20]. App cloning has been widely
reported by developers, smart phone security companies and the academic com-
munity [RITOTTITE2TI3332]. Unfortunately, the openness of Android markets
and the ease of repackaging apps contribute to the ability of plagiarists to clone
apps and resubmit them to markets.

Another aspect of a healthy market ecosystem is the absence of low-quality
spam apps which may pollute search results, detracting from hard-working de-
velopers. Of the 569,000 apps available on the official Android market, 23%
are low-quality [7]. Oftentimes, spammers will submit the same app with minor
changes as many different apps using one or more developer accounts.

To improve the health of the market ecosystem, a scalable approach is needed
to detect similar app for use in finding clones and potential spam. As of Novem-
ber, 2012, there are over 569,000 Android apps on the official Android market.
Including third-party markets and allowing for future growth, there are too many
apps to be analyzed using existing tools.

To this end, we develop an approach for detecting similar apps on a un-
precedented scale and implement it in a tool called AnDarwin. Unlike previous
approaches that compare apps pair-wise, our approach uses multiple clusterings
to handle large numbers of apps efficiently. Our efficiency allows us to avoid the
need to pre-select potentially similar apps based on their market, name, or de-
scription, thus greatly increasing the detection reliability. Additionally, we can
use the app clusters produced by AnDarwin to detect when apps have had simi-
lar code injected (e.g. the insertion of malware). We investigate two applications
of AnDarwin: finding similar apps by different developers (cloned apps) and
groups of apps by the same developer with high code reuse (rebranded apps).
We demonstrate the utility of AnDarwin, including the detection of new variants
of known malware and the detection of new malware.

2 Background

2.1 Android

Android users have access to many markets where they can download apps such
as the official Android market — Google Play [2], and other, third-party markets
such as GoApk [I] and SlideME [3].

Developers must sign an app with their developer key before uploading it
to a market. Most markets are designed to self-regulate through ratings and
have no vetting process which has allowed numerous malicious apps onto the
markets [34]. Google Play has developed a Bouncer service [26] to automatically
analyze new apps. However, its effectiveness for finding similar apps, such as
spam and clones, which may not be malicious, has not been studied.

2.2 Program Dependence Graphs

A Program Dependence Graph (PDG) represents a method in a program, where
each node is a statement and each edge shows a dependency between statements.

http://www.it-ebooks.info/

184 J. Crussell, C. Gibler, and H. Chen

There are two types of dependencies: data and control. A data dependency edge
between statements s; and sp exists if there is a variable in sy whose value
depends on s;. For example, if s; is an assignment statement and s, references
the variable assigned in s; then ss is data dependent on s1. A control dependency
between two statements exists if the truth value of the first statement controls
whether the second statement executes.

2.3 Code Clones and Reuse Detection

Many approaches have been developed over the years to detect code clones
[19122/24125]. A code clone is two or more segments of code that have the same
semantics but come from different sources. Finding and eliminating code clones
has many software engineering benefits such as increasing maintainability and
improving security, as vulnerabilities in clones only need to be found and patched
once. Plagiarism and code clone detection share the same common goal: detect-
ing reused code. However, code clone detection is largely focused on intra-app
reuse, while plagiarism detection focuses on inter-app reuse, where the apps have
separate code bases and have been identified as having different authors.

Tools that detect code clones generally fall into one of four categories: string-
based, token-based, tree-based and semantics-based with semantics-based detec-
tion being potentially the most robust and often the most time consuming. Early
approaches considered code as a collection of strings, usually based on lines, and
reported code clones based on identical lines [9]. More recently, DECKARD [22]
and its successor [19] use the abstract syntax tree of a code base to create vectors
which are then clustered to find similar subtrees.

3 Threat Model

Our goal is to find Android apps that share a nontrivial amount of code, pub-
lished by either the same or different developers. We determine similarity based
on code alone and do not use meta data such as market, developer, package
or description for any purpose other than analyzing the results of AnDarwin’s
clusters of similar apps. We consider only similarities between the DEX code of
apps. We choose to leave native code to future work as only a small percentage
(7%) of the 265,359 apps we analyzed include native code.

4 Methodology

AnDarwin consists of four stages as depicted in Figure[Il First, it represents each
app as a set of vectors computed over the app’s Program Dependence Graphs
(Section [T]). Second, it finds similar code segments by clustering all the vectors
of all apps (Section[4.2)). Third, it eliminates library code based on the frequency
of the clusters (Section [L3)). Finally, it detects apps that are similar, considering
both full and partial app similarity (Section [£.4).

http://www.it-ebooks.info/

AnDarwin: Scalable Detection of Semantically Similar Android Applications 185

Stage 1 Stage 2 Stage 3 Stage 4
APK >
. Whole Application
) I —> Similarity M
2 2 Detection
o Y
> °
(3} Q 3
APK > = o g
[| & |features | Excluding | |5 -
§ | E Libraries % Similar
. 2] 7]] Applications
[o2} o [=%
. £ I3 ©
© >
L] © =
< < Partial Application
w 3 L Similarity —
APK > Detection

Fig. 1. Overview of AnDarwin

We base the first two stages of AnDarwin on the approaches of Jiang et al. [22]
and Gabel et al. [19] to find code clones in a scalable manner. AnDarwin uses
these results to detect library code and, ultimately, to detect similar apps.

4.1 Extracting Semantic Vectors

The first stage of AnDarwin represents each app as a set of semantic vectors
as follows. First, AnDarwin computes an undirected PDG of each method in
the app using only data dependencies for the edges (as control dependencies
edges may be easier to modify). Each PDG is then split into connected com-
ponents as multiple data-independent computations may occur within the same
method. We call these connected components semantic blocks since each cap-
tures a building block of the method and represents semantic information stored
in the PDG. Finally, AnDarwin computes a semantic vector to represent each
semantic block. Each node in the semantic block represents a statement in the
method and has a type corresponding to that statement. For example, a node
representing an add might have the type binary operation. To capture this in-
formation, semantic vectors are calculated by counting the frequency of nodes
of each type in the semantic block. Continuing the above example, a seman-
tic block with just x adds would have an z in the dimension corresponding
to binary operations. AnDarwin uses a total of 20 node types, however, we
could easily use more node information such as which binary operation is be-
ing performed to increase the precision of our vectors without dramatically
increasing the complexity (Section H3). Semantic blocks with fewer than 10
nodes are discarded because they usually represent trivial and uncharacteristic
code.

http://www.it-ebooks.info/

186 J. Crussell, C. Gibler, and H. Chen
4.2 Identifying Similar Code

When two semantic blocks are code clones, they share the majority of their
nodes and, thus, their semantic vectors will be similar. Therefore, we can identify
code clones by finding near-neighbors of semantic vectors. While not all near-
neighbors will be code clones, this technique works well in practice (Section [H).

To determine all the near-neighbors, we could attempt to compute similarity
pairwise between all the semantic vectors. However, this approach is quadratic
in the number of vectors which is computationally prohibitive given that there
can easily be millions of vectors. Instead, we leverage Locality Sensitive Hashing
(LSH), which is an algorithm to efficiently find approximate near-neighbors in
a large number of vectors [B]. LSH achieves this by hashing vectors using many
hash functions from a special family that have a high probability of collision
if the vectors are similar. To identify near-neighbors, LSH first hashes all the
vectors with the special hash functions and then looks for near-neighbors among
the hash collisions. This allows LSH to identify approximate clusters of similar
vectors (code clones) which AnDarwin will use to detect similar apps.

Since semantic blocks of vastly different sizes are unlikely to be code clones,
we can improve the scalability further by grouping the vectors based on their
magnitudes [22]. To ensure that code clones near the group boundaries are not
missed, we compute groups such that they overlap slightly. LSH can then cluster
each group quickly as each individual group is much smaller than the set of all
vectors. Moreover, each LSH computation is independent which allows all the
groups to be run in parallel. This also has the added benefit that we can tailor
the clustering radius for each group to the magnitude of the vectors within the
group — potentially allowing us to detect more code clones.

4.3 Excluding Library Code

A library is a collection of code that is designed to be shared between many apps.
In Android, libraries are embedded in apps which makes it difficult to distinguish
app code from library code. This is problematic because app similarity detec-
tion tools should not consider library code when analyzing apps for similarity.
Prior approaches [16/32] identified libraries using white lists and manual efforts;
however, these approaches are inherently not scalable and prone to omission. In
contrast, AnDarwin automatically detects libraries by leveraging the results of
its clustering of similar code (Section 2.

A library consists of many semantic blocks which are mapped to semantic
vectors by AnDarwin. When an app includes a library it inherits all the semantic
vectors derived from library code. Therefore, when the semantic vectors are
clustered and AnDarwin maps features to apps, features from library code will
appear in many more apps. This is also the case for boilerplate code and any
common compiler constructs which tend to occur in many apps. To exclude these
uncharacteristic features, AnDarwin ignores any feature that appears in more
than a threshold number of apps.

http://www.it-ebooks.info/

AnDarwin: Scalable Detection of Semantically Similar Android Applications 187

4.4 Detecting Similar Apps

The previous sections describe how AnDarwin creates features by clustering
semantic vectors and how characteristic features are selected. AnDarwin deter-
mines app similarity based on these characteristic features using two approaches,
one for full app similarity and the other for partial app similarity.

Full App Similarity Detection. For full app similarity detection, AnDarwin
represents each app as a set of features. In the simplest case, two very similar
apps will have mostly or completely overlapping feature sets. Dissimilar apps’
feature sets, on the other hand, should have little to no overlap. This is captured
in the Jaccard Index of their two feature sets F4 and Fg, which reduces the
problem of finding similar app to that of finding similar sets.

. ‘FAOFB|

J(A,B) = [FaUFs|

(1)
Partial App Similarity Detection. The above approach successfully finds
apps that share most of their code but it is not robust enough to find clones
that share only a part of their code. For example, consider an app and a copy
of it that has added many methods and also removed many original methods to
maintain a similar size. Although the app feature sets of these two apps agree
on many features, their Jaccard Index may be low. To detect partial similarity,
for each feature not excluded in the previous section, AnDarwin computes the
set of apps that contain the feature. If two features have similar app sets, as
determined by the Jaccard Index, these two features are shared by the same set
of apps. If enough features share the same set of apps, AnDarwin has discovered
a non-trivial amount of code sharing of non-library code. Therefore, by creating
clusters of features based on their app sets, AnDarwin can detect partial app
similarity by finding similar sets.

Finding Similar Sets. Both full and partial app similarity detection require
finding similar sets. As in Section 2] we could attempt to compute similarity
pairwise between all the sets, however, this is again computationally prohibitive.
Fortunately, this can be approximated efficiently using MinHash [T2]13].
MinHash was originally developed at Alta Vista to detect similar websites
when represented as a set of features. To understand how MinHash works, first
consider the binary matrix representation of the sets for full app similarity de-
tection where columns are apps and rows are features. Let h(A) be the MinHash
of an app, A, and let it be defined as the first row of the matrix (going top-to-
bottom) that is a one for the column corresponding to A. Then, if we were to
create a random permutation of the rows of the binary matrix, for two apps, A
and B, the probability that h(A) = h(B) is the same as the Jaccard Index of the
two app feature sets [29]. Rather than using just one permutation which may
not find that two similar sets have the same MinHash value, many permutations
and MinHash values can be calculated — creating a MinHash signature vector.
These signature vectors are calculated for each app and can be clustered using

http://www.it-ebooks.info/

188 J. Crussell, C. Gibler, and H. Chen

LSH (see Section[d.2]). Therefore, MinHash allows AnDarwin to efficiently detect
both full and partial app similarity.

The output of MinHash is a list of pairs of sets that are similar which we
combine to create clusters of similar sets. To do so, we initialize a union-find
data structure, which enables fast cluster merging and element lookup, with
each set in a cluster by itself. We then process each pair, (X,Y) and merge the
two clusters that contain X and Y if they are not already in the same cluster.
By merging clusters in this way, the average similarity of sets within each cluster
is decreasing with each pair processed. For example A may be similar to B, B
to C, and C to D but this does not mean that A must be similar to D. We
believe this is an acceptable trade off and leave alternative approaches to future
work.

4.5 Time Complexity

In this section, we examine the total time complexity of AnDarwin. Let N be the
number of apps analyzed. Then, the complexity of extracting semantic vectors
is trivially O(N % m), where m is the average number of methods per app (m
is independent of N). The complexity of identifying similar code with LSH is:
O(d)_ ec 1917 1og |g]) [22]. Where d is the dimension of the semantic vectors (20),
G is the set of vector groups, |g| is the size of the vector group (|g| <= N xm)
and 0 < p < 1. This produces at most O(N x m) clusters when there are no
code clones at all. Finally, the complexity of MinHash is: O(nlogn) where n is
the number of sets. For full app similarity detection where there is one set per
app, n = N, and for partial app similarity detection where there is one set per
code clone, n <= N % m. Therefore, the total time complexity of AnDarwin is
linearithmic, O(N log N), in the number of apps analyzed.

5 Evaluation

We have implemented our approach in a tool called AnDarwin. AnDarwin uses
dex2jar [28] version 0.9.8 to convert DEX byte code to Java byte code. To build
the PDGs required to represent apps as a set of semantic vectors, AnDarwin
uses the T. J. Watson Libraries for Analysis (WALA) [I4]. WALA supports
building PDGs from Java byte code, eliminating the need for decompilation.
Once AnDarwin has converted all the apps and represented them as sets of
semantic vectors, AnDarwin uses the LSH code from [5] to cluster the semantic
vectors to create features. These clustering results are then used to create the
feature sets and app sets described in Section 4l Finally, to detect full and
partial app similarity, AnDarwin uses MinHash, which we implemented based
on [29).

We crawled 265,359 apps from 17 Android markets including the official mar-
ket and numerous third-party markets (Table [I]).

http://www.it-ebooks.info/

AnDarwin: Scalable Detection of Semantically Similar Android Applications 189

Table 1. Market origins of the apps analyzed by AnDarwin. Since some apps appear
on multiple markets, the total apps in the table is slightly more than the total 265,359
apps analyzed.

Market Apps Market Apps|| Market |Apps
Google Play 224,108 SlideME 16,479 m360 15,248
Brothersoft 14,749||Android Online|10,381|| 1Mobile | 9,777

Gfan 7,229|| Eoemarket 5,515|| GoApk 3,243
Freeware Lovers 1,428|| AndAppStore | 1,301|| SoftPortal | 1,017
Androidsoft 613 AppChina 404||ProAndroid| 370

AndroidDownloadz 245|| PocketGear 227

5.1 Semantic Vectors

There are a total of 87,386,000 methods included in the 265,359 apps. These
methods produced a total of 90,144,000 semantic vectors, meaning that on aver-
age a method has 1.03 connected components. Among the 90,144,000 semantic
vectors, there are 4,825,000 distinct vectors. The average size of these 4,825,000
vectors is 77.87 nodes. The largest has 17,116 nodes. When we manually investi-
gated the largest method, we found that the app builds a massive 5-dimensional
array using hard coded values depending on different flags. Although perhaps
not the best coding style, this large semantic vector does represent valid code
that could be copied.

5.2 Code Features

In total, AnDarwin found 87,386,000 methods included in the 265,359 apps that
are clustered into 3,085,998 distinct features by LSH. 133,753 (4.3%) of these
features are present in more than 250 apps and thus are not used in either full or
partial app similarity detection. We selected this threshold based on the following
insight: only features from library code tend to map to methods that share the
same method signatures. Therefore, if the ratio of the number of apps a feature
appears in to the number of distinct method signatures for that feature is large,
it is highly likely that the feature represents library code. To select a library code
threshold, we select a value and then count the number of excluded features for
which this ratio is large and evaluate whether the threshold is acceptable. Using
a ratio of four, we selected the threshold such that at least 50% of the excluded
features exhibit this trait. We note that this threshold may be easily tweaked
depending on false positive and false negative requirements.

5.3 App Complexity

Overall, AnDarwin found that a large number of apps are not very complex.
Figure 2al shows the number of features per apps for the 265,359 apps before

http://www.it-ebooks.info/

190 J. Crussell, C. Gibler, and H. Chen

100000

10000

1000

100

Number of Applications
Number of Applications

10

1

2500 5000 7500 10,000 12,500 15000 17,500 20,000 22,500
Number of Features Number of Features

1,000 2,000 3,000 4,000 5,000 6,000 7,000

(a) Before common feature exclusion (b) After common feature exclusion

Fig. 2. Distribution of the number of features per app on logarithnic scale

common feature exclusion. On average, apps have 2,045 features and the largest
app has 23,918 features. Once libraries are excluded, the number of apps with at
least one feature drops to 231,184. Figure RH shows that the average complexity
drops dramatically once common features are excluded. The average number of
features for these apps is 148, with the largest app having 7,908 features.

This is interesting from a software development point of view because it sug-
gests that through libraries and good API design, most Android apps don’t have
to be very complex in order to perform their function.

5.4 Full App Similarity Detection

Using full app similarity detection (Section B4l), AnDarwin found 28,495 clusters
consisting of a total of 150,846 distinct apps. Figure Bal shows the sizes of the
clusters. As expected, the majority of clusters consist of just two apps. Surpris-
ingly, some clusters are much larger, the largest of which consists of 281 apps.
We will investigate these clusters in Section

To evaluate the quality of the clusters, we compute intra-cluster app similarity
based on the average Jaccard Index (Equation [Il) between each pair of apps. For
each cluster C, we compute the similarity score, Sim(C), as:

Sim(C) = avg{(A,B) € C : J(A, B)} (2)

The similarity scores are between 0 and 1, where a score close to 1 indicates
that all apps in the cluster have almost identical feature sets. Figure BH shows
the cumulative distribution of the similarity scores of the 28,495 clusters. It
shows that almost no clusters have similarity scores below 0.5, and more than
half of the clusters have similarity scores of over 0.80. This demonstrates the
effectiveness of AnDarwin in clustering highly similar apps.

http://www.it-ebooks.info/

AnDarwin: Scalable Detection of Semantically Similar Android Applications 191

28000 |
26000 t
24000 |
22000
20000
18000
16000
14000
12000

Number of Clusters
Number of Clusters

10000
8000
6000
4000

2000 e
=

o
2 50 75 100 125 150 175 200 225 250 275 00 01 02 03 04 05 06 07 08 09 10

Cluster Size Similarity

(a) Histogram of the cluster sizes on loga-(b) Cumulative distribution function of
rithmic scale Sim(C)

Fig. 3. Full App Similarity Detection

5.5 Partial App Similarity Detection

Using partial app similarity detection, AnDarwin found 11,848 clusters consist-
ing of 88,464 distinct apps. Figures Hal and show the sizes and similarity of
these clusters, respectively. As partial app similarity is designed to detect app
pairs that share only a portion of their code, we cannot measure them with
Equation [l Consider the scenario where an attacker copies an app but adds
an arbitrarily large amount of code. In this case, Equation [I] will be small even
though the original and clone share all of the original app’s features. Therefore,
for each cluster C, we compute the similarity score, Sim,(C), as:

.] ‘FA N FB|
Simy,(C) = avg{(A,B) € C: S TA \FBD} (3)

Figure shows the cumulative distribution function of Sim,(C) for the
partial app similarity detection clusters. Comparing Figure to Figure 4H
we observe that some clusters based on partial app similarity have low intra-
cluster similarity scores while almost no cluster based on full app similarity has
similarity scores below 0.5. On the surface, this might suggest that partial app
similarity produces lower quality clusters. However, this in fact shows the power
of partial app similarity. When a cluster has a low similarity score, it indicates
that the common features among the apps in this cluster are relatively small
compared to the app sizes, so full app similarity detection cannot identify these
common features.

5.6 Performance

We evaluated AnDarwin’s performance on a server with quad Intel Xeon E7-
4850 CPUs (80 logical cores with hyper threading) and 256GB DDR3 memory.
Using 75 threads, it took 4.47 days to extract semantic vectors (Stage 1) from all
265,359 apps (only 109 seconds per thread to process each app). We note that

http://www.it-ebooks.info/

192 J. Crussell, C. Gibler, and H. Chen

12000

11000

10000 /
1000 9000
8000
7000

6000

Number of Clusters.
Number of Clusters.

5000
4000
3000

2000 D
1000 _—

o _
0 100 200 300 400 500 600 700 800 900 1,000 1,100 1,200 1300 1,40(00 01 02 03 04 05 06 07 08 09 10

Cluster Size Similarity

(a) Histogram of the cluster sizes on loga-(b) Cumulative distribution function of
rithmic scale Simp(C)

Fig. 4. Partial App Similarity Detection

this stage only occurs once for each app, regardless of changes to subsequent
stages and can be parallelized to any number of servers to reduce the total time.

The next most expensive stages are the LSH clustering in Stage 2 (Section [E.2])
and the two MinHash-based clusterings in Stage 4 (Section [4]). LSH clusters all
4,825,000 distinct vectors in just over 49 minutes. This time could be reduced to
seven minutes if we were to run all the groups in parallel, rather than serially (as
done in our current implementation). Full app similarity detection runs in just
over 35 minutes. In total, it takes under ten hours to complete full app similarity
detection including all the database operations and data transformations. On its
own, partial app similarity detection took seven hours but this is expected as it
clusters 2,952,245 sets whereas full app similarity detection only clusters 265,359.
Interestingly, this time estimates how long it would take to run MinHash for
full app similarity detection on 2,952,245 apps. Both MinHash times could be
improved by using more than our single server.

5.7 Accuracy

Full App Similarity Detection. To measure the false positive rate of An-
Darwin’s full app similarity detection, we leverage DNADroid [I6], a tool that
robustly compares Android apps pairwise for code reuse. DNADroid uses sub-
graph isomorphism to detect similarity between the PDGs of two apps. In the
author’s evaluation of DNADroid, it had an experimental false positive rate of
0%, making it an ideal tool for evaluating AnDarwin’s accuracy.

Unfortunately, DNADroid is too computationally expensive to apply to all
the pairs of apps AnDarwin found. Instead, we randomly selected 6,000 of the
28,495 clusters and then randomly selected one app from each cluster to compare
against all other apps in the cluster. This resulted in a total of 25,434 pairs which
it took DNADroid 83 hours to analyze.

DNADroid assigns each app in a pair a coverage value which indicates how
much of the app’s PDG nodes appear in the other app. To assess AnDarwin, we
use the maximum of these two coverage values for each pair. DNADroid found
that 96.28% of the clusters had 70% of the max coverage values over 50%(equal

http://www.it-ebooks.info/

AnDarwin: Scalable Detection of Semantically Similar Android Applications 193

to the Jaccard Index used by AnDarwin) and 95.50% of the clusters had 90%
of them over the threshold. Using the 70% criteria, this gives full app similarity
detection a false positive rate of just 3.72% at the cluster level.

We do not attempt to measure the false negative rate of AnDarwin as there

is no feasible way to find ground truth, e.g., all the similar apps in our collection
of 265,359 apps.

Partial App Similarity Detection. Unfortunately, DNADroid and its cover-
age values are inappropriate for evaluating the accuracy of partial app similarity
detection. DNADroid considers apps as a whole and calculates similarity based
on the matched portion to the size of the whole app. If DNADroid were used
to verifying partial app similarity detection, we would incorrectly report a false
positive in the case where two apps share a part of their code but not a sig-
nificant (over the DNADroid coverage threshold of 50%) amount of their total
code. Again, due to the lack of ground truth, we do not attempt to measure the
false positive or false negative rate of partial app similarity detection.

6 Findings
6.1 Clone Victims

One use case of AnDarwin is finding clones on a large scale. Clones are different
apps (not different versions of the same app) that are highly similar but have
different owners. We determine ownership using two identifiers associated with
each app we crawl: 1) the developer account name plus the market name and
2) the public key fingerprint of the private key that digitally signed the app.
Assuming that a developer’s account and her private key are not compromised,
no two apps with different owners can share both of these identifiers. Therefore,
we assume apps have different owners if they do not share either identifier.

Definitively counting the number of clones is non-trivial as it requires knowing
which apps are the originals. Instead, we estimate the number of apps that are
the victims of cloning. Each app belongs to at most one cluster and each app
in a cluster is similar to at least one other app in the cluster. Therefore, each
cluster is a family of similar apps which must have a victim app, the original
app, even if we have not crawled the victim app. Then, the number of victims
is at least equal to the number of clusters where there is more than one owner,
as determined by the two identifiers above. Using just the full app similarity
clusters, which were vetted in Section 5.7, AnDarwin found that at least 4,295
apps have been the victims of cloning.

6.2 Rebranded Apps

Using full app similarity detection, AnDarwin found 764 clusters containing more
than 25 apps. Our investigation of these large clusters found a trend that some
developers rebrand their apps to cater to different markets. The idea of rebrand-
ing is not a new concept — it has been widely used on the web (e.g. WordPress

http://www.it-ebooks.info/

194 J. Crussell, C. Gibler, and H. Chen

blogs). For example, one cluster consists of weather apps each targeting a dif-
ferent city. Similarly, we found clusters for news, trivia, books, radio stations,
wallpapers, puzzles, product updates and even mobile banking apps. Some of
these rebrandings are as trivial as just swapping the embedded images.

To estimate the number of rebranded apps, we use the owner identifiers de-
scribed in Section to map each app to an owner. If at least 25 apps in a
cluster have the same owner, we consider those apps to be rebranded. Using this
metric, 599 of the 764 clusters with at least 25 apps include rebranded apps. In
total, we found 36,106 rebranded apps.

A surprising example of app rebranding is a cluster of mobile banking apps.
This cluster contains 109 distinct apps that share a common package name
prefix. Searching by this prefix, we found 175 apps on the Google Play Store,
which includes 80 of the 109 apps present in our clusters. Interestingly, several
of the apps were available on both 1Mobile and Play, and two of the apps are
signed by a different key than the other 107 apps.

6.3 New Variants of Known Malware

Once malware has been discovered, it is important to use this knowledge to
identify variants of the malware in an automated way. We hypothesize that by
analyzing the clusters produced by AnDarwin containing known malware we
may automatically discover new variants of those malware. Using the malware
dataset from [34], we found 333 apps were clustered with known malware and
were not included in the malware dataset.

We uploaded these 333 apps to VirusTotal [4], a website for running a suite of
anti-virus software on files. It recognized 136 as malware, with 88 never having
been uploaded to VirusTotal before. Among the 136 malware, approximately
20 are variants of the DroidKungFu family [23]. Approximately another 20 are
identified as belonging to various malware families described in [34]. The remain-
ing apps are identified as adware that contains either AirPush or AdWo. These
advertising libraries show ads even when the app is not running [30] and have
been known to have misleading ad campaigns [31]. These results demonstrate
AnDarwin’s utility for discovering new variants of malware.

6.4 New Malware Detection in Clones

Zhou et al. [34] found that 86.0% of their malware samples were repackaged ver-
sions of legitimate apps with additional malicious code, aiming to increase their
chances of being installed by providing useful functionality. Since malware often
requires many more permissions than regular apps, we hypothesize that we may
detect new malware by searching for apps that require more permissions than
the others in the same cluster. Intuitively, apps that are clustered together have
similar code and for some to require more permissions is suspicious. To inves-
tigate this hypothesis, we searched for apps that require excessive permissions
as follows (using clusters from both full and partial app similarity detection).
First, for each cluster, we compute the union of the permissions required by

http://www.it-ebooks.info/

AnDarwin: Scalable Detection of Semantically Similar Android Applications 195

all its apps. Then, we identify apps that require at least 85% of the permission
union. Finally, if the apps identified in the previous step are fewer than 15% of
the total apps in the cluster, we mark these apps as suspicious. Using this crite-
rion, we found 608 suspicious apps. 16 of these apps overlap with the malware
dataset from [34] and 1 overlaps with the previous section.

As before, we uploaded these apps to VirusTotal and it identified 243 as mal-
ware. Furthermore, 169 of these had never been seen before. This represents a
lower bound on the actual number of malware in the suspicious apps as we did
not investigate the suspicious apps for new malware which may not be iden-
tified by VirusTotal. The identified malware is from known families such as
DroidKungFu [23], BaseBridge [18] and Geinimi [27]. By searching for apps with
excessive permissions, AnDarwin identified known malware as suspicious with-
out prior knowledge of their existence. This result demonstrates that AnDarwin
is an effective tool for identifying suspicious apps for more detailed analysis.

7 Discussion

7.1 Adversarial Response

A specific use case of AnDarwin is to find plagiarized apps in a scalable manner.
Based on our implementation details, plagiarists may attempt to evade detection
using obfuscation. Some of these obfuscation techniques are effective against
AnDarwin, however, they are difficult to perform automatically.

Futile Obfuscations. AnDarwin is robust against all transformations that do
not alter methods’ PDGs, which is the basis for our similarity detection. This
includes, but is not limited to, (1) syntactical changes such as renaming pack-
ages, classes, methods and variables, (2) refactoring changes such as combining
or splitting classes and moving methods between classes, and (3) method re-
structuring such as splitting methods with multiple connected components into
separate methods and reordering code segments within a method that are data
and control independent.

AnDarwin is also robust against code addition. A plagiarist may add a few
methods or a new library to their plagiarized app. Since the original and the
plagiarized app still share a core of similar code, AnDarwin would still detect
them using partial app similarity detection.

Potentially Effective Obfuscations. AnDarwin is less robust against obfus-
cations that dramatically alter methods’ PDGs. For example, plagiarists may
be able to alter app methods to mimic the semantic vectors of library code or
use PDG node splitting to increase the distance between the original semantic
vector and the plagiarized one. Additionally, plagiarists could artificially join
connected components within methods using dead code to increase the distance
between the semantic vectors or split each connected component into a set of
very small methods that are too small to be considered by AnDarwin. Ultimately,
plagiarists could reimplement the original app.

http://www.it-ebooks.info/

196 J. Crussell, C. Gibler, and H. Chen

The subversions listed above are difficult for most similarity detection tools
to detect, including AnDarwin. Fortunately, all these subversions require sub-
stantial effort on the part of the plagiarists as it would be difficult for tools to
do this automatically. Further, such a tool would require intimate knowledge of
the targeted app to ensure that the plagiarized app still functions correctly.

7.2 Probability of a False Positive

In this section, we examine the probability that two dissimilar apps are clustered
together by full app similarity detection. Consider two similar apps that share n
features. Assuming that features are independent, which is the case when library
code is excluded, then:

Prshare n features| = Pr[share feature|” = Pr[share close SV]" (4)

Where “close SV” means two semantic vectors that will be clustered together
by LSH or are identical. Now, consider the case where two apps are not similar,
but are clustered together anyway. This means they must still agree on n features,
where each of these n agreements is a false positive which we shall refer to as
a feature collision. Feature collisions can occur in two ways: (1) semantic vector
collision and (2) non-code clone semantic blocks generating “close” semantic
vectors. Fortunately, even if the probability of a feature collision is very high,
there has to be n feature collisions in order to have a false positive. We have found
that, on average, apps contain 148 features after excluding common features.
Therefore, in order for two unrelated apps to have a Jaccard Index above our
threshold of 50%, there must be approximately 100 feature collisions. Even if
the probability of a feature collision was 95%, the probability of a false positive
with this many features would be less than one percent.

8 Related Work

There have been several approaches proposed recently to find similar Android
apps. Closest to AnDarwin is [33]. They use a heuristic based on how tightly
classes within the app are coupled (using its call graph) to split apps into pri-
mary and rider sections. Then, they represent the primary section as vectors
which they cluster in linearithmic time. This heuristic allows [33] to detect some
partial app similarity, however, it would be easy for a plagiarist to circumvent
these heuristics by adding dead code to the call graph to artificially couple un-
related classes. In contrast, AnDarwin’s partial app similarity does not rely on
heuristics. Additionally, while AnDarwin’s features represent the functionality
of methods of an app and are thus difficult to change, [33]’s features include the
app’s permissions, the Android API calls used and several other features, all of
which may be easily changed. [33] can also detect commonly injected code by
clustering the rider sections, however, they use the same features and heuris-
tics which are easily changed and circumvented, respectively. All other related

http://www.it-ebooks.info/

AnDarwin: Scalable Detection of Semantically Similar Android Applications 197

work described below compares applications pairwise, yielding significant scal-
ability problems. Additionally, neither [33] nor any other related work provides
the ability to robustly find partial app similarity, as AnDarwin does.

Androguard [6] currently supports two methods of similarity detection: com-
paring apps using the SHA256 hashes of methods and basic blocks and using
the normal compression distance of pairs of methods between apps. DEXCD [17]
detects Android clones by comparing similarities in streams of tokens from An-
droid DEX files. DroidMOSS [32] computes a series of fingerprints for each app
based on the fuzzy hashes of consecutive opcodes, ignoring operands. Apps are
then compared pairwise for repackaging by calculating the edit distance between
the overall fingerprint of each app. DNADroid [16] compares apps based on the
PDGs of their methods. Juxtapp [21] disassembles each app and creates k-grams
over the opcodes inside the app’s methods. Next it hashes the k-grams to create
features which are used to represent each app and then computes similarity by
comparing sets of these features between pairs of apps. All of these approaches
except DNADroid are vulnerable to plagiarism that involves moderate amounts
of adding or modifying statements, though DNADroid’s comparison is compu-
tationally expensive.

9 Conclusion

We present AnDarwin, a tool for finding apps with similar code on a large
scale. In contrast with earlier approaches, AnDarwin does not compare apps
pairwise, drastically increasing its scalability. AnDarwin accomplishes this using
two stages of clustering: LSH to group semantic vectors into features and Min-
Hash to detect apps with similar feature sets (full app) and features that often
occur together (partial app). We evaluated AnDarwin on 265,359 apps crawled
from 17 markets. AnDarwin identified at least 4,295 apps that have been cloned
and an additional 36,106 apps that are rebranded. From the clusters discovered
by AnDarwin, we found 88 new variants of malware and could have discovered
169 new malware. We also presented a cluster post-processing methodology for
finding apps that have had similar code injected. AnDarwin has a low false pos-
itive rate — only 3.72% for full app similarity detection. Our findings indicate
that AnDarwin is an effective tool to identify rebranded and cloned apps and
thus could be used to improve the health of the market ecosystem.

Acknowledgements. We would like to thank the anonymous reviewers for their
insightful feedback as well as Liang Cai, Dennis Xu, Ben Sanders, Justin Horton,
and Jon Vronsky for their assistance in obtaining Android applications. This
paper is based upon work supported by the National Science Foundation under
Grant No. 1018964. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not necessarily reflect
the views of the National Science Foundation.

http://www.it-ebooks.info/

198 J. Crussell, C. Gibler, and H. Chen

References

1. Goapk market (April 2012), http://market.goapk.com

2. Google play (April 2012), https://play.google.com/store/apps

3. Slideme: Android community and application marketplace (April 2012),
http://slideme.org/

4. Virus total (June 2012), https://www.virustotal.com

5. Andoni, A., Indyk, P.: Near-optimal hashing algorithms for approximate nearest
neighbor in high dimensions. In: 47th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2006, pp. 459-468. IEEE (2006)

6. Androguard. Androguard: Manipulation and protection of android apps and more...
(April 2012), http://code.google.com/p/androguard/

7. AppBrain. Number of available android applications (November 2012),
http://www.appbrain.com/stats/number-of-android-apps

8. BajaBob. Smalihook.java found on my hacked application (May 2012),
http://stackoverflow.com/questions/5600143/
android-game-keeps-getting-hacked

9. Baker, B.S.: On finding duplication and near-duplication in large software systems.
In: Proceedings of 2nd Working Conference on Reverse Engineering 1995, pp. 86—
95. IEEE (1995)

10. Scott Beard. Market shocker! iron soldiers xda beta published by alleged thief (May
2012), http://androidheadlines.com/2011/01/
market-shocker-iron-soldiers-xda-beta-published-by-alleged-thief.html

11. The Lookout Blog. Security alert: Gamex trojan hides in root-required apps -
tricking users into downloads (April 2012),
http://blog.mylookout.com/blog/2012/04/27/security-alert-gamex-
trojans-hides-in-root-required-apps-tricking-users-into-downloads/

12. Broder, A.Z.: On the resemblance and containment of documents. In: Proceedings
of the Compression and Complexity of Sequences 1997, pp. 21-29. IEEE (1997)

13. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory
of Computing, pp. 327-336. ACM (1998)

14. IBM T.J. Watson Research Center. T.j. watson libraries for analysis (wala) (April
2012), http://wala.sourceforge.net

15. comScore. comscore reports march 2012 u.s. mobile subscriber market share (May
2012), http://www.comscore.com/Press_Events/Press_Releases/2012/4/
comScore_Reports_March_2012_U.S._Mobile_Subscriber_Market_Share

16. Crussell, J., Gibler, C., Chen, H.: Attack of the clones: Detecting cloned applica-
tions on android markets. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS
2012. LNCS, vol. 7459, pp. 37-54. Springer, Heidelberg (2012)

17. Davis, I.: Dexcd (April 2012), http://www.swag.uwaterloo.ca/dexcd/index.html

18. Dobherty, S., Krysiuk, P.: Android.basebridge (November 2012),
http://www.symantec.com/security_response/
writeup.jsp?docid=2011-060915-4938-99

19. Gabel, M., Jiang, L., Su, Z.: Scalable detection of semantic clones. In: ACM/IEEE
30th International Conference on Software Engineering, ICSE 2008, pp. 321-330.
IEEE (2008)

20. Gibler, C., Stevens, R., Crussell, J., Chen, H., Zang, H., Choi, H.: Adrob: Exam-
ining the landscape and impact of android application plagiarism. To Appear in
the Proceedings of 11th International Conference on Mobile Systems, Applications
and Services (2013)

http://market.goapk.com
https://play.google.com/store/apps
http://slideme.org/
https://www.virustotal.com
http://code.google.com/p/androguard/
http://www.appbrain.com/stats/number-of-android-apps
http://stackoverflow.com/questions/5600143/android-game-keeps-getting-hacked
http://stackoverflow.com/questions/5600143/android-game-keeps-getting-hacked
http://androidheadlines.com/2011/01/market-shocker-iron-soldiers-xda-beta-published-by-alleged-thief.html
http://androidheadlines.com/2011/01/market-shocker-iron-soldiers-xda-beta-published-by-alleged-thief.html
http://blog.mylookout.com/blog/2012/04/27/security-alert-gamex-trojans-hides-in-root-required-apps-tricking-users-into-downloads/
http://blog.mylookout.com/blog/2012/04/27/security-alert-gamex-trojans-hides-in-root-required-apps-tricking-users-into-downloads/
http://wala.sourceforge.net
http://www.comscore.com/Press_Events/Press_Releases/2012/4/comScore_Reports_March_2012_U.S._Mobile_Subscriber_Market_Share
http://www.comscore.com/Press_Events/Press_Releases/2012/4/comScore_Reports_March_2012_U.S._Mobile_Subscriber_Market_Share
http://www.swag.uwaterloo.ca/dexcd/index.html
http://www.symantec.com/security_response/writeup.jsp?docid=2011-060915-4938-99
http://www.symantec.com/security_response/writeup.jsp?docid=2011-060915-4938-99
http://www.it-ebooks.info/

AnDarwin: Scalable Detection of Semantically Similar Android Applications 199

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Hanna, S., Huang, L., Wu, E., Li, S., Chen, C., Song, D.: Juxtapp: A scalable sys-
tem for detecting code reuse among android applications. In: Flegel, U., Markatos,
E., Robertson, W. (eds.) DIMVA 2012. LNCS, vol. 7591, pp. 62-81. Springer, Hei-
delberg (2013)

Jiang, L., Misherghi, G., Su, Z., Glondu, S.: Deckard: Scalable and accurate tree-
based detection of code clones. In: Proceedings of the 29th International Conference
on Software Engineering, pp. 96-105. IEEE Computer Society (2007)

Jiang, X.: Droidkungfu (November 2012),
http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html

Komondoor, R., Horwitz, S.: Using slicing to identify duplication in source code.
In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 40-56. Springer, Heidelberg
(2001)

Li, Z., Lu, S., Myagmar, S., Zhou, Y.: Cp-miner: Finding copy-paste and re-
lated bugs in large-scale software code. IEEE Transactions on Software Engineer-
ing 32(3), 176-192 (2006)

Lockheimer, H.: Android and security (April 2012),
http://googlemobile.blogspot.com/2012/02/android-and-security.html
OGorman, G., Honda, H.: Android.geinimi (November 2012),
http://www.symantec.com/security_response/

writeup. jsp?docid=2011-010111-5403-99

pxb1988. dex2jar: A tool for converting android’s .dex format to java’s .class format
(April 2012), https://code.google.com/p/dex2jar/

Rajaraman, A., Leskovec, J., Ullman, J.: Mining of massive datasets (2012),
http://infolab.stanford.edu/~ullman/mmds/book.pdf

Spring, T.: Sneaky mobile ads invade android phones (June 2012),
http://www.pcworld.com/article/245305/
sneaky_mobile_ads_invade_android_phones.html

Android Threats. Android/adwo (February 2013),
http://android-threats.org/androidadwo/

Zhou, W., Zhou, Y., Jiang, X., Ning, P.: Detecting repackaged smartphone applica-
tions in third-party android marketplaces. In: Proceedings of 2nd ACM Conference
on Data and Application Security and Privacy, CODASPY 2012 (2012)

Zhou, W., Zhou, Y., Grace, M., Jiang, X., Zou, S.: Fast, scalable detection of
piggybacked mobile applications. In: Proceedings of the Third ACM Conference
on Data and Application Security and Privacy, pp. 185-196. ACM (2013)

Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution.
In: Proceedings of 33rd Symposium on Security and Privacy. IEEE (2012)

http://www.csc.ncsu.edu/faculty/jiang/DroidKungFu.html
http://googlemobile.blogspot.com/2012/02/android-and-security.html
http://www.symantec.com/security_response/writeup.jsp?docid=2011-010111-5403-99
http://www.symantec.com/security_response/writeup.jsp?docid=2011-010111-5403-99
https://code.google.com/p/dex2jar/
http://infolab.stanford.edu/~ullman/mmds/book.pdf
http://www.pcworld.com/article/245305/sneaky_mobile_ads_invade_android_phones.html
http://www.pcworld.com/article/245305/sneaky_mobile_ads_invade_android_phones.html
http://android-threats.org/androidadwo/
http://www.it-ebooks.info/

BISTRO: Binary Component Extraction
and Embedding for Software Security Applications

Zhui Deng, Xiangyu Zhang, and Dongyan Xu

Department of Computer Science and CERIAS, Purdue University, West Lafayette, IN 47907
{deng14 , Xyzhang, dxu}@cs .purdue.edu

Abstract. In software security and malware analysis, researchers often need to
directly manipulate binary program — benign or malicious — without source code.
A useful pair of binary manipulation primitives are binary functional component
extraction and embedding, for extracting a functional component from a binary
program and for embedding a functional component in a binary program, respec-
tively. Such primitives are applicable to a wide range of security scenarios such as
legacy program hardening, binary semantic patching, and malware function anal-
ysis. Unfortunately, existing binary rewriting techniques are inadequate to sup-
port binary function carving and embedding. In this paper, we present BISTRO, a
system that supports these primitives without symbolic information, relocation in-
formation, or compiler support. BISTRO preserves functional correctness of both
the extracted functional component and the stretched binary program (with the
component embedded) by patching them in a systematic fashion. We have im-
plemented an IDA Pro-based prototype of BISTRO and evaluated it using real-
world Windows software. Our results show the effectiveness of BISTRO, with
each stretched binary incurring low time and space overhead. Furthermore, we
demonstrate BISTRO’s capabilities in various security applications.

1 Introduction

In software security and malware analysis, researchers often need to manipulate binary
code — benign or malicious — without source code and symbolic information. One pair
of complementary binary manipulation primitives is to (1) extract a re-usable functional
component from a binary program and (2) embed a value-added functional component
in an existing binary program. We call these primitives binary component extraction
and embedding. The primitives are useful in a wide range of software security scenar-
i0s. In security hardening of legacy binaries, binary component embedding enables the
retrofitting of legacy or close-source software with a third-party functional component
that performs a value-added security function such as access control. In binary seman-
tic patching, binary programs from different vendors may leverage the same functional
component. Suppose one vendor identifies a vulnerability in such a component and re-
leases a patched version for its own program; whereas other vendors are not aware of
the vulnerability or have not patched their products. We can apply binary component
extraction to carve out the patched component from a patched program and replace the
vulnerable version of the same component in an un-patched program using binary com-
ponent embedding. In malware analysis, binary component extraction and embedding

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 200-218] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.it-ebooks.info/

BISTRO: Binary Component Extraction and Embedding 201

supports “plug and play” of malicious functions extracted from malware captured in
the wild. One can even “stitch” multiple extracted malware functions to compose a new
piece of malware — a capability that might help enable strategic cyber defence.

Binary component extraction and embedding poses significant challenges. Brute
force extraction and insertion of binary functions will most likely fail. Instead, both the
extracted component and the target binary program need to be carefully transformed.
For example, instructions in the target binary need to be shifted to create space for the
embedded function; when a function is extracted from its origin binary, the instructions
in it need to be re-positioned and re-packaged; accesses to global variables need to be
re-positioned; function pointers need to be properly handled; and indirect jumps/calls
need to have their target addresses recalculated. These problems are especially chal-
lenging when the binary component or the target binary program is not relocatable,
which is often the case when dealing with legacy or malware binaries.

Despite advances in binary instrumentation and rewriting, existing techniques are
inadequate to address the binary component extraction and embedding challenges. Dy-
namic binary instrumentation tools such as PIN, Valgrind, DynamoRIO [2] and QEMU
perform instrumentation only when a binary program is executed on their infrastruc-
tures. They do not generate an instrumented, stand-alone binary for production runs.
Static binary rewriting tools such as Diablo [4], Alto [5], Vulcan [30], and Atom [7]
can generate instrumented, stand-alone binaries. However, they require symbolic infor-
mation or that the binaries be generated by special compilers.

More lightweight techniques exist that do not require symbolic information or spe-
cial compilers [8-413]. Among them, some create trampolines at the end of a target
binary in which instrumentation is placed and then use control flow detours to access
the trampolines [8-10]. The others duplicate the body of a target binary program in its
virtual memory space and only the replica is instrumented. The original binary body
is retained in its original position to provide a kind of control flow forwarding mech-
anism [[11413]. However, none of these techniques supports extraction of binary com-
ponent or implanting an extracted component in another binary. Many of them cause
substantial space/performance overhead. To the best of our knowledge, none of them
has been successfully applied to large-scale Windows applications or kernel code. A
more detailed comparison is presented in our technical report [[1]].

Recently, researchers proposed approaches that focus on identification, extraction
and reuse of components from binaries. Inspector Gadget [29] performs dynamic slic-
ing to identify and extract components from malware. The extracted component might
have incomplete code path coverage due to the limitation of dynamic analysis. BCR [16]
adopts a combination of static and dynamic approach to extract a function from a bi-
nary. However, it uses labels to represent jump/call targets, thus does not preserve the
semantic of indirect jumps/calls. ROC [23] uses dynamic slicing to identify reusable
functional components in a binary but does not extract them. These approaches do not
aim to reuse extracted components for enhancing legacy binaries. Moreover, they can-
not extract components from non-executable binaries (e.g., malware corpse) due to the
use of dynamic analysis.

In this paper, we present BISTRO, a systematic approach to binary functional
component extraction and embedding. BISTRO automatically performs the following:

http://www.it-ebooks.info/

202 Z. Deng, X. Zhang, and D. Xu

(1) extracting a functional component, with its instructions and data section entries non-
contiguously located in the virtual address space, from an original binary and (2) em-
bedding a binary component of any size at any user-specified location in a target binary,
without requiring symbolic information, relocation information, or compiler support.
For both extraction and embedding, BISTRO preserves the functionalities of the tar-
get binary program and the extracted component by accurately patching them. BISTRO
performs extraction and embedding efficiently and the “stretched” target binary after
embedding only incurs small time and space overhead.

We have developed a prototype of BISTRO as an IDA-Pro [21] plugin. We have
conducted extensive evaluation and case studies using real-world Windows applica-
tions (e.g., Firefox and Adobe Reader), kernel drivers, and malware. Our evaluation
(Section [@) indicates BISTRO’s efficiency and precision in patching extracted compo-
nents and target binaries. Moreover, the stretched target binary incurs small perfor-
mance overhead (1.9% on average) and space overhead (10.9% on average). We have
applied BISTRO to the following usage cases: (1) We carve out patched components
from a binary and use them to replace their vulnerable versions in other applications,
achieving binary semantic patching (Section [6.2)); (2) We stitch malicious functions
from an un-executable Conficker worm [14] sample and compose a new, executable
malware (Section [6.3); and (3) We demonstrate the realistic threat of trojan-ed kernel
drivers with malicious rootkit functions embedded in benign driver — using real-world
drivers and rootkitd].

2 Overview and Assumptions

An overview of BISTRO is shown in Figure[Il BISTRO has two key components: binary
extractor and binary stretcher.

To be called
Original binary program Q Binary | independentl Bmd Stretched binary
Component to extract Extractor | Component ¢ Target ’—> program
N J Stretcher —p+
Indepéndent binary P ¢
Component

Fig. 1. Overview of BISTRO

The binary extractor is responsible for extracting a designated functional component
¢ from an original binary @. ¢ includes both code and data of the functional compo-
nent. The extractor does so by removing the unwanted code and data from @ and then
collapsing the remaining data and code into a re-usable component c that occupies a
contiguous virtual address region. More importantly, the instructions in ¢ are properly
patched for repositioning. We note that ¢ can either be called as a library function or be
embedded directly in another binary program.

The binary stretcher is responsible for stretching the target binary P to make “room”
(holes in its address space) to embed a function component. As shown in Figure [I1
the stretcher takes the target binary P and the to-be-embedded component ¢ as input;
stretches P, and patches the code in P to allow the embedding of c. The output of the
stretcher is a “stretched” binary P’ = P + ¢ ready for execution.

! Due to lack of space, Case (3) is presented in our technical report [1].

http://www.it-ebooks.info/

BISTRO: Binary Component Extraction and Embedding 203

Summary of Enabling Techniques. Both the binary extractor and stretcher are based
on the same binary stretching algorithm (Section [3). The overarching idea is to shift
instructions for creating space (stretcher) or squeezing out unwanted space (extractor).
The algorithm focuses on patching the control transfer and global data reference in-
structions by precisely computing the adjusted offsets. For instance, if a component
with size |¢| = n is inserted, all the original instructions following the insertion point
will be shifted by n bytes, and control transfers to any of the shifted instructions need
to be incremented by n.

To address the challenge of handling indirect calls and call back functions invoked
by external libraries, we develop another algorithm (Section [4.1) that stretches a sub-
ject binary at the original entries of functions that are potential targets of indirect calls,
creating small holes (usually a few bytes) to hold a long jump instruction to forward
any calls to those functions to their shifted locations. These holes must not be shifted
by any stretching/shrinking operations. They always stay in their original positions and
thus are called “anchors”. Our algorithm precisely takes into account these anchors
when performing stretching/shrinking. To handle indirect jumps, we leverage an effi-
cient perfect hashing scheme to translate jump targets dynamically. These techniques
are used to patch indirect jumps/calls in both extracted components and target binaries.

Assumptions. We make the following assumptions (hence stating the non-goals of
BISTRO): (1) The user, not BISTRO, will predetermine the semantic appropriateness
of embedding component c in target program P. Furthermore, he/she will decide the
specific location to insert c. This can be practically done by performing reverse engi-
neering on P. For example, to harden P with some security policy enforcement mech-
anism based on control flow [6], the user can reconstruct the control flow graph of P,
collect its dominance and post-dominance information, and decide proper locations to
insert c. (2) The identification of ¢ in the original binary () is done a priori through man-
ual or automated techniques, such as Inspector Gadget [29], binary slicing [15], binary
differencing [31], and BCR [16]. While we will present our experience with functional
component identification in our case studies (Section [B)), the identification technique
itself is outside the scope of this paper. (3) Binaries can be properly disassembled (e.g.,
by IDA-Pro) before being passed to BISTRO. This assumption is supported by the large
number of real-world, off-the-shelf binaries in our experiments. Although we currently
do not handle obfuscated or self-modifying binaries, we note that, in addition to IDA-
Pro, other conservative disassembling [13, 135] and unpacking [34] tools can also be
used as the pre-processor of BISTRO to handle more sophisticated binaries.

3 Basic Algorithm for Binary Extraction/Stretching

In this section, we present the basic algorithm (Algorithm [I)) executed by both the bi-
nary extractor and stretcher of BISTRO. For the time being, we assume (1) there is
no indirect control transfer and (2) global data is directly referenced in an instruction
using its address. The algorithm takes the subject binary and a list of virtual address
intervals called snippets representing (1) the holes to be created in the binary in the
case of stretching or (2) the unwanted instruction/data blocks in the case of shrinking

http://www.it-ebooks.info/

204 Z. Deng, X. Zhang, and D. Xu

(extraction). First, for each byte in the binary, the algorithm computes a mapping be-
tween its original index in the binary and its corresponding index after the snippets are
inserted/removed. After that, the algorithm patches address operands in control trans-
fer and global data reference instructions, and copy each byte to its mapped location
according to the mapping.

Practical Challenges. To make BISTRO work for real-world large-scale software, we
still need to overcome a number of practical challenges not addressed by Algorithm [l
Solutions to these challenges will be presented in the next few sections.

— The target of an indirect control transfer instruction (e.g., call eax)is computed
during execution and takes different values depending on the execution path. Such
an instruction cannot be patched by Algorithm[Il

Algorithm 1. Basic binary stretching/shrinking algorithm

Input: P — the subject binary; it has size and base_addr fields to represent its size when loaded into memory and
base loading address, respectively.

M — alist of address intervals represent code/data to be inserted/removed, sorted increasingly by their location;
each interval has addr, len and type fields, denoting the location, size and type respectively. Type “INSERT”
means inserting right before addr; “REMOVE” means the block starting at addr is to be removed.

Output: P’ — the stretched/shrunk binary.

1: function BASICSTRETCHING(P, M) 25: ifmapli] # L then

2: map + ComputeMapping(P, M) 26: if P[4] is instruction then

3: P’ + PatchTarget(P, map) 27: ins <+ Pli]

4: end function 28: for each data address operand op in ins do
29: target < op.addr — P.base_addr

5: function COMPUTEMAPPING(P, M) 30: off < map[target] — target

6: offset + 0 31: op.addr < op.addr + off

7: m < M.begin() 32: end for

8: fori + Oto P.sizedo 33: if ins is near call/jump then

9 if m.addr == P.base_addr + i then 34: target < i + ins.len + ins.target

10: if m.type == INSERT then 35: off < map[target] — target

11: offset < offset + m.len 36: off + mapli + ins.len] — (i +ins.len)

12: else if m.type == REMOV E then 37: ins.target < ins.target + off — off’

13: offset + offset — m.len 38: else if ins is far call/jump then

14: i+ i+ m.len 39: target < ins.target — P.base_addr

15: end if 40: off < map[target] — target

16: m M.next() 41: ins.target < ins.target + off

17: endif 42: end if

18: mapli] + i+ offset 43: P’[mapl[i]] « ins

19: end for 44: elseif P[4] is data then

20: return map 45: P’[mapli]] + Pli]

21: end function 46: end if
47: endif

22: function PATCHTARGET(P, map) 48: end for

23: P’ < {nop,nop, ...,nop} 49: return P’

24: fori <+ Oto P.size do 50: end function

— Function pointers may be present in data or in an instruction as an immediate
operand. These function pointers might be passed as parameters to external libraries
as callback functions. If a function is relocated due to stretching, the external library
will call back to a wrong address. All these have to be properly handled to ensure
correctness of binary stretching/shrinking.

— Accesses to global data may be via data pointers (e.g., mov ebx, ptr_data;
mov eax, [ebx+4]).The addresses of data are not known until runtime. These
instructions cannot be patched using Algorithm [T either.

http://www.it-ebooks.info/

BISTRO: Binary Component Extraction and Embedding 205

4 Handling Indirect Control Transfer

Handling indirect jumps and calls is one of the key challenges in the design of BISTRO.
The difficulty is that the jump/call target cannot be known statically and thus is hard
to patch. To understand the challenge, consider the example in Figure 2l On the left,
there are three objects that are connected via pointers, with two of type B and one
of type A. On the right, part of function foo () is presented. The function takes two
parameters stored in eax and ebx denoting pointer values. These two pointers may
be aliased to each other. If so, ecx at 0x4302B2 gets the value 0x400340 defined at
0x4302A0, and then eventually the call instruction at 0x4302BD acquires the function
pointer 0x444142. However, if the two pointer parameters are not aliased, the call in-
struction may get a completely different target, making statically patching it difficult.

//foo (eax, ebx):

rdata:0x400304 36 /int x; 1ext:0x4302A0 mov [eax], 0x400340 //eax=&b2

rdata:0x400300 0x444142‘ Jlint (*f/p)();} Class A a

.rdata:0x400324 0 ‘ Jlint y; } . ‘
: 0id * p: Class Bb text:0x4302B2 mov ecx, [ebx] //ebx aliased to eax

rdata:0x400328 0x400300] /Avoid * p; 1 foxOMIB2 mov e leb] b alaed

i text:0x4302BA mov eax, [edx+4] Jleax=400300

1data:0x400340 T Jint ; ‘

rdata 0400344 0x400324‘ Thoid * P } Class B by ext:0x4302BD call [eax] //¥(afp)()

.rdata:0x40040A “BAD\0” //char * s

Fig.2. An example showing indirect call handling in binary stretching/extraction.

A naive solution is to identify and patch any constant value in the binary that appears
to be a jump/call target. But this is not safe as such values may not be jump/call targets.
Notice in the example, there is a null-terminated string “BAD” at address 0x40040A.
With the little endian representation in x86, this string has the same binary value as
the function pointer at 0x400300. Without type information, it is impossible to know
whether the value is a string or function pointer. Failure to identify and patch a function
pointer leads to broken control-flow, changing the semantics of the target binary. Mis-
classifying a string as a function pointer leads to undesirable changes to data. While it
is plausible to leverage recent advances in binary type inference to type constants in a
binary [[17-+20], the involvement of aliasing as in the example makes such analysis very
difficult. In fact, IDA-Pro [21] failed to recognize the function pointer for this case.

If a binary has a relocation table and it does not perform any address space layout
self-management such as through a packer, the relocation table will provide the posi-
tions of all constant values that are jump/call targets for BISTRO to patch them, thus
lead to a sound and complete solution to binary stretching/shrinking. However, relo-
cation table may be absent or contain bogus entries in legacy and malware binaries.
Hence, for the rest of the paper, we do not assume the presence of relocation tables in
our design and evaluation. Next, we describe how to handle indirect calls in Section[4.]]
and indirect jumps in Section 4.2

4.1 Handling Indirect Calls

Indirect calls are very common in modern binaries to leverage the flexibility of function
pointers. We have discussed the difficulty of handling function pointers at the beginning

http://www.it-ebooks.info/

206 Z. Deng, X. Zhang, and D. Xu

of SectionHl In fact, there is a more challenging situation, in which a binary may pass its
function addresses to external library functions which call back the provided functions
(e.g., a user function cmp() is provided as a parameter to an external library function
gsort()). In this case, if a function entry has changed due to stretching or shrinking,
its invocation sites are outside the body of the binary and thus beyond our control. It
is difficult to patch call back function pointer parameters before they are passed on to
libraries for two reasons. First, a function pointer might not directly appear as a pa-
rameter. It could be a member of a structure passed to an external library. It may even
require several layers of pointer indirection to access its value. Patching that is chal-
lenging. Second, for many external library functions, we cannot assume the availability
of their prototype definitions, it is hence difficult to know their parameter types.

To handle indirect calls including call back functions, we propose to stretch the target
binary to make small holes at the entry point of each function that may be an indirect
call target. These holes are called anchors; they should not be moved during stretch-
ing/shrinking. Inside an anchor, we place a jump instruction that jumps to its mapped
new address in the stretched/shrunk binary, which is the new entry of the function. As
such, we do not need to identify or patch any function pointers in the binary.

Since an anchor must be placed at a fixed address in the stretched binary, it could
coincide with instructions that get shifted to that address. To ensure correctness, we put
a jump right before an anchor to jump over it. We call the jump the prefix of an anchor.

h

app.exe app.cxe \ app.exe
/lemp () jmp 400125
™ 400120: | push ebp ™ 400120: 40 400120: | jmp 400169 40+
400122: | mov ebp, esp 400122: 400125: 9

400126: |add esp, ...

/lemp ()
400160: | push ebp

401640: | push 0x400120
401645: | call sort

/lemp ()

401680: | push 0x400120 400169: |push ebp

401685: | call sort 401689: | push 0x400120

40168E: |call sort

//qsort() msvert.dll /lqsort() msvert.dll /lqsort() msvert.dll
/feax= 0x400120 //eax= 0x400120 //eax= 0x400120
L_AF8614: call eax —AF8614:| call eax — AF8614:| call eax
(a) original binary (b) stretching w/o anchor (¢) stretching w/ anchor

Fig. 3. Stretching with Anchors. The shaded area in (b) is the 40-byte snippet inserted.

Consider the example in Figure B(a). The call-back function cmp() is invoked in-
side gsort(). The entry address of function cmp() in the original binary is 0x400120.
When we stretch without anchors (Figure B(b)) in function gsort(), the indirect call
to cmp() at 0xAF8614 will incorrectly go to 0x400120 in the shaded area. When we
stretch with anchors (Figure 3(c)), an anchor containing the jump instruction will be
placed at 0x400120. Any indirect call that goes to the original entry address of cmp(),

http://www.it-ebooks.info/

BISTRO: Binary Component Extraction and Embedding 207

0x400120, will be redirected to the actual function body at the new entry address. The
jump instruction preceding 0x400120 is its prefix.

Anchor-Based Algorithm. With the presence of anchors, fixing control flow transfer
instructions becomes more challenging than in Algorithm[Il We hence devise a new al-
gorithm (Algorithm[2)). The idea is to divide the stretching/shrinking operation into two
phases. In phase one, the subject binary program is stretched/shrunk using Algorithm/[i]
to create space for the inserted snippets or removed blocks. Then the stretched/shrunk
binary is further stretched to insert anchors using a similar procedure. Separating the
two phases substantially simplifies the interference of anchors.

Algorithm 2. Anchor-based stretching algorithm.

Input: P — the subject binary; it has size and base_addr fields to represent its size when loaded into memory and
base loading address, respectively.
M — a list of code/data snippets to be inserted/removed, sorted increasingly by their location; each snippet has
addr, len and type fields, denoting the location, size and type respectively.
A —alist of anchors to be placed, sorted increasingly by their location; each anchor has addr and len fields,
denoting the location and the content size, respectively.

Output: anchor_map — the mapping between the indices after placing snippets and their corresponding indices after
anchors are placed.
prefizlen[a] — the prefix length of an anchor a.

1: function STRECHINGWITHANCHOR(P, M, A) 15: if P[prefix] is not the start of an instruction then
2: map « ComputeMapping(P, M) 16: prefix < start of instruction before pre fix
3: P, < PatchTarget(P, map) 17: end if
4: anchor_map < ComputeAcMapping(P;, A) 18: prefizlenfac] « i — prefiz
5: P’ « PatchTarget(P;, anchor_map) 19: i+ prefiz
6: end function 20: offset « offset + ac.len + prefizlen|ac]
21: ac < A.next()
7: function COMPUTEACMAPPING(P, A) 22: else
offset + 0 23: anchor_mapli] + @ + offset
9: ac + A.begin() 24: i i+ 1
10: i«<o0 25: endif
11: whilei < P.sizedo 26: end while
12 curaddr <+ P.base_addr + i + offset 27: return anchor_map
13: ifac.addr == curaddr then 28: end function

14: prefiz < i— SIZEOF (JMP)

Pruning Anchors. Potentially, we can create anchors for all function entries to guar-
antee that we never miss any necessary function call forwarding. However, this is not
efficient. In fact, we only need to create anchors for the subset of functions that could
be the possible target of some indirect call. Assuming a 32-bit machine, we construct
the subset with the following criterion: Any four-byte data value or any four-byte im-
mediate operand in an instruction is considered a possible indirect call target, if it is
equal to one of the function entries. We obtain this subset by sequentially scanning data
and code sections. Our pruning heuristic is very effective in practice. For example, the
code section size of gcc in SPEC CPU 2000 benchmark suite is over 1MB, with over
2000 functions; after pruning, there are only 271 functions left that need anchors.

Embedding a Component with Anchors. If an extracted component contains a func-
tion that may be invoked by an indirect call in the component, BISTRO will create an
anchor in the target binary at exactly the same address of the function entry in the com-
ponent’s original binary to allow proper forwarding. If the anchor conflicts with some

http://www.it-ebooks.info/

208 Z. Deng, X. Zhang, and D. Xu

existing anchor in the target binary, BISTRO will integrate the two overlapping anchors
into an arbitration function and redirect control flow to the function instead. The func-
tion further determines which real target it should forward the call to. The calls from
the target binary and those from the to-be-embedded component are distinguished by
setting a flag. The arbitration function uses the flag to decide the real forwarding target.

In some rare cases, the space between two function entries might not be enough to
hold the anchors. In such cases, instead of using the jump instruction for redirection, we
use a software interrupt instruction, which takes only one byte. When an indirect call
reaches the old function entry, a software exception will be generated and intercepted
by our exception handler, which will redirect the control flow to the new function entry.

4.2 Handling Indirect Jumps

Indirect jumps are different from indirect calls as the jump targets may not be function
entries, but rather anywhere in the binary. If we adopt the anchor approach, there would
be too many anchors needed. One might leverage some heuristics such as that indirect
jumps usually receive their targets from jump tables and thus simply patch the jump
table entries. However, this is unsafe because of the difficulty of determining jump
table boundaries. A jump table may not be distinguishable from regular data. Hence,
we propose a different approach. Specifically, we insert a code snippet right before
each indirect jump to translate the jump target to its mapped address in the stretched
binary at runtime, as shown in the example below.

Jjmp eax mov eax, mappingleax - old_base
—|add eax, new_base
Jmp eax

Note that the example is just for illustration. In our implementation, we use perfect
hashing for address lookup, which will be explained later, and preserve the flag register
during translation. Since a complete byte-to-byte mapping is computed in Algorithm[T]
any indirect jump target could be properly translated and handled by this method. Ob-
serve that additional instructions need to be added to perform translation. We can easily
handle this by stretching the subject binary to accommodate those instructions.

Branch Target Set Pruning. Although the translation using a complete mapping guar-
antees safety, it also introduces significant memory overhead. Each byte in the original
binary requires 4 bytes to represent its mapped address. In fact, we only need a subset of
the mapping: the stretched/shrunk binary will be safe as long as the mapping contains
translation for every possible indirect jump target.

We construct the set with the following criterion: any four-byte data value or any
four-byte immediate operand in an instruction is considered a possible indirect jump
target, if the value falls in the range of some code section. We further prune the set
by removing the values that point to the middle of an existing instruction. Note that
the strategy is safe for long/set jumps as their jump targets are acquired at runtime.
This pruning strategy is very effective in practice. For example, the code section size
of Adobe Reader X (AcroRd32.exe) is over 800KB, with over 260K instructions; after
pruning, there are only 3635 possible branch targets left.

Perfect Hash Translator. The remaining challenge is to achieve fast translation. Note
that after pruning, the jump target set becomes a sparse set in the address space. As a

http://www.it-ebooks.info/

BISTRO: Binary Component Extraction and Embedding 209

compromise between memory consumption and runtime overhead, we choose to use
perfect hashing for translation. A perfect hash function maps a set of keys to another
set of integer values without any collision. It guarantees O(1) translation time. We use
gperf [22] to generate the perfect hash function for the jump target set and compile it
into a linkable .obj file that can be embedded in the target binary through BISTRO.

A perfect hash function may require more space than the N keys to achieve O(1)
translation time. In practice, we find the size of generated perfect hash functions ac-
ceptable. For example, for the 3635 branch targets of Adobe Reader, the generated hash
function is about 152KB, which is about 11% of the size of the Adobe Reader binary.

5 Handling Data References

Binary extraction/stretching may cause relocation of data entries, so we need to ensure
the correctness of instructions referencing those data. We discuss how to address this
problem from the perspectives of the target binary and the component to be embedded.
Compared to the component, the target binary is usually more complex and involves
a lot of global data references. To handle this problem efficiently, we group data in the
binary as continuous data blocks. If a data block might be indirectly accessed, we will
make sure the block is not re-located to avoid patching data accesses, by wrapping the
block in an anchor. Note that the number of data access instructions is much larger
than the number of indirect jumps/calls. Otherwise, if the data block is only directly
accessed, we allow it to be relocated (by Algorithm[Il). We use the following criterion: if
the value of any four-byte data, or any four-byte immediate operand (in an instruction)
that is not directly used as an address falls in the range of a data block, then this block
might be indirectly accessed using data pointers and hence should not be re-located.
In contrast, data entries extracted as part of the to-be-embedded component are most
likely to be relocated. For example, if they are sparsely distributed in the address space,
the BISTRO extractor (Section 2)) will collapse them into a contiguous block, causing
relocation. We adopt a method similar to the dynamic jump target translation scheme
to translate data reference addresses. We add a comparison before translation to avoid
translating stack or heap accesses. According to our experience, only 2% of dynamic
memory references need to be translated. We further use offline static peephole scanning
to identify references that surely access stack and avoid instrumenting them completely.

6 Evaluation

We have implemented BISTRO for Win32 PE binaries as an IDA-Pro plug-in. We
have addressed a variety of engineering challenges such as virtual space layout re-
arrangement with a large embedded component, patching PE header, import and export
tables, and re-generating relocation table. We omit the details due to space limitation.

6.1 Performance: Efficiency and Overhead

We first evaluate the performance of BISTRO by stretching (1) real-world Windows-
based applications and (2) SPEC CPU 2000 binaries. Our experiments are done on a

http://www.it-ebooks.info/

210 Z. Deng, X. Zhang, and D. Xu

Table 1. Performance results of stretching Windows software and SPEC CPU 2000 binaries

Binary Instr. [Indirect|Indirect| Call/Jump Targets: | Data Blocks: | File Size (KB) [Initial Mem. Tmage Size (KB)] Run Time (s) [Stretching
Count | Jumps | Calls Anchors(%) Data Anchors(%)| Orig: Stch’ed [growth(%)|Orig: Stch’ed] growth(%)|Orig: Stch’ed[overhead(%)| Time (s)
SPEC CPU 2000 k:
164.gzip 19825 19| 103 98: 23 (23.47%)| 163: 1 (0.61%) 86.5: 98.5 13.87% 424: 440 3.77% 83.2: 84.6| 1.68% 0.752
175.vpr 54595 53 106 229:31 (13.54%)| 404: 1 (0.25%) 232:2485 7.11% 248: 268 8.06%| 64.5: 64.6| 0.16% 0.755
176.gcc 337033 456 260| 3855: 271 (7.03%)|2580: 14 (0.54%) 1264: 1393 10.21%| 1348: 1480 9.79% 33.3:33.9] 1.8% 1.420
181.mef 20566 36| 103 144: 25 (17.36%)| 100: 2 (2.00%) 76.5:85.5| 11.76% 100: 108 8%| 40.2:404 0.5% 0.685
186.crafty 65375 56 130 312:29 (9.29%)| 247: 1 (0.40%) 283:298.5 5.48%| 1344: 1360 1.19%| 38.2:38.9 1.83% 0.935
197.parser 44554 36, 112 155: 27 (17.42%)| 463: 1 (0.22%) 164: 173.5 5.79% 352: 360 2.27% 83.1:83.5 0.48% 0.754
252.eon 114249 50| 441]1659: 1253 (75.53%)| 1455: 1 (0.07%) 499: 575 15.23% 592: 668 12.84%| 42.7:44.7 4.68% 0.950
253.perlbmk [164093 148 211 2166: 499 (23.04%)| 1293: 6 (0.46%) 626: 743 18.69% 648: 764 17.9% 63.3:67.9 7.27% 1.118
254.gap 129464 35| 1357| 816: 625 (76.59%)| 1142: 1 (0.09%) 452.5: 492 8.73% 896: 936 4.46%| 354:37.2 5.08% 1.001
255.vortex 132034 66 145 446:71 (15.92%)| 738: 1 (0.14%) 561: 585 4.28% 588: 612 4.08%| 50.6:51.1 0.99% 1.050|
256.bzip2 21360 36, 101 145:25 (17.24%)| 150: 1 (0.67%) 87.5: 99| 13.14% 172: 184 6.98% 73.4:74.6 1.63% 0.714
300.twolf 64669 41 106 193: 30 (15.54%)| 391:2 (0.51%) 253:263 3.95% 296: 304 2.7%| 93.2:93.6 0.43% 0.809
177.mesa 143679 211 552| 2675:473 (17.68%)| 942:5 (0.53%)| 549.5: 652.5| 18.74% 568: 672 18.31%| 64.9: 65.6 1.08% 0.990
179.art 23353 38 103 149:26 (17.45%)| 103: 2 (1.94%) 85.5:94.5| 10.53% 104: 112 7.69% 32:323 0.94% 0.690
183.equake 21824 38 101 146: 27 (18.49%)| 116: 1 (0.86%) 88.5:97 9.6% 104: 112 7.69%| 26.1:26.1 0% 0.720
188.ammp 61214 39 128 224:70 (31.25%)| 279:1(0.36%)| 235.5:245.5 4.25% 252: 264 4.76% 88.7: 88.3 1.92% 0.780]
Average - - - (24.80%) - (0.60%) -l 10.09% - 7.53% - 1.90% -
Real-world Windows-based Software

putty 107220 57 662| 942: 291 (30.89%) 93: 1 (1.08%) 444: 496 11.71% 472: 524 11.02% - -| 0.865
gvim 561626 294| 5111[3893: 1004 (25.79%)|5081: 22 (0.43%)| 1950.5:2150[10.23%| 2008: 2212 10.16% - - 2.121
notepad++ 272434 159 4302]4897: 2695 (55.03%)| 3394: 7 (0.21%) 1584: 1864| 17.68%| 1660: 1940 16.87% -| - 1.480|
Adobe Reader|273710 146 2543|3635: 2160 (59.42%)|3037: 11 (0.36%)|1445.9: 1702.4| 17.74%| 1472: 1728 17.39% - - 1.556
Chrome 230234 82| 1280] 1842:933 (50.65%)| 930:6 (0.65%) 1211: 1338] 10.49%| 1240: 1368 10.32% -| - 1.391
Average N] ~(44.36%) ~(0.55%) 1 1357% - 13.15% - -

Dell Inspiron 15R laptop with Intel(R) Core(TM) i5-2410M 2.30GHz CPU and 4GB
memory, running Windows 7 SP1. For the SPEC CPU 2000 benchmark suite, we use
the “win32-x86-vc7” config file which includes all integer benchmark binaries and four
floating-point benchmark binaries. We compile the benchmark suite using Visual Stu-
dio 2010, with full optimizations. To test BISTRO on non-relocatable binaries, we set
“/DYNAMICBASE:NO” switch for the compiler to prevent it from generating relocat-
able binaries. The application binaries are readily available and we do not know about
their compilers. Although the binaries of Adobe Reader and Chrome web browser carry
relocation tables, we ignore them for testing our solutions for non-relocatable binaries.

We measure the following performance metrics: (1) space overhead — for both binary
file and initial memory image — of a stretched binary compared with its original version,
(2) runtime overhead of the stretched binary, and (3) time for BISTRO to stretch the
binary. In particular, we are interested in the overhead incurred by BISTRO itself, not by
the execution of the embedded components. As such, we embed a minimal component
(a one-byte snippet) into each subject binary in our experiments. To create a “worst-
case” scenario, we insert it at the beginning of each binary so that every byte in the
binary gets shifted, which entails all indirect control transfer targets in the binary to be
redirected. The measured overhead is hence the upper bound of overhead.

For each SPEC 2000 binary, we run both its original and stretched versions, and
compare their execution time and file/initial image size. We do not measure the execu-
tion time of the Windows applications because they are all interactive. We experience
no perceivable overhead when using their stretched versions.

The results are shown in Table [[I From the Indirect Jumps and Indirect Calls B
columns, we observe that indirect calls are very common in application binaries, in-
dicating that they might be C++ programs. Further investigation confirms our specu-
lation, indicating BISTRO’s effectiveness for binaries compiled from C++ programs.

2 We exclude indirect calls to external library functions through import address table (IAT), as
these external targets are not handled by our redirection mechanisms.

http://www.it-ebooks.info/

BISTRO: Binary Component Extraction and Embedding 211

Moreover, there are much less indirect jumps than indirect calls, indicating they are
likely to have less impact on runtime overhead. Note that a small number of indirect
jumps does not imply an equally small number of potential indirect jump targets. In
fact, due to the difficulty of identifying jump table boundaries, we conservatively con-
sider any constant in a binary that appears to be an instruction address as a potential
jump target. The large number of potential jump targets and the low impact on perfor-
mance justify our design choice of using the slightly more expensive but more flexible
dynamic target translation scheme (Section[4.2)), compared to the anchor scheme (Sec-
tion B.1)).

The Call/Jump Targets: Anchors column shows the number of potential indirect
call/jump targets, the number of anchors generated, and their comparison. Observe that
the number of anchors created is small, compared to the size of the potential set. For bi-
naries from C++ programs, due to the heavy use of virtual methods, it is not a surprise to
see many anchors created. The Data Blocks: Data Anchors column shows that only less
than 1% of all data blocks need to be preserved at their original locations using anchors.
From the File Size columns, we can see BISTRO only increases the file size by 10.1% on
average for SPEC programs, and 13.6% for application binaries. The overhead is dom-
inated by the perfect hash tables. The Initial Mem. Image Size columns show the initial
memory consumption when the binary is loaded into memory, which increases by only
7.5% on average for SPEC programs and 13.2% for application programs. Note that
BISTRO does not cause any additional memory overhead during execution. The Run
Time columns present the runtime overhead, which is only 1.9% on average. Except
eon, perlbmk and gap, all SPEC binaries have less than 2% overhead. The last column
Stretching Time shows the stretching time of BISTRO. The time is consistently short,
implying that BISTRO can stretch a binary at runtime when it is loaded.

6.2 Case Study I: Binary-Level Semantic Patching Using BISTRO

Code reuse is a common practice in software development. One popular approach is to
directly compile and statically link a piece of re-usable code with the target software
— either directly in the executable or in some private library — to make the software
self-contained, avoid compatibility problems, and improve performance. Indeed, devel-
opers of many popular programs (e.g., chrome and firefox) reuse code this way. The
consequence is that programs reusing the same code may have the code placed at dif-
ferent locations in their address spaces. The reused code may not even have the same
instructions if compiled by different compilers.

Table 2. Results of binary semantic patching using BISTRO

Vulnerability Patch Extracted From Vulnerable Application Patched|Original File Size]Patched File Size (KB)|Semantic Patch]Vendor Patch

(KB) w./ w.o. Reloc Available | Available

CVE-2010-1205 __ |libpng 1.2.43 — 1.2.44 (rpng2-win.exe)| __ Firefox 3.6.6 (xul.dil) 117475 123715/ 13005 6/25/2010 | 772012010
CVE-2011-3026 Tibpng 1.4.8 — 1.4.9 (rpng2-win.exe) |Zoner Photo Studio 15 (Zxl.dID| __ 8225.1 8502.1/9181.6 2/18/2012 NA
. XnView 1.99.5 (Xpx.dil) 356 368 /400 1272072011 N/A
SA47322/ CVE-2012:0025 IrfanView 4.30 — 4.32 (Fpx.dl) TeadTools 17.5 (Itkdku.dll) 1385 437151 1272072011 N/A
- TrfanView 4.35 (Fpx.di) 32 4487508 371272012 N/A
SA47388 XnvView 1.98.5 - 1.98.8 (Xfpxdl) 1 fTools 17.5 (itkdku.dil 3725 28574935 37122012 N/A
) XnView 1.99.5 (Xfpx.dll) 356 368 /400 41372012 N/A

- 2-02 a e . . "

SA48772/ CVE-2012-0278| IrfanView 4.33 — 4.34 (Fpx.dll) LeadTools 17.5 (Itkdku.dil) 1385 142571505 41372012 N/A
SA4900T XnView 1988 — 1.99 (Xfpx.dll) | LeadTools 17.5 (Itkdku.dil) 3725 185/4885 6/15/2012 N/A

http://www.it-ebooks.info/

212 Z. Deng, X. Zhang, and D. Xu

However, code reuse via static linking introduces a security liability: When a piece of
re-usable code contains a vulnerability, all programs that reuse the code will suffer from
the same vulnerability. If these programs have been shipped in binary forms, the only
way to fix the vulnerability is to release multiple binary patches — one for each program
and by the corresponding vendor. However, not all vendors react to a vulnerability with
equal timeliness and some may not even be aware of the vulnerability not in their own
code. Thus it may be desirable for customers, who do not have source code access, to
patch these programs without vendors’ involvement. Binary syntactic patching, which
directly applies a patch for software A to software B sharing the same (vulnerable)
code, will hardly work, because of the different locations of the code and the syntactic
differences between the two code copies (due to different compilers used or different
call/jump targets inside the copies).

In our first case study, we show that BISTRO can enable binary semantic patching.
Assume that software A and B share a function f and the vendor of A has released a
binary patch of f for a vulnerability. Let the patched program and the patched function
be A" and f’, respectively. We will use BISTRO to extract f’ from A’ and embed it to B
to replace the vulnerable version. Note that BISTRO is critical in ensuring the extracted
f' is properly patched and the target binary B is properly stretched to contain f.

We acquire a group of application binaries that leverage the same vulnerable com-
ponent using public, vendor-provided information (e.g., which libraries are used in the
software) or by finding similar binary snippets using the binary comparison tool bin-
diff [31]. Suppose at least one binary in the group, say A, has a patched version A’.
Our goal is to extract a semantic patch out of A’ and transplant it to patch the other
vulnerable binaries { By, ..., By, }.

We collect 6 real-world vulnerabilities, with their CVE or Secunia IDs shown in
Column 1 of Table 2l For each vulnerability, the vulnerable program(s) that has been
patched by its vendor is shown in Column 2. The file names in braces represent the files
that are patched. Column 3 shows a list of other un-patched programs with the same
vulnerabilities. Column 6 shows the patch release date for the application in Column
2, i.e. the earliest date we can extract the semantic patch. Column 7 shows the date
when the vendors for the software in Column 3 release their patches (N/A means no
vendor patch is available yet). Most of the applications used in this case study are close-
source (except libpng and firefox). Observe that most of the applications in Column 3
do not have vendor patches so far. For firefox, the new version (3.6.7) which patched the
vulnerability was released — but with a one-month latency. With BISTRO, we can fix all
these vulnerable applications as soon as one vendor releases the corresponding patch.

Failure of Syntactic Patching. We first verify that simple syntactic patching does not
work — that is, using an existing binary differencing tool that generates and applies
patches (e.g., xdelta, bsdiff, bspatch, etc.) will not properly patch Bj . For each vul-
nerability in Table[2] we use bsdiff to extract the syntactic difference between the pair of
shared functions (f and f”) in the versions in Column 2 as a patch, and use bspatch to
apply it to the corresponding vulnerable applications in Column 3. None of the resultant
binaries works. Further inspection shows that syntactic patches cannot properly fix the
call/jump targets that are different among copies of the same reused code.

http://www.it-ebooks.info/

BISTRO: Binary Component Extraction and Embedding 213

Patch Transplanting. We have developed a binary semantic patching tool based on
BISTRO and bindiff. The identification of the vulnerable function f in A and By ,
and the patched function f’ in A’ is omitted here since it is not the main focus of this
paper. Details are presented in our technical report [1]]. We use BISTRO to extract f’
from A’ as the semantic patch for f. For each vulnerable binary B, we use BISTRO
to cut out f and then stretch the resulting binary to implant f’ at the same starting
address of f. BISTRO ensures the correctness of both f’ and the patched binary B’
by properly stretching and patching control transfer instructions and data references.
Our patching tool tries to avoid extracting dependent functions or global data entries
of f’ (i.e., functions being called and global data accessed by f’) as much as possible
by redirecting them to their counterparts in the target binary B. Since f’ is a patched
version of f, they likely share the same dependencies. For example, for each function
invocation to function ¢’ inside f’, if bindiff is able to identify the matching function
g in B, our tool will automatically redirect the invocation in the extracted patch to g,
without extracting ¢g’. To be conservative, g and g’ must be fully matched. Otherwise,
g’ will be extracted as part of the semantic patch.

We evaluate our patching tool on the subjects in Table[2l We apply our tool in two
different ways to stress-test the robustness of BISTRO: first, we use the relocation infor-
mation when it is present in the binary; second, we do not use relocation information at
all. In both runs, the patching is successful: the patched applications work well and no
longer suffer from the corresponding vulnerabilities. Columns 4 and 5 show the file size
changes. We note that the patches are not large, each consisting of tens to hundreds of
instructions. However, it is not straightforward to generate them independently because
of the nature of the vulnerabilities being patched.

The first two vulnerabilities are in libpng, which is widely used in various software
to read, write and render PNG images. The two vulnerable applications in Column 3
have libpng statically linked in their private DLLs (xul.dll and Zxl.dll). To patch these
DLLs, we extract the semantic patch from rpng2-win.exe, a sample application in the
libpng package. The remaining four vulnerabilities lie in libfpx, a library to handle the
Flashpix (.fpx) image format. For the four vulnerabilities, only the first one was patched
by the maintainer of /ibfpx; the other three were patched by individual developers who
use libfpx. However, as shown in the table, individual developers only care about patch-
ing the libfpx code in their own applications. Using our binary semantic patching tool,
users of the un-patched applications can transplant the patches and eliminate the vul-
nerabilities without the help of application developers.

6.3 Case Study II: Malware Stitching Using BISTRO

In the second case study, we demonstrate how BISTRO helps in the study of cyber at-
tacks and counter-attacks. Specifically, we use BISTRO to compose a new, executable
malware by stitching 3 separate functional components extracted from a non-executable
sample of the Conficker worm [[14]]. It is an unpacked version without relocation infor-
mation. Based on the published technical report of Conficker [14] and manual code
inspection, we identify the code and data associated with the following 3 components:

— DNS API hijacking. This component prevent DNS query of the web sites in a
blacklist by hijacking the functions Query_Main, DNSQuery A, DNSQuery_W and

http://www.it-ebooks.info/

214 Z. Deng, X. Zhang, and D. Xu

DNSQuery UTFS in dnsapi.dll. The result is that those web sites will no longer be
accessible using their domain names.

— Code injection. To hijack the functions in dnsapi.dll used by a process (e.g., Inter-
net Explorer), the malware must inject itself into the address space of the process.
This component performs the injection. It takes the process identifier (PID) of the
target process and the path of the malware as parameters.

— Process identification. This component gets a process’ PID using its process name
and provide the PID to the code injection component.

It takes us 60 minutes to manually identify the three components above. After that
we use BISTRO to extract the components from the Conficker sample. We then create
a dummy DLL to serve as the container of those components. Next, we use BISTRO
to embed the 3 components into the empty DLL, right before the DIIMain() function.
After that, we add instructions to function DIlIMain() to invoke the inserted components.
The invocation code first checks if the current process is the target process. If so, it will
invoke the DNS API hijacking component to hijack the DNS query. If not, it will call
the process identification component to find the PID of the target process, and then
call the DLL injection component to inject itself into the target process for DNS API
hijacking. The whole composition process takes us about 30 minutes.

To verify the functionality of the newly composed malware, we select two applica-
tions as our targets (in two experiment runs): Internet Explorer and FlashFXP (an FTP
client). After being loaded, the malware injects itself into the target processes. Then, in
the target application, we try to access web site avast.com, which is blacklisted by Con-
ficker [14]. Interestingly, the access was not blocked at first (namely, the malware did
not succeed). After debugging, we found that it was due to a bug in Conficker’s original
code: the hijacked DNSQuery_W() has one unnecessary instruction which sets a wrong
return value. We point out that we would not have spotted the problem, had we not made
these components executable and observed their runtime behavior. After removing this
instruction using BISTRO, both IE and FlashFXP are successfully compromised: they
can no longer access avast.com due to a DNS query error.

7 Discussion

BISTRO cannot work on self-modifying, self-checking or obfuscated binaries. Self-
modifying binaries generate instructions dynamically during runtime, which could not
be statically patched using BISTRO. Self-checking binaries use checksum or other in-
tegrity checks to detect changes made to their code by BISTRO. Obfuscated binaries
in many cases cannot be properly disassembled. However, we note that all other static
binary rewriting/instrumentation techniques face the same challenge.

Our anchor and branch target set pruning criteria assume the constants in a binary
represent a superset of all possible indirect control transfer targets. This assumption
should hold for binaries generated by common compilers. One exception is position
independent code (PIC), which obtains addresses at runtime and uses them to compute
indirect control transfer targets. All PIC we encountered has the form of making a call
and then obtaining the return address from the stack (e.g., call $+5; pop eax), which

http://www.it-ebooks.info/

BISTRO: Binary Component Extraction and Embedding 215

is the address of the instruction right after the call. We identify all such instructions
and insert snippets to adjust the addresses to their mapped addresses. Also, special
compilers or hand-written binaries might violate our assumption. For example, in the
instruction sequence mov eax, Target; add eax, 5; jmp eax, the actual target is Target
+5 instead of the constant Target; our pruning heuristic will miss the actual target. For
such binaries, we can choose not to prune the anchor set or the branch target set.

Currently, BISTRO only supports Win32 PE binaries. However, the design is general,
without relying on specific features of Win32 PE.

8 Related Work

The most related work is discussed in Section [I] (with details in [1].) In this section,
we discuss other related work in the general area of binary manipulation. They fall into
three categories: (1) static binary rewriting, (2) dynamic binary rewriting, and (3) binary
component identification, extraction and reuse.

Static Binary Rewriting. Static binary rewriting is widely applied to many scenarios,
such as in-lined reference monitors [33], software fault isolation [124} 25, 16, 26], binary
instrumentation [[10, 9, 11,15, 7, 4], binary obfuscation [36,|37] and retrofitting security
in legacy binaries [27,112]. Most of these rewriters require the binary to be compiled by
specific compilers, or contains symbolic information.

PEBIL [11], REINS [33], STIR [13] and SecondWrite [[12] are recently developed
rewriters targeting stripped binaries. However, they all aim at rewriting a single binary,
so they all keep the original code and data sections in place. In contrast, BISTRO sup-
ports “transplanting” binary components from one or more binaries to a target binary,
which requires rewriting and combining multiple binaries. Keeping original code and
data sections in place may result in address space conflicts and hence is not an option for
BISTRO. Detour-based techniques [10, I8, 9] are lightweight and can work on stripped
binaries. However, they cannot patch non-trivial jumps/calls that are repositioned.

Dynamic Binary Rewriting. Dynamic binary rewriters [2, |3, |28] are generally more
robust as they do not require specific compilers or symbolic information. It is possible
to apply them to conduct binary stretching and transplanting. However, we choose to
use a static approach mainly because of the following two reasons: (1) Dynamic binary
rewriters usually have much higher run time overhead than static ones. (2) It is more
difficult to deploy a instrumented binary using dynamic approaches, as the rewriter
itself must be deployed along with the binary.

Binary Component Identification, Extraction and Reuse. Recently, researchers
proposed to identify, extract and reuse components from binaries for security appli-
cations [29,116, 23]. Kolbitsch et al. proposed Inspector Gadget [29], which performs
dynamic slicing on a malware binary to identify and extract the slice pertinent to a spe-
cific malicious functionality, and wrap the slice into a stand-alone binary that could be
reused later to execute the malicious functionality. Inspector Gadget is able to extract
component from self-modifying code, which is not supported by BISTRO due to the
limitation of static binary manipulation. Using dynamic slicing, Inspector Gadget also
avoids the problem of handling indirect calls/jumps in BISTRO as all call/jump targets

http://www.it-ebooks.info/

216 Z. Deng, X. Zhang, and D. Xu

are directly known in the slice. However, the slice may not cover all possible code paths,
which could result in incorrect execution when the user provides an input that would
lead to a code path which is not included in the slice. Compared to Inspector Gadget,
BISTRO statically extracts the component from the binary, which involves handling of
indirect calls/jumps but provides better code path coverage.

Caballero et al. proposed BCR [16] to identify and extract a function from a bi-
nary using a combination of static and dynamic analysis. The extracted function, in
the format of disassembly, is wrapped in a C file to be reused. BCR statically disas-
sembles the designated function starting at its entry point; when encountering indirect
call/jumps, BCR utilizes dynamic execution trace to find the call/jump targets. Dur-
ing the extraction, BCR rewrites all calls/jumps to use labels. Using labels implies that
indirect call/jump can only have one target, which may not always hold in practice. Al-
though BCR specially handles indirect jumps that use jump tables, there are other forms
of multiple-target indirect calls/jumps such as function pointers and vtables. Compared
to BCR, BISTRO preserves the original semantic of indirect calls/jumps when perform-
ing component extraction, hence does not suffer from this problem.

Neither Inspector Gadget nor BCR could extract components from non-executable
binaries (as in Section [6.3)) because they are based on dynamic analysis. This is a very
common case in malware analysis, where a given malware sample may not run due
to various reasons (e.g., missing dependent libraries, missing inputs). In such a case,
BISTRO can still perform component extraction statically. Moreover, neither Inspector
Gadget nor BCR supports reusing extractedcomponents to enhance legacy binaries (as
in Section [6.2)), as they lack the capability of embedding instructions that invoke the
components into the target binary. BISTRO is able to handle such a scenario by per-
forming both binary component extraction and embedding.

Lin et al. proposed ROC [23] which uses dynamic slicing to identify reusable func-
tional components in a binary. Different from BISTRO, ROC only invokes the identified
components from the same binary; it does not support extracting a component for reuse
in a different binary.

9 Conclusions

We have developed a new pair of binary program manipulation primitives called BISTRO
for extracting and re-packaging a functional component from a binary program; and for
embedding a functional component in a target binary program, respectively. We address
the challenges of patching control transfer instructions and data references to preserve
the semantics of both the extracted component and the stretched binary program, espe-
cially indirect calls and jumps. BISTRO incurs low runtime overhead (1.9% on average)
and small space overhead (11% on average). The extraction and embedding operations
are highly efficient, with less than 1.5s for most cases. We have applied BISTRO to two
security application scenarios, demonstrating its efficiency, precision, and versatility.

Acknowledgements. We thank the anonymous reviewers and our shepherd, Pratyusa
Manadhata, for their insightful comments. This research has been supported by DARPA
under Contract 12011593. Any opinions, findings, and conclusions in this paper are
those of the authors only and do not necessarily reflect the views of DARPA.

http://www.it-ebooks.info/

BISTRO: Binary Component Extraction and Embedding 217

References

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

. Deng, Z., Zhang, X., Xu, D.: BISTRO: Binary Component Extraction and Embedding for

Software Security Applications. CERIAS Technical Report TR 2013-3, Purdue University
(June 2013)

. Bruening, D.: Efficient, transparent, and comprehensive runtime code manipulation. Ph.D.

dissertation. MIT (2004)

. Bellard, F.: Qemu, a fast and portable dynamic translator. In: USENIX ATC 2005 (2005)
. De Sutter, B., De Bus, B., De Bosschere, K.: Link-time binary rewriting techniques for pro-

gram compaction. In: TOPLAS 2005 (2005)

. Muth, R., Debray, S., Watterson, S., De Bosschere, K.: Alto: a link-time optimizer for the

compagq alpha. In: SPE 2001 (2001)

. Abadi, M., Budiu, M., Erlingsson, U., Ligatti, J.: Control-flow integrity principles, imple-

mentations, and applications. In: TISSEC 2009 (2009)

. Eustace, A., Srivastava, A.: Atom: A flexible interface for building high performance pro-

gram analysis tools. In: USENIX ATC 1995 (1995)

. Buck, B., Hollingsworth, J.K.: An api for runtime code patching. In: IIHPCA 2000 (2000)
. Romer, T., Voelker, G., Lee, D., Wolman, A., Wong, W., Levy, H., Bershad, B., Chen, B.: In-

strumentation and optimization of win32/intel executables using etch. In: USENIX Windows
NT Workshop (1997)

Hunt, G., Brubacher, D.: Detours: Binary interception of win32 functions. In: USENIX Win-
dows NT Symposium (1999)

Laurenzano, M., Tikir, M., Carrington, L., Snavely, A.: Pebil: Efficient static binary instru-
mentation for linux. In: ISPASS 2010 (2010)

O’Sullivan, P., Anand, K., Kotha, A., Smithson, M., Barua, R., Keromytis, A.D.: Retrofitting
security in COTS software with binary rewriting. In: Camenisch, J., Fischer-Hiibner, S., Mu-
rayama, Y., Portmann, A., Rieder, C. (eds.) SEC 2011. IFIP AICT, vol. 354, pp. 154-172.
Springer, Heidelberg (2011)

. Wartell, R., Mohan, V., Hamlen, K., Lin, Z.: Binary stirring: Self-randomizing instruction

addresses of legacy x86 binary code. In: CCS 2012 (2012)

Porras, P., Saidi, H., Yegneswaran, V.: Conficker c analysis. SRI International (2009)
Johnson, N., Caballero, J., Chen, K., McCamant, S., Poosankam, P., Reynaud, D., Song, D.:
Differential slicing: Identifying causal execution differences for security applications. In:
IEEE S&P 2011 (2011)

Caballero, J., Johnson, N., Mccamant, S., Song, D.: Binary code extraction and interface
identification for security applications. In: NDSS 2010 (2010)

Balakrishnan, G., Reps, T.: Analyzing memory accesses in x86 executables. In: Duesterwald,
E. (ed.) CC 2004. LNCS, vol. 2985, pp. 5-23. Springer, Heidelberg (2004)

Slowinska, A., Stancescu, T., Bos, H.: Howard: A dynamic excavator for reverse engineering
data structures. In: NDSS 2011 (2011)

Lee, J., Avgerinos, T., Brumley, D.: Tie: Principled reverse engineering of types in binary
programs. In: NDSS 2011 (2011)

Lin, Z., Zhang, X., Xu, D.: Automatic reverse engineering of data structures from binary
execution. In: NDSS 2010 (2010)

Hex-Rays, Ida pro disassembler,
http://www.hex-rays.com/products/ida/index.shtml

Schmidt, D.: Gperf: a perfect hash function generator. More C++ gems (2000)

Lin, Z., Zhang, X., Xu, D.: Reuse-oriented camouflaging trojan: Vulnerability detection and
attack construction. In: DSN 2010 (2010)

http://www.hex-rays.com/products/ida/index.shtml
http://www.it-ebooks.info/

218

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

37.

Z. Deng, X. Zhang, and D. Xu

Wahbe, R., Lucco, S., Anderson, T., Graham, S.: Efficient software-based fault isolation. OS
Review (1994)

McCamant, S., Morrisett, G.: Evaluating sfi for a cisc architecture. In: USENIX Security
2006 (2006)

Erlingsson, U., Abadi, M., Vrable, M., Budiu, M., Necula, G.: Xfi: Software guards for
system address spaces. In: OSDI 2006(2006)

Prasad, M., Chiueh, T.: A binary rewriting defense against stack based buffer overflow at-
tacks. In: USENIX ATC 2003 (2003)

Scott, K., Kumar, N., Velusamy, S., Childers, B., Davidson, J., Soffa, M.: Retargetable and
reconfigurable software dynamic translation. In: CGO 2003 (2003)

Kolbitsch, C., Holz, T., Kruegel, C., Kirda, E.: Inspector gadget: Automated extraction of
proprietary gadgets from malware binaries. In: IEEE S&P 2010 (2010)

Srivastava, A., Edwards, A., Vo, H.: Vulcan: Binary transformation in a distributed environ-
ment. Tech. Rep., Microsoft Research (2001)

Flake, H.: Structural comparison of executable objects. In: DIMVA 2004 (2004)

Falliere, N., Murchu, L., Chien, E.: W32. stuxnet dossier. White paper, Symantec Corp.,
Security Response (2011)

Wartell, R., Mohan, V., Hamlen, K., Lin, Z.: Securing untrusted code via compiler-agnostic
binary rewriting. In: ACSAC 2012 (2012)

Dinaburg, A., Royal, P., Sharif, M., Lee, W.: Ether: malware analysis via hardware virtual-
ization extensions. In: CCS 2008 (2008)

Nanda, S., Li, W., Lam, L., Chiueh, T.: BIRD: binary interpretation using runtime disassem-
bly. In: CGO 2006 (2006)

Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection. In: ACSAC
2007 (2007)

Popov, 1., Debray, S., Andrews, G.: Binary obfuscation using signals. In: USENIX Security
2007 (2007)

http://www.it-ebooks.info/

Vulnerable Delegation of DNS Resolution

Amir Herzberg! and Haya Shulman?*

! Computer Science Department,
Bar Ilan University, Ramat Gan, Israel
2 Fachbereich Informatik,
Technische Universitdt Darmstadt/EC-SPRIDE, Darmstadt, Germany
{amir.herzberg, haya.shulman}@gmail. com

Abstract. A growing number of networks delegate their DNS resolution
to trusted upstream resolvers. The communication to and from the up-
stream resolver is invisible to off-path attackers. Hence, such delegation
is considered to improve the resilience of the resolvers to cache-poisoning
and DoS attacks, and also to provide other security, performance, relia-
bility and management advantages.

We show that, merely relying on an upstream resolver for security may
in fact result in vulnerability to DNS poisoning and DoS attacks. The
attack proceeds in modular steps: detecting delegation of DNS resolution,
discovering the IP address of the internal (proxy) resolver, discovering
the source port used for the (victim) DNS request and then completing
the attack. The steps of the attack can be of independent use, e.g., proxy
resolver can be exposed to denial of service attacks once its IP address
is discovered.

We provide recommendations for securing the DNS service delegation,
to avoid these vulnerabilities.

Keywords: network security, DNS cache poisoning, port randomization.

1 Introduction

Increasingly, organisations delegate sensitive network-operation functions to

trusted providers (‘clouds’). The motivations are diverse, and include cost-savings,
efficiency, reliability, and even security, i.e., the trusted (cloud) provider is deemed
to be able to provide good or even better security. In this work, we study a par-

ticularly important type of such delegation: the use of upstream DNS resolver,

e.g., OpenDN. An upstream resolver is a DNS resolver operated by a trusted

provider, outside of the customer’s network, and used directly by the customer’s

DNS prozy (local resolver) [,

* This work was carried out while the second author was in the Department of Com-
puter Science, Bar Ilan University.

! Many upstream resolvers are open/public, i.e., provide resolution service to any In-
ternet client address, e.g., OpenDNS and Google-public-DNS.

2 Some authors use the term ‘forwarder’ for upstream resolver, while others use this
term for DNS proxy (local) resolver. To avoid confusion, we use the ‘upstream’ and
‘proxy’ resolver terms throughout this work.

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 219-£36] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.it-ebooks.info/

220 A. Herzberg and H. Shulman

Since DNS services are critical and often attacked, upstream DNS resolvers
are increasingly adopted by many networks, and recommended by leading ex-
perts and vendors, e.g., Google, OpenDNS, Comodo and Akamai. For example,
Akamai describe their upstream DNS service, dubbed eDNS, as follows [I]:

‘Using eDNS, a customer’s primary DNS servers are not directly exposed
to end users, so the risks of cache-poisoning and denial-of-service attacks are
mitigated.’

In this work, we show that typical use of upstream DNS resolvers, can ac-
tually result in #llusion of security exposing to DNS cache poisoning and DoS
vulnerabilities.

To understand the potential loss of security due to the use of upstream DNS
resolvers, we next briefly discuss a simple case: DNSSEC validation. DNSSEC,
[RFC4033-4035], is a standard for signing DNS records, allowing resolvers to
validate DNS responses, and hence ensuring security against man-in-the-middle
(MitM) attackers. So far, DNSSEC is not widely deployed, both at the zones as
well as at the resolvers. For example, Google reports that less than 1% of the
DNS records it retrieves are signed; and [2] tested queries to org and found that
0.8% of the resolvers were validating. Clearly, the deployment of DNSSEC is still
very limited; we hope that our results will encourage wider adoption.

Some upstream DNS resolvers, e.g., Google’s public DNS, perform DNSSEC
validation. How does that effect the security of their customers? Clearly, since
these upstream resolvers validate responses, this prevents attacks where false
responses are sent to the upstream resolver. However, the proxy resolver may be
vulnerable to an attacker sending forged responses directly to the proxy resolver,
unless the the proxy resolver will also perform validation. In this way, the use
of upstream resolver may cause reduction of security, due to illusion of security
(by the upstream resolver).

The use of upstream resolvers was recommended by Kaminsky and other
experts, e.g., [3], as a defense against his off-path attack [4]. Indeed this con-
figuration is believed to defend against cache-poisoning attacks [5], and as a
result many proxies (that use upstream resolvers) are not patched. Furthermore,
DNS checker services, e.g., [6I7U8], designed to check if resolution services are
secure, are oblivious to the proxy-behind-upstream resolver scenario, and do not
report a problem, even when the proxy is using fixed a source port. Although
many studies report that resolvers adopted port randomisation, recommended in
[RFC5452], those statistics do not apply to proxies-behind-upstream resolvers,
most of which use fixed or predictable ports; we confirmed this using CAIDA’s
data traces [9]), see Section [l

We show that, in contrast to folklore belief, customers whose proxy resolver
uses (a secure) upstream resolver for DNS services, with or without DNSSEC
validation, may actually be susceptible not only to a MitM attacker, but even
to an off-path attacker. Namely, such customers may fall victim to illusion of
security.

Attacker Model. We assume an off-path attacker on the Internet that can send
packets with a spoofed source IP address. The attacker also controls a wealk,

http://www.it-ebooks.info/

Vulnerable Delegation of DNS Resolution 221

‘puppet’ (sandboxed client) [I0], such as a client running scripts or presenting
Flash content.

Related Work. Cache poisoning poses one of the significant threats to DNS and
to Internet infrastructure. DNS poisoning can facilitate many other attacks, e.g.,
injection of malware, phishing, website hijacking/defacing, circumventing same
origin policy. The main technique for DNS poisoning (by the common off-path
attackers) is by generating spoofed responses to DNS requests which were sent
by resolvers. The best defense against DNS cache poisoning is cryptographic
authentication of the responses, using DNSSEC [RFC4033-4035]. In addition to
preventing attacks by off-path attackers, DNSSEC also defends against MitM
attackers. Unfortunately, DNSSEC is not widely deployed and most resolvers
use challenge-response mechanisms as a defense against off-path attackers, i.e.,
resolvers validate that the response echoes some unpredictable (random) values
sent within the request, such as the DNS transaction ID (TXID) field and the
source port, see [RFC5452] for more details; firewall-based defenses were also
proposed against poisoning [11].

Significant research effort was dedicated to identifying vulnerabilities allowing
off-path attacks, and improving defenses. We next review the main results.

Klein [12] showed that some implementations use weak TXID values which can
be predicted. Indeed, as pointed out by Vixie [I3] already in 1995, the TXID field
alone is simply too short (16 bits) to provide sufficient defense against a deter-
mined off-path attacker, who can foil it by sending multiple spoofed responses.
Bernstein [14] suggested to improve the defense against spoofed responses by
sending DNS requests from random ports, which can add a significant amount of
entropy. To prevent the birthday attack, where attacker causes resolver to issue
multiple requests for the same domain in order to increase the probability of a
match with one of the spoofed responses, Bernstein [I4] and others suggest to
limit the maximal number of concurrent requests for the same resource record.

Many implementations did not integrate support for these suggestions till the
Kaminsky attack, [4], which showed that DNS cache poisoning was a practical
threat, by leveraging the known birthday weakness and the fact that TXID is
too short, in tandem with an innovative method allowing to repeat the attack
without the cache limitation (rather than waiting for the cached record to ex-
pire). As a result, it became obvious that changes were needed to prevent DNS
poisoning. Indeed, most DNS resolvers were either patched or configured to use
a patched upstream resolver. The most basic patches are source port randomi-
sation and birthday protection, [RFC5452]. Recently we showed, [I5], that NAT
devices that support port randomisation recommended in [RFC6056] are vulner-
able to port derandomisation attacks, and expose resolvers to cache poisoning;
we also presented techniques, [T6JI7], allowing to circumvent other patches.

In this work we show that the recommendation to (merely) rely on (a patched
and secure) upstream resolver may also fail to ensure security and such proxy
resolvers may yet be vulnerable to (off-path) poisoning. In particular, we show
how off-path attackers may find the IP address of the proxy resolver, as a first
step in a poisoning attack or for denial-of service attacks. This is in spite of the

http://www.it-ebooks.info/

222 A. Herzberg and H. Shulman

fact that upstream resolver are hidden from attackers, since their IP address is
not visible; we show how off-path attacker can find the IP address of the proxy
and abuse it, e.g., for denial-of service attacks.

Our contributions and observations. This work has the following contributions:
» We present technique that allows to detect the use of upstream resolvers (Sec-
tion [2)).

» We show how an off-path attacker can find the IP address of a proxy resolver,
contradicting the belief that the use of an upstream resolver hides the address
of the proxy (e.g., to defend against DoS attackﬁﬁ); see Section [Bl

» In Section Ml we present efficient and practical techniques that allow an off-
path attacker to find the source port of a proxy resolver. Our attacks apply to
proxies that are configured to use an upstream resolver, and are effective for the
common case when the proxy supports either a fixed or sequentially increment-
ing source ports. We also show how to extend our attacks, so that they apply to
resolvers connected directly (without upstream resolver), for the common case
of per-destination incrementing source ports, recommended in [RFC6056].

» We conducted measurements on CAIDA data traces [9], and found that mul-
tiple proxies use fixed or sequential source ports, and are thus vulnerable; see
Section [l Since many name servers, that collect statistics on DNS requests, re-
port that random ports are widely deployed, our statistics also imply that fixed
(or sequentially incrementing) ports, well known to be vulnerable, are more
commonly used for proxies (using upstream resolvers) than for resolvers making
direct requests to name servers.

» The best defense against DNS poisoning is to use DNSSEC validation (on the
clients), and we hope that this paper will help advance adoption of DNSSEC.
However, since DNSSEC adoption is not trivial and may take a long time, and
since DNSSEC does not prevent the DoS attack (when the proxy’s IP address
is exposed), we present several efficient defenses against all of the vulnerabilities
in this work, in the full version of this manuscript [I§].

2 Detecting an Upstream Resolver

In this section we show that it is possible to detect whether DNS resolution
on a client’s network is done using an upstream resolver, using a puppet (e.g.,
sandboxed script) running on the client. This allows an attacker to detect if the
network is vulnerable to our attacks. The detection can be used for benign pur-
poses, e.g., collecting statistics, however we focus on its use as part of an attack;
in this case, the measurements are done by an attacker generating requests from
a client (e.g., using puppet), to a name server operated by the attacker. The
detection exploits the fact that when using an upstream resolver, the (round
trip) delay Ag for a complete DNS resolution, from client to attacker’s name

3 One of the advantages of using upstream resolvers is that proxies have limited band-
width. Therefore, launching denial of service against proxies is often significantly
easier.

http://www.it-ebooks.info/

Vulnerable Delegation of DNS Resolution 223

Upstream
Resolver

Attacker

Fig. 1. The latencies between a client, an off-path attacker and a resolver

Lg‘@nd
0.9 | —+— w/upstream (uni) ¥ -
no upstream (uni) }
0.8 | —>— w/upstream (ISP) -
------- no upstream (ISP)

0.7 | 4
—~ 06 i
&2
w 05 i
[a}
© o4l E

03 |

02 | ; ,

01 P }5 g 4

O Il L -"’ Il Il
0.25 1 4 16 64 256

Latencies Variability (ms) [log-scale]
Fig. 2. Distribution of 100 measurements of ¢ values, with and without upstream re-
solver, for the two configurations: university proxy (with or without Google’s upstream
resolver), and an ADSL-connected proxy in an ISP (with or without the ISP’s upstream
resolver)

server (via both proxy and upstream resolver), can be broken down to three
components, as shown in Figure [} Agp = Acp + 8§ + Apa (Acp is the delay
from client to proxy, ¢ is the delay from proxy to upstream resolver, and Ay 4 is
the delay from the upstream resolver to the attacker’s name server). We chose
a different notation for § since this is not a measured value, but computed us-
ing measurements of the other values: 6 = Ar — Acp — Ay a. Furthermore, 0
is exactly the indicator for the use of an upstream resolver; when an upstream
resolver is used, & >> 0, while when an upstream resolver is not used, =~ 0. See
our experimental results in Fig. Bl The detection exploits the fact, that we can
easily measure Ar, Acp and Ay a, and then test if § is significant, indicating
existence of an upstream resolver; see [I8] for details and techniques to sample
the Ar, Acp and Ay parameters.

Evaluation Results. We tested our proxy detection method via active measure-
ments which we collected on two different network topologies: (1) puppet and
local DNS resolver were set up on our university’s wired 100Gb/s Ethernet net-
work, and Google-Public-DNS (at IP 8.8.8.8) was used as an upstream resolver,
and (2) puppet and the DNS resolver were set up on an ADSL network of a
commercial ISP, and the upstream resolver was set up on a different network
segment in the same wireless network of the ISP. We ran two tests in each topol-
ogy (total of four tests): without an upstream resolver and with an upstream

http://www.it-ebooks.info/

224 A. Herzberg and H. Shulman

resolver. During each of the four tests we collected 100 samples (of latency) for
each of the following parameters: Aca, Acp, and Ay 4 (in milliseconds). Based
on these values we then calculated 100 values of § for each of the four sequences
of test (plotted in Figure [B)), as follows: Repeat for ¢ = 1...100: (1) calculate
average of j =5 samples@ selected at random from a 100 samples from (each of)
Aca, Aya and Acp respectively, and (2) then calculate the latencies difference:

1 J
Gi==-> (ACA —Aua — ACP)
J k=0
As can be seen from the measurements, Figure2] the latency differences between
configurations, with and without an upstream resolver, are significant.

3 Proxy DNS Resolver IP Address Discovery

In this section we show techniques to discover the address of the proxy, allowing
denial of service as well as for cache poisoning attacks on proxy resolvers.

The idea is: (1) to find the network address block of the puppet, and then (2)
to traverse the address block, until the resolver is found. To traverse the network
block we apply IP defragmentation-cache poisoning. We present defragmentation-
cache poisoning of a single host in Section Bl Then, Section B:2] we show how
to apply defragmentation-cache poisoning for resolver’s IP discovery.

Network Address Block. The attacker runs a whois.net tool] on the IP ad-
dress of the client (on which the puppet is running) to find out the network
address block allocated to that network. One of the IP addresses on that net-
work block is the IP address of the victim proxy resolver (that the attacker
wishes to attack). The IPs range is typically not large; we ran a whoisl tool on
100,000 top domains according to Alexa, and found, that 70% of the networks
have less than 2'° IP addresses, see Figure Bl

09 4 RRETR, ! Leq‘end i

—— any, no dnssec

0.8 [1

nX
dnskey i
07] . an

0.6 —

Networks (%)

0.4 1

Domains (%)

03 4
0.2 [1

h . I
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Response Size (bytes)

1 \ . \
020 25 210 215 220 225
Network Block Size (#IP Addresses) [log-scale]

Fig.3. The size of network blocks of Fig.4. Length of ANY, regular and NX-
100,000 top domains from Alexa DOMAIN responses of gov domains

4 Other values of j could be used (0 < j < 100), but j = 5 provided sufficiently good
results.
® http://www.whois.net/ip-address-1lookup/

whois.net
whois
http://www.whois.net/ip-address-lookup/
http://www.it-ebooks.info/

Vulnerable Delegation of DNS Resolution 225

IP Fragmentation. The basic requirement of our IP address discovery technique
is fragmentation: the attacker should (1) trigger a DNS request to a domain
which responses exceed the MTU (maximal transmission unit), e.g., responses
from domains that adopted DNSSEC typically exceed the MTU (see Fig.Hl), and
then (2) replace the authentic second fragment, of a fragmented DNS response,
with a spoofed second fragment. The resulting packet is discarded by the resolver,
and resolver retransmits the DNS request. If the packet arrives at host other than
the resolver, no packet loss occurs. We use this timing channel to detect the IP
address of the resolver.

. Proxy Upstream

1CI2|e3nt6 Resolver Resolver

e 1.2.34 8.8.8.8
2" spoofed fra

Off-path
Attacker
6.6.6.6

SrclP: 8.8.8.8 dstlP:1.2.3.4
1P-ID: x offset: 1480

B fake second
fragments, each

containing a different
IP-ID value in range
[x...x+B]

.| SrcIP: 8.8.8.8 dstlP:1.2.3.4
“ | IP-ID: x+y offset: 1480

i
! SrcIP: 8.8.8.8 dstIP:1.2.3.4
IP-ID: x+B offset: 1480

ot
DNS request I Forward DNS request
A?$1.atk.org ‘ A?$1.atk.org A?$1.atk.org
>0 » »

L S L

Incorrect UDP Checksum
Packet dropped by Resolver

SrclP:6.6.6.6 dstIP:8.8.8.8
IP-ID: z offset:0

SrclP:8.8.8.8 dstlP:1.2.3.4 IP-ID: x+y offset:0

IP-ID: x+y offset:0

A{ SrclP:8.8.8.8 dstlP:1.2.3.4 |

SrclP:6.6.6.6 dstlP:8.8.8.8

SrclP: 8.8.8.8 dstIP:1.2.3.4 IP-ID: z offset:1480 |

IP-ID: x+y offset: 1480 3

-t
DNS request Retr. issit
A?$1.atk.org I ‘ A?$1.atk.org |
- >0 »(4
If retransmission request for $1.atk.org arrives
the IP-ID is in range [x...x+B]
Otherwise repeat the attack (starting with step 1)

Fig. 5. Defragmentation-cache poisoning via a spoofed second fragment

SrclP:8.8.8.8 dstIP:1.2.3.4
IP-ID: x+y offset:1480

3.1 Defragmentation-Cache Poisoning via Second Fragment

Defragmentation-cache poisoning is caching of spoofed fragments, in IP defrag-
mentation cache, which get reassembled with the authentic fragments. The num-
ber of fragments that the recipient host can cache is limitedd. We use B to denote
the number of spoofed fragments sent by the attacker. The defragmentation-cache
poisoning attack, illustrated in Figure[] begins when the attacker sends B spoofed
second fragments (step 1), which are stored at the defragmentation cache of the
destination (for 30 seconds by default), and triggers (via a puppet) a DNS request,
for its own domain, e.g., atk.org (step 2). When the authentic first fragment (of
the DNS response) arrives, it is reassembled with the (cached) spoofed second frag-
ment (step 3); the resulting IP packet has incorrect checksum, and is discarded by

5 Typical defragmentation cache size allows several thousands of fragments; operating
systems often impose a limit on the number of cached fragments per each (source,
destination, protocol) triple. For example, in recent versions of the Linux kernel, the
default value is 64 (and it is kept via the variable ipfrag-max_dist; see [19]).

http://www.it-ebooks.info/

226 A. Herzberg and H. Shulman

the TP layer at the proxy (after defragmentation). Hence, the proxy retransmits
the request after a timeout.

The probability that the IP-ID of a legitimate (fragmented) response matches
the IP-ID of one of the (up to B) spoofed second fragments, which the attacker
sent, depends on the IP-ID assignment method. We next analyse efficiency of
defragmentation-cache poisoning for common IP-ID allocation methods: incre-
menting (supported by more than 70% of name servers) and random (supported
by less than 1% of name servers); statistics are based on the IP-ID allocation
methods supported by name servers of top level domains.

Random IP-ID. In a random IP-ID allocation the name server selects the IP-
ID values in each response uniformly. Let n be the number of DNS requests
triggered by the attacker and B the number of spoofed second fragments sent by
the attacker. Note that defragmentation-cache poisoning allows to circumvent
the birthday protection, thus enabling the attacker to trigger concurrent requests;
see [I8]. The probability for successful poisoning is:

B\n
Pr[success] 21— (1 - 2T6> (1)
See graph representing defragmentation cache-poisoning success probability, based
on Eq. (), in Figure 6} results of the experimental evaluation appear in the full
paper version [1§].

Incrementing IP-ID. Incrementing IP-ID can be either global (i.e., a single
counter to all destinations) or per-destination (i.e., first IP-ID to some desti-
nation is selected at random and subsequent packets are allocated sequentially
incrementing values). If the upstream resolver uses separate interfaces for com-
munication to the Internet and for communication to the proxy, then the pro-
cedure for discovering the global and the per-destination IP-ID is similar. If the
same network interface is used for communication to the Internet and to the
proxy, then the IP-ID discovery, in case of a global counter, is simple: the at-
tacker can trigger a query to a host that it controls and sample the IP-ID value.
The attacker can efficiently hit the correct IP-ID by using a meet-in-the-middle
strategy. The attacker triggers % DNS requests and plants B spoofed second
fragments in the defragmentation-cache of the recipient, each fragment 7 contains

IP-ID value of {i - 22 }2 .

3.2 Discovering Resolver’s IP via Defragmentation-Cache Poisoning

The idea behind our IP discovery technique is the following: the attacker applies
defragmentation-cache poisoning, via a second spoofed fragment, that is sent to
each IP in the IP address block allocated to the victim network. The second
fragment with the IP of the proxy poisons the defragmentation cache and ruins
the DNS response sent by the upstream resolver to the proxy. The attacker
then inspects the subsequent DNS requests from the upstream resolver to learn

http://www.it-ebooks.info/

Vulnerable Delegation of DNS Resolution 227

530

= = -
* —— # Requests (64) L X
2 --x--- # Frags .
*-+ # Requests (1024)
Frags (1024)

*

N
)
R

08 | A X 4

[N}
X
3

06| B

04 | X B

N,
3

:--:--l--:--i--:—-—:»-l----1»1--‘--‘--:--:---.

X e M M
. o
#iragments (B - e

Poisoning Success Probability
Number of Packets [log-scale]
S

@

x
o
N,
%

. I I I L I
1 4 16 64 256 1024 20 25 210 215 220 225
DNS Requests Sent Network Block Size (#IP Addresses) [log-scale]

~N
>

Fig. 6. Defragmentation-cache poisoning Fig.7. Number of spoofed second frag-
success probability per attempt, by analysis ments and DNS requests, for different net-
(Eq. @), for B € {64,1024,4096,16384} work blocks (2° — 22*) and for B ¢
(number of fake second fragments in cache) {64,1024} (number of fake second frag-
and different numbers of DNS requests, for ments in cache), assuming per-dest IP-ID
random IP-ID assignment assignment

information about the reaction of the proxy. The reaction from the proxy is used
as a side-channel, and allows to determine if the address of the proxy is found.
Application of defragmentation cache poisoning for attacks is not new, and was
mainly used for denial of service attacks, see [RFC6274] and [20021]. The first
application of fragmentation for attacks on DNS was in [I5II6] for name server
pinning and for cache-poisoning, respectively. Let B be the maximal number of
fragments that can be cached at the defragmentation cache of the resolver, then
% is the maximal number of requests required in order to find the correct IP-ID
for a single recipient, assuming a sequentially incrementing IP-ID is supported.
Let /x denote the CIDR subnet mask of the address block, returned from the
whois.netl query on the IP address of the puppet, and set y = 32 — x. Then 2¥
is the number of IP addresses in a network block defined by the network part
/x. We use binary search for proxy resolver IP address discovery, and since there
are 2Y addresses, the procedure has to be repeated log2¥ = y times.

IP Address Discovery. For each 0 < i <y, repeat:
216

(1) During attempt 7 the attacker triggers =g DNS requests (via the puppet)
for records in its own domain, and sends B%—U = B-2Y~% spoofed second fragments
to a set of 3—y IP addresses (from the network address block); each fragment has
a source IP address of the upstream resolver, destination IP addresses are from
the network block (which the attacker traverses), and offset value of 1480. These
fragments are stored at the defragmentation cache of the recipients, and then
discarded if not reassembled (after 30 seconds by default).

(2) The upstream resolver receives the requests from the proxy and forwards
them to attacker’s name server. The responses to those requests result in (frag-
mented) referrals to subdomains of attacker’s domain. The attacker inspects the
subsequent requests from the upstream resolver to learn the reaction of the proxy
resolver, and uses it as side-channel, to determine if the IP of the proxy was among
the set of %—y IP addresses that it sent the spoofed fragments to, in step (1).

whois.net
http://www.it-ebooks.info/

228 A. Herzberg and H. Shulman

(3) If the attacker sent the fragments to the correct IP address of the proxy,
then when the authentic first fragment, sent by the upstream resolver, arrives,
real first fragment and fake second fragment will be defragmented. Prior to
accepting and caching responses, the resolver validates a number of fields, e.g.,
UDP port and checksum, DNS TXID. The reassembled response has incorrect
checksum and is hence discarded by the proxy. If there is a pending DNS request,
which the proxy resolver sent earlier to the upstream resolver, it times-out and
the proxy retransmits its DNS request. The upstream resolver forwardd] it to
attacker’s name server.

If the attacker receives a retransmitted DNS request - it knows that the IP
of the proxy is in the set of 2+ tested IP addresses. In contrast, if the response
arrives correctly to the resolver - there is no timeout, and the attacker receives
a referral request (it responded with that referral to the request from upstream
resolver in step 2). In this case, the attacker knows that the IP was not among
the set of the IPs sampled in the current attempt, and repeats the attack with
the next set of IPs.

Analysis and Experimental Evaluation. In our experimental evaluation the up-
stream resolver ran on a Linux OS, which implements a per-destination incre-
menting IP-ID allocation method, and our analysis and evaluation are adapted
to this case; globally incrementing IP-ID can be sampled directly.

During the i*" iteration the attacker sends % DNS requests and B2 =
B - 2¥~% spoofed second fragments (0 < i < y). The number of spoofed second
fragments that the attacker has to send in the worst case, can be expressed via
geometric series:

1):3.2y.2:B.2y+1

Y
1
B2 j—.:B.2y.(1+
2 1— L

Notice that 171 T ~ 1 since 2% ~ 0. The number of DNS requests that the puppet

has to trigger in the worst case is: log2¥ - % =y- %. The number of packets

(requests and spoofed fragments) can be expressed as (see analysis in Fig. [7]):
(¥+B§—§) ot (%+B§—'§) —y-2 + B.ovt!

Resolvers Behind NAT Devices. If the puppet and the proxy resolver are behind
a many-to-one (network address translation) NAT device, then they share the
same [P address. To take this possibility into account the attacker should start
the search with the IP of the puppet, and extend its search at each iteration (fol-
lowing the binary search technique). We ran statistics on two CAIDA datasets
from 2012 [9], that were collected on equinix-chicago and equinix-sanjose moni-
tors on high-speed Internet backbone links. Both traces contained packets sent
from distinct 89750 source IP addresses, collected over two minutes interval.

" To ensure that the upstream resolver does not respond to the proxy from the cache,
the attacker sets a low TTL (time-to-live), e.g., TTL=0, on the requested record.

http://www.it-ebooks.info/

Vulnerable Delegation of DNS Resolution 229

We ran the following test to check for DNS resolvers behind NAT devices: (1)
we collected all DNS requests, i.e., packets sent to port 53; (2) we created a set
of TP addresses that sent at least one DNS request per second (to ensure that
we do not mistakenly interpret a host for a resolver behind a NAT; (3) we ran
over the traces to check if those IP addresses also sent packets to other ports,
including port 80, and 443. We then concluded with high probability that those
resolvers were behind NAT devices. We came up with a total of 3492, out of
89750, resolvers behind NAT devices.

Restricted Rate. The attacker may be restricted to transmit at a low rate, e.g.,
to launch a stealth attack in order to evade detection in networks that are known
to be well-monitored, or if the attacker does not have sufficient resources and its
transmission rate is limited. We next calculate the number of IPs that the at-
tacker can try at each attempt, when it is restricted by a rate of R Bytes/sec. Let
7 seconds be the maximal time that fragments are stored in the defragmentation-
cache; typical (default) value of 7 is 30 seconds. Let f be the size (in bytes) of
the second fragment; the second fragment can be of minimal size, e.g., 8 bytes
and the 20 byte IP header. Then, the maximal number of IPs that the attacker
can sample during a single attempt is z < g—?. With a modest rate of 50,000
Bytes/sec (50 KB/sec), and B = 64 (fragments per host IP), the attacker can
sample 781 IP addresses in a single iteration, and with 50MB/sec the attacker
can sample at most 78,125 IP addresses each time, i.e., more than the size of
many network blocks. Most network blocks are not too large, and can be tra-
versed efficiently (see Section B2 and Figure [3).

IP-ID Discovery. Once the attacker completes the IP discovery, it knows the
that the IP-ID is in range of % potential values. The attacker can also find
the precise value of the IP-ID of the upstream resolver (in its communication to
the victim proxy resolver); the knowledge of the IP-ID value is useful for UDP
port discovery (see Section H]). The attacker again applies a binary search on
the range of % potential IP-ID values. This requires log % attempts in the
worst-case. Since during each attempt the attacker sends % /28 = % spoofed

second fragments, in the worst-case the attacker will send a total of % spoofed
second fragments:

516
B~ 216

I (1+ 1 >2217
20 B -4/ B

B

216
B

[}

1=

4 UDP Port Discovery and DNS-Cache Poisoning

The next step towards a successful cache poisoning is to find the port that the
proxy resolver assigns to the request which the attacker wishes to poison.

We collected statistics from two CAIDA datasets from 2012 [9] and found that
many proxies, which delegate DNS resolution to upstream resolvers, support

http://www.it-ebooks.info/

230 A. Herzberg and H. Shulman

the following popular port allocations: fized port, globally incrementing and per-
destination mcrementinﬁ. We used the traces to collect all the DNS requests
(destination port 53) over UDP, and then filtered out IP addresses with a single
DNS request, and collected only the sources that sent two or more requests. This
allowed us to infer information about the source port allocation of the remaining
DNS requests. We found that 30% of the requests were sent from some fixed
port and 54% of the requests were sent from incrementing ports. Notice that
the packets’ traces are collected by CAIDA on (several) backbone (OC192) links,
therefore, most DNS requests, appearing in those traces, are probably sent from
proxies to upstream resolvers, since local DNS (proxy) resolvers are located on
LANS; this premise is also coherent with the standard, [RFC5625] that states:
‘proxy resolvers receive DNS requests from clients on the LAN side, forward
those verbatim to one of the known upstream recursive resolvers on the WAN’.

The use of a fixed client port was shown to be vulnerable by Kaminsky [4]: the
attacker triggers a DNS request to a name server under its control and learns the
port the resolver uses for DNS requests. Security experts also identified the glob-
ally incrementing port assignment as vulnerable: the attacker can use a sampling
procedure similar to [4], to obtain the current port value and then extrapolate
the port that will be assigned by the (victim) resolver to the subsequent DNS
request which the attacker wishes to poison. A per-destination incrementing
port is believed to be secure, and is a recommended standard [RFC6056], since
different ports’ sequences are assigned by the resolver to different destinations;
in particular learning the port value to one destination does not leak the port
value to some other destination. We checked the predictability rate assigned by
the popular DNS checker service provided by the OARC [7], to resolvers that
send DNS requests with per-destination incrementing port. The tool reported
(the highest) GREAT score to a per-destination fized port (i.e., a different fized
port is assigned to each destination) and to a per-destination incrementing port
(i.e., sequentially incrementing to each destination), indicating that both port
allocation methods are believed to be secure by the DNS experts. However, our
results (within) show otherwise.

In this section we present techniques that allow to predict the ports efficiently
for each of the three popular allocation methods (above), contrary to folklore
belief that, when a resolver does not send queries to the Internet directly, but only
via an upstream resolver, it is secure. OQur techniques do not rely on sampling
the port, since in our setting this is not possible: the attacker does not receive
DNS requests from the proxy-resolver directly, but only via an upstream DNS
resolver. Furthermore, our results show that sequential allocation, whether per-
destination or global, surprisingly allows for a more efficient port prediction,
than a fixed port allocation; see comparison in [18§].

During the port discovery the attacker triggers queries to a domain that it
controls. This allows the attacker to control, not only the time at which the

8 The effect of globally incrementing and per-destination incrementing ports’ assign-
ment methods is identical when proxies delegate DNS resolution to an upstream
resolver.

http://www.it-ebooks.info/

Vulnerable Delegation of DNS Resolution 231

request is triggered but also the time at which the response is sent; furthermore,
if the attacker does not respond at all, this will result in a timeout at the resolver
and in a retransmission of the DNS request. The attacker then traverses the port
range until a correct port is found. Notice that often not all ports are usedd and
the supported ports ranges are significantly smaller than 2'6, e.g., it is considered
safe to use ports in the range (1024 —49152), [RFC5452]. Therefore, some ports
are more probable than others.

The attacker succeeds in a poisoning attack (of its own domain) when a correct
port is found. As a result the attacker receives a subsequent request to the IP
that was returned in the poisoned record, instead of a retransmission request.

However, prior to accepting and caching a DNS response resolvers validate
a number of fields (recommended in [RFC5452]), e.g., IP addresses, UDP port,
DNS TXID. The attacker knows the IP addresses: the address of the proxy-
resolver was found using techniques in Section 3] and the address of the upstream
is known since it sends the DNS requests to the name servers. The attacker has
to find the correct UDP port and DNS TXID. A naive strategy is to apply the
Kaminsky attack [4], however, this requires sending 23? packets in the worst case
in each poisoning attempt and is thus not feasible.

We devise a new approach for port discovery (explained next) which we dub
the Midway Rendezvous. We show that this approach allows to significantly re-
duce the complexity of port discovery. We then propose to apply the midway
rendezvous with two different strategies for port discovery: (1) an optimised ex-
haustive search and (2) search via defragmentation-cache poisoning; we compare
the efficiency and complexity of both strategies in [I§].

Midway Rendezvous. The idea is to traverse the ports range in a direction op-
posite to port incrementation, supported by the resolver. At each iteration ¢ the
attacker sends spoofed DNS responses, to p ports, each time decreasing the port
number; p can be arbitrary, e.g., p = 1, and typically depends on attacker’s
bandwidth. Thus the attacker walks the port range towards the direction in
which the resolver walks. In the worst case, they meet after 22%? attempts, where
p is the number of ports tried during each attempt. The value of p depends on
port assignment method supported by the resolver. When incrementing ports
are used, 1 < p < 15; if the attacker samples a single port each time, i.e., p =1,
the attacker has to traverse half the ports range (assuming maximal ports range
of 216). When a fized port assignment is supported, p = 0, the attacker has to
repeat the attack till it meets the fixed port (used by the resolver), and has to
traverse in the worst case, 2'6 — 1 ports.

When next show how to apply this strategy using two different techniques
optimised exhaustive search and search via defragmentation-cache poisoning, and
compare efficiency.

9 DNS running on Windows server 2008 uses ports range (49152—65535) and Windows
2000/XP /server 2003 use ports from range (1025 — 5000). Older Bind versions use
fixed ports.

http://www.it-ebooks.info/

232 A. Herzberg and H. Shulman

4.1 Optimised Exhaustive Port Search

The attacker applies the midway rendezvous to discover the port and proceeds
as follows (Figure [): For ¢ = 1...15 or till ‘port is found’, repeat: (1) attacker
triggers a DNS request to a record in a domain under its control, and (2) sends
p - 216 DNS responses to p (decreasing) ports’ values starting with the highest
port, e.g., 65535, for each possible TXID value (this is required to be able to
detect when the correct port is hit, otherwise the response is discarded by the
proxy resolver); in the worst case, the attacker sends p - 2'¢ responses. If the
port is not one of the p ports tested at the current iteration, then increment 4
and update the port for next iteration. Although practical, this technique
has a disadvantage: in order to hit the correct UDP port the attacker has to
also guess the TXID. In the next section we show that the attacker can apply
first-fragment defragmentation-cache poisoning to split the distribution of TXID
and port to two separate distributions of size (at most) 26 each (assuming all
maximal number of ports is used).

Client Proxy Off-path Upstream
1.2.3.6 Resolver Attacker Resolver
T 1.2.34 6.6.6.6 8.8.8.8

field source |destination field source |destination
P 1236 |1.2.34 P 1234 8888
Port |ANY |53 Port | x>1024]53
TXID ANY TXID Ye{l,..2'"
Payload| A?$1.atk.org Payload| A?$1.foo.com
1) —MmMmMmM»o0——— -
field source | destination
IP 8.8.8.8|1.2.34 °
o
Port |53 65000 °
TXID 1
Payload| $1.atk.org A 6.6.6.6
- 2 timeout
s ~
2'¢ spoofed DNS ° \
responses, for field source | destination Il
each TXID value
to port 65000 P 8.8.838(1.234 //
Port 53 65000
If no response from /7
puppet running on client| TXID | 65535
then repeat with next Payload| $l.atk.org A 6.6.6.6
sequential (descending) —
port 64999 @ [N~_ _ _——"

Fig. 8. DNS request port discovery: in step 1, the puppet triggers a DNS request to a
resource within the attacker’s domain. The off-path attacker, in step 2, at IP 6.6.6.6,
sends 2'¢ fake responses (each containing a different TXID value) to each port of the
DNS resolver. If failure - repeat the attack from step 2. When timeout, repeat the
attack from step 1.

4.2 Port Discovery via First Fragment Defragmentation-Poisoning

The attacker can often improve the efficiency of port discovery, and in what follows
we present port discovery which uses a technique we dub first-fragment
defragmentation-cache poisoning. The steps of the attack are illustrated in Fig-
urefdl We assume that the attacker knows the IP-ID value, e.g., it ran earlier the IP
discovery phase, which also exposes the current IP-ID value (details in Section[3).

http://www.it-ebooks.info/

Vulnerable Delegation

of DNS Resolution

. Proxy Upstream Off-path
Client
1236 Resolver Resolver Attacker
- DNS reauest 1234 8.8.8.8 6.6.6.6 The process of
A?$1.atk.org I L ‘ A?$1atk.org I L ‘ A?$1atk.org | overwriting
- - - transport header
1) 2™ spoofed fragment Missing
SrcIP: 8.8.8.8 dstiP:1.2.3.4 > bytes

<7 i offset: 1500

10 2
1% authentic fragment 1* authentic fragment
SrclP:8.8.8.8 dstIP:1.2.3.4 SrcIP:6.6.6.6 dstIP:8.8.8.8
IP-ID:i offset:0 IP-ID:i offset0

SrcPort: 53 dstPort:X SrcPort: 53 dstPort:Y
Length: 1480 chksum: Z Length: 1480 chksum: W

The offset in spoofed 2
fragment is higher - thus
authentic 2™ fragment is

discarded. Reassembled IP
packet has a gap of 20 bytes,
so it remains in
defragmentation cache.

4%

2" authentic fragment 2" authentic fragment

SrciP:8.8.8.8 dstIP:1.2.3.4 IP-ID: i SrcIP:6.6.6.6 dstiP:8.8.8.8
offset:1480 IP-ID:i offset:1480
| Q-) 3

\ |(2) 1** spoofed (short) fragment

chksum: ;

\ (3) spoofed fragment
with missing 20 bytes

™~ SrclP:6.6.6.6 dstIP:8.8.8.8
1P-ID: i offset:1480

/ Length:‘&

Validation Layers on
the DNS Resolver

TXID

0x20
Port X'

If X=X": pass to DNS
Else: reject and
when query times-out
at DNS retransmit query

DN Request |

Ifreferral:port=X'
Else: repeat with
dstPort = X'+1

chksum:0

1P-ID: i

Addresses

DNS Request

Fig. 9. DNS port discovery: in step 1, the puppet triggers a DNS request to a resource
within the attacker’s domain. The off-path attacker, in step 2, at IP 6.6.6.6, plants a
spoofed first fragment (with UDP length 8 bytes, and checksum 0) into the defragmen-
tation cache of the resolver. The first authentic fragment is reassembled with the spoofed
fragment, and then with the authentic second fragment. If the port is correct, the attacker
will receive a referral, otherwise timeout and retransmission of the previous request.

The idea is to use fragmentation to overwrite the transport layer header of
the fragmented IP packet sent by the upstream resolver to the proxy. In each
such attempt the attacker sends a spoofed fragment with a source IP of the
upstream resolver and includes a guess for a port. If the guess is correct - the
response is accepted and cached by the resolver. Otherwise, if the port in the
spoofed fragment is incorrect - the proxy rejects the response, and retransmits
the request. This allows the attacker to distinguish the two events.

The goal of this step is to craft a spoofed first fragment, with a new port, and
to overwrite only the transport layer header in the authentic first fragment. How-
ever, if two fragments contain identical offsets, then the last arriving fragment
overwrites the first. Therefore, in order for the spoofed fragment to overwrite the
transport header of the authentic fragment, it must arrive at the resolver after
the first authentic fragment, and before the IP packet is reassembled, when the
authentic second fragment arrives. Let f = f1]|f2 be the IP packet consisting of
two fragments fi starts at offset 0 and is of length |f1| and fo starts at offset
|f1] and is of length |fa]. The steps of the attack are described next.

(1) attacker sends a spoofed second fragment f4, starting at offset (|f1| + ¢€),
where ¢ is some number of bytes.

http://www.it-ebooks.info/

234 A. Herzberg and H. Shulman

(2) attacker triggers a DNS request (whose response is fragmented). When the
first authentic fragment f; arrives it is reassembled with the spoofed second frag-
ment f4 that is already in the defragmentation cache; when the authentic second
fragment fo arrives, it is discarded since a spoofed fragment starts and ends at
a higher offset (|fi| + €). However, the reassembled IP packet does not leave the
defragmentation cache since there is a gap of € bytes that are still missing.

(3) The attacker sends a short fragment that overwrites only the UDP header
in the original first fragment. This fragment overlaps with first 8 bytes (the
UDP header) with the authentic first fragment; the fragment contains checksum
0, which indicates that checksum validation is disabledd, more fragments is set
to 1 (mf=1), and offset is 0. When initiating the attack, the attacker sets the
UDP port in this spoofed first fragment to 2'6, and decrements its value during
each subsequent iteration, following the midway rendezvous strategy.

(4) Then the attacker sends a fragment that starts at offset |f1| and is of size
€ to fill the gap.

4.3 Analysis and Experimental Evaluation

Let » be a DNS response size in bytes; for simplicity we round to 100 bytes
(also in our experimental evaluation). Let R bytes/sec be the transmission rate
of the attacker. Let ¢ seconds be a limit on the timeout for a DNS request (i.e.,
including all retransmitted requests for that query) and let ¢ be a number of
times a pending query is retransmitted until it is terminated and SERVERFAIL is
returned. Resolvers implement retransmission policy based on round trip time
estimates of the name servers, [RFC1536], and support timeout management
with exponential backoff. When a timeout occurs resolver enters an exponential
backoff phase, i.e., the timeout is doubled, and query is retransmitted. Resolvers
implement variable timeout and retransmission values, typically up to 45 seconds
(which is also a recommended ceiling for total timeout for a query [RFC1536]),
and attempt up to 15 retransmissions. For instance, Unbound?.4.19 sets ¢ to a
maximal value of 40 seconds and Bind9.8.1 sets t < 30 seconds and ¢ < 10, i.e.,
supports up to 10 retransmissions before terminating a query.

In each retransmission the resolver advances the port (in case an incrementing
allocation is supported). This allows the attacker to sample a number of ports in
a single iteration (since with each retransmission there is a new pending request).

Optimised Exhaustive Port Search. The number of iterations i that the attacker
has to repeat (or the number of queries that the puppet triggers) in the worst case,
assuming that in a single iteration the resolver triggers g retransmissions (before
terminating a DNS request) and the attacker samples p ports, is: (1) i < % for
. . . 216
incrementing port, and (2) ¢ < 2~ for some (unknown) fixed port.

The maximal number of ports p that the attacker can test in a single itera-

tion is p < Tf'z—?ﬁ; assuming that 2'6 is the number of possible values of TXID.

10 UDP checksum validation is optional, and it can be disabled by name servers by set-
ting it to 0 (0000 in hexadecimal). When the checksum is disabled it is not validated
by the resolvers.

http://www.it-ebooks.info/

Vulnerable Delegation of DNS Resolution 235

The analysis vs evaluation results are in technical report [I§]. Once the port
is known the attacker launches a DNS cache poisoning attack, i.e., sends 2'6
spoofed DNS responses, for some victim domain, such that each response con-
tains a different TXID value.

Port Discovery via Defragmentation-Cache Poisoning. The number of itera-

tions required to hit the correct port in the worst case is: CEsY) +1) for a fixed port

o0 +1) for incrementing port assignment; during each iteration the attacker
matches the original query and up to ¢ retransmissions. Since the attacker does
not need to match the TXID, at each iteration only 3 fragments are sent (more
fragments will not improve the efficiency of the attack); this significantly reduces
the complexity of the attack. However, note that, the attacker cannot sample
more than a single port, for each DNS request, since the payload is taken only
from the last fragment, therefore, p = 1.

The worst-case number of requests required to guess the port is

and

oD +1) for incre-

menting allocation and for a fixed allocation. During each iteration 3(q +1)

(¢+1) +1)

fragments are sent, thus the worst case number of fragments is3(g+1)- (q +1)

3 - 21° for incrementing allocation and 3(q + 1) - (= 3- 216 for a fixed port.

5 Conclusions

We presented DNS poisoning attacks on proxy DNS resolvers, i.e., resolvers
which use an upstream resolver. This attack is significant, since a large and
growing number of networks use upstream resolvers (and hence are vulnerable),
and prior to this work, a common belief was that this setting protects the proxy
resolvers from poisoning and DoS attacks. This belief is also partially due to the
fact that DNS resolver-testing services, report this DNS configuration as secure.
It is therefore imperative that networks, operating proxies, adopt appropriate
corrective defenses, as described in [I8].

Acknowledgements. We thank the anonymous referees for their comments on
the earlier version of this work. This research was supported by grant 1354/11
from the Israeli Science Foundation (ISF), and by the Ministry of Science and
Technology, Israel. We are grateful for support for CAIDA’s Internet Traces [9]
that is provided by the National Science Foundation, the US Department of
Homeland Security, and CAIDA Members.

References

1. Akamai: Enchanced DNS (eDNS) (April 2013),
http://www.akamai.com/html/solutions/enhanced_dns.html

2. Gudmundsson, O., Crocker, S.D.: Observing DNSSEC Validation in the Wild. In:
SATIN (March 2011)

http://www.akamai.com/html/solutions/enhanced_dns.html
http://www.it-ebooks.info/

236

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

A. Herzberg and H. Shulman

Kaminsky, D.: Dan Kaminsky’s Blog, http://dankaminsky.com/2008/07/21/130/
Kaminsky, D.: It’s the End of the Cache As We Know It. In: Black Hat Conference
(August 2008), http://www.blackhat.com/presentations/bh-jp-08/
bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf

Dagon, D., Provos, N., Lee, C.P., Lee, W.: Corrupted DNS resolution paths: The
rise of a malicious resolution authority. In: NDSS. The Internet Society (2008)
Gibson Research Corporation: DNS Nameserver Spoofability Test (2012),
https://www.grc.com/dns/dns.htm

DNS-OARC: Domain Name System Operations Analysis and Research Center
(2008),

https://www.dns-oarc.net/oarc/services/porttest

Provos, N.: DNS Testing Image (July 2008),
http://www.provos.org/index.php?/archives/43-DNS-Testing-Image.html
CAIDA: Anonymized Internet Traces 2012 Dataset (2012),
http://www.caida.org/data/passive/passive_2012_dataset.xml

Antonatos, S., Akritidis, P., Lam, V.T., Anagnostakis, K.G.: Puppetnets: Misus-
ing Web Browsers as a Distributed Attack Infrastructure. ACM Transactions on
Information and System Security 12(2), 12:1-12:15 (2008)

Herzberg, A., Shulman, H.: Unilateral Antidotes to DNS Cache Poisoning. In:
Rajarajan, M., Piper, F., Wang, H., Kesidis, G. (eds.) SecureComm 2011. LNICST,
vol. 96, pp. 319-336. Springer, Heidelberg (2012)

Klein, A.: BIND 9 DNS cache poisoning. Report, Trusteer, Ltd., Israel (2007)
Vixie, P.: DNS and BIND security issues. In: Proceedings of the 5th Symposium
on UNIX Security, pp. 209-216. USENIX Association, Berkeley (1995)

Bernstein, D.J.: DNS Forgery (November 2002), Internet publication at
http://cr.yp.to/djbdns/forgery.html

Herzberg, A., Shulman, H.: Security of Patched DNS. In: Foresti, S., Yung, M.,
Martinelli, F. (eds.) ESORICS 2012. LNCS, vol. 7459, pp. 271-288. Springer, Hei-
delberg (2012)

Herzberg, A., Shulman, H.: Fragmentation Considered Poisonous: or one-domain-
to-rule-them-all.org. In: IEEE CNS 2013, The Conference on Communications and
Network Security (2013)

Herzberg, A., Shulman, H.: Antidotes for DNS Poisoning by Off-Path Adversaries.
In: International Conference on Availability, Reliability and Security (ARES), pp.
262-267. IEEE, IEEE Computer Society (2012)

Herzberg, A., Shulman, H.: Vulnerable Delegation of DNS Resolution. Technical
Report 13-05, Bar Ilan University, Network security group (April 2013)
Kernel.org: Linux Kernel Documentation (2011),
http://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

Gilad, Y., Herzberg, A.: Fragmentation Considered Vulnerable: Blindly Intercept-
ing and Discarding Fragments. In: Proc. USENIX Workshop on Offensive Tech-
nologies (August 2011)

Gont, F.: Security Implications of Predictable Fragment Identification Values.
Internet-Draft of the IETF IPv6 maintenance Working Group (6man) (March
2012) (Expires September 30, 2012)

http://dankaminsky.com/2008/07/21/130/
http://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf
http://www.blackhat.com/presentations/bh-jp-08/bh-jp-08-Kaminsky/BlackHat-Japan-08-Kaminsky-DNS08-BlackOps.pdf
https://www.grc.com/dns/dns.htm
https://www.dns-oarc.net/oarc/services/porttest
http://www.provos.org/index.php?/archives/43-DNS-Testing-Image.html
http://www.caida.org/data/passive/passive_2012_dataset.xml
http://cr.yp.to/djbdns/forgery.html
http://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt
http://www.it-ebooks.info/

Formal Approach for Route Agility
against Persistent Attackers

Jafar Haadi Jafarian, Ehab Al-Shaer, and Qi Duan

Department of Software and Information Systems
University of North Carolina at Charlotte
Charlotte, NC, USA
{jjafaria, ealshaer, qduan}@uncc.edu

Abstract. To proactively defend against denial of service attacks, we
propose an agile multipath routing approach called random route muta-
tion (RRM) which combines game theory and constraint satisfaction op-
timization to determine the optimal strategy for attack deterrence while
satisfying security, performance and QoS requirements of the network.
Our contribution in this paper is fourfold: (1) we model the interaction
between RRM defender and DoS attacker as a game in order to deter-
mine the parameters by which the defender can maximize her benefit,
(2) we model route selection as a constraint satisfaction optimization
and formalize it using Satisfiability Modulo Theories (SMT) to iden-
tify efficient practical routes, (3) we provide algorithms for sound and
smooth deployment of RRM on conventional as well as software-defined
networks, and (4) we develop analytical and experimental models to in-
vestigate the effectiveness and limitation of RRM under different network
and adversarial parameters. Our analysis and preliminary implementa-
tion show that RRM can protect up to 90% of flow packets from be-
ing attacked against persistent attackers, as compared with single-path
routing schemes. Moreover, our implementation shows that RRM can
be efficiently deployed on networks without causing any disruption for
flows.

1 Introduction

The tragic effect of DoS attacks on networks are significantly aggravated by adop-
tion of conventional least-cost single-path routing schemes. While such route se-
lection simplifies reachability and manageability, it gives adversaries significant
advantages to gradually learn network routes and plan DoS flooding attacks ac-
curately. For instance, intruders can disrupt the data session simply by attacking
one of the intermediate nodes along the associated route. Such a DoS attack is
feasible since only one single predictable route is chosen, and this singularity
enables intruders to readily discover the route and devote their resources to
attacking it.

In this paper we present a random multi-route approach, called random route
mutation (RRM), which protects designated flows by routing them via an op-
timal number of randomly-chosen routes such that each route satisfies security,

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 237-E54] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.it-ebooks.info/

238 J.H. Jafarian, E. Al-Shaer, and Q. Duan

capacity, overlap and QoS constraints of the network. RRM significantly raises
the bar for attackers because to completely compromise the flow, intruders must
subvert all the routes and thus require more resources than those needed for
attacking a single route. Also, nondeterministic route selection disrupts recon-
naissance for attack planning and wastes attacker resources by forcing her to
blindly disperse her resources across network routes. Moreover, although routes
are chosen randomly, constraint-satisfying route selection guarantees that each
route has the desired security and performance-related properties.

We assume a persistent adversarial model where attacker is RRM-aware and
aims to defeat RRM by frequent hopping between network routes. The number
of hopping (mutation) between routes determines attacker’s strategy because
the more routes the adversary attacks, the higher the probability of hitting the
random routes which are chosen by RRM.

The first challenge of RRM is to determine the optimal number of routes for
flow transmission such that the defender’s benefit is maximized while making
her indifferent to the attacker’s strategy. We refer to this problem as optimal
strategy selection and model it as a static game of complete information between
attacker and defender, where players’ strategies are defined in terms of number
of mutations and their payoffs are defined based on the tradeoff between the
benefit and cost of mutation.

Knowing the number of routes, the next challenge is to determine a set of qual-
ified routes such that each route satisfies security and performance constraints
of the network. In this paper, we consider the following constraints, but other
constraints can be added as well:

— Capacity constraint: the routes should not include those nodes that are already
overloaded (based on node capacity) or those nodes that do not fulfil the
bandwidth requirement of the flow.

— Qwerlap constraint: to increase unpredictability and achieve fair load balanc-
ing, the overlap between the routes should be less than the tolerable overlap
threshold.

— Security constraint: the routes should preserve security enforcement by access
control policies such as firewalls; e.g., if a flow must pass through a firewall,
the firewall must be included in all the routes.

— QoS constraint: the routes should maintain the required quality, such as bounded
delays or number of hops.

We refer to this problem as optimal route selection and model it as a constraint
satisfaction problem using generalized Boolean/arithmetic format of Satisfiabil-
ity Modulo Theory (SMT). We use SMT solvers to discover a random set of
constraint-satisfying routes.

Knowing the set of routes, the final challenge is to design a sound mechanism
for route installation and revocation such that mutating from one route to an-
other does not cause any transient or permanent unreachability and the flow is
transmitted soundly and without any packet loss. We refer to this problem as
route mutation planning. We provide a formal algorithm for this problem and
prove that it guarantees reachability throughout flow transmission.

http://www.it-ebooks.info/

Formal Approach for Route Agility against Persistent Attackers 239

While deployment of RRM on conventional network layer architectures is
challenging, more recent application-layer architectures such as overlay networks
(e.g., RON [2], SOS [], and VNET/P [17]) and emerging software-defined
networking (e.g., OpenFlow [II]) provide promising platforms for RRM. We
implemented RRM algorithms in POX [10], a network SDN controller written in
Python that communicates with OpenFlow 1.0 switches. In our implementation
on SDN, mutation from one route to another is accomplished via a series of flow
table updates in all the switches both along the old and new routes.

To evaluate RRM effectiveness, we introduce an analytical metric called MPE
(Mutation Protection Effectiveness) which measures average effectiveness of RRM
against attackers by taking into account the attacker’s strategy and capability.
Moreover, we used our implemented framework for extensive evaluation of RRM
effectiveness in real-world scenarios. Our analytical and experimental evaluation
shows that RRM is significantly effective against DoS attackers.

Previous works on multipath routing in wireless networks such as [I6] propose
using random forwarding to avoid jamming and blackhole attacks. These works
are far from being practical for wired networks because of many topological,
QoS and security constraints. Moreover, unlike previous works [16], we do not
use random walk heuristic-based algorithms to identify random routes because
it is infeasible to design a random walk algorithm to satisfy multiple constraints
simultaneously.

The rest of the paper is organized as follows: Section [2] discusses our basic
methodology. Section Bl presents implementation details of RRM. Section @ shows
the evaluation results. Section B presents related work. Section [concludes the

paper.

2 Technical Approach

2.1 Adversarial Modeling

RRM effectiveness against static attackers (attackers that do not move) is obvi-
ously high. However, to accurately evaluate effectiveness for realistic scenarios,
we assume a generalized persistent RRM-aware adversarial model. In this model,
the attacker is characterized by two parameters: her capability and the number
of routes she attacks. Attacker’s capability, denoted as r, is defined in terms
of the number of nodes that are known to the attacker. Attacker’s mutation
intervals, denoted as M,, defines the attacker’s strategy in the network. More
specifically, at each mutation interval, the attacker uniformly chooses a route
and attacks it. If the adversary by chance attacks a route that is being used by
RRM, she would stay on the route for as long as RRM continues using the route;
that is, until the expiration of defender’s mutation interval.

The objective of RRM is to protect a flow f that is being transmitted from
a source S to a destination D, such that the portion of the flow that evades
the attack is maximized. To distance our model from security through obscurity,
we assume that the attacker knows the flow properties including its source and
destination, its size and duration, as well as the starting time of its transmission.

http://www.it-ebooks.info/

240 J.H. Jafarian, E. Al-Shaer, and Q. Duan

2.2 Overview

RRM responsibilities in a network are performed by a RRM controller with priv-
ileged accesses to network routers/switches. Alg. [defines the main algorithm
of this controller. After each mutation interval (T seconds), the algorithm uses
ChangeRoute to revoke the route r; and install r,11. Note that for each route,
its reverse route must also be installed. T,Zl denotes the reverse route of r,. The
ChangeRoute algorithm is described in Section

Algorithm 1. RRM Controller algorithm for route mutation of a flow from §
to D
determine optimal defender strategy (M) by finding NE of the game > Sec. 23]

determine qualified routes r1,...,7 M using SMT solver > Sec. 24]
upon expiration of kth defender mutation interval
ChangeRoute(ry — Tk+1) > Sec.

ChangeRoute(r; ' — r,;{l)

2.3 Optimal Strategy Selection

Of fundamental significance is the problem of determining the number of routes
that are used for transmitting a flow. Although it is intuitive that using more
routes provides higher benefit for the defender on average, it also increases the
cost associated with the routing. Therefore, choosing the optimal mutation strat-
egy for the defender partly depends on the benefit-cost tradeoff of the mutation.

In addition to this tradeoff, the defender benefit also depends on the mutation
strategy of the attacker. If the defender’s mutation rate is slower than that of the
attacker’s, it is straightforward to see that RRM will be less effective. However,
although faster hopping between routes increases the probability of hitting a
flow route for the attacker, it also increases detectability of the attacker and
her resources. Therefore, the defender and attacker mutation strategies can be
defined as a static game of complete information, where each player aims to
determine her Nash equilibrium strategy by considering other players’ strategies
and the cost associated with her own strategy.

The game is defined as I" = (I, S,U), where I = {a,d} is the set of players,
S = {M,, My} denotes the set of strategies for the attacker and defender, and
U = {uq,uq} defines the payoff function for each player. Note that the attacker’s
strategy is defined in terms of the number of routes, M,, that she attacks during
flow transmission. Defender’s strategy is defined in terms of number of routes,
My, that are used for flow transmission.

To evaluate RRM effectiveness against attackers, we define mutation protec-
tion effectiveness metric (M PE) as the average percentage of the flow that is
transmitted without being compromised. Suppose the defender aims to transmit
a flow f between a given source and destination and the network consists of n
nodes. The flow is transmitted during M, mutation intervals such that 1/My
portion of f is transmitted during each interval.

http://www.it-ebooks.info/

Formal Approach for Route Agility against Persistent Attackers 241

To calculate M PE, we first need to calculate node compromise probability,
€T

r = —
n

The probability that a route is compromised is equal to the probability that
at least one node in the route is compromised by the attacker. Assume L denotes
the maximum length of routes in terms of nodes, and p; denotes the percentage
of routes with length 7. Assuming disjointness between routes (no node is shared
between routes), the route expected compromise probability, denoted as X, is:

L
X =3 p(l-(1-a)) 1)

If M, < My, the attacker may hit the flow at each interval with probability
X . Since route compromise probabilities are disjoint, the number of routes hit by
the attacker follows binomial distribution ~ B(M,, X). Therefore, the average
number of routes hit by the attacker is X - M, and each hit compromises one
1/My portion of the flow. For this case, M PFE is:

MPE(M,,M;)=1-— %X
Mg

For scenarios where M, > M,, the number of routes hit by the attacker
follows binomial distribution ~ B(Myg, X). The average number of routes hit
by the attacker is X - M;. However, the exact percentage of the flow hit by
the attacker is more complex because the attacker is mutating faster than the
defender and she may hit one defender interval (route) after a portion of the flow
has been transmitted. Suppose z = [M,/My]; i.e., for each defender mutation,
the attacker mutates z times (defender is stationary to attacker during these
intervals). Based on the adversary model, if the attacker hits a route that is
being used, she will remain there until the defender’s mutation interval expires.
During the i¢th defender interval, the attacker mutates z times. If the attacker
hits the defender’s route during the first mutation with probability X, then the
whole flow is compromised. The probability that the attacker does not hit the
flow during the first mutation, but during the second mutation is (1 — X)X
(geometric distribution), and the portion of the flow that is compromised is
%. Generally, when M, > My the average percentage of the flow which is
compromised during one defender interval is:

z

dDA-X)F X (z—k+1)/2-1/My
k=1

Therefore, for this scenario M PFE is:

MPE(M,, My) =1— M,- (iu X)X -k 1))z 1/Md>
k=1

http://www.it-ebooks.info/

242 J.H. Jafarian, E. Al-Shaer, and Q. Duan

We can combine both cases into the following formula:

MPE(M,, M) = 1—min(M,, M)- (i:u — X)X (z—k+1)/z- 1/Md>

k=1
2)
where z = [M,/M,]. For example, for static attackers where M, = 1:

X
MPE(1,Mg) =1— —
(’ d) Md

If both attacker and defender mutate with the same speed M:
MPEM,M)=1-X

The defender’s utility is defined based on the benefit from protecting the
flow in terms of M PFE and the cost of M, mutations. Mutation cost emanates
from updating routing tables and installing new routes in routers/switches of
the network. On the other hand, the attacker’s utility is defined based on the
benefit from compromise (1 - M PE) and the cost of M, mutations. The attacker
mutation cost originates from the fact that as the attacker increases the number
of attacked routes, her detection probability increases. Note that these benefit
and cost functions are application-dependent and differ based on the properties
of the flow and network. Eq.[Bland @l denote generic utility functions for defender
and attacker respectively, where IT denotes the benefit function, © denotes the
cost function, and N denotes the number of disjoint routes.

ud(Ma,Md) = Hd(MPE(Ma,Md)) *Qd(Md) (3)
Uq (Mo, My) = II,(1 — MPE(M,, M) — O (M,) (4)
Mg, My € (0, N]

Since the route compromise probabilities are disjoint, N is the upper bound
for both players’ strategies. The objective of the game is to determine the Nash
equilibrium (NE) strategy profile (M, M}). Note that if the cost of mutation is
0, both players tend to maximize their mutation. For such scenarios, (N, N) is the
Nash equilibrium of the game. Otherwise, both players can deviate by increasing
their mutation and achieving higher payoffs (Fig. Bl). However, if mutation cost
functions are nonzero, then the players’ payoffs depend on the trade-off between
benefit and cost of mutations. Numerical analysis of the game to determine the
pure Nash equilibrium requires #(N?) payoff calculations. If no pure strategy NE
exists, we either determine the mixed Nash equilibrium of the game and then
randomly choose a strategy according to the distribution, or we assume that the
attacker plays M, = N and determine the M, that maximizes defender’s payoff.

To determine the defender mutation interval, we simply divide flow dura-
tion Ty by M}; i.e., T = Ty/M}. Flow duration is either provided as input or
determined based on flow size and network bandwidth.

http://www.it-ebooks.info/

Formal Approach for Route Agility against Persistent Attackers 243

2.4 Optimal Route Selection

Route selection is accomplished by formalizing RRM constraints and using off-
the-shelf SMT solvers to determine M} qualified routes between the designated
source and destination. However, for large M, the computational complexity, as
well as topological limitations, does not allow SMT solvers to determine all the
routes at once. Instead, we relax the problem by defining a relatively small win-
dow size w such that at each iteration, SMT solver determines w new routes until
all M routes are generated. While computational limitations of SMT solvers
necessitate smaller window sizes, overhead resulting from multiple model solving
necessitates larger windows. In our approach, we set w = 10.

We can model the network as a directed graph G = (V, E), where V is the
set of hosts and F is the set of links. Suppose there is a flow with source S and
destination D (S, D € V). Also assume the network contains n nodes vy, ..., v,
and m edges ey, ..., en. The capacity of node v; is denoted as C(v;). Moreover,
the Boolean variable b¥ denotes inclusion of node v; in the kth route: if b¥ =1,
then node v; is used for the flow; otherwise v; is not used for the flow. Our ob-
jective is to use a SMT solver to find a satisfiable assignment to all the variables
b¥. The following formalization models the problem of discovering w qualified
routes between S and D:

V=105 =1,1<k<w (5)
W=1= Z b§:2,ijexceptSandD,lgkgw (6)
v €X(vi)
Y bi=1ye{SD}1<k<w (7)
v Ex(y)
<L 1<k<w (8)
1<i<n
bf =1, Vv; contains A, 1 < k <w (9)
WP =0, VO(v;) < By,1<k<w (10)
(OF=DA@=1) e =1), Vi,l <kI<wk#I (11)
Nkl = Z Cz}c’lalgkalgwak#l (12)
1<i<n

nk,lSvalgkalgw?k#l (13)
b P e {0,1}, Vi, k,1 (14)

Eq. Bl guarantees that the source and destination of each route are S and
D. Eq. [l guarantees that each intermediate node of each route is adjacent to
exactly two nodes in the route. This also disallows inclusion of cycles in the
routes. Moreover, Eq. [[] states that S and D are only adjacent to only one node
in each route.

http://www.it-ebooks.info/

244 J.H. Jafarian, E. Al-Shaer, and Q. Duan

Eq.RI(QoS constraint) guarantees that the length of the route does not exceed
L. Note that we assume a uniform delay for each network link.

Eq. [(Security constraint) guarantees that the route must pass through the
nodes that contain required access control devices (such as firewalls), which are
denoted as A.

Eq.[0Q (Capacity constraint) guarantees that the route should avoid the nodes
that do not have the capacity that is required by the flow (denoted as By).

Eq.[Id Eq.I2 and Eq. I3l (Overlap constraint) guarantee that any two routes
in the w intervals will have the maximum number of overlapping nodes L.
More specifically, Eq. [l defines parameter Clk ! such that Cf L = 1 if node v;
is shared between kth and Ith routes. Eq. [[2] counts the number of overlapping
nodes between the two routes and denotes it as 7y ;. Finally, Eq. [3 guarantees
that the number of overlapping routes does not exceed the threshold L,; i.e.,
Mk, < Lp. Eq. [[4 specifies the value range of the variables.

If SMT solver fails to find any satisfiable assignment, we will relax the con-
straints (e.g., increase L, in Eq.[I3] or decrease w) and solve the model again.
Note that in this paper, we only consider RRM for a single flow. However, RRM
for multiple flows can be defined similarly. In this case one needs to find the
routes for every flow and there may be additional constraints that are related to
the priority of the flows.

2.5 Route Mutation Planning

Given M routes, the objective of route mutation planning is to ensure end-
to-end reachability throughout flow transmission. To achieve this objective, we
must ensure that at any point during transmission all routers know how to
forward the incoming flow packets toward the destination. More specifically, we
must ensure that any mutation from the old route r, to the new route r, does
not cause unreachability. Alg. [2] describes a route management algorithm that
guarantees end-to-end reachability.

Theorem 1. Alg. [2 guarantees sound and lossless flow transmission.

Proof. Assume Alg.[21does not guarantee lossless flow transmission. This implies
that there exists a router rt that fails to forward the flow packets at some point.
All network routers can be categorized into four classes based on their inclusion
or exclusion in r, and 7,.

—rt &€ r, Art & r,: such routers will never receive any flow packets, because
no router will ever have any rule to forward flow packets to them.

—rt € Ty ATt & 1o the router will not receive any packet before 7, entries
are added because no router in r, will forward any flow packet to them.
Afterwards, the router will forward the flow packets soundly.

— rt € ry A1t € 1,0 the router will forward packets soundly, either based on r,
or r, entries.

http://www.it-ebooks.info/

Formal Approach for Route Agility against Persistent Attackers 245

—rt & r, Art € r,: the latest time that rt may receive a packet after r, is
activated will less than the round-trip time between the source and destina-
tion. Before this time, rt will forward the packets soundly. Afterwards, the
router will not receive any flow packets.

Therefore, none of the routers will fail to forward the flow packets, resulting in
a contradiction.

Algorithm 2. route mutation planning algorithm

function CHANGEROUTE(r, — 74)
add entries for all routers 7t s.t. rt € rp, Art € 1o
modify entries for all routers rt s.t. 7t € 7, ATt € 70
wait for one RT'T
delete entries for all routers rt s.t. 7t € 7o A1t &€ 1y,

3 Implementation

Implementation of RRM on conventional networks can be done by installing
static route entries in the routing tables of the corresponding routers. For exam-
ple, to configure static routes in the Cisco routers, the administrator can specify
the exact routing entry by using the command “ip route”. The administrator can
also define the priority of the static entry (also called administrative distance) to
override the dynamic route entries. Route selection and mutation planning will
be performed by the central controller which has privileged access to all routers
in the network. Flow and network attributes are provided as input parameters to
the controller via a designated interface. The controller (1) determines M} and
T by determining the game equilibrium, (2) uses a SMT solver such as Z3 [12]
to determine the set of routes, and (4) uses its privileged access to update the
routing entries for each mutation interval according to Alg.

Thorough evaluation of RRM effectiveness and overhead requires its deploy-
ment in large-scale networks with random topologies. To this aim, we deployed
RRM on a software-defined network (SDN). In SDN, the network controller
monitors and controls the entire network from a central vantage point via an
interface, such as OpenFlow [II]. Due to flexibility and programmability of net-
work switches in software-defined networks, mutation from one route to another
can be accomplished as a series of flow table updates in all the switches both
along the old and new routes.

We used Mininet [5] python libraries to develop a random topology generator
that constitutes large-scale software-defined networks with various edge distribu-
tion models. The network is managed by a python POX [I0] controller. The POX
controller acts as the central authority to manage route mutation in switches.
Optimal route selection is performed using Z3 [12] binding to Python. Our proto-
type implementation shows that route mutation in SDN can be deployed soundly
and without packet loss.

http://www.it-ebooks.info/

246 J.H. Jafarian, E. Al-Shaer, and Q. Duan

e

0 A et T DS -+
o - M, =1 (wlo RRM)] |
0; -e-M,=5
5 ——M, =25
06 N
w v,
o o5 .
=
04 v.
03 v
0.2] T
Sy
01 G
g
09 10

0.1 D‘.Z 0‘.3 014 05 0.6 0.7 0‘.3
Node compromise probability (x = r/n)

Fig. 1. MPE for static attackers for various r and My

' —o—M_ =1, M, =20 (w/o RRM)|
7] ——M_ =1, M, =30 (/o RRM)
—s-M,=20,M =20
—+—M =20, =30

1 2 3 4 5 6 7 8
Node compromise probability (x = r/n)

Fig. 2. MPE for static defenders (no RRM) for various r, M,, and My

4 FEvaluation

We evaluate effectiveness and overhead of RRM through theoretical and exper-
imental analysis.

4.1 Effectiveness

Expected Theoretical Effectiveness. In Section 23] we define our analytical
evaluation metric, called MPE that denotes the average theoretical effectiveness
of RRM against persistent attackers in terms of the average percentage of the
flow that is transmitted without being compromised. Although analytical MPE
is defined based on the assumption that routes are disjoint (L, = 0 in Eq. [[J), it
provides an accurate approximation of RRM effectiveness in random topologies.

Fig. [shows effectiveness of RRM against static attackers with different ca-
pabilities. Note that (1) RRM is significantly effective against static attackers,
and (2) increasing My (the defender mutation speed) slightly improves RRM
effectiveness against static attackers.

Fig. Bl compares effectiveness of RRM against persistent attackers in the non-
RRM network. Non-RRM network is a network where My = 1; i.e., the defender
is not mutating. Note that (1) persistent attacks on non-RRM networks are very

http://www.it-ebooks.info/

Formal Approach for Route Agility against Persistent Attackers 247

o 10 20 3 4 50 60 70 8 9 100
No. of defender mutations (Md)

Fig. 3. MPE for various My and M,

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
No. of nodes in the network

Fig. 4. MPE for various n and L

disruptive, and (2) as the number of defender’s mutation intervals approaches
that of attacker’s, RRM effectiveness is improved.

Fig.[Blcompares RRM effectiveness for various attacker and defender mutation
interval lengths. Note that as the ratio of My over M, increases, MPE approaches
1. However, both My and M, cannot theoretically exceed the number of node-
disjoint routes, which is limited for practical networks [I§].

Fig. @ compares the effect of network size (n), and the route length L on
MPE in non-RRM and RRM (My = M,) networks with the fixed attacker
capability » = 250. Note that as the network size increases, the node compromise
probability decreases which improves MPE. Also the advantage of RRM over
non-RRM gradually decreases with the increase of n. This is because for large
non-RRM networks, the attacker needs longer time to hit the route.

Theoretical Effectiveness for Threshold-Critical Flows. Certain classes
of flows such as Shamir’s threshold k-out-of-n secret sharing scheme [15] require
threshold-critical effectiveness; i.e., the flow transmission is successful as long as
less than a certain percentage of flow packets are compromised.

For a flow that can tolerate up to [route (i.e., interval) compromises, M PE!
denotes the probability that at most [intervals are compromised by the attacker.
Note that [is an application-dependent input parameter, which is determined
based on sensitivity and criticality of the flow. If each route is compromised

http://www.it-ebooks.info/

248 J.H. Jafarian, E. Al-Shaer, and Q. Duan

——M =M =10
e~ Va
—7-M =M =30
——M =M, =50

Threshold MPE

0.2F

0 0.1 0.2 03 0.4 X X . .
Node compromise probability (x = r/n)

=

Fig. 5. Threshold MPE (I = My/4) for various r

—e—M_ =1, M, =20 (Theoretical)
—o-M, =1, M, =20 (Simulation) [{
—«—M, = M,_=20 (Theoretical)

—+—M,=M_ =20 (Simulation) [l

01 0.2 03 04 X 0. 08
Node compromise probability (x = r/n)

0.9 10

.6 0.7

Fig. 6. Comparison of analytical and experimental MPE for various r and Mgy

independently of other routes (routes are disjoint) and both players are mutat-
ing with the same rate (i.e., M, = My), the probability that exactly ¢ mutation
intervals are hit is denoted as the random variable Z and follows binomial dis-

tribution Z ~ B(Mg, X) [16]. Accordingly, M PE' can be defined as:

l
MPE'=P(Z<1) = Z (Afd) S(X) (1= X)Ma=i

(15)
i=0
Also, it is straightforward to show that E(M PE') =1 — X:
1 &
h=_— <i)=
E(MPE") i ZZ;P(Z <)
1
= - (My—P(Z=1) = ...iP(Z =) ...~ MaP(Z = M)
d
1
-~ (My— E(Z)) =
My~ B(2)
=1-X

(16)

http://www.it-ebooks.info/

Formal Approach for Route Agility against Persistent Attackers 249

0.1 0.2 03 ﬂ,.\4 05 0.6 0.7 0.8
Node compromise probability (x = r/n)

09 10

Fig. 7. Experimental MPE for various L, and r

-+ w=2
ool O w=4
-+-w=6
500 A= \W=8

Solving time for SMT (sec)

100| p .'_’9, -7

5 100 300

150 200 2%
No. of nodes in the network (n)

Fig. 8. SMT solving time for different w

which is consistent with Eq. 2l Fig. Bl shows the effect of mutation intervals
on threshold MPE. Note that all lines intersect at the point where [/M = X;
i.e., where the route compromise probability is equal to the tolerable threshold.
Moreover, contrary to the average MPE, in cases where [/M > X increasing
My, has a negative effect on the threshold MPE.

Experimental Effectiveness. In practical networks, very few node-disjoint
routes can be found for a fixed source and destination [I8]. For overlapping
routes, the assumption that the compromise probabilities of routes are inde-
pendent is not valid. Therefore, for random topologies we calculate MPE via
experimentation. In order to generate required topologies we developed a ran-
dom topology generator for Mininet that allows generation of random Mininet
networks with n switches and average node degree d according to one of the
Erdos-Rnyi (random graph), Barabsi-Albert (scale-free), or Watts and Strogatz
(small-world) models.

To generate the ith simulation scenario, n and d are provided to the genera-
tor. The generator creates a network by uniformly choosing one of the random
graph, scale-free or small-world models. This ensures that the calculated MPE
demonstrates the average effectiveness of RRM for various real-world network
models. Then, given r the controller determines M and uses the SMT solver

http://www.it-ebooks.info/

250 J.H. Jafarian, E. Al-Shaer, and Q. Duan

o
o

&
&

Avg. length of satisfying route

©

6 7 8
Upper bound of route length (L)

Fig. 9. Average route length for different L and n

su—/+m =10L,=2
—a—-M, =10, LD 4
+M ZDL =2
AQ—M“—ZD.LD =4

’_/i
e
-

100 200 300 400
No. of routers/switches (n)

@
g

No. of updates
2
5

g
8

N8
8

Fig.10. Average no. of routing table updates for various My and L,

to determine the set of routes. Next, at each mutation interval the controller
uses one of these routes for flow transmission. The attacker is simulated in the
following way: given r, for each simulation we randomly choose r nodes as the
set of nodes known to the attacker. We also assume that the attacker is rational
and plays her best strategy M. At each interval, the attacker uniformly selects
one node and attacks it. If this node belongs to any route that is currently being
used by RRM, we mark the portion as compromised.

To approximate expected MPE with acceptable accuracy, we use the Monte
Carlo method [I4]. Suppose random variable Y; denotes MPE of the ith simula-
tion for ¢ = 1,...,[as iid sequence of samples of M PE. Using the law of large
numbers, the approximation of expected M PF is:

15

EMPE

N|H

The estimated magnitude of error for E (MPE) is of order o)jpg. For each sim-
ulation scenario, the expected MPE is approximated by repeating the simulation
until the error falls below the threshold.

Fig. [6] compares analytical and experimental MPE for random networks with
n = 1000, d = 5 and L = 5. Note that analytical MPE serves as an upper bound

http://www.it-ebooks.info/

Formal Approach for Route Agility against Persistent Attackers 251

for RRM effectiveness. Also note that expected MPE of the flow approaches 0
when node compromise probability approaches 1. This means that if an adversary
is highly persistent and highly capable, RRM will lose its effectiveness.

Fig. [compares the experimental MPEs for various overlap constraints. Note
that for L, = 0, the experimental MPE is consistent with analytical MPE.
Moreover, as L, increases, MPE decreases significantly. This is because as the
overlap between the routes increases, attack on a node has higher probability of
compromising more than one route.

4.2 Overhead Evaluation and Limitations

Alg. [Ml describes the general outline of the RRM controller algorithm. The com-
plexity and computational overhead of each step is as follows:

— Optimal strategy selection: numerical calculation of pure Nash equilibrium
requires at most 6(IN?) steps.

— Optimal route selection: Satisfiability problem is NP-complete in general. How-
ever, recent advances in SMT solvers have made them scalable to satisfiability
problems with thousands of variables. Fig. [} shows the time of SMT solving
for optimal route mutation on a machine with Quad Core processor (3.3GHz,
6M cache) and 4 GB DDR3 RAM. We can see that the SMT solving time in-
creases with the network size n, especially when the number of switches/routers
in the network reaches 300. This is also because the number of possible routes
increases exponentially with the size of the network. This has a negative effect
on scalability of RRM. However, (1) RRM is used to protect the designated
flows, and normal traffic is routed via conventional protocols, and (2) instead
of using one centralized controller, the RRM responsibilities can be distributed
among several cooperating controllers.

— Route mutation planning: the RouteChange algorithm installs a new route in
O(n). The upper bound for the number of routing table updates is O(M]L).
However, the accurate number of updates depends on the average route lengths
and the average number of overlaps between routes. Fig. [shows the average
length of the route found by the SMT formalization for random networks
with different sizes and different length upper bounds. We can see that the
average route length of the RRM algorithm converges to some value with
the increase of network size. Fig. [[0] shows the experimentation results for the
average number of routing table updates (flow entries in SDN) in networks with
different number of mutation intervals and different overlap upper bounds. In
this figure, L = 6. Note that (1) higher mutation speeds requires higher number
of updates, (2) higher overlaps between routes reduces the number of updates,
and (3) although the number of updates increases linearly with the network
size, but since route lengths are upper bounded the linear line has a mild
upward slope.

http://www.it-ebooks.info/

252 J.H. Jafarian, E. Al-Shaer, and Q. Duan

5 Related Works

Applying multipath routing in computer networks had been proposed as early
as 1970s, but the original purpose is mainly for load balancing. The protocols
such as Split Multiple Routing (SMR) [I], multipath DSR [3], AOMDV [§], and
AODVM [1§] try to find disjoint paths in routing. However, in practical networks,
the number of disjoint paths is usually very small [18§].

Other protocols try to improve security through multipath routing such as
SPREAD [7], SRP [13], SecMR [9], DSM [6]. The route selection in these proto-
cols is deterministic. This means if the attacker knows the algorithm, the routes
can be predicted.

The multipath algorithm in [I6] generates randomized multipath routes that
are also highly dispersive and energy efficient in wireless sensor networks. The
algorithm is also based on random walk and its variants and the generated
multipath routes are highly resilient to black hole attacks.

Unlike previous approaches, our work provides an automated, nondeterminis-
tic, and optimal approach to route mutation problem by formalizing the strategy
selection based on game-theoretic concepts, and formalizing route selection as a
constraint satisfaction problem with various operational, QoS and security con-
straints. Moreover, in our approach the route selection is random and designed
to counter persistent and informed adversaries.

6 Conclusion

In this paper, we present RRM as a proactive defense strategy against DoS
attackers. To the best of our knowledge, RRM is the first proposed technique
that offers an efficient practical random route mutation which considers flow,
network and security constraints as well as attacker’s capabilities and strategies.
Our analysis and preliminary implementation show that RRM is feasible and
flexible, guarantees end-to-end reachability and can decrease the percentage of
disrupted packets to less than 10% of the case without RRM.

One drawback of RRM is its limited scalability due to the centralized control
as well as the overhead raised from solving the SMT model for large networks.
For future work, we plan to investigate how several controllers can interact to
improve the scalability of RRM. Solutions include separating the route selec-
tion and the route planning, or dividing the network into several segments each
managed by a separate controller.

References

1. Lee, S.-J., Gerla, M.: Split multipath routing with maximally disjoint paths in ad
hoc networks. In: IEEE International Conference on Communications, ICC 2001,
vol. 10, pp. 3201-3205 (2001)

2. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Resilient overlay net-
works. In: Proceedings of the Eighteenth ACM Symposium on Operating Systems
Principles, SOSP 2001, pp. 131-145. ACM, New York (2001)

http://www.it-ebooks.info/

10.

11.

12.

13.

14.

15.

16.

17.

18.

Formal Approach for Route Agility against Persistent Attackers 253

Johnson, D.B., Maltz, D.A., Broch, J.: DSR: the dynamic source routing proto-
col for multihop wireless ad hoc networks. In: Ad Hoc Networking, pp. 139-172.
Addison-Wesley, Boston (2001)

Keromytis, A.D., Misra, V., Rubenstein, D.: SOS: an architecture for mitigating
ddos attacks. IEEE Journal on Selected Areas in Communications 22(1), 176-188
(2004)

Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for
software-defined networks. In: Proceedings of the Ninth ACM SIGCOMM Work-
shop on Hot Topics in Networks, Hotnets 2010, pp. 19:1-19:6. ACM, New York
(2010)

Lee, P., Misra, V., Rubenstein, D.: Distributed algorithms for secure multi-
path routing in attack-resistant networks. IEEE/ACM Transactions on Network-
ing 15(6), 1490-1501 (2007)

Lou, W., Liu, W., Fang, Y.: SPREAD: enhancing data confidentiality in mobile ad
hoc networks. In: IEEE INFOCOM, pp. 2404-2413 (2004)

Marina, M., Das, S.: On-demand multipath distance vector routing in ad hoc net-
works. In: Proceedings of IEEE International Conference on Network Protocols,
ICNP, pp. 14-23 (2001)

Mavropodi, R., Kotzanikolaou, P., Douligeris, C.: SecMR - a secure multipath
routing protocol for ad hoc networks. Ad Hoc Networks 5(1), 87-99 (2007)
OpenFlow group at Stanford University: POX Wiki (2013),
https://openflow.stanford.edu/display/ONL/POX+Wiki

McKeown, N.; Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: Openflow: enabling innovation in campus networks.
ACM SIGCOMM Computer Communication Review 38(2), 69-74 (2008)
Microsoft: Z3: An Efficient Theorem Prover (2012),
http://research.microsoft.com/en-us/um/redmond/projects/z3/
Papadimitratos, P., Haas, Z.J.: Secure routing for mobile ad hoc networks. In:
SCS Communication Networks and Distributed Systems Modeling and Simulation
Conference, San Antonio, TX, USA, pp. 193-204 (2002)

Robert, C.P., Casella, G.: Monte Carlo Statistical Methods, 1st edn. Springer
(1999)

Shamir, A.: How to share a secret. Commun. ACM 22(11), 612-613 (1979)

Shu, T., Krunz, M., Liu, S.: Secure data collection in wireless sensor networks using
randomized dispersive routes. IEEE Transactions on Mobile Computing 9(7), 941
954 (2010)

Xia, L., Cui, Z., Lange, J.R., Tang, Y., Dinda, P.A., Bridges, P.G.: VNET/P: bridg-
ing the cloud and high performance computing through fast overlay networking.
In: Proceedings of the 21st international symposium on High-Performance Parallel
and Distributed Computing, pp. 259-270. ACM Press, New York (2012)

Ye, Z., Krishnamurthy, S.V., Tripathi, S.K.: A framework for reliable routing in
mobile ad hoc networks. In: IEEE INFOCOM, pp. 270-280 (2003)

https://openflow.stanford.edu/display/ONL/POX+Wiki
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://www.it-ebooks.info/

254

J.H. Jafarian, E. Al-Shaer, and Q. Duan

Appendix: Table of Parameters

Table 1. Description of main parameters

<
o

O =

T xS SS O®nC S =

PR EE

S
55
N

capacity required by the flow

variable denoting whether node v; belongs to the kth route
capacity of the node ¢

flow

maximum route length

upper bound for number of overlapping nodes between the routes
attacker strategy: no. of attacker’s mutations

defender strategy: no. of defender’s mutations

average no. of routes between a given source and destination
no. of nodes in the network

no. of network nodes known to attacker

source or sender of the flow

destination or receiver of the flow

percentage of routes with length ¢

duration of the flow f

node compromise probability (z = r/n)

route compromise probability

ratio of attacker to defender mutations z = [M,/Mg]
network node

attacker’s payoff function

defender’s payoff function

variable denoting number of shared nodes between kth and /th routes
nodes that include access control devices

the set of neighbors of node v;

the benefit function

the cost function

http://www.it-ebooks.info/

Plug-and-Play IP Security
Anonymity Infrastructure instead of PKI

Yossi Gilad and Amir Herzberg

Department of Computer Science, Bar Ilan University
mail@yossigilad.com, amir.herzberg@gmail.com

Abstract. We present the Plug-and-Play IP Security (PnP-IPsec) pro-
tocol. PnP-IPsec automatically establishes IPsec security associations
between gateways, avoiding the need for manual administration and co-
ordination between gateways, and the dependency on IPsec public key
certificates - the two problems which are widely believed to have limited
the use of IPsec mostly to intra-organization communication.

PnP-IPsec builds on Self-validated Public Data Distribution (SvPDD),
a protocol that we present to establish secure connections between remote
peers/networks, without depending on pre-distributed keys or certifica-
tion infrastructure. Instead, SYPDD uses available anonymous commu-
nication infrastructures such as Tor, which we show to allow detection
of MitM attacker interfering with communication. SYPDD may also be
used in other scenarios lacking secure public key distribution, such as the
initial connection to an SSH server.

‘We provide an open-source implementation of PnP-IPsec and SvPDD,
and show that the resulting system is practical and secure.

1 Introduction

Consider two Internet users, Alice and Bob. Alice wants to communicate securely,
and possibly anonymously, with Bob. For anonymity, Alice may use an anonymity
service, such as the Tor network of relays [5]. However, Alice also wants to encrypt
her messages to Bob; how can she obtain securely Bob’s public key?

The standard answer is that Alice will send a request to Bob and receive
back his public key, certified by a trusted Certificate Authority (CA) [12], like
in normal use of SSL/TLS, e.g., by browsers; if anonymity is desired, all com-
munication would be via the anonymity service, e.g., Tor. However, this does
not apply to the IP-security protocol (IPsec) [15], where traditional certificates
are less appropriate, and which requires configuration (of security policies, net-
work blocks, etc.). Furthermore, users may prefer complementary or alternative
mechanisms to trusting a CA, e.g., due to several incidents where CAs authenti-
cation mechanisms were broken and false certificates were issued: CAs have been
compromised, e.g., [4], and used insecure cryptographic primitives [22]. Can Al-
ice securely receive Bob’s public key, without depending on a trusted CA for
authentication? Can she take advantage of IPsec, if supported by Bob?

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 255-72] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.it-ebooks.info/

256 Y. Gilad and A. Herzberg

GW, GW,
E E GW, GW,
%’l_ _ Anonymity * oW, Anonymity * @ ow
Near-MitM ™« Network - . Network _+_
(w.rt. GW,) S e “ea e T Far-MitM
GW (w.rt. GW,)

GW, D,
(a) Near-MitM Attacker. Communica- (b) Far-MitM Attacker. Only commu-
tion between GWa and all other peers nication between GWa and GWc¢ routes
routes via the attacker. via the attacker.

Fig. 1. Types of MitM attackers with respect to GWa.

In this work we show that this is possible. We first present Self-validated
Public Data Distribution (SvPDD), which provides public key distribution using
an anonymity service, instead of relying on authentication and certification of
Bob by a trusted CA. SvPDD can use an existing anonymity service such as Tor,
the largest public anonymity network, as we do in our prototype implementation.

The basic idea of SvPDD is simple: Bob will periodically self-validate that
communication to and from himself is not tampered with, by sending to himself
anonymized requests for his public key, and validating that his responses arrive
correctly (with correct public key) and in timely fashion. Any tampering by
a MitM attacker with the response (public key) would be detected by Bob.
Similarly, Alice will use the anonymity network to send self-addressed ‘requests’;
a MitM trying to block Alice’s communication will not be able to distinguish
between this ‘self-test’ communication and ‘real’ communication between Alice
and Bob, and hence Alice will detect any tampering.

SvPDD detects when a MitM attacker disrupts communication as well as
points-out the attacker’s location. We classify MitM attackers with respect to a
particular party P to either of two types, illustrated in Figure [T}

Near-MitM who can manipulate communication between P and a significant
portion the network. This attacker will usually be en-route between P to
the anonymity network.

Far-MitM who can manipulate communication between P and few remote
peers. This attacker will usually be ‘near’ with respect to those peers.

This property is significant; a system administrator cannot do much about a
‘far’ MitM attacker disrupting communication with some peer and may ignore
such warning, but an alert about a ‘near’ MitM attacker is likely to result in
immediate corrective actions (such as changing ISP or scanning for malware).

SvPDD seems especially beneficial to facilitate adoption and deployment of
IPsec, the standard protocol for cryptographically-protecting IP traffic. IPsec is
a mature, well-validated protocol providing strong security guarantees. In par-
ticular, IPsec provides defenses against Denial of Service (DoS) attacks, while
the main alternatives, SSL and TLS, run over TCP, and hence are vulnerable to
TCP’s DoS attacks such as SYN flooding [6] and Ack-Storm [I] (although note

http://www.it-ebooks.info/

Plug-and-Play IP Security 257

that IPsec should also be implemented correctly to avoid DoS vulnerabilities,
see [11]). IPsec is implemented in most operating systems and in many devices
(it is even part of IPv6 specification). However, actual use of IPsec is very lim-
ited; the main reason seems to be the difficulty in establishing IPsec connections,
which normally require manual establishment of keys. SYvPDD provides an alter-
native, allowing secure and completely-automated establishment of IPsec keys
between peers, without requiring (rarely-available) IP-address based certificates.

There is another challenge to the deployment of IPsec: the need to coordi-
nate its use among peers. Even if all IPsec peers had appropriate public-key
certificates from a trusted CA, in order for IPsec to be deployed between two
peers, each peer must be aware of the deployment at the other end, by an ap-
propriate security-policy rule setup by the administrator. Coordination is even
more challenging to support IPsec’s tunnel mode, where an IPsec gateway ma-
chine protects an entire network; here, the security-policy rule must specify the
network block(s) connected via the given peer (network gateway).

To completely address the IPsec deployment challenges, we present the Plug-
and-Play IP Security (PnP-IPsec) protocol, built on top of SvPDD. PnP-IPsec
automatically establishes IPsec security associations between networks (and/or
hosts); see the layering of PnP-IPsec and SvPDD in Figure Bl PnP-IPsec adds
two functions to SvPDD: (1) automated detection of remote peers, including
handling of scenarios where there are multiple PnP-IPsec gateways en route to
the destination; and (2) validation of the address block protected by the remote
gateway. In order to establish a secure IPsec connection between two networks,
all that is required is for each of the networks to independently run PnP-IPsec;
all the rest is done automatically by PnP-IPsec.

1.1 Owur Contribution

We present two protocols, SVPDD and
PnP-IPsec. SvPDD uses an available
anonymization service such as Tor to - T TS T T T I

establish secure public keys between I IKE |
peers, without requiring off-path key

distribution or certification authori- Plug and Play IPsec

ties. This Provides al‘Fernative means Self-validated Public Data

for validation of public keys, for pro- Distribution

tocols and systems where appropriate |

. . . Anonymity Infrastructure |
public-key certificates are unavailable. I (Requirement) |

PnP-IPsec, built on top of SYPDD, @ -~ -~~~ — === ==~

allows. automat'ed IPsec . .tunnel Fig. 2. The layering of our protocols (boxed
establishment, without requiring co- with solid lines) and related protocols
ordinated administration or key dis- (hoxed with dashed lines).

tribution infrastructure. PnP-IPsec

automatically detects the existence of

a remote PnP-IPsec gateway, obtains its public key and network block, and
validates that the remote gateway indeed controls that network block.

http://www.it-ebooks.info/

258 Y. Gilad and A. Herzberg

SvPDD and PnP-IPsec provide the following defense against MitM attackers:

— A far MitM attacker w.r.t. both peers cannot interfere with the protocol.
— A near-MitM with respect to one of the peers may interfere with the protocol,
but in this case it will be detected by the administrator of that peer.

We provide an open-source implementation for our protocols (see Section [1])
and hope that this will increase deployment of IPsec.

SvPDD is not limited to IPsec, and our implementation may be integrated
into other protocols, such as SSH, in order to cope with a MitM attacker during
the initial setup (when the user learns the server’s unauthenticated public key),
or even TLS/SSL, to provide additional means to obtain and validate the public
key (protect users against CA authentication failures).

Lastly, this paper has the conceptual contribution of showing how anonymity
infrastructure can be used in lieu of PKI, to establish security between arbitrary
peers, without common administration, pre-shared keys or CAs.

1.2 Related Work

Ishai et al. [I3] presented a theoretical study of how two parties may use a shared
anonymous broadcast medium, to establish a shared secret key between them;
the two parties work in coordinated manner, which in practice implies, they could
have also established keys while coordinating, hence their work is not of much
practical impact. However, their work does provide some of the concepts used
and extended in our work, where we establish keys between arbitrary parties,
without assuming any coordination between them in advance. Hence, our work
extends their conceptual contribution, and shows that the basic idea of using
anonymity to establish security can also have practical implications.

There have been multiple efforts to simplify deployment of cryptographic pro-
tocols by automating their setup, without certification authorities or coordinated
management; we discuss these efforts below.

Several protocols, such as SSH [26] and BTNS [2325], are based on the Leap
of Faith (LoF) approach (also called ‘Trust On First Use’). In LoF, public keys
are exchanged without any validation during the first connection, and later used
(assuming the initially-exchanged public keys were correct); SSH applications
also display the public key to the users, allowing users to use off-path validation
of the public key (but few do). LoF protocols assume a handicap of the MitM
attacker, i.e., that he does not impersonate during the initial handshake; in
contrast to these works, SYPDD and PnP-IPsec do not assume this limitation.

A notable effort for mitigating the need for coordinate deployment of IPsec is
by the FreeS/WAN project [9], who attempted ([21]) to create an opportunistic
version of IKE, as documented in [I8/T9]. The specification requires the network
administrator to place a reverse DNS record mapping to the network’s gateway
and public key. The initiator retrieves the DNS record and uses the fetched
configuration (gateway address and public key) to start the IKE negotiation.
However, using [19] requires configuration of the reverse DNS tree, which is
complex, and furthermore allows only one level of gateways - typically, by an ISP

http://www.it-ebooks.info/

Plug-and-Play IP Security 259

or a large organization; it does not allow multiple gateways, or protection of small
networks and individual hosts (who do not control the reverse-DNS records).

Perspectives [24] and Convergence [16] are proposals for web-server public key
validation mechanisms, to replace or complement the existing certificates (issued
by CAs trusted by the browsers). Both rely on the use of a set of trusted ‘notary’
servers, which collect (and potentially cache) the public keys for the users. The
idea is that a MitM near the client is not en route between most of the notaries
and the server, allowing the client to learn the keys from the notaries (according
to their majority). SVPDD performs a similar function to these proposals, with
two advantages: (1) SvPDD does not require establishment and maintenance
of a new infrastructure of notaries, and instead leverages an existing, general-
purpose, anonymity infrastructure (Tor), which has many users and handles
high traffic rates, compared to which the traffic generated by our protocols is
negligible (see [I7]); and (2) SvPDD provides better security to the users by not
requiring them to trust new entities for authentication, and only to trust the
anonymity network to anonymize their requests.

Double-Check [2] shows how one can validate self-signed certificates by ac-
cessing the server from various locations, suggesting Tor as an available proxy
infrastructure. Double-Check helps against a MitM attacker that controls some
of the routes to the server, but fails if attacker controls all (or most) of the
routes from the client or to the server. In contrast, SVPDD utilizes anonymity,
and suggests the concept of self-validation. SvPDD provides the same benefits
as Double-Check, and in addition, using self-validation, SvPDD detects and pro-
vides a clear indication when an attacker controls all (or most) of the routes near
the client or near the server.

PnP-IPsec shares some aspects with a previous work of ours, LOT [7], an
opportunistic tunneling protocol for establishing credentials between two arbi-
trary networks in order to detect and block spoofed packets. However, there
are substantial differences. First, LOT was designed to secure against off-path
(non-eavesdropping) rather than MitM attackers. Second, LOT creates hop-by-
hop tunnels, decapsulating and re-encapsulating information at every node on
the path; this property is avoided in PnP-IPsec, which establishes gateway-to-
gateway IPsec tunnels.

2 SvPDD: Model and Security Requirements

SvPDD runs on two peers, a querier and a responder, without coordinated man-
agement or common public key infrastructure. The basic goal is that the querier
will learn the responder’s response for his query; however, clearly if there is a
MitM connecting one of the peers to the network, then the MitM can prevent sat-
isfying this goal simply by blocking all communication between the peers. This
section describes the model and security requirements of the SvPDD protocol.

Anonymity Infrastructure. We assume the availability of an anonymity network.
Peers can send messages via the anonymity network, hiding the intended recip-
ient; and receive messages from the network, while the sender remains hidden.

http://www.it-ebooks.info/

260 Y. Gilad and A. Herzberg

Furthermore, we assume that the querier has the public key of the anonymity
network, i.e., can send authenticated and encrypted messages to it; this property
holds for many anonymity networks, such as Tor [5] and Mix-Nets [20], where
the client has a hard-coded copy of the network’s public key.

Notice that while the querier sends and receives authenticated content from
the anonymity network, he does not trust the network to authenticate other
peers (in contrast to CAs in the public key infrastructure).

Attacker Model. We consider two types of MitM attackers, defined according to
the near-MitM threshold, denoted by d: a near-MitM attacker with respect to a
peer P obtains a message that P sends or receives from the anonymity network
with probability greater than d; otherwise, the attacker is considered a far-MitM
with respect to P. If attacker A obtains a message, then he can block it or
modify its content (MitM capabilities). We assume that the attacker is either
near the querier or responder (but not both), or far with respect to both peers.

Based on the analysis that we present in Sectiondl we require that 0 < § < %;
the exact value of 4 is a local configuration provided by the system administrator,
who essentially sets the threshold for a MitM-alert: the lower that ¢ is, the more
attackers will be classified as ‘near-MitM’ (in our implementation the default

1

configuration is § = 15).

Communication Model. When a peer P sends a message to the anonymity net-
work: if the MitM attacker A is near P then he obtains the message, as well
as the identity of the sender; otherwise, A obtains the message and sender’s
identity with probability ¢.

Similarly, when a peer P receives a message from the anonymity network: if
A is near P, then he obtains the message as well as the identity of the recipient;
otherwise, A obtains the message and identity of the recipient with probability 4.

Notice that our communication model is the ‘worst-case’ scenario, where a
near-MitM obtains a message from or to P with probability 1 (i.e., obtains all
such messages), and a far-MitM obtains such a message with probability 4.

Security Requirements. A public data distribution protocol with security param-

eter n is secure if the following properties hold, except with negligible probability

in n:

No False Alert: if A is far with respect to P, then P does not alert for MitM.

Authenticity: if neither peer alerts for MitM, then the querier learns the cor-
rect response for his query, exactly as sent by the responder.

From these properties follows the availability property: if A is far with respect
to both peers, then the querier learns the correct response for his query.

3 SvPDD: Protocol

In this section we present Self-validated Public Data Distribution (SvPDD), a
protocol that allows a querier to retrieve and validate content from a responder
and satisfies the security requirements in Section 2l

http://www.it-ebooks.info/

Plug-and-Play IP Security 261
. Entrance [Intermediate | Exit
Querier proxy proxy Responder

src = Querier, dst = entrance proxy,

hidden dst = Responder TheieEE 1
Data = tid, emph-key, request
src = Responder, dst = exit proxy,
Inside Tor hidden dst = Querier
(proxy-to-proxy route Data = Enc(tid, response)

Fig. 3. A Query-Response Transaction over the Tor Anonymity Network.

-

3.1 The Query-Response Transaction

In an SvPDD transaction the querier sends a query for which the responder
sends a response, both messages are transmitted via the anonymity network; see
illustration in Figure Bl Each transaction belongs to one of two classes:

Peer-to-Peer (p2p). The querier attempts to learn the responder’s response.
Self. A ‘dummy’ transaction, the peer is both the querier and the responder.

Each transaction has a random identifier, denoted by tid, which is chosen by
the querier and attached to the transaction messages. We refer to a message that
belongs to a p2p/self-transaction as a p2p/self-message (respectively).

A peer can validate that self-transaction messages were not modified or blocked
by a MitM since the peer is both the sender and recipient of messages: he knows
‘what he sends’ and compares it with ‘what he receives’. In order to keep track of
self transactions, each peer keeps a global self-table that maps the identifiers of
self-transactions to their corresponding messages as sent and received (to allow
validation), as well as each message’s transmission time.

Message Indistinguishability. An important property of SYPDD messages is that
two messages of the same type (query or response), but of different classes (p2p
and self), are indistinguishable. Namely, a MitM attacker who observes the mes-
sage (that routes via the anonymity network) usually cannot learn the identities
of both the sender and recipient, and detect whether they are different (a p2p-
message) or the same (a self-message).

The following describes the content of query and response messages:

Query Message. The querier initiates the transaction by sending a query message
to the responder. The message specifies a random ephemeral public key that the
querier generate and the request from the responder (see Figure []).

In our model (described in Section BI), the querier has the public key of the
anonymity network, and therefore queries are authenticated and encrypted until
they leave the anonymity network (to reach their destination). However, a MitM

! The ElGamal encryption scheme, for example, allows to efficiently generate private
and public key-pairs.

http://www.it-ebooks.info/

262 Y. Gilad and A. Herzberg

near the responder can observe the clear-text query; in order to satisfy the
desired message indistinguishability property, we require that the query is either
constant (e.g., all SSH clients specify the same query, for the server’s public key)
or chosen according to a fized distribution that is independent of the querier’s
identity or message history.

Response Message. When a responder receives a query message, he replies with
a response message. The response specifies the requested data encrypted with
the querier’s ephemeral key (see Figure). Note that we rely on the indistin-
guishability property of the (probabilistic) encryption scheme [10], hence, a MitM
attacker who observes the response cannot learn according to its content whether
it is a response for a self or p2p query (unless the MitM modifies the encryption
key in the query, risking that the query was ‘self’).

Transaction Completion. A transaction is complete if one of the following
conditions is true: either (1) a response was received in context of this transac-
tion, or (2) the query is stale (decided according to its transmission time). In
the latter case, we say that the transaction is expired.

3.2 The Query-Response Session

In order to retrieve data from the responder, the querier starts an SvPDD-session
which is composed of n p2p-transactions (where n is a security parameter). In
each transaction in the session, the querier sends the same request (but with a
different transaction identifier and ephemeral public key) to the responder. The
querier saves a per-session p2p-table which maps the transaction identifier (tid)
to the corresponding query and response (if received).

The querier and responder perform self-transactions in the background, in
parallel to ongoing query-response sessions (see details in Section B.3)).

Message Validation. When a peer receives a message, it first checks whether
its tid field indicates a self-transaction; if yes, then the message is assigned the
class ‘self” and otherwise the class ‘p2p’. The validation process is different for
each message class.

If the received message (query or response) is a self-message, then the peer
validates that the message was not modified while it was in-transit. If the self-
message was modified, then its transaction is marked as ‘failed’.

In contrast to self-messages, the recipient peer cannot validate the content
of p2p-messages. The recipient only validates, in case of a p2p-response, that it
belongs to an uncompleted transaction in some session (otherwise the response
is discarded).

MitM Detection. Each self-transaction is associated with a result that is either
success or failure. The result of a self-transaction is failure if: (1) it expired (see
‘transaction completion’ in Section [Bl); or (2) the transaction was marked as

http://www.it-ebooks.info/

Plug-and-Play IP Security 263

‘failed’ during the message validation process (above). When a self-transaction
completes, its result is enqueued in a cyclic, n entry long, history queue (where
n is the number of transactions in each session).

If there are at least 3dn ‘failure’ results in the party’s history queue, where
0<6< % is the near-MitM threshold (see Section []), then SvPDD alerts the
local administrator of a near-MitM.

Session Completion. An SvPDD-session completes when all its transactions
have completed. The session is then associated with a success or failure result,
depending on the responses that were received for the queries in its context: If
more than In (i.e., a majority) transactions of that session received an iden-
tical response, then the session result is success and that response is returned.
Otherwise, the session’s result is failure and no response is returned.

Notice that the threshold for a near-MitM alert (30n) is lower than that of
completing a session in success (%n > 36n, since § < %) In the following section
we present a security analysis and show that this property ensures the desired
security requirements, defined in Section

3.3 Protocol Execution

In order to retrieve authenticated data from the responder, the querier starts
an SvPDD-session. Additionally, SYPDD runs in the background, on both the
querier and responder, and initiates self-transactions. SYPDD monitors the re-
sults of the n recent self-transactions, and alerts for a MitM in case that 3dn of
them are assigned the ‘failure’ result.

Self-Transactions Instantiation. SvPDD approximates the rate of p2p-messages
and sends self-messages at roughly the same rate. The reasoning is that if the
peers send only few self-messages, then a MitM can change arbitrary messages,
which are likely to be p2p; in contrast, if the peers send many self-messages,
then SvPDD’s overhead grows large.

A peer P instantiates approximately one self-transaction for every
p2p-transaction. This is achieved by measuring r(t), the number of new p2p-
transactions that P participates-in during time period ¢ (each period has the
same length). During period ¢ + 1, P instantiates r(t) 4+ ¢ new self-transactions;
where ¢ > 1 is a constant value, such that even if the rate of new p2p-messages
increases during period t + 1, it is still likely to be less than the number of new
self-transactions.

3.4 Instantiation over Tor

One of the advantages of SvPDD is that suitable anonymity infrastructures are
already available. In particular, it is possible to instantiate SYPDD over Tor [5],
the largest publicly available and well-studied anonymity network. Using Tor,
queries and responses route via a Tor circuit, which is a chain of proxies (chosen
by the querier), see Figure[Bl Each transaction is relayed over a different random

http://www.it-ebooks.info/

264 Y. Gilad and A. Herzberg

Tor circuit, such that transactions of the same session cannot be associated
together by a MitM observer.

The querier (running the Tor-client software) has the public keys of the Tor
proxies, which are used to authenticate and encrypt query messages until they
leave the network to reach the responder. This satisfies our assumption on the
anonymity network from Section 2l

In an online technical report [§] we describe the Tor network and SvPDD
instantiation over it in greater detail.

4 SvPDD: Analysis

In this section we show that SvPDD satisfies the security requirements presented
in Section 21

No False Alert Requirement. A far MitM with respect to a peer P obtains a
message (sent to or from P) with probability 4. Since in every transaction there
are two messages (request and response), the probability that the far MitM
attacker obtains at least one message of a transaction is no more than 26 (in this
case the attacker can modify or block the message, i.e., corrupt the transaction).

Let the random variable 1 denote the number of self-transactions, out of the
recent n self-transactions, where the far MitM obtains at least one message. The
expected value of 7 is E [n] < 2dn. However, the attacker must modify or block
at least 30n messages of the n recent self-transactions in order to cause a false
alert for near-MitM (see SYPDD definition in Section [3.2]).

Hoeffding’s inequality allows to bound the probability that n > 3dn; i.e.,
that n deviates from its expected value by at least dn, see Equation [

Prin > 3in] < e2(n)* (1)

This bound shows that the probability that the far-MitM attacker succeeds in
causing a false alert is a negligible function in n. In an online technical report [8]
we further explain the mathematical analysis behind the result in Equation [I1

Authenticity Requirement. The SyPDD protocol sends roughly the same amount
of self and p2p-messages. A message of one class is indistinguishable from that
of the other; therefore, an attacker that modifies a protocol message, modifies
with probability % a p2p-message and with probability % a self-message.
Assume that the total number of messages that near-MitM attacker modifies
is less than 7dn. Let £ denote the number of p2p-messages that he modifies.
Since each message that the attacker modifies has probability % to be ‘p2p’, the
expected value of £ is F [¢] < %571. However, in order to provide a false response,
the attacker must modify messages of more than %n > 40n p2p-transactions of
a particular SvPDD-session (since 0 < § < §).
Hoeffding’s inequality allows to bound the probability that & > 4én (and
1

therefore, bound the probability that £ > 3n); ie., that £ deviates from its

expected value by at least %571, see Equation

http://www.it-ebooks.info/

Plug-and-Play IP Security 265

< New IPsec Tunnel >
GW

A GW GW
The = & < Net <
, 'hulnternet._.-'_‘_ M e ’
e |
__NetAx- 1 __Neth-
dh dh di
Alice Bob

Fig. 4. PnP-IPsec Deployment Topology. Alice and Bob are communicating hosts;
PnP-1Psec is deployed on GWa and GWg and establishes an IPsec tunnel between them.

Pr(¢ > 46n] < e 20" — ¢=3(0m)° (2)

Complementary, assume that the total number of messages that the near-
MitM attacker modifies is at least Ton. Let £ denote the number of self-messages
that he modifies. Since each message that the attacker modifies has probability %
to be ‘self’, the expected value of ¢’ is F [¢] > %571. However, in order to avoid
a MitM alert, the attacker must modify less than 3Jn self-messages.

Hoeffding’s inequality allows to bound the probability that & < 3dn; i.e.,
that £ deviates from its expected value by at least %671, see Equation

Pr e < 30m] < e300 = —30n)? (3)

The bounds in Equations Pl and Bl show that the probability that the attacker
succeeds in violating the authenticity property is a negligible function in n. In an
online technical report [§] we further explain the mathematical analysis behind
the results in Equations 2l and Bl

5 Plug-and-Play IP Security

This section presents Plug-and-Play IP Security (PnP-IPsec), a protocol that
establishes an IPsec tunnel [15] between two network gateways without coordi-
nated administration and without relaying on a public key infrastructure.

Figure @l illustrates a typical deployment topology for PnP-IPsec. The proto-
col’s goal is that if there are two communicating hosts, Alice and Bob, behind
two PnP-IPsec gateways, then the gateways will automatically establish an IPsec
tunnel to secure all communication between their networks. In this section we
assume that there are no intermediate PnP-IPsec gateways (such as GW¢ in
Figure M), Section [6] extends the protocol to handle this scenario.

PnP-IPsec builds on SvPDD; namely, each gateway uses SvPDD to retrieve
and validate the IPsec configuration from its peer. Figure [l illustrates the three
phases that compose PnP-IPsec, which we describe in the following three sub-
sections. In the fourth subsection we describe the protocol’s security properties.

http://www.it-ebooks.info/

266 Y. Gilad and A. Herzberg

Alice GW, GW, Net, Bob

Trigger Packet: Src = Alice, Dst = Bob

Phase SvPDD-query: Dst = Bob
M Get IPsec configuration

Intercepted
-

SvPDD-response:
GW 5, PK ;, Net g, puz, cookig

SvPDD-query: Dst = x €, Net

cE€,[0,1}" Intercepted
Repeats -]
m 2
times SvPDD-response:
¢, H(GW 5, PK, Net,)
L < IKE >
SvPDD-query: Dst = GW, Aj .
3 Invoke PnP-IPsec Failure
Enc(GW ,, PK ,, Net ;, puz—sol , cookie)

SvPDD-response:
Accept

Fig. 5. PnP-1Psec Diagram. Dashed arrows mark destinations of intercepted packets.

5.1 Initiation Phase

PnP-IPsec is initiated by a gateway, GWp, when it forwards a packet from Al-
ice to Bob. This is the trigger packet illustrated in Figure Bl The initiation is
probabilistic: a trigger packet initiates the handshake with a (configurable) prob-
ability p > 0; the lower p is, the lower PnP-IPsec overhead and the more time is
required to establish a tunnel.

GWa begins the PnP-IPsec handshake by initiating an SvPDD-session to re-
trieve the IPsec configuration of the gateway closest to Bob. The response con-
figuration includes the following three elements, which in ‘classic setup’ of IPsec
are manually configured by the network administrator at both gateways.

1. The gateway’s (responder) IP address; which is the encapsulation end-point
for tunneled traffic.

2. The gateway’s public key; used to secure IPsec messages.

3. The network address block behind the gateway; traffic to this network block
will be encapsulated.

Additionally, the response includes a client puzzle [3] and a cookie that allows
the responder to re-generate the puzzle (without keeping state). The initiator
solves this puzzle in order to request the responder to initiate a PnP-IPsec
handshake in the opposite direction; as we describe in the last phase of the
handshake. The use of a client-puzzle protects the responder from a denial of
service (DoS) attack that persuades him to initiate PnP-IPsec handshakes with
arbitrary peers (see security discussion in Subsection [5.4)).

http://www.it-ebooks.info/

Plug-and-Play IP Security 267

Since GWa does not know the address of Bob’s gateway, SvPDD-queries (i.e.,
IPsec configuration requests) are sent to Bob’s address. The queries traverse the
route from the anonymity network to Bob, allowing Bob’s gateway, GWpg, to
intercept the queries and respond. See phase 1 in Figure

The responder (GWg) only handles the queries if it is unaware of another
PnP-IPsec gateway ‘behind it’ that is also a gateway of Bob. The reason is that
PnP-TPsec should establish IPsec tunnels between the closest gateways to Alice
and Bob (the communicating hosts) in order to protect their communication
from intermediate malicious nodes (MitM attackers). In Section [l we show how
gateways automatically learn which of their subnets have a ‘closer’ gateway.

5.2 Validation Phase

In this phase the initiator validates that the responder controls the claimed
network address block (provided in the Initiation phase). This phase is similar
to the network block validation process that we presented in [7], except that the
messages here are sent over SvPDD in order to cope with a MitM attacker (see
analysis in Section [5.4)); we briefly present the network block validation protocol.

Network block validation is composed of m parallel SvPDD-sessions (m is a
security parameter), where in each session the initiator (GWa) picks a random
address in the responder’s (GWg) claimed network block and sends a challenge
to it (each session is associated with a different address). If GWg is indeed the
gateway of that address, then it can intercept the challenge and respond; see
phase 2 in Figure (Bl If all challenges receive correct responses, then GWpg is
validated to control the network block that it claimed.

The following describes the challenge and response messages.

Challenge. The challenge is an SvPDD-query for a random string, denoted by c.

Response. The response is the tuple < ¢, HGWg, pkg, netg) >, where ¢ is an
echo of the challenge and < GWg, pkg, netg > is GWpg’s IPsec configuration; H
is a cryptographic hash function.

When GW, receives the response (returned by SvPDD after a challenge-
response session completes), it verifies that the value ¢ is correct. GWpa also
verifies that the hash value matches that of GWg, pkg and netg which were re-
ceived in the Initiation phase, in order to ensure that the responder does not
change.

5.3 Invocation Phase

In the last phase, GWp invokes IKE [14] and attempts to bootstrap IPsec (phase 3
in Figure (), using the remote configuration < GWg, pkg, netg >.

If GWg has the corresponding configuration of GWa (< GWa, pka, neta >),
then IKE will establish an IPsec tunnel between the two gateways@. Otherwise,
IKE aborts; in this case, GWa requests GWg to initiate a PnP-IPsec handshake

% Since the gateways run PnP-IPsec without coordination, it is likely that GWg had
already received GWa’s public IPsec configuration.

http://www.it-ebooks.info/

268 Y. Gilad and A. Herzberg

in the opposite direction (see Figure[H]). The request is an SvPDD-query which
specifies GWp'’s public IPsec configuration configuration, < GWa, pka, neta >, as
well as the solution to the client puzzle (i.e., proof of work) and cookie that GWpg
sent in the Initiation phase. This request is encrypted using GWg’s public key;
therefore, it does not leak the identity of the initiator (GWa), which is required
in order to anonymize queries and use SvPDD (see Section [B.1]).

When GWpg receives this request, it re-generates the puzzle using the cookie
and verifies the solution of the puzzle. If the solution is correct, then GWg may
accept the request, if it is interested in setting up a tunnel with GWa (e.g., this
may depend on the Initiator’s network, neta); otherwise GWg rejects the request.
If GW3g accepts, then it continues to the handshake’s Validation phase.

In the Invocation phase of this second handshake both gateways will have
each other’s configurations (IKE can bootstrap IPsec). However, if IKE initiation
does not succeed (on the second time), then a MitM is assumed to block IKE
(preventing establishment of IPsec), and the gateways block the (clear-text)
traffic between their networks.

5.4 Security Discussion

In this subsection we motivate the security properties of PnP-IPsec.

Discovery: PnP-IPsec gateways of communicating hosts quickly detect each other.

Assume that Alice sends packets to Bob. For every such packet, the probability
that GWpa (Alice’s gateway) initiates the PnP-IPsec handshake is p; namely,
the probability that the handshake does not initiate after k packets is (1 —
p)¥, i.e., exponentially decreasing (since p > 0). When GWa completes the PnP-
IPsec handshake, i.e., retrieves and validates GWpg’s public IPsec configuration,
it triggers the handshake in the opposite direction. Namely, only a few packets
travel between Alice and Bob before the gateways discover each other.

Authentication: a PnP-IPsec gateway learns the IPsec configuration from the
correct responder, rather than a MitM attacker.

This property of PnP-IPsec follows from the authenticity property of SvPDD,
since the configuration is obtained over an SvPDD-session (in the Initiation
phase).

Correctness: a gateway only learns a correct configuration from its peer.

The gateway learns the configuration from the correct peer (the authenticity
property). It is left to show that this configuration is also correct; namely, that a
malicious responder cannot persuade the initiator that it controls a false network
block. We now motivate why such malicious responder will not pass the Valida-
tion phase, i.e., the responder will not be able to provide a correct response for
at least one challenge; we refer to [7] for further details.

Assume that the responder controls nety, but advertises netp # nety; namely,
|netinnety|
Inets|

is a~™, where m is the number of challenge-response sessions (and number
of different challenge destination addresses); i.e., the probability that a gateway

= « < 1. The probability that the responder receives all challenges

http://www.it-ebooks.info/

Plug-and-Play IP Security 269

does not control the entire network block that it claims, but passes the Validation
phase, is negligible in m. In practice the ratio is often o < 1, because ISPs use
CIDR address allocation; we refer to [7] for further analysis of the network block
validation technique.

Resilience to DoS: PnP-IPsec does not open a new denial of service attack vector
on the responder.

We show that: first, PnP-IPsec has low communication and computational
requirements from the responder; and second, the responder does not keep any
state during the handshake.

First, in terms of communication load, the responder only sends one message
(response) for every message (query) that the initiator sends. In terms of com-
putation, the responder generates a client puzzle in the Initiation phase, which is
very efficient (client puzzles [3] are means to mitigate DoS attacks). An initiator
can cause the responder to initiate a handshake, however this requires solving
the responder’s puzzle, which has significant computational overhead.

Second, in terms of memory, the responder does not keep state per-peer or
between requests: (1) the responder provides its (single, global) public IPsec
configuration during the Initiation phase; (2) the responder only requires the
challenge-field specified in the challenge packet in order to generate the corre-
sponding response during the Validation phase; (3) the responder re-generates,
rather than saves, the client puzzle (using the cookie) when it receives a request
to initiate a PnP-IPsec handshake in the Invocation phase.

6 Extending PnP-IPsec for Multiple Gateways

PnP-IPsec should establish an IPsec tunnel between the gateways that are ‘clos-
est’ to the communicating hosts; these are GWp and GWpg in the example network
topology that is illustrated in Figuredl However, an intermediate non-malicious
gateway, such as GW¢, who is unaware of the existence of a gateway behind
it (i.e., GWg) may unintentionally ‘hijack’ the PuP-IPsec handshake by respond-
ing to the Initiation-phase message that GWa sends to Bob (see Figure (). This
section describes the discovery process for lower-tier gateways, where GW¢ learns
that netg is, in-fact, under control of GWBE.

6.1 Proactive Gateway Discovery

In order to detect higher-tier gateways, a PnP-IPsec gateway sends a discovery
message to a random address outside of its network block. This message specifies
a random identifier, the gateway’s public key and its network block.

If a gateway, say GWpg (see Figure M), connects to the Internet via another
PnP-IPsec gateway, GWc, then GW¢ will intercept the discovery message and

3 A malicious GW¢ may not follow the protocol described in this section and hijack
connections to netg, in this case GWg will identify GW¢ as a near MitM (since
PnP-IPsec builds over SvPDD).

http://www.it-ebooks.info/

270 Y. Gilad and A. Herzberg

initiate a network block validation process with GWg. Network block validation
is similar to that described in Section (. 2lexcept that it does not run over SvPDD;
i.e., the challenges and responses are transmitted directly to their destinations
(and not via the anonymity network). The reason that we do not employ SvPDD
is that, in this case, protection against MitM attackers is not required: if there is
a MitM attacker between GW¢ and GWg who hijacks the PnP-IPsec handshake,
then he will be detected since PnP-IPsec runs over SvPDD (our goal in this
section is only to detect intermediate non-malicious PnP-IPsec gateways).

If the network block validation completes successfully, then GW¢ learns that
netg is in-fact under control of GWg. In this case, GW¢ will not respond to future
PnP-IPsec messages sent to or from netg (see network illustration in Figure [)),
which will allow GWp and GWpg to use PnP-IPsec and establish a tunnel.

Dynamic Network Topologies. New PnP-IPsec gateways can unexpectedly
set-up while others can suddenly shut-down. Therefore, PnP-IPsec gateways
periodically send discovery messages, in order to allow new higher-tier gateways
to detect their presence (and network block ownership).

Additionally, gateways (such as GW¢ in Figure[d]) periodically send challenges
to their subnets (such as netg) that are marked as controlled by lower-tier gate-
ways (i.e., GWg) in order to ensure that the lower-tier gateways are still available
and control their subnets.

Finally, when a PnP-IPsec gateway (such as GWg) gracefully shuts down,
it sends a prune message to its higher-tier gateway (GWc) in order to revoke
ownership over the subnet (netg) immediately.

7 Implementation and Deployment

We implemented PnP-IPsec as well as the underlying SvPDD protocol, as an
open-source application for Linux gateways; our implementation is available at
http://pnpipsec.sourceforge.net/.

In order to deploy PnP-IPsec, the network administrator only needs to install
our application on the local gateway and provide it with the gateway’s pri-
vate/public key pair (since the keys are not signed, e.g., by a CA, they may also
be automatically generated at install time). PnP-IPsec learns the reminder of
the local IPsec configuration, i.e., gateway’s IP address and the network address
block behind it, by reading the routing table. The configuration also includes the
near-MitM threshold (§), the probability to initiate a PnP-IPsec handshake (p),
and security parameters (n, m), which have default values that may be modified
by the administrator. The following is an example of a deployment command:

PnpIPsec.py private-key-file public-key-file

In terms of efficiency, our implementation establishes an IPsec tunnel be-
tween two gateways, whose networks communicate at the rate 1mbps, in approxi-
mately two minutes; each gateway sends less than 3MB of PnP-IPsec traffic. This
measurement is by using the default parameters: § = %,p: ﬁ, n = 40, m! = 20.

http://pnpipsec.sourceforge.net/
http://www.it-ebooks.info/

Plug-and-Play IP Security 271

8 Conclusions and Future Work

Our main conclusion from this work is that while ‘conservative’ key infrastruc-
tures such as key distribution centers and certification authorities may be incon-
venient for deployment of some protocols, other infrastructures may be suitable.
In particular, we showed how available anonymity networks can be utilized to
allow convenient and secure deployment of IPsec.

We presented SvPDD, a query-response protocol that utilizes an anonymity
infrastructure to cope with the man-in-the-middle threat model. We built PnP-
IPsec over SvPDD, which allows automatic establishment of IPsec tunnels. We
provided an open-source implementation of PnP-IPsec and hope that this work
will increase the deployment of the IPsec defense.

Future Work. The model considered in this paper, of using an available
anonymity infrastructure in order to authenticate public keys and data, is prac-
tical. It is therefore desirable to formally define this model which may benefit
other scenarios and protocols.

Furthermore, we believe that our protocols could further be improved. In
terms of efficiency, the use of anonymity networks to relay messages usually
comes at the price of encapsulation overhead. Can we improve the performance of
SvPDD without jeopardizing its security requirements? In terms of functionality,
can we extend PnP-IPsec to support setup of multicast IPsec tunnels?

Acknowledgements. We would like to thank Adrian Perrig and the anony-
mous referees for their helpful comments and suggestions. This research was
supported by grant 1354/11 from the Israeli Science Foundation (ISF), and a
grant from the Ministry of Science and Technology, Israel.

References

1. Abramov, R., Herzberg, A.: TCP Ack Storm DoS Attacks. Computers & Secu-
rity 33, 12-27 (2013)

2. Alicherry, M., Keromytis, A.D.: DoubleCheck: Multi-Path Verification against
Man-in-the-Middle Attacks. In: ISCC, pp. 557-563. IEEE (2009)

3. Aura, T., Nikander, P., Leiwo, J.: DoS-Resistant Authentication with Client Puz-
zles. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Pro-
tocols. LNCS, vol. 2133, pp. 170-177. Springer, Heidelberg (2001)

4. Comodo™. Incident Report (March 2011), Published online
http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html

5. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: The Second-Generation Onion
Router. In: USENIX Security Symposium, pp. 303-320. USENIX (2004)

6. Eddy, W.: TCP SYN Flooding Attacks and Common Mitigations. RFC 4987 (In-
formational) (August 2007)

7. Gilad, Y., Herzberg, A.: LOT: A Defense Against IP Spoofing and Flooding At-
tacks. ACM Transactions on Information and System Security 15(2), 6:1-6:30
(2012)

http://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
http://www.it-ebooks.info/

272

8.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Y. Gilad and A. Herzberg

Gilad, Y., Herzberg, A.: Plug-and-Play IP Security: Anonymity Infrastructure In-
stead of PKI. Technical report, Bar Ilan University, Dept. of Computer Science,
Network Security Lab, (June 2013), Published online
http://eprint.iacr.org/2013/410

Gilmore, J.: FreeS/WAN, Published online www.freeswan.org

. Goldwasser, S., Micali, S.: Probabilistic Encryption. Journal of Computer and Sys-

tem Sciences 28(2), 270-299 (1984)

Herzberg, A., Shulman, H.: Stealth DoS Attacks on Secure Channels. In: Pro-
ceedings of Network and Distributed Systems Security (NDSS). Internet Society
(February 2010)

Housley, R., Ford, W., Polk, W., Solo, D.: Internet X.509 Public Key Infrastruc-
ture Certificate and CRL Profile. RFC 2459 (Proposed Standard) (January 1999);
Obsoleted by RFC 3280

Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Cryptography from Anonymity.
In: ITEEE Symposium on Foundations of Computer Science, FOCS, pp. 239-248
(2006)

Kaufman, C., Hoffman, P., Nir, Y., Eronen, P.: Internet Key Exchange Protocol
Version 2 (IKEv2). RFC 5996 (Proposed Standard) (September 2010); Updated
by RFC 5998

Kent, S., Seo, K.: Security Architecture for the Internet Protocol. RFC 4301 (Pro-
posed Standard) (December 2005); Updated by RFC 6040

Marlinspike, M.: Convergence (2011), Published online http://convergence.io
The Tor Project. Tor Metrics Portal (April 2013), Published online
https://metrics.torproject.org/graphs.html

Richardson, M.: A Method for Storing IPsec Keying Material in DNS. RFC 4025
(Proposed Standard) (March 2005)

Richardson, M., Redelmeier, D.H.: Opportunistic Encryption using the Internet
Key Exchange (IKE). RFC 4322 (Informational) (December 2005)

Sampigethaya, K., Poovendran, R.: A Survey on Mix Networks and Their Secure
Applications. Proceedings of the IEEE 94(12), 2142-2181 (2006)

Schmeing, C.: FreeS/WAN Announcement (2004), Published online
http://www.freeswan.org/ending_letter.html

Stevens, M., Sotirov, A.,; Appelbaum, J., Lenstra, A., Molnar, D., Osvik, D.A., de
Weger, B.: Short Chosen-Prefix Collisions for MD5 and the Creation of a Rogue
CA Certificate. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 55-69.
Springer, Heidelberg (2009)

Touch, J., Black, D., Wang, Y.: Problem and Applicability Statement for Better-
Than-Nothing Security (BTNS). RFC 5387 (Informational) (November 2008)
Wendlandt, D., Andersen, D.G., Perrig, A.: Perspectives: Improving SSH-style Host
Authentication with Multi-Path Probing. In: Isaacs, R., Zhou, Y. (eds.) USENIX
Annual Technical Conference, pp. 321-334. USENIX Association (2008)
Williams, N.; Richardson, M.: Better-Than-Nothing Security: An Unauthenticated
Mode of IPsec. RFC 5386 (Proposed Standard) (November 2008)

Ylonen, T., Lonvick, C.: The Secure Shell (SSH) Protocol Architecture. RFC 4251
(Proposed Standard) (January 2006)

http://eprint.iacr.org/2013/410
www.freeswan.org
http://convergence.io
https://metrics.torproject.org/graphs.html
http://www.freeswan.org/ending_letter.html
http://www.it-ebooks.info/

Managing the Weakest Link

A Game-Theoretic Approach for the Mitigation
of Insider Threats

Aron Laszka!?, Benjamin Johnson'3, Pascal Schéttle!4,
Jens Grossklags', and Rainer Bohme?*

! College of Information Sciences and Technology,
Pennsylvania State University, USA
2 Department of Networked Systems and Services,
Budapest University of Technology and Economics, Hungary
3 Department of Mathematics, University of California, Berkeley, USA
4 Department of Information Systems, University of Miinster, Germany

Abstract. We introduce a two-player stochastic game for modeling se-
cure team selection to add resilience against insider threats. A project
manager, Alice, has a secret she wants to protect but must share with
a team of individuals selected from within her organization; while an
adversary, Eve, wants to learn this secret by bribing one potential team
member. Eve does not know which individuals will be chosen by Alice,
but both players have information about the bribeability of each po-
tential team member. Specifically, the amount required to successfully
bribe each such individual is given by a random variable with a known
distribution but an unknown realization.

We characterize best-response strategies for both players, and give
necessary conditions for determining the game’s equilibria. We find that
Alice’s best strategy involves minimizing the information available to
Eve about the team composition. In particular, she should select each
potential team member with a non-zero probability, unless she has a
perfectly secure strategy. In the special case where the bribeability of
each employee is given by a uniformly-distributed random variable, the
equilibria can be divided into two outcomes — either Alice is perfectly
secure, or her protection is based only on the randomness of her selection.

Keywords: Insider Threats, Cyberespionage, Game Theory, Computer
Security, Access Control.

1 Introduction

Providing effective access control in organizations has been refered to as the
“traditional center of gravity of computer security” since it is a melting pot
for human factors, systems engineering and formal computer science approaches
[1]. Over the last decades, a large number of important contributions have been
made to address various technical challenges to the problem of access control for
important systems and sensitive data [18I19].

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 273-£90] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.it-ebooks.info/

274 A. Laszka et al.

This body of research is motivated in equal parts by the threat of malicious
attackers from the outside and potential abuse by legitimate system users. An-
derson further distinguishes between those situations in which insiders exploit
technical vulnerabilities of a system in opportunistic ways, and other situations
in which employees abuse the trust placed in them [I]. In our work, we address
the latter dimension of the problem space.

Data theft by trusted employees covers a significant share of insider attacks.
For example, a CERT investigation of 23 attacks showed that “in 78% of the
incidents, the insiders were authorized users with active computer accounts at
the time of the incident. In 43% of the cases, the insider used his or her own
username and password to carry out the incident” [16].

These attacks are occasionally attributed to disgruntled employees and are
said to be primarily destructive in nature. However, the steady rise of cyber-
espionage activities strongly motivates the threat scenario of employees stealing
information for monetary rewards. A recent article summarized publicly-known
United States legal data from the past four years and stated that “nearly 100
individual or corporate defendants have been charged by the Justice Department
with stealing trade secrets or classified information” [I0]. The article just con-
sidered theft benefiting one particular foreign nation. Therefore, it is reasonable
to assume that the data merely represents the tip of the proverbial iceberg.

Turning a trusted employee into a spy provides a number of benefits for an
outside attacker. First, a security compromise by an insider might not be discov-
erable in comparison to external network-based attacks that might leave traces
identifiable for expert forensics teams. The result is that a corporation cannot
adequately plan and respond to evidence of a stolen trade secret. Second, an
insider can point the attacker towards particularly valuable secrets by identify-
ing the so-to-speak needle in the haystack. Given the accelerating data growth
within corporations it makes sense to assume that attackers are also suffering
from information overload as a result of their successful but unguided network
penetrations. Third, an insider can help the attacker interpret the stolen data
through complementary communications that do not have to take place at the
work location. Lastly, having an insider conduct the attack might be the only fea-
sibly way for an attacker to circumvent the defenses of particularly well-defended
targets such as military and intelligence services, i.e., the attacker makes use of
the human as the weakest link.

In this paper, we develop a formal model in which an attacker sidesteps tech-
nical security mechanisms by offering a bribe to one member of a project team
who works with sensitive data or business secrets. By applying game-theoretic
tools, we derive optimal strategies for the defender and attacker, respectively,
and provide numerical results to illustrate and explain our findings.

With our work, we intend to start a discussion about considering the com-
position of project teams as a formal and critical dimension of a comprehensive
corporate security policy.

The remainder of the paper is structured as follows: Section Pl provides the
background for our research and considers related work. In Section [3 we define

http://www.it-ebooks.info/

Managing the Weakest Link 275

the basic properties of our model. The conditions for Nash equilibria are given
in Section @ Section [instantiates our model with explicit distributions, and
numerical illustrations of the derived solutions are given in Section[6l We discuss
our results and provide concluding remarks in Section [7l

2 Background and Related Work

2.1 Studies on Insider Threats and Cyber-espionage

Over the last several years, much research has been published in the area of
insider threats, using different models and loss figures. For example, Carnegie
Mellon University’s CERT has published several reports concerning the field
of insider threats, and industrial and economic espionage. Their 2011 report
identifies two different models of espionage [13]. Motivating for our scenario is
the so-called Ambitious Leader Model, where a leader (either from the inside or
the outside of the organization), tries to convince (other) employees to follow
her and to divulge secrets. In an earlier work, the institute identified several
indicators that preceded either industrial espionage or sabotage, and thus could
give hints if an employee might be vulnerable to being bribed [3]. In our research,
we do not explicitly model behavioral and motivational factors that influence
the trustworthiness of an employee. Instead, we assume that the defender has
an indicator available to measure the level of trustworthiness.

The awareness of this threat is represented, for example, by a brochure pub-
lished by the Federal Bureau of Investigation (FBI) [g§], that lists:

“A domestic or foreign business competitor or foreign government intent
on illegally acquiring a company’s proprietary information and trade
secrets may wish to place a spy into a company in order to gain access to
non-public information. Alternatively, they may try to recruit an existing
employee to do the same thing.”

Additionally, the FBI “estimates that every year billions of U.S. dollars are lost to
foreign and domestic competitors who deliberately target economic intelligence
in flourishing U.S. industries and technologies [9].” The FBI further lists the
following recommended activities for organizations: “Implement a proactive plan
for safeguarding trade secrets, and confine intellectual knowledge on a need-to-
know basis [9].”

Another example from Germany includes a 2012 report which identifies the
loss for the German industry caused by industrial espionage to be around 4.2
billion € [6]. In this study, over 70% of these losses were caused by members
of their own organization, through a combination of giving away intellectual
property (47.8%) and failing to disclose their knowledge due to social factors
(22.7%). Note that these numbers might be unreliable and interest-driven, as
highlighted in [2].

http://www.it-ebooks.info/

276 A. Laszka et al.

2.2 Related Work

This paper touches several different research areas. The struggle between hiders
of information and seekers of information is ubiquitous in the study of steganog-
raphy, the field from which our idea originated [I1]. This inspiration arose from
exploring the plight of a steganographer who wishes to hide k bits in a binary
cover sequence of length n, and a steganalyst who wishes to detect whether the
sequence has been modified. That model differs significantly from our model
here, as the authors assume an equal a priori probability of modified and un-
modified sequences, and the function that measures the predictability of sequence
positions is part of the model as a parameter.

Another area that is directly connected to the situation we model is the or-
ganization of firms under weak intellectual property rights. For example, in [17],
the author considers a situation in which a monopolist may distribute intellec-
tual property across two employees. There is also a competitor who might hire
one of these two to gain access to the intellectual property. The author models
this situation as a leader—follower game, and derives equilibria.

There are many additional research directions covering the subject of insider
threats, including deterrence theory [7], game theory [12] and trust models [5],
which are all tangent to our model. But, to the best of our knowledge, none of
the published models gives directions for a project manager on how to staff a
team, that has to know a specific intellectual property, while being aware that
an attacker might try to bribe one of his personnel.

3 Model Definition

In this section, we describe a two-player, non-zero-sum, non-deterministic game
which models the team composition scenario. First, we describe the general
context and environment of the game. Next, we introduce the game’s players.
Then we define these players’ pure strategies, and the payoffs resulting from these
simple choices. Finally, we introduce notation to represent mixed strategies and
express the players’ expected payoffs in terms of this notation.

3.1 Environment

In our model, an organization with a secret of high value has N employees
who are qualified to operate on projects that require knowing the secret. The
organization must share the secret with at least k employees in order to operate.
The employees have varying levels of trustworthiness. For a given employee 1,
this trustworthiness level is given by a random variable T; whose distribution 7;
is known. We explicitly disregard other constraints on team building and assume
that all aspects of the trustworthiness of an employee can be captured by the
random variable T;. If T; = t;, then employee i will reveal her known secrets
whenever she is bribed by an amount at least ¢;, but she will not reveal the
secret if she is bribed by an amount less than ¢;. We use the standard notation

http://www.it-ebooks.info/

Managing the Weakest Link 277

Pr(b) = Pr{T; <) (1)

to denote the probability that the trustworthiness level of employee i is at most b.

3.2 Players

The players in our game are Alice and Eve. Alice is an organization’s project
manager who is responsible for selecting a team of qualified employees to work on
a confidential project. The project requires each team member to know a secret
of the organization, and this secret has a value S. Alice needs to share this secret
with k£ of her N qualified employees. Eve is a spy from either inside or outside
of the organization. Eve wants to know the secret and has the resources to bribe
or eavesdrop on one of Alice’s employees. If Eve eavesdrops, the trustworthiness
level of an employee can be interpreted as a measure of difficulty for Eve to
eavesdrop on that employee. Note that Eve does not know which employees are
on the team.

3.3 Strategy Sets

Alice’s pure strategy choice is to select a subset of her N employees with whom

to share the secret. Formally, she chooses a size-k subset I of {1,..., N}.
Eve’s pure strategy choice is to select one employee and an amount to bribe.
Formally, she chooses a pair (i,b) consisting of an index ¢ € {1,..., N} and a

bribe value b € Rxq.

3.4 Payoffs

Suppose that Alice plays a pure strategy I, and Eve plays a pure strategy (i, b).
If i € I and T; < b, then Eve wins the value of the secret minus the amount of
the bribe, and Alice loses the value of the secret. In all other cases, Eve loses the
amount of the bribe, and Alice loses nothing.

Table 1. Payoffs for Alice and Eve for the strategy profile I, (i, b)

Strategy profile Payoff for
and outcome Alice Eve

i€l and T; <b -S S-b
i¢1 or T; >0 0 —b

3.5 Representation of Mixed Strategies

A mixed strategy is a distribution over pure strategies. For Alice, the canonical
representation of her mixed strategy space is a finite probability distribution on
the set of size-k subsets of {1,..., N}. For Eve, the canonical representation of
her mixed strategy space is a continuous probability distribution over the set
{1,..., N} x R>g. Because of the structure of the game, the payoff for both
players is determined by simpler representations of the strategy spaces than the
canonical ones, and we proceed to describe these representations next.

http://www.it-ebooks.info/

278 A. Laszka et al.

Mixed Strategy for Alice. In the canonical representation of Alice’s mixed
strategy, we would let a; denote the probability that she recruits the members
of the size-k set I into the project team. However, since Eve can bribe only one
employee, the payoff for any mixed strategy depends only on the probabilities of
sharing the secret with each employee. Since several different mixed strategies
might induce the same projection onto employee probabilities, we gain simplicity
by restricting our attention to these projections.

By overloading notation, for eachi =1, ..., N, we let a; denote the probability
that Alice shares the secret with employee i. Formally,

a; = Z arg. (2)

I:iel

The requirement that Alice has to share the secret with & employees induces
the notational constraint v
Z a; = k. (3)
i=1

Furthermore, it can be shown easily that, for any sequence (a;) of N probabilities
whose sum is k, there exists a mixed strategy for Alice whose projection is {a;).
Consequently, we will represent Alice’s mixed strategies by such sequences for
the remainder of this paper.

Mixed Strategy for Eve. To represent Eve’s mixed strategies, which are
distributions over the set {1,..., N} x R>¢, we introduce two random variables,
Y and B. Random variable Y takes values in {1, ..., N}, and it represents which
employee Eve has chosen to bribe. Random variable B takes values in R>¢, and
represents the amount of the bribe.

Overloading notation in a way that is similar to what we did for Alice, for
each i = 1,..., N, we define e; to be the probability that Eve bribes employee
1, so that we have

e; = Pr[Y =1i]. (4)

Since Eve always chooses exactly one employee, we have

N
Zei =1. (5)

To describe a distribution over bribes, we sometimes use the notation
Fp(b) = Pr[B < b], (6)

which gives the probability that the value of the bribe chosen by Eve is at most
b. It is also useful to describe the conditional distributions over bribes focused
on a particular employee i. For each i = 1,..., N, let B; be the random variable
whose range is the set of all possible bribes to player i, and whose distribution
B; is defined by

Fp,(b) =Pr[B; < b =Pr[B <blY =il (7)

i

http://www.it-ebooks.info/

Managing the Weakest Link 279

In what follows, we will represent Eve’s mixed strategies as pairs ({e;) , (B;)),
where each e; is the probability that Eve bribes the employee i, and each B; is a
distribution over bribe values, conditioned on the assumption that Eve chooses
to bribe employee 1.

3.6 Payoffs for Mixed Strategies

In order to use the simplified mixed-strategy representation defined above, we
have to express the players’ expected payoffs in terms of these representations. If
Alice plays a mixed strategy represented by (a;) and Eve plays a mixed strategy
represented by ({e;), (B;)), then the expected payoff for Alice is

N
-S- Zai -e; - Pr[T; < By (8)

i=1
and the expected payoff for Eve is

N

S~Z(ai~ei~Pr[Ti < B])- > ei-E[B], (9)

i=1

where E[B;] denotes the expected value of B; under the distribution B;.

4 Analytical Results

Our goal in this section is to derive analytical results on the structure of the
Nash equilibria of the game. We begin by characterizing Alice’s and Eve’s best-
response strategies. Then, we use these characterizations to constrain Alice’s
and Eve’s strategies in an equilibrium. Finally, based on these constraints, we
formulate an algorithm for computing an equilibrium.

4.1 Best-Response Strategies

Alice’s Best Response. For a fixed strategy of Eve, Alice’s best response
minimizes the probability of the secret being compromised. Since the probability
of employee i being targeted and successfully bribed is e; - Pr[T; < B;], Alice has
to choose a set I of k employees to minimize) ;. ; e; - Pr[T; < B;]. However, as
the set of & employees minimizing the probability of the secret being disclosed
can be non-unique, Alice’s best response can be a mixed strategy (a;) whose
support consists of more than k£ employees. This notion is formalized by the
following lemma:

Lemma 1. Given Eve’s mized strateqy ({e;),(B;)), Alice’s best response can be
characterized as follows:

— For any employee i, if there are at least N — k employees whose probabilities
of being targeted and successfully bribed are strictly greater than that of i,
then a; = 1.

http://www.it-ebooks.info/

280 A. Laszka et al.

— For any employee i, if there are at least k employees whose probabilities of
being targeted and successfully bribed are strictly less than that of i, then
a; = 0.

Proof. First, for any employee i, if there are at least N — k employees whose
probabilities of sharing the secret are strictly greater than that of ¢, then i is
a member of every size-k subset of employees that minimizes the probability of
the secret being disclosed. Thus, in any best response, Alice always shares the
secret with this employee 3.

Second, for any employee i, if there are at least k employees whose probabilities
of sharing he secret are strictly less than that of 4, then 7 cannot be a member of
any k-subset that minimizes the probability of the secret being disclosed. Thus,
1 cannot be in the support of any mixed strategy that is a best response for
Alice. a

Eve’s Best Response. Suppose that Alice is playing a mixed strategy where
a; is the probability that she shares the secret with employee i. We define
MaxUE(7;, a;) to be the maximum payoff that Eve can attain from targeting
employee i. Formally,

MaxUE(7;,a;) = max (a; - S - Pr[T; < b —0). (10)
bERZO
Lemma 2. For any employee i and trustworthiness distribution T;, Eve’s mazx-
imum payoff MaxUE(T;, a;) as a function of Alice’s secret-sharing probability a;
has the following properties:

1. MaxUE(T;, 0) = 0,
2. MaxUE(T;, x) is increasing in x,
3. MaxUE(T;, z) is uniformly continuous in x.

Proof.

1. First, it is clear that the maximum of maxsegr.,(—b) is attained at b = 0.

2. To show that the function is increasing in x, let z,y € [0,1] with 2 < y.
Let b; be a bribe value at which the maximum payoff is attained for secret-
sharing probability x, that is, MaxUE(T;,z) = x-S - Pr[T; < b,] — b,. Then,
we have

MaxUE(T;,y) >y - S - Pr[T; < by] — b,
>x-S-Pr[T; <bg]— b,
= MaxUE(T;, x).

3. Finally, to show uniform continuity, let =,y € [0,1] with < y, and let b,
be a bribe value at which the maximum payoff is attained for secret-sharing
probability y, that is, MaxUE(7;,y) = y - S - Pr[T; < b,] — b,. Using the
previous result that MaxUE(T;, y) is increasing, we have

http://www.it-ebooks.info/

Managing the Weakest Link 281

0 < MaxUE(T;,y) — MaxUE(T;, x)
<(y-S-Pr[li <b)] —by) — (x5 Pr[T; < by] — by)
—(y—)--PrlT; < b,
<@y—=z)-S

So MaxUE(T;, x) satisfies a Lipschitz condition in the variable z with Lips-
chitz constant S; and hence, it is uniformly continuous. a

For a given employee, it is possible for more than one bribe value to give Eve
the maximal payoff. We define ArgMaxBE(T;, z) to be the set of bribes that give
Eve her maximum payoff for employee ¢, which is a function of the employee’s
trustworthiness level distribution and the probability of receiving the secret from
Alice. Formally,

ArgMaxBE(T;, a;) = argmax (a; - S - Pr[T; < b] —b). (11)
beER>(

Using this notation, we may define constraints on Eve’s best response strategy
as follows.

Lemma 3. Given any strategy (a;) for Alice, Eve’s best response selects an
employee i with the largest MaxUE(T;, a;) over all i € {1,...,N}, and then
chooses a bribe value b from ArgMaxBE(T;, a;). If there are multiple pairs (i,b)
satisfying these constraints, then Fve may choose any distribution whose support
1s a subset of these payoff-mazximizing pure strategies.

Proof. Follows readily from Equations (@), (I0), and (ITI). O

4.2 Nash Equilibria

Above, we introduced constraints on best-response strategies. In the following
subsection, we introduce additional constraints on equilibrium strategies.

Alice’s Strategy in an Equilibrium. It is generally in Alice’s interest to
minimize the maximum attainable payoff for Eve, as this generally (but, since
the game is non-zero sum, not necessarily) minimizes her loss. We know that
Eve’s best response is always to choose an employee (or a set of employees)
which will maximize MaxUE(T;, a;) over i. Therefore, in an equilibrium, Alice’s
strategy should try to equalize these quantities, subject to the constraints that
her sharing probabilities cannot exceed 1 and that they sum to k.
This notion is made formal in the following theorem:

Theorem 1. In any Nash equilibrium,

1. if a;, a5 < 1, then MaxUE(T;, a;) = MaxUE(T;, a;), and
2. if a; < a; =1, then MaxUE(T;, a;) < MaxUE(T;, a;).

http://www.it-ebooks.info/

282 A. Laszka et al.

Proof. Let (a;), ({e;),(B;)) be Alice’s and Eve’s mixed strategies and assume
that this strategy profile is a Nash equilibrium.

1. For the sake of contradiction, suppose that a;,a; < 1 and it holds that
MaxUE(7;, a;) # MaxUE(T;, a;). We can assume without loss of generality
that MaxUE(7;,a;) < MaxUE(7;,a;). Then, MaxUE(7;,a;) > 0, which
(from Lemma 211) implies that a; > 0. From Lemma [3] we have that the
support of Eve’s best-response mixed strategy does not include ¢. Thus, Alice
may strictly increase a; towards 1, and strictly decrease every other non-zero
component of her strategy for employees other than i, while still satisfying
the constraint), a,, = k. By decreasing her secret-sharing probability
on every employee that Eve might bribe, Alice necessarily decreases the
total probability of Eve learning the secret. Therefore, Alice can improve her
expected payoff by changing her strategy, which contradicts the equilibrium
condition.

2. For the sake of contradiction, suppose that a; < a; = 1 and that
MaxUE(7;, a;) > MaxUE(Tj;, a;). Then, MaxUE(7;, ;) > 0, which (based on
Lemma [2]) implies that a; > 0. Consequently, we have (from Lemma[B]) that
the support of Eve’s mixed strategy does not include employee j. So Alice
may simultaneously increase a; towards 1 and decrease her non-zero secret-
sharing probabilities for employees other than j, all while satisfying the
constraint) a, = k. Again, by decreasing her secret-sharing probability
on every employee that Eve might bribe, Alice necessarily decreases the
total probability of Eve learning the secret. Hence, this strategy change will
increase her expected payoff, contradicting the equilibrium condition. a

It follows from Theorem [I] that Alice’s equilibrium strategy (a;) may have
some employees with whom she shares the secret with certainty, but for all other
employees, her secret-sharing distribution is only constrained by a smoothness
constraint on the quantities MaxUE(7;, a;). Furthermore, these quantities do
not depend on Eve’s strategy, a fact on which we will rely when computing an
equilibrium.

From Theorem [I we also have that:

Corollary 1. In any Nash equilibrium,

— Alice is either secure, that is, Eve has no strategy against her with a positive
payoff, or she shares the secret with every employee with a mon-zero proba-
bility. Formally, either MaxUE(T;,a;) = 0 for every employee i, or a; > 0
for every employee i.

— The employees with whom Alice shares the secret with certainty are at most
as likely to be targeted by FEve as the other employees, with whom Alice is
less likely to share the secret.

It is interesting to compare the first point of the above corollary with Lemma
Bl The former says that Alice shares the secret with every employee with a
non-zero probability (when she cannot be secure), while Lemma [3] says that

http://www.it-ebooks.info/

Managing the Weakest Link 283

Alice never shares the secret with an employee if there are at least k employees
that have lower probabilities of being targeted and successfully bribed. Since
an equilibrium strategy is necessarily a best response, it has to satisfy both
constraints. This implies that, in an equilibrium, Eve equalizes the probability
of targeting and successfully bribing over the set of employees that maximize
her payoff.

Eve’s Strategy in an Equilibrium. In this section, we build on the character-
ization of Alice’s equilibrium strategies presented in Theorem [l to characterize
Eve’s equilibrium strategies. In the previous paragraph, we discussed how Eve
equalizes the probability of targeting and successfully bribing over the set of
employees that maximize her payoff.

This notion is made formal in the following theorem:

Theorem 2. In any Nash equilibrium, if a;,a; < 1, then e; - Pr[T; < B;] =
€j ~Pr[Tj S Bj]

Proof. Let (a;), ({ei),(B;)) be Alice’s and Eve’s mixed strategies and assume
that this strategy profile is a Nash equilibrium. For the sake of contradiction,
suppose that (e; - Pr[T; < B;]) is non-uniform over the set of employees with
whom Alice does not always share the secret. Let I,,4, be the set of employees
i for which e; - Pr[T; < B;] is maximal.

First, assume that & < N — |L,,4z|. Then, Alice’s best response never shares
the secret with the employees in I 4z, that is, a; = 0 for all ¢ € I,;,4,, as there
are k strictly better employees (as stated in Lemma [I]). Consequently, we have
e; = 0 for every i € I, as Eve’ strategy also has to be a best response. But this
implies that e; - Pr[T; < B;] = 0 for every i such that a; < 1, which contradicts
that (e; - Pr[T; < B;]) is non-uniform. Thus, it has to hold that k > N — |Lyq4].

From k > N — |Laz|, we have that Alice’s best response always shares the
secret with every employee i for which e; - Pr[T; < B;] is not maximal (as stated
in Lemma[Il). Consequently, the only employees i for which a; < 1 holds are the
employees in I,,4,. But this contradicts that (e, - Pr[T; < B;]) is non-uniform
since all employees in I, have the same maximal e; - Pr[T; < By]. O

Finding an Equilibrium Based on Theorems [Il and] we can formulate the
following algorithm for finding an equilibrium of the game:

1. Find an equilibrium strategy (a}) for Alice:

We have to find an (a}) that satisfies the constraints of Theorem [l This
can be done, for example, using any multidimensional numerical optimiza-
tion method (e.g., the Nelder-Mead algorithm[I5]) by using the sum of the
amounts by which each constraining equality is violated as the objective func-
tion. Since we have from Lemma [that every MaxUE(7;, a;) is increasing
and uniformly continuous in a;, there always exists a solution (a}) satisfying
the constraints of Theorem [l Note that, since MaxUE(T;, a;) is not strictly
increasing, the solution might not be unique.

http://www.it-ebooks.info/

284 A. Laszka et al.

2. Find an equilibrium strategy ({(e}) , (B)) for Eve:
We have to find ({e}),(B)) that satisfies both Lemma [B] and Theorem [2
Let MaxUE* = max; MaxUE(T;,a}) and let I* be the set of employees for
whom the maximum is attained. If MaxzUE* = 0, then there is no strategy
with positive payoff for Eve, so let B} = 0 for every ¢ (and (e*) can be
arbitrary). Otherwise:

(a) For every i & I*, let ef = 0.
(b) For every i € I*, let B} always take some arbitrary but fixed bribe value
from ArgMaxBE(7;, af), and let
S
e = DHLSBI

i T (12)
>j PYT, <]

*

It can be verified easily that (a;

((ef), (B;)) form an equilibrium.

) also satisfies Lemma [Il Thus, (a}) and

5 Special Case: Uniform Distributions on Trustworthiness

In this section, we assume that the trustworthiness level of each employee 7 is
generated by a uniform random variable T; ~ U (l;, h;), 0 < l; < h; < S. In other
words, we assume that employee i never reveals the secret for a bribe less than
l;, always reveals it for a bribe more than or equal to h;, and the probability of
revealing it increases linearly between [; and h;. Note that we allow a different
distribution, i.e., different /; and h;, for each employee.

We begin our analysis by computing Eve’s optimal bribe values for a given
mixed strategy (a;) of Alice.

Lemma 4. FEve’s optimal bribe values are

{0} ifa; <4
ArgMaxBE(T;, a;) = { {0,h;} ifa; =% (13)

{h:} otherwise.

The proof is available in the online version on the authors’ websites.
For uniform trustworthiness level distributions, the equilibria of the game can
be characterized as follows:

Theorem 3. If the trustworthiness level of each employee is generated according
to a uniform distribution U(l;, h;), 0 < l; < h; < S, the equilibria of the game
can be characterized as follows:

- Ifk < %, then Alice is perfectly secure: in any equilibrium, a; < % for
every i, Fve never bribes any of the employees, and both players’ payoffs are
zero.

- Ifk = Eg}”, then in any equilibrium of the game, a; = % for every i, and
Eve’s payoff is zero.

http://www.it-ebooks.info/

Managing the Weakest Link 285

> % and B; = h; for every
1, and Eve’s payoff is strictly positive while Alice’s payoff is strictly negative.

Proof. Let (a;), ({e;),(B;)) be Alice’s and Eve’s mixed strategies and assume
that this strategy profile is a Nash equilibrium. We prove each case separately:

— k < == For the sake of contradiction, suppose that a; > i for some 1.

Then, there has to be a j such that a; < S, otherwise), a; = k < Z b

would not hold. Consequently, MaxUE(7;, a;) > MaxUE(T;, a;) and, from
Lemma[3] we have that e; = 0. Furthermore, from Theorems[Iland 2], we also
have that e; > 0. Therefore, Alice can increase her payoff by decreasing a;
and increasing a;, which contradicts the equilibrium condition. Thus, a; < %
has to hold for every 1.

Now, for the sake of contradiction, suppose that Eve targets and bribes
employee ¢ non-zero probability, that is, e; > 0 and B; # 0. Since Eve’s
strategy has to be a best response, we have that a; > % Consequently, there
has to exist some j satisfying a; < % From Lemma[3] we have that e; = 0.
Therefore, Alice can increase her payoff by decreasing a; and increasing a;,
which contradicts the equilibrium condition. Thus, Eve never bribes any of
the employees, and it follows immediately that both players’ payoffs are zero.

— k= % For the sake of contradiction, suppose that a; > % for some 1,
which implies that there has to be a j such that a; < % Then, we can show
that this leads to a contradiction using the same argument as in the first
paragraph of the previous case. Thus, a; = % for every i. The rest follows
readily from Lemma [4]

— k> =l
at least one 7 such that a; > %, which implies MaxUE(7;, a;) > 0. By using
the strategy e; = 1 and some constant bribe value from ArgMaxBE(7;,a;),
Eve can achieve a positive payoff. Consequently, for every strategy (a;), Eve’s
best response payoff has to be strictly positive. It follows immediately that,
in any equilibrium, Eve’s payoff is strictly positive while Alice’s payoff is
strictly negative.

Now, for the sake of contradiction, assume that a; < % for some ¢, which
implies MaxUE(7;, a;) = 0. Then, we have that e; = 0 from Lemmal[3l There-
fore, Alice can increase her payoff (i.e., decrease her loss) by increasing a;
and decreasing every non-zero component of her strategy, which contradicts
the equilibrium condition. Thus, a; > % has to hold for every 1.

Second, assume indirectly that, for some (a;) and e that form an equilib-
rium and some i, a; < % If e; = 0, then Alice would be able to increase her
payoff (i.e., decrease her loss) by simultaneously increasing a; and decreasing
some a; > %, which would contradict the assumption that (a;) and e form
an equilibrium. On the other hand, if e; > 0, then Eve would be able to
increase her payoff by simultaneously decreasing e; and increasing e; where

: First, it is easy to see that, for any strategy (a;), there has to be

j is such that a; > which would also lead to a contradiction. Therefore,

S)
we have that a; > L & for every i in any equilibrium. Finally, B; = h; follows

readily from Lemma [} O

http://www.it-ebooks.info/

286 A. Laszka et al.
6 Numerical Illustrations

In this section, we provide numerical illustrations for the results derived in the
previous section. Thus, throughout this section, we model the trustworthiness
levels of the employees as independent uniform random variables T; with param-
eters I; and h;.

Figure [[l shows both players’ equilibrium payoffs as functions of the number
of employees k that have to know the secret. First, when k is less than ETh,
Alice can choose a secure strategy such that bribing is infeasible for Eve. Thus,

both players’ payoffs are zero. Second, when k is larger than ET}L, but it is low

enough such that a; < 1 for each employee 4, Alice distributes k& — Zghi evenly
among the employees’ probabilities. Thus, the probability of compromise and,
hence, Alice’s loss and Eve’s payoff increase linearly with k. It is interesting to
note that, while Eve’s payoff is a continuous function of &, there is a big drop in
Alice’s payoff at the point where she can no longer play a secure strategy. This
phenomena is caused by the non-zero sum property of our game. Finally, when
k is large enough such that Alice assigns probability 1 to some employees, Eve’s
payoff increases super-linearly, while Alice’s loss increases non-monotonically.
Although Alice’s non-monotonically increasing loss might seem surprising at
first, it can be explained easily: as the secret is shared with more and more
employees who are more easily bribed (i.e., have lower h;), Eve can decrease
her bribing costs by targeting these employees. This might decrease her success
probability, but only by a value that is less than the decrease in her bribing

Payoff
[an]

—10 :

Fig. 1. The players’ equilibrium payoffs as functions of the number of employees k that
have to know the secret. The total number of employees is N = 100, the value of the
secret is assumed to be S = 10, and the trustworthiness level of each employee i is
assumed to be a random variable of the distribution U(l;, h;). For this example, each
h; is drawn from the set (0, 7) uniformly at random.

http://www.it-ebooks.info/

Managing the Weakest Link 287

0

-2
. : i
Payoff =5 /////// //

—6

—10
-8
—10

Fig. 2. Alice’s equilibrium payoff for all combinations of 1 < k < 50 and 1 < S < 10.
The parameters for this figure were generated in the same way as for Figure [l but
with N = 50.

14 11
¢ 05 ¢ 05
0+ 0+ !
20 40 60 80 100 20 40 60 80 100
7)
(a) k=50 (b) k=80

Fig. 3. Alice’s equilibrium strategies for (a) k = 50 and (b) 80. The total number of
employees is 100, the value of the secret is assumed to be S = 10, the trustworthiness
level of each employee ¢ is assumed to be a random variable of the distribution U (l;, hs),
and the employees are sorted in decreasing order based on their h; values. For this
example, each h; is drawn from the set (0, 7) uniformly at random.

costs. Consequently, sometimes Alice is better off if she shares the secret with
more employees than she has to.

Figure [2 shows Alice’s payoff (darker values indicate a higher loss) for a wide
spectrum of parameter combinations of k£ and S. The figure clearly shows that,
for lower values of S, the area where Alice can play a secure strategy (white
plain) is greater than the area for higher values of S. Note that, for most val-
ues of S, we can identify the same three regions for £ as in the previous figure:
for k < Eghi, Alice’s loss is zero; for k > Eghi, Alice’s loss first increases lin-
early with k, but for larger values of k, Alice’s loss increases non-monotonically.

http://www.it-ebooks.info/

288 A. Laszka et al.

0.2

2ihi
S

Fig. 4. Alice’s equilibrium strategies for < k < 50. The parameters for this figure
were generated in the same way as for Figure [but with N = 50. Again, the employees
are sorted in decreasing order based on their h; values.

As expected, the worst case for Alice is when the number of employees k that
have to know the secret is large and the value S of the secret is high.

Figure B shows Alice’s equilibrium strategies for two different values of k.
Figureshows a case where k is small enough such that Alice does not assign
probability 1 to any of her employees, while Figure depicts a case where
several employees get to know the secret with certainty. Figure El shows her
equilibrium strategies for N = 50 and % < k < 50. The figure clearly shows
that, for all values of k, a; is a monotonically increasing function of h;, which can
be explained by Theorem[Il Furthermore, the figure also confirms our analytical
result that no a; can be 0.

7 Discussion and Concluding Remarks

In this paper, we introduce a game-theoretic model for studying the decision
making of a project manager who wants to maximize the security of an organi-
zation’s intellectual property. Motivated in part by known behavioral methods
of assessing trustworthiness [14], we assume that both the project manager and
her adversary know the distribution of a random variable representing the trust-
worthiness of each employee. Finally, we assume that both players are able to
estimate the value of the organization’s intellectual property [4].

As a result of our analysis, we find that a project manager should select every
employee with a non-zero probability, unless there is a secure strategy, where an
adversary has no incentives to attack at all. This contradicts the naive assump-
tion that, to achieve maximal security, only the most trustworthy employees
should be selected. The explanation for this is the following: selecting the team
members deterministically always gives the adversary the knowledge of which
employees to target for bribing. So, by randomizing her strategy, the project

http://www.it-ebooks.info/

Managing the Weakest Link 289

manager minimizes the information available to the adversary for planning her
attack. It is an even more surprising result that, in an equilibrium, the adversary
is at most as likely to target employees that certainly know the secret as those
employees that know the secret with a probability less than 1. Again, this con-
tradicts the naive assumption that an adversary will try to bribe the employees
that are the most likely to know the secret.

For the special case of uniform distributions on trustworthiness levels, we find
that the game has two distinct outcomes: either the number of team members
is small enough, such that the project manager has a perfectly secure strategy,
or the security of the secret depends solely on the randomness of selecting the
employee with whom it is shared[] In the former case, the adversary has no
incentives to attack and, consequently, never learns the secret. In the latter case,
the adversary always attacks and always bribes the targeted employee with the
minimal amount that is never below the employee’s trustworthiness level. Thus,
if the adversary targeted an employee that actually knows the secret, then it is
certainly revealed. The project manager’s only possible defense in this case is to
randomize the selection of employees.

There are multiple possible directions for future work. First, a limitation of the
model is the restriction on the adversary, which constrains her to target only a
single employee at a time. This simplification can be motivated by the adversary’s
incentive to keep her operation covert and, thus, to minimize the number of
bribing attempts. However, it would be worthwhile to study the trade-off between
the adversary’s increased risk of being discovered and the increased probability of
learning the secret when she targets multiple employees. As another direction, we
want to study our model with specific distributions over trustworthiness levels.
In this paper, we provide results for the uniform distribution, which can be well-
motivated in practice; however, there are other distributions that can be justified
from practical observations: e.g., the beta distribution.

Acknowledgements. We gratefully acknowledge the support of the Penn State
Institute for Cyber-Science. The first author would like to thank the Campus
Hungary Program for supporting his research visit. The third author would like
to thank the Office of Naval Research (ONR) for supporting his research visit
under Visiting Scientists Grant N62909-13-1-V029.

References

1. Anderson, R.: Security engineering - A guide to building dependable distributed
systems, 2nd edn. Wiley (2008)

2. Anderson, R., Barton, C., Béhme, R., Clayton, R., van Eeten, M., Levi, M., Moore,
T., Savage, S.: Measuring the cost of cybercrime. In: WEIS (2012)

3. Band, S., Cappelli, D., Fischer, L., Moore, A., Shaw, E., Trzeciak, R.: Compar-
ing insider IT sabotage and espionage: A model-based analysis. Technical Report
CMU/SEI-2006-TR-026, Carnegie Mellon University (2006)

!Note that the probability that an exact equality occurs is negligible in practice.

http://www.it-ebooks.info/

290

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A. Laszka et al.

Bontis, N.: Assessing knowledge assets: A review of the models used to measure in-
tellectual capital. International Journal of Management Reviews 3(1), 41-60 (2001)
Colwill, C.: Human factors in information security: The insider threat — Who can
you trust these days? Information Security Technical Report 14(4), 186-196 (2009)
Corporate Trust (Business Risk & Crisis Mgmt. GmbH). Studie: Industriespionage
2012 - Aktuelle Risiken fiir die deutsche Wirtschaft durch Cyberwar (2012)
D’Arcy, J., Hovav, A., Galletta, D.: User awareness of security countermeasures
and its impact on information systems misuse: A deterrence approach. Information
Systems Research 20(1), 79-98 (2009)

FBI. The insider threat (April 2013), http://www.fbi.gov/about-us/
investigate/counterintelligence/insider_threat_brochure

Federal Bureau of Investigation. Economic espionage, http://www.fbi.gov/
about-us/investigate/counterintelligence/economic-espionage

Finn, P.: Chinese citizen sentenced in military data-theft case. Washington Post
(March 2013)

Johnson, B., Schottle, P., Bohme, R.: Where to hide the bits? In: Grossklags, J.,
Walrand, J. (eds.) GameSec 2012. LNCS, vol. 7638, pp. 1-17. Springer, Heidelberg
(2012)

Liu, D., Wang, X.F., Jean Camp, L.: Game theoretic modeling and analysis of
insider threats. International Journal of Critical Infrastructure Protection 1, 75-80
(2008)

Moore, A., Cappelli, D., Caron, T., Shaw, E., Spooner, D., Trzeciak, R.: A pre-
liminary model of insider theft of intellectual property. Journal of Wireless Mobile
Networks, Ubiquitous Computing, and Dependable Applications 2(1), 28-49 (2011)
Munshi, A., Dell, P., Armstrong, H.: Insider threat behavior factors: A comparison
of theory with reported incidents. In: IEEE HICSS 2012, pp. 24022411 (2012)
Nelder, J., Mead, R.: A simplex method for function minimization. Computer Jour-
nal 7, 308-313 (1965)

Randazzo, M., Keeney, M., Kowalski, E., Cappelli, D., Moore, A.: Insider threat
study: Illicit cyber activity in the banking and finance sector. Technical Report
CMU/SEI-2004-TR-021, Carnegie Mellon University (June 2005)

Ronde, T.: Trade secrets and information sharing. Journal of Economics and Man-
agement Strategy 10, 391-417 (2001)

Saltzer, J., Schroeder, M.: The protection of information in computer systems.
Proceedings of the IEEE 63(9), 1278-1308 (1975)

Sandhu, R., Samarati, P.: Access control: Principles and practice. IEEE Commu-
nications Magazine 32, 40-48 (1994)

http://www.fbi.gov/about-us/investigate/counterintelligence/insider_threat_brochure
http://www.fbi.gov/about-us/investigate/counterintelligence/insider_threat_brochure
http://www.fbi.gov/about-us/investigate/counterintelligence/economic-espionage
http://www.fbi.gov/about-us/investigate/counterintelligence/economic-espionage
http://www.it-ebooks.info/

Automated Security Proofs for Almost-Universal Hash
for MAC Verification™

Martin Gagnél, Pascal Lafourcade?, and Yassine Lakhnech?

! Department of Computer Science, Saarland University, Germany
2 Université Grenoble 1, CNRS,VERIMAG, France

Abstract. Message authentication codes (MACS) are an essential primitive in
cryptography. They are used to ensure the integrity and authenticity of a message,
and can also be used as a building block for larger schemes, such as chosen-
ciphertext secure encryption, or identity-based encryption. MACs are often built
in two steps: first, the ‘front end’ of the MAC produces a short digest of the long
message, then the ‘back end’ provides a mixing step to make the output of the
MAC unpredictable for an attacker. Our verification method follows this struc-
ture. We develop a Hoare logic for proving that the front end of the MAC is an
almost-universal hash function. The programming language used to specify these
functions is fairly expressive and can be used to describe many block-cipher and
compression function-based MACs. We implemented this method into a proto-
type that can automatically prove the security of almost-universal hash functions.
This prototype can prove the security of the front-end of many CBC-based MACs
(DMAC, ECBC, FCBC and XCBC to name only a few), PMAC and HMAC. We
then provide a list of options for the back end of the MAC, each consisting of
only two or three instructions, each of which can be composed with an almost-
universal hash function to obtain a secure MAC.

1 Introduction

Message authentication codes (MACs) are among the most common primitives in sym-
metric key cryptography. They ensure the integrity and provenance of a message, and
they can be used, in conjunction with chosen-plaintext (CPA) secure encryption, to ob-
tain chosen-ciphertext (CCA) secure encryption. Given the importance of this primitive,
it is important that their proofs of security be the object of close scrutiny. The study of
the security of MAC:s is, of course, not a new field. Bellare et al. [S]] were the first to
prove the security of CBC-MAC for fixed-length inputs. Following this work, a myr-
iad of new MACs secure for variable-length inputs were proposed ([4470819117]]). None
of these protocols’ proofs have been verified by any means other than human scrutiny.
Automated proofs can provide additional assurance of the correctness of these security
proofs by providing an independent proof of complex schemes. This paper presents a
method for automatically proving the security of MACs based on block ciphers and
hash functions.

Contributions: To analyze the security of MACs, we first decompose the MAC al-
gorithms into two parts: a ‘front-end’, whose work is to compress long input messages

* This work was partially supported by ANR project ProSe and Minalogic project SHIVA.

J. Crampton, S. Jajodia, and K. Mayes (Eds.): ESORICS 2013, LNCS 8134, pp. 291-B08] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

http://www.it-ebooks.info/

292 M. Gagné, P. Lafourcade, and Y. Lakhnech

into small digests, and a ‘back-end’, usually a mixing step, which obfuscates the output
of the front-end. We present a Hoare logic to prove that the front-ends of block-cipher
based and hash based MACs are almost-universal hash functions in the ideal cipher
model and random oracle model respectively. We then make a list of operations which,
when composed with an almost-universal hash function, yield a secure MAC. We can
then attest the security of MACs by first proving the security of the front end using our
logic, and then by manually verifying that the back end of the MAC belongs to our list.

Our result differs significantly from previous works that used Hoare logic to generate
proofs of cryptographic protocols (such as [[12/15]) because those results proved the secu-
rity of encryption schemes. Proving the security of MACs proved to be singularly more
challenging: the security of encryption schemes could be simply proven by showing
that the ciphertext is indistinguishable from a random value, whereas the unforgeability
property required of MACs cannot, to our knowledge, be captured by their predicates.
As a result, we have to consider the simultaneous execution of the program, define a
dedicated semantics to capture these executions, and introduce appropriated predicates
that keep track of equality and inequality of values between the two executions.

In contrast to the previous results that only deal with schemes that had fixed-length
inputs, we are able to analyze for-loops, which allows us to prove the security of proto-
cols that can take arbitrary strings as an input. We describe two heuristics that can be
used to discover stable loop invariants and apply them to one example. These heuristics
successfully find stable invariants for all the hash functions analyzed in this paper.

Finally, we implemented our method into a prototype [14]] that can be used to ver-
ify the security of the front-end of several well-known MACs, such as HMAC [4],
DMAC [17], ECBC, FCBC and XCBC [8]] and PMAC [9]], and could be used to ver-
ify the security of other hash functions based on the same primitives. We also give
a predicate filter that enables us to discard unnecessary predicates, which speeds up
our implementation and facilitates the discovery of loop invariants. Our prototype goes
through the programs from beginning to end, instead of the more common backward ap-
proach, to avoid an exponential blowout in the number of possibilities to examine, due
to the many choices of rules that can cause certain predicates caused by the presence of
the logical or connector in our Hoare logic.

Related Work: The idea of using Hoare logic to automatically produce proofs of
security for cryptographic protocols is not new. Courant et al. [12] presented a Hoare
logic to prove the security of asymmetric encryption schemes in the random oracle
model. A Hoare logic was also used by Gagné et al. [[15]] to verify proofs of security of
block cipher modes of encryption. Also worth mentioning is the paper by Corin and Den
Hartog [[11], which presented a Hoare-style proof system for game-based cryptographic
proofs.

Fournet et al. [13] developed a framework for modular code-based cryptographic
verification. However, their approach considers interfaces for MACs. In a way, our work
is complementary to theirs, as our result, coupled with theirs, could enable a more
complete verification of systems.

In [[1], the authors introduce a general logic for proving the security of cryptographic
primitives. This framework can easily be extended using external results, such as [12],
to add to its power. Our result could also be added to this framework to further extend it.

http://www.it-ebooks.info/

Automated Security Proofs for Almost-Universal Hash for MAC Verification 293

Other tools, such as Cryptoverif [10] and EasyCrypt [3l2], can be used to verify the
security of cryptographic schemes, but they are not as convenient as our method for
proving the security of MACs. Cryptoverif does not support loop constructs, which are
an important part of our result, and is generally used for proving the security of higher
level protocols, assuming the security of primitives such as MACs. As for Easycrypt, it
relies on a game-based approach and requires human assistance to enter the sequence
of games. Our result is complementary to these approaches. Integrating our method
to these tools would enable a more complete analysis of cryptographic protocols and
remove the need for human assistance when analysing MACs.

Outline: In Section[2] we introduce cryptographic background. The following section
introduces our grammar, semantics and assertion language. In Section[4], we present our
Hoare logic and method for proving the security of almost-universal hash functions, and
we discuss our implementation of this logic and treatment of loops in Section[3l We then
obtain a secure MAC by combining these with one of the back-end options described
in Section[@l Finally, we conclude in Section[7]

2 Cryptographic Background

In this section, we introduce a few notational conventions, and we recall a few crypto-
graphic concepts.

Notation and Conventions

We assume that all variables range over domains whose cardinality is exponential in the
security parameter 77 and that all programs have length polynomial in 7. We say that a
function f : N — Ris negligible if, for any polynomial p, there exists a positive integer
no such that for all n > ng, f(n) < m.

For a probability distribution D, we denote by z & D the operation of sampling

a value x according to distribution D. If S is a finite set, we denote by x ﬁ S the
operation of sampling x uniformly at random among the values in .S.

MAC Security

A message authentication code ensures the authenticity of a message m by computing
a small tag 7, which is sent together with the message to the intended receiver. Upon
receiving the message and the tag, the receiver recomputes the tag 7’ using the message
and his own copy of the key, and he accepts the message as authentic if 7 = 7'. More
formally:

Definition 1 (MAC). A message authentication code is a triple of polynomial-time al-
gorithms (K, MAC, V), where K(1") takes a security parameter 1" and outputs a
secret key sk, M AC(sk,m) takes a secret key and a message m, and outputs a tag,
and V (sk, m,tag) takes a secret key sk, a message m and a tag, and outputs a bit: 1
for a correct tag, 0 otherwise.

We say that a MAC is secure, or unforgeable if it is impossible to compute a new
valid message-tag pair for anybody who does not know the secret key, even when given
access to oracles that can compute and verify the MACs. This way, when one receives

http://www.it-ebooks.info/

294 M. Gagné, P. Lafourcade, and Y. Lakhnech

a valid message-tag pair, he can be certain that the message was sent by someone who
possesses a copy of his secret key.

Definition 2 (Unforgeability [5]). A MAC (K, Mac, V') is unforgeable under a chosen-
message attack (UNF-CMA) if for every polynomial-time algorithm A that has oracle
access to the MAC and verification algorithm and whose output message m* is different
from any message it sent to the M ac oracle, the following probability is negligible

Prisk & K(17); (m*, tag*) & AMaclsh-)V(sko) v sk m* tag®) = 1]

A standard method for constructing MACs is to apply a pseudo-random function,
or some other form of ‘mixing’ step, to the output of an almost-universal hash func-
tion [18/19]. We assume that a MAC is constructed in this way.

Definition 3 (Almost-Universal Hash). A family of functions H = {h;} indexed with
key i € {0,1}" is a family of almost-universal hash functions if for any two distinct
strings M and M, Pry,cy[hi(M) = h;(M")] is negligible, where the probability is
taken over the choice of h; in H.

It is much easier to work with this definition than with the unforgeability definition
because of the absence of an adaptive adversary, and the collision probability is taken
over all possible choices of key.

Block Cipher Security
Many MAC constructions are based on block cipher, so we quickly recall the definition
of block ciphers and their security definition.

A block cipher is a family of permutations £ : {0, 1} x {0,1}" — {0,1}" in-
dexed with akey k € {0, 1}%(") where K (1) is a polynomial. A block cipher is secure
if, for a randomly sampled key, the block cipher is indistinguishable from a permutation
sampled at random from the set of all permutations of {0, 1}". However, since random
permutations of {0, 1}” and random functions from {0, 1}" to {0, 1}" are statistically
close, and that random functions are often more convenient for proof purposes, it is
common to assume that secure block ciphers are pseudo-random functions.

Definition 4 (Pseudo-Random Functions). Let P : {0,1}5 x {0,1}7 — {0,1}"
be a family of functions and let A be an algorithm that takes an oracle and returns a
bit. The prf-advantage of A is defined as follows.

AdFTL = |Prik & {0,135 AP = 1] — PAR & &,; ARO) = 1]

where ®,, is the set of all functions from {0,1}" to {0,1}". We say that P is a family
of pseudo-random functions if for every polynomial-time adversary A, Advﬁ(’f) isa
negligible function in 7.

Since all the schemes in this paper require only one key for the block cipher, to
simplify the notation, we write only £(m) instead of £(k, m), but it is understood that
a key was selected at the initialization of the scheme, and remains the same throughout.

http://www.it-ebooks.info/

Automated Security Proofs for Almost-Universal Hash for MAC Verification 295

Random Oracle Model

For MACs that make use of a hash function, we assume that the hash function behaves
like a random oracle. That is, we assume that the hash function is picked at random
among all possible functions from the given domain and range, and that every algorithm
participating in the scheme, including all adversaries, has oracle access to this random
function. This is a fairly common assumption to provide a heuristic argument for the
security of cryptographic protocols [6].

Indistinguishable Distributions

Given two distribution ensembles X = { X, }yen and X' = {X]},en, an algorithm
Aand n € N, we define the advantage of A in distinguishing X, from X as the
following quantity:

AdV(A, 7, X, X') = Prlz & X, : A(z) = 1] - Priz & X/ : A(z) = 1]|.

We say that X and X' are indistinguishable, denoted by X ~ X', if Adv(A,n,
X, X’) is negligible as a function of 7 for every probabilistic polynomial-time algo-
rithm A.

3 Model

In this section, we introduce the grammar for the programs describing almost-universal
hash function. We present the semantics of each commands, and introduce the assertion
language that will be used in for our Hoare logic.

3.1 Grammar

We consider the language defined by the BNF grammar below, where p and ¢ are posi-
tive integers.

cmd i=x:=&(y) |z :=Hy) |z=y|lz:=ydz|z:=ylz|z:=p(i,vy)
| for I = p to ¢ do: [emd;] | cmd;; cmds

We refer to individual instructions as commands and to lists of commands as programs.
Each command has the following effect:

— z := £(y) denotes application of the block cipher £ to the value of y and assigning
the result to x.

- z := H(y) denotes the application of the hash function # to the value of y and
assigning the result to x.

— z := y denotes the assignment to = of the values of y.

— x := y ® z denotes the assignment to = of the xor or the values of y and z.

— x := y||z denotes the assignment to x of the concatenation of the values of y and z.

- z := p(i,y) denotes the computation of the function p on input ¢ (an integer) and

the value of y and assigning the result to x.

c1; o 1s the sequential composition of ¢; and ca.

http://www.it-ebooks.info/

296 M. Gagné, P. Lafourcade, and Y. Lakhnech

— forl = pto ¢ do: [cmd;] denotes the successive execution of cmd,; cmd,y1;. . . ;
cmd, when p < ¢. If p > ¢, the command has no effect.

The function p is used to process the fweak in a common construction for tweakable
block ciphers [16]. A fixed-input-length almost-universal function is often sufficient,
but exact implementations vary from one scheme to the next, and we want to allow
for the possibility of functions that have additional properties. When a scheme uses a
function p, the properties of the function p required for the proof will be added to the
initial conditions of the verification procedure using the predicates of Section[3.3] We
do not any other assumptions about p other than it is a function with fixed output length.

Definition 5 (Generic Hash Function). A generic hash function Hash on message
blocks my, ..., my with output c,, is represented by a tuple (Fg, Fy, Hash(m4]| ...
|1, ¢r) : var @; cmd), where Fg is a family of pseudorandompermutations (usually a
block cipher), F is a family of cryptographic hash functions, and Hash(mq|| .. . ||mn,
¢n) @ var x;cmd is the program of the hash function, where x is the set of all the
variables in the program that are neither input variables m;, output variable c,, or the
special variable k (used to hold a secret key), and the program cmd is in the language
described by our grammar.

The secret key sk of the generic hash is a combination of the value of the special
variable k and the choice of the block cipher £ in the family Fg.

We assume that, prior to executing the MAC, the message has been padded using
some unambiguous padding scheme, so that all the message blocks my,...,m, are
of equal and appropriate length for the scheme, usually the input length of the block
cipher. We also assume that each variable in the program cmd is assigned at most once,
as it is clear that any program obtained from our language can be transformed into an
equivalent program with this property, and that the input variables my, ..., m, never
appear on the left side of any command since these variables already hold a value before
the execution of the program. For simplicity of exposition, we henceforth assume that
all the programs in this paper satisfy these assumptions.

We present to the right the program for

. . HGShCBC mafl...||TMn,C N

Hashcpc, the hash function that is used asa o (zH o I "’C ")1_

running example in this paper. We give the pro- Ve T e
g examp paper. We give the pro- .= o)

gram for other hash functions that can be veri-
fied with our method in the full version of this
paper [14].

fori = 2ton do:
[2i == cic1 D my; ¢ = E(2)]

3.2 Semantics

In our analysis, we consider the execution of a program on two inputs simultaneously.
These simultaneous executions will enable us to keep track of the probability of equality
and inequality of strings between the two executions, thereby allowing us to prove that
the function is almost-universal.

Each command is a function that takes a configuration and outputs a configurations.
A configuration vy is a tuple (S,S",E,H, Le, L3) where S and S’ are states, £ is a

http://www.it-ebooks.info/

Automated Security Proofs for Almost-Universal Hash for MAC Verification 297

block cipher, H is a hash function (that will be modeled as a random oracle), and L¢
and L4 are sets of strings.

A state is a function S : Var — {0, 1}* U L, where Var is the full set of variables in
the program, that assigns bitstrings to variables (the symbol L is used to indicate that
no value has been assigned to the variable yet). A configuration contains two states, one
for each execution of the program.

The set L¢ records the values for which the functions £ was computed. The set
is common for both executions of the program. Every time a command of the type
x = E(y) is executed in the program, we add S(y) and S’(y) to L¢ if they are not
already present. We define L4, for the hash function # similarly.

Let I" denote the set of configurations and DIST(I") the set of distributions on con-
figurations. The semantics is given below, where S{x — v} denotes the state which
assigns the value v to the variable z, and behaves like S for all other variables and o
denotes function composition. The semantic function cmd : I" — I" of commands can
be lifted in the usual way to a function cmd” : DIST(I") — DIST(I") by point-wise
application of cmd. By abuse of notation we also denote the lifted semantics by [cmd].

[z :=EW)](S, S, E,H, Le, L) =

(S{z = E(SY)} S{z = E(S" (YN} EH, Le U{S(y), S' (W)}, L)
[z := H(y)](S, S, E,H, Le, L) =

(S = H(S(W)}, §'{x = H(S'(9)}, €, H, Le, L U {S(y), §'(9)})
[z :=y](S,S",E,H, Le, Lu) = (S{z— S(y)}, S {z— S (y)},E,H, Le, Ln)
[z:=y®2](S,S E,H,Le, L) =

(S{z— Sy @ S(2)}, S{z— S'(y) ® S (2)},E,H, L&, L)
[z == y||2](S,S",E, H, Le, La) =

(S{z = SWIIS(2)}, Sz = S'W)IIS"(2)}, €, H, Le, L)
[z = p(i,y)](S, S, E, H, Lo, L) =

(S{z = p(i, S()}, 8@ = p(i, S’ (W)} €, H, Le, L)
[emdy] o [emdg—1] o...0 [emd,]yifp < g
7 otherwise

8

[for I = p to g do: [cmd;]]y = {

[er; c2] = [ez] o [e1]

The set of initial distributions DISTo(H), where H = (Fg, Fy, Hash(m4]| ...
||mn, ¢r) : var @; cmd) is a generic hash, contains all the following distributions:

DM = [& Fe(1)iH & Fy(1M)iu & {0,1}7
(S{k = wymall . [lmg > MY, S (ko wma| [l > MY, E,H,0,0)]

where M and M’ are any two n block messages and k is a variable holding a secret
string needed in some MACs (among our examples, Hashpyrac and Hashgyrac
need it). Note that Fg, F3, the domain Var of the states and the length n of the input
messages are defined in H. These distributions capture the initial situation of Definition
Bl where the variables m; contain the blocks of M and M’ in S and S’ respectively.

The set DIST(H) is obtained by executing a program on one of the initial distribu-
tions. It contains all the distributions of the form [emd] Xy, where X € DI1sTo(H) and
cmd is a program.

http://www.it-ebooks.info/

298 M. Gagné, P. Lafourcade, and Y. Lakhnech

A notational convention. It is easy to see that commands never modify £ or H. There-
fore, we can, without ambiguity, write (S, S, e L) & [e](S, S, Lg, L) instead
of (8,5, &, M, Li, £h) & [c](S, S, &, H, L, L)

3.3 Assertion Language

Like [[15]], our assertion languages deals with block ciphers, so it stands to reason that
some of our predicates will be similar to theirs. However, the definition of all the pred-
icates has to be adapted to our new semantics with two simultaneous executions. We
also need additional predicates to describe equality or inequality of strings between the
two executions, that will allow us to capture the definition of almost-universal hash
functions. We first give an intuitive description of our predicates, then we define them
all formally.

Empty: means that the probability that L¢ contains an element is negligible.

Eq(z, y): means that the probability that S(x) # S’ (y) is negligible.

Uneq(z,y): means that the probability that S(z) = S’(y) is negligible.

E(&;2;V): means that the probability that the value of x is either in L¢ or equal to
that of a variable in V' is negligible.

H(#;x; V): means that the probability that the value of x is either in £, or equal to
that of a variable in V' is negligible.

Ind(z; V;V'): means that no adversary has non-negligible probability to distinguish
whether he is given results of computations performed using the value of x or a
random value, when he is given the values of the variables in V' and the values
of the variables in V'’ from the parallel execution. In addition to variables in Var,
the set V' can contain special symbols {¢ or £4;. When the symbol /¢ is present, it
means that, in addition to the other variables in V, the distinguisher is also given
the values in Lg, similarly for £4,.

Our Hoare logic is based on statements from the following language.

pu=@ApleVeld
P = Ind(z; W; V') | Eq(z,y) | Uneq(x,y) | Empty | E(E;2; V) | H(H; 23 V)

where z,y € Varand V, V' C Var,and W C VarU{/¢, ¢+ }. We refer to the statements
produced by this grammar as formulas.

We introduce a few notational shortcuts that will help in formally defining our pred-
icates. For any set V' C Var, we denote by S(V') the multiset resulting from the ap-
plication of S on each variable in V. Also, for a set W C Var U {{¢} with {g € W,
we use S(W) as a shorthand for S(W \ {{g}) U L¢, and similarly for ¢4. For a set
V C VarU {lg, ¢y} and an element = € Var U {{¢, {4}, we write V, x as a shorthand
for V.U {z} and V — z as a shorthand for V' \ {x}.

We define that a distribution X satisfies o, denoted X = ¢ as follows:

- XEonNiff X Epand X |E ¢
- XEoeViff X Epor X E ¢
- X = Empty iff Pr[(S, S, Le, L) & Xx:ce # ()] is negligible

http://www.it-ebooks.info/

Automated Security Proofs for Almost-Universal Hash for MAC Verification 299

X = Eq(z,y) iff Pr[(S, 8", Le, L2) & X 1 S(z) # S'(y)] is negligible

X k= Uneq(z, y) iff Pr[(S, 5", Le, L) & X : S(x) = S'(y)] is negligible

X = E(& 2 V) iff Pr[(S, 8", Le, L) & X : {S(x),S"(x)} N (Le US(V —z)U
S'(V — z)) # 0] is negligibld]

- X = H(H; 2 V) iff Pr[(S, S, Lo, L) & X+ {S(x),S'(x)} N (L U SV —
z)U S (V —x)) # 0] is negligible

X = Ind(z; V; V') iff the two following formulas hold:

((S,S', Le, Ly) & X : (S(x), S(V —2) US' (V)] ~

(S, 8", Lo, Lo) & Xiu & U - (w0, S(V —2) U S (V)]
(S, S, Lo, Lag) & X (8 (2), 8"(V — 2) US(V'))] ~

(S, 8", Lo, Lo) & Xiu & U - (w0, 8'(V — 2) US(V'))]

We now present a few lemmas that show useful relations and properties of our pred-
icates. In all these lemmas, it is assumed that H is any generic hash. The proof of these
lemmas is in the full version of this paper [[14]].

Lemma 1. The following relations are true for any sets V1, Vo, V3,V and variables
T,y withx £y

Ind(z; Vi; Vo) = Ind(x; Va; Vi) if Vs C V3 and Vy C Vs
H(H; 2 Vi) = H(H; 23 Va) if Va C V3

E(&;2;V1) = E(&;2;V2) if Va C© V)

Ind(z; Vi, 835 0) = H(H; 2; V)

Ind(z; Vi, le; 0) = E(E; 25 V1)

Ind(z; 0; {y}) = Uneq(z,y) A Uneq(y, x)

A~

Note that lines [4] [§] and [6] are particularly helpful because the predicate Ind is much
easier to propagate than the other predicates.

We also show that, as a consequence of our definition of DIST(H), we can always
infer the following predicates on the message blocks. This lemma is useful for proving
the rules corresponding to commands that introduce a new message block.

Lemma 2. Let X € DIST(H). Then for any integeri, 1 < i < n, X E Eq(m;,m;)
V Uneq(m;, m;).

The following formalizes the intuition that if a value can be computed in polynomial
time from other values available, then adding this value does not give the adversary any
useful information. In general, we say that an expression e is constructible from values
in a set V if e can be computed in polynomial time from V. But for the purpose of
the following lemma, it is sufficient to define constructible expressions as only single
variables x, as well as x @ y and z||y for any variables x and y.

! Since the variable z is removed from the set V' when taking the probability, we always have
X EE(&;x; V) iff X | E(E;x; V,x). This is to remove the trivial case that {S(z), S’ (z)}N
(LeU{S(z), S (z)}) = 0 never holds, and to simplify the notation. The same is also used for
predicates H(#; z; V) and Ind(z; V; V).

http://www.it-ebooks.info/

300 M. Gagné, P. Lafourcade, and Y. Lakhnech

Lemma 3. For any any X € DIST(H), any sets of variables V, any expression e
constructible from V, and any variable x,z such that z ¢ {x} U Var(e) if X E
Ind(z; V; V') then [z := e](X) E Ind(z; V,2;V'). We emphasize that here we use
the notation Var(e) (in its usual sense), that is to say, the variable z does not appear at
all in e. Similarly, if X | Ind(z; V', V), then [z := e](X) | Ind(2; V'; V, z).

The following, which is useful for proving some of the rules dealing with the con-
catenation commands, shows that the value of any given variable always have the same
length in each execution.

Lemma 4. For any distribution X € DIST(H), any program cmd produced by our

grammar any (S, 58", E,H,Le, L) & [emd| X and any variable v € Var, |S(v)| =

15 (v)].

4 Proving Almost-Universal Hash

Our main contribution is a Hoare logic for proving that a program is an almost-universal
hash function. We require that the program be written in a way so that, on input
maq]| ... ||mn, the program must assign values to variables cq,..., ¢, in such a way
that the variable ¢; contains the output of the function on input m1, the variable ¢y con-
tains the output of the function on input m; ||ms and so on. We model the security of an
almost-universal hash function using our predicates as follows.

Proposition 1. LetH = (Fg, Fp, Hash(m1|| ... ||my, c,) : var x; cmd) be a generic
hash function on n-block messages. Then, H is an almost-universal hash function if, for
every positive integer n, UNIV (n) holds in the distribution obtained by executing the
program on any distribution in D1STq (H), where

UNIV(n) = </\?;11 Uneq(cn, ¢;) A Niey Eq(mi,mi)) V Al Uneq(cy, ¢;)
The proof of this proposition is in the full version of this paper [[14]].

Hoare Logic Rules

We present a set of rules of the form {p}cmd{¢’}, meaning that execution of command
cmd in any distribution in DIST(H) that satisfies ¢ leads to a distribution that satisfies
. Using Hoare logic terminology, this means that the triple {}ecmd{¢'} is valid.

Since the predicates Eq(m;, m;) are useful only if the whole prefix of the two mes-
sages up to the i*" block are equal, so that keeping track of the equality or inequality
of the message blocks after the first point at which the messages are different is un-
necessary. For this reason, when we design our rules, we never produce the predicates
Uneq(m;, m;) even when they would be correct.

We group rules together according to their corresponding commands. In all the rules,
unless indicated otherwise, we assume that ¢t & {x,y,z} and = & {y, z}. . In addition,
for all rules involving the predicate Ind, we assume that {¢ and ¢3; can be among the
elements in the set V. Since some of the rules (for example, rule (G5)) are valid only
under certain slightly complex conditions, we use square brackets in the statement of

http://www.it-ebooks.info/

Automated Security Proofs for Almost-Universal Hash for MAC Verification 301

some conditions to remove any ambiguity about their meaning. The proofs of soundness
of our rules are given in the full version of this paper [14].

We first introduce a few general rules for consequence, sequential composition, con-
junction and disjunction. Let ¢1, @2, ¢3, ¢4 be any four formulas in our logic, and let
cmd, cmd;, cmd, be any three commands. These rules are standard, and their proof
are omitted.

(Csq) if p1 = @2, ¢p3 = P4 and {(bz}cmd{(bg}, then {¢1 }cmd{qb4}

(Seq) if {(]51 }Cmd1{¢2} and {¢2}cmd2{¢3}, then {(]51 }Cmd1 ; Cmd2{¢3}
(Conj) if {¢1 }Cmd{¢2} and {¢3}cmd{¢4}, then {¢1 A (bg}Cmd{(bz A (b4}
(Disj) if {¢1 }Cmd{¢2} and {¢3}cmd{¢4}, then {¢1 V (bg}Cmd{(bz V (b4}

Initialization:
We find that the following predicates holds in any distribution X € DiSTq(H).
(Init) {Ind(k; Var, ¢e,ly;Var — k) A Eq(k, k) A Empty}

We recall that & is a special variable holding a secret key. It is sampled at random be-
fore executing the program and is the same in both executions, so it is indistinguishable
from a random value given any other value.

Generic preservation rules:

Rules (G1) to (G6) show how predicates are preserved by most of the commands when

the predicates concern a variable other than that being operated on. For all these rules,

we assume that ¢ and ¢’ can be y or z and cmd is either « := p(i,y), v :== y, x := y||2,

r:=y®z x:=E(y),orx:=H(y).

(G1) {Eq(t,t')} cmd {Eq(t,t')} evenift = yort =z

(G2) {Uneq(t,t')} cmd {Uneq(t,t')} evenift =yort =z

(G3) {E(&;t;V)}emd {E(E;t; V) } provided z ¢ V and cmd is not z := E(y)

(G4) {H(H;t;V)} emd {H(H;t;V)} provided z € V and cmd is not z := H(y)

(G5) {Ind(t; V;V')} emd {Ind(¢; V;V')} provided [emd is not z := E(y) or z := H(y)],
[z € V unless z is constructible from V — ¢] and [z ¢ V' unless x is constructible from
V' —1]

(G6) {Empty} cmd {Empty} provided cmd is not z := £(y)

We note that, for rules (G3) to (G6), the straightforward preservation rule does not
apply when the command is either of the form z := £(y) or = := H(y), because some
predicates may no longer hold if the block cipher or the random oracle is computed
more than once on any given point. Therefore, the preservation of these predicates for
the block cipher and hash commands will have to be handled separately in rules (B4) to
(B6) and (H3) to (HS). For rule (G5), in general, we say that the value of a variable z is
constructible from the values of variables in V if there exists a deterministic polynomial-
time algorithm that can compute the value of x from the values in V. In this case, it
means that the variables in the right-hand side of cmd are all in V.

Function p:

(P1) {Eq(y,y)} = := p(4,y) {Eq(x,x)} for integer ¢
Since the details of the function p are not known in advance, we can infer only one
rule, that p preserves equality, because it is a deterministic function.

http://www.it-ebooks.info/

302 M. Gagné, P. Lafourcade, and Y. Lakhnech

Assignment:

Rules (A1) to (A8), for the assignment, are all straightforward, and follow simply from
the simple fact that after the command, the value of x is equal to the value of y.
(A1) {true} z := m; {(Eq(mi, m:) A Eq(z,z)) V Uneq(z,z)}

(A2) {Eq(y,y)} = := y {Eq(z,z)}

(A3) {Uneq(y,y)} = := y {Uneq(z, z)}

(AD) {Ind(y; V; V) } 2=y {Ind(x; V; V') }ifx € V' unlessy € V' andy ¢ V
(AS) {E(&;y; V) o =y {E(&;x; V) NE(E;y3 V) }ify €V

(A6) {H(H;y; V) o o=y {H(H; 2 V) AH(H; y; V) ify ¢ V

(A7) {E(&;t;V,y)} z =y {E(&; 4V, m,)}

(A8) {H(H;t; Viy)} x:= y {H(H; £V, 2,9)}

Concatenation:

Rules (C1) to (C6) propagate the predicates for the concatenation command.

(€D {Ea(y,y)} = := yllm: {(Eq(mi, m:) A Eq(z,x)) v Uneq(z,z)}

(C2) {Ea(y,y) NEa(z,2)} x := y|z {Eq(z,z)}

(C3) {Uneq(y,y)} = := y||z {Uneq(z,z)}

(€4 {Ind(y; V,y,2; V')Alnd(2; V,y, 2; V') } & := y||z {Ind(x; V, z; V') } provided [y # 2],
[z,y,2 & V]and [z € V' unless y,z € V']

(C3) {Ind(y: V. £esV)} @ = y|= {E(E;: V)

(C6) {Ind(y; V, l; V) } 2 = yllz {H(H; 2;V)}

The most important rule for the concatenation is (C4), which states that the concate-
nation of two random strings results in a random string. Note that it is important for this
rule that y # z, otherwise the string x consists of a string twice repeated, which can
be distinguished easily from a random value. The condition x € V' unless y,z € V'
is similar to rule (G5), and follows from the constructibility of x from y and z. Rules
(C5) and (C6) state that if a string is indistinguishable from a random value given all
the values in the set of queries to the block cipher (or the hash function), then clearly
it cannot be a prefix of one of the strings L¢. For rules (C1), (C3), (C5) and (C6), the
roles of y and z, or y and m; in the case of (C1), can be exchanged.

Xor operator:

Rules (X1) to (X4) describe the effect of the Xor operation.

X1) {Ea(y,y)} = := y & ms {(Ea(ms, mi) AEq(z,2)) V Uneq(z, z)}

(X2) {Ind(y; V,y,2;V')} z := y ® 2 {Ind(z; V,z, 2; V') } provided [y # 2], [y € V] and
[z € V' unless y,z € V']

(X3) {Eq(y,y) ANEq(z,2)} z :=y ® z {Eq(z,x)}

(X4) {Eq(y,y) AUneq(z,2)} x :==y ® z {Uneq(z,z)}

Rules (X2) is reminiscent of a one-time-pad encryption: if a value z is xor-ed with a
random-looking value y, than the result is similarly random-looking provided the value
of y is not given. Again, the condition ¢ V' unless y, z € V' is similar to rule (G5),
and follows from the constructibility of from y and z. The other rules are propagation
of the Eq and Uneq predicates. Due to the commutativity of the xor, the role of y and z,
or y and m; in the case of (X1), can be exchanged in all the rules above.

Block cipher:
Since block ciphers are modeled as random functions, that is, functions picked at ran-
dom among all functions from {0, 1}" to {0, 1}", the output of the function for a point

http://www.it-ebooks.info/

Automated Security Proofs for Almost-Universal Hash for MAC Verification 303

on which the block cipher has never been computed is indistinguishable from a random
value.
(B1) {Empty} x := E(m;) {(Uneq(z,) A Ind(z; Var, be, l4; Var)) Vv
(Eq(mi, mi) A Eq(z, z) A Ind(z; Var, £e, £4; Var — z)) }

(B2) {E(&;y;0) AUneq(y,y)} = := E(y) {Ind(x; Var, £, £4; Var) }
B3) {E(&;y;0) ANEq(y,y)} := E(y) {Ind(; Var, e, ly; Var — x) A Eq(z, 2)}
(B4) {E(&;9;0) Alnd(t; V5 V') 2 := E(y) {Ind(t; V,z; V', x)} even if t = y, provided

le @V
(B5) {E(&;y;0) AlInd(t;V, be,y; V', y)} o= E(y) {Ind(t; V, Le, 2, y; V', 2, y) }
(B6) {E(&;y;0) ANE(E; 1V, y)} o= E(y) {E(E; ;V,9)}

This is expressed in rules (B1) to (B3), and also used in the proof of many other rules.
Note that, when executing x := £(y) on a new value, if the values of y from the two
executions are equal, then of course the values of x will be equal afterwards. However,
if the values of y are not the same in the two executions, then the values of x will be
indistinguishable from two independent random values afterwards.

Since the querying of a block cipher twice at any point is undesirable, we always
require the predicate E as a precondition. We also have rules similar to (B2) to (B6),
with the predicate E(&; y;) replaced by the predicate Empty, since both imply that the
value of y is notin Lg¢.

Hash Function:
We note that the distinguishing adversary, described in Section 2] does not have access
to the random oracle. This is sufficient for our purpose since our goal is only to prove
inequality of strings, not their indistinguishability from random strings. As a result, the
rules for the hash function are essentially the same as those for the block cipher.
(H1) {H(H;y;0) A Uneq(y, y)} « := H(y) {Ind(z; Var, £s, £; Var) }
(H2) {H(H;y;0) AEq(y,)} = := H(y) {Ind(x; Var, £3; Var —) A Eq(z, z)}
(H3) {H(H;y;0) Alnd(t; V; V) } 2 := H(y) {Ind(t; V,z; V',)} even if t = y, provided
by &V
H4) {H(H;3;0) Alnd(t; V, Lo, y; V,y) o= H(y) {Ind(; V, o, 2,y V2, y))
HS) {H(H; 1 V,y)} o := H(y) {H(H; 1 V,y)}
For loop:
(F1) {¢(p—1)} forl = pto g do: [emd;] {¢/(q)} provided
{o(—=1)} emd; {y (1)} forp <1< ¢
The rule for the For loop simply states that if an indexed formula 1) (%) is preserved
through one iteration of the loop, then it is preserved through the entire loop. We discuss
methods for finding such a formula in Section[3l
Combining our logic with Proposition[Il we obtain the following theorem.

Theorem 1. Let (Fg, Fy, Hash(ma]| ... |mn,cn) : var x;cmd) describe the pro-
gram to compute a hash function Hash on an n block message. Then, Hash is an
almost-universal hash function if, for every positive integern, {init} cmd{UNIV (n)}.

The theorem is the consequence of Proposition [Tl and of the soundness of our Hoare
logic. We then say that a sequence of formulas [¢o, . . ., ¢,] is a proof that a program
[cmdy, ..., cmd,] computes an almost-universal hash function if ¢g = true, ¢, =
UNIV(n)and forall i, 1 < n, {¢;—1 } cmd; {¢;} holds.

http://www.it-ebooks.info/

304 M. Gagné, P. Lafourcade, and Y. Lakhnech
5 Implementation

We chose to go forward through the program, instead of the more common approach
of going backward from the end, after implementing both methods. Going backward
through the program can require exploring multiple combinations of choices that all
need to be explores when many rules can lead to the necessary predicate. The presence
of the logical-or connector in our logic often resulted in an exponential number of pos-
sibilities at each step. As a result, our prototype for the forward method was able to find
proofs much faster than an implementation of the backwards method.

We start at the beginning of the program and, at each command, apply every possible
rule. Once done, we test if the predicate U N IV (n) holds at the end of the program. One
downside of this forward approach is that the application of every possible rule can be
very time consuming because the formulas tend to grow after each command, which
leads to more and more rules being applied at every step. For this reason, we need a
way to filter out unneeded predicates, so that execution time remains reasonable.

5.1 Predicate Filter

We say that ¢ is a predicate on x if ¢ is either Eq(x,y), Uneq(z,y), E(&;2; V),
H(H;x; V) or Ind(z; V1, V2) (for some y € Var and V;, Vo C Var). We say that a
predicate ¢ on variable x is obsolete for program p if x does not appear anywhere i