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principles inherent in the Henri equation to the expressions which describe
the control of multi-enzyme pathways.

Steady state kinetic equations are derived with the use of the connection
matrix method, and an algorithm which can be implemented easily for
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Preface

One goal of this textbook is to provide the reader with an orderly
development of steady state enzyme kinetics from the early formulations,
through analysis of the reaction sequence of multi-reactant enzymes, to the
analysis of non-hyperbolic enzyme kinetics, and finally to the control of
multi-enzyme systems. The material included in this book has formed the
basis of lectures on enzyme kinetics which have been given as a portion of
a course on enzyme chemistry. It is hoped that it will be useful not only to
the reader who is enrolled in a formal course in enzyme kinetics or enzyme
chemistry, but also to readers who wish to familiarize themselves with
enzyme kinetics in a self-study program, and also to the readers who wish to
review the principles of steady state enzyme kinetics.

The book contains numerous equations, but neither the equations nor
the derivations of the equations constitute the primary objective. Rather, it
is crucial that the information contained in an equation be correlated
correctly with the kinetic behavior of the enzyme. Hence, it is the kinetic
behavior of the enzyme which mandates the structure of the rate equation.
The task which is presented to the enzyme kineticist is to visualize the
enzyme model which is consistent with the rate equation.

The reader will note that there are few references to individual enzymes in
this textbook. A deliberate objective has been to present the fundamentals
of enzyme kinetics in general terms rather than in terms of specific enzymes.
The basis for this approach is the conviction that an objective investigation
of the kinetic behavior of an enzyme-catalyzed reaction should be pursued
in a manner which is cognizant of basic principles rather than an attempt to
'fit' the data obtained with one enzyme to the behavior of some other
enzyme. The need to impose a realistic limit on the size of this textbook has

IX



x Preface

led to the omission of some important materials, for example, the derivation
of rate equations for enzyme-catalyzed reactions based on stochastic
principles [J. Ninio, Proc. Natl. Acad. Sci. USA 84:663 (1987); A. K. Mazur,
J. Theor. Biol. 148: 229 (1991)]. Likewise, the structural approach to
metabolic control theory developed by Reader and Mazat [C. Reder, J.
Theor. Biol. 135: 175 (1988)] is not included. The omission of these and
other important topics from this textbook reflects only the limitation of
space. It is hoped that this textbook will provide sufficient background to
motivate the reader to study the foregoing papers as well as other valuable
publications.

I am indebted to Dr. William F. Bosron, Dr. Robert Eisenthal, Dr. David
M. Giobson and Dr. Robert A. Harris for their willingness to read the
manuscript of this book. I deeply appreciate their comments. I also wish to
thank Dr. Robin C. Smith of Cambridge University Press for his helpful
suggestions during the preparation of the manuscript. Finally, I acknowl-
edge those who have contributed so much to the inspiration and comple-
tion of this book, namely, my parents, who nurtured and guided me in my
early life, my wife, Marian, who has loved and encouraged me, the teachers
who taught and challenged me and the students who questioned and
stimulated me.



Part One
Basic steady state enzyme kinetics





1
Derivation of a rate equation

Enzymes do not make reactions take place, they stimulate the rate at which
reactions do take place. Any chemical reaction which proceeds in the
presence of an enzyme will also proceed in the absence of the enzyme but at
a much slower rate. Enzymes catalyze the rate of chemical reactions by
lowering the activation energy of the reaction, and they do this in a manner
which is highly specific for the reactants of the reaction. It was realized very
early in the study of enzyme action that meaningful studies of enzyme
action would, of necessity, involve the study of the kinetic behavior of the
chemical reaction in the presence of the appropriate enzyme. It is still true
that if one understands the kinetic behavior of the enzyme-catalyzed
reaction, one also understands much about the mechanism of the enzymic
reaction. This requires the investigation of the kinetic behavior of the
enzymic reaction under conditions which are defined meticulously. Within
the framework of this text, this will imply under steady state conditions.
Steady state, as it applies to enzyme kinetics will be defined in this chapter
and in chapter 2.

1.1 The role of 'diastase' in the early development of a theory
The enzyme-catalyzed hydrolysis of sucrose played an important role in the
early development of a suitable equation to explain the kinetic behavior of
enzyme-catalyzed reactions. One reason for the importance of this reaction
was that the enzyme invertase was available in a reasonably pure form by
the end of the nineteenth century when the principles of enzyme kinetics
were established. In some of the early literature, this enzyme was called
diastase. In fact, in some of the early literature all enzymes were called
diastase. A second reason for the importance of sucrose hydrolysis in the
development of enzyme kinetics was that the characteristics of acid-
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catalyzed hydrolysis of sucrose had been well established by the latter part
of the nineteenth century, and this allowed comparison of the acid-
catalyzed hydrolysis with the enzyme-catalyzed reaction.

The hydrolysis of sucrose is the following reaction

sucrose + H2O ^ glucose + fructose

In the foregoing expression, kx and k _ l are second order rate constants, i.e.
the rate of the reaction is proportional to the concentration of two
reactants. If the reaction were carried out in an aqueous solution where the
concentration of water would be approximately 55 M and if the concentra-
tion of sucrose were 1 M or less, the concentration of water would not
change appreciably during the course of the reaction. Since the concentra-
tion of water would not change significantly even if the reaction continued
to completion, one can assume k[ = fe1(H2O), where k[ is a pseudo-first
order rate constant, the rate is proportional to the concentration of one
reactant. The differential equation for the disappearance of sucrose with
respect to time is

(1.1)

where A = sucrose, P = glucose and Q = fructose. Throughout this book it
will be assumed that the activity coefficient of any reactant is unity, thus the
terms concentration and activity will be assumed to be interchangeable. If
the concentration of either product were equal to zero or if fc_ x were equal
to zero, the second term on the right-hand side of eq. (1.1) would be equal to
zero, and eq. 1.1 would become

^ (1-2)

Equation (1.2) describes a reaction which would exhibit first order kinetic
behavior. A plot of the rate of disappearance of A against the concentration
of A should be a straight line which should pass through the origin with
a slope equal to k[. This is shown in Figure 1.1.

Equation (1.2) can be rearranged and expressed in integral form.

The result of the integration gives,

ln(A)= -fc;r + lnA0 (1.4)
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d(A)
dt

(A)
Fig. 1.1. Plot of the rate of disappearance of substrate A as a function of the
concentration of A for a first order reaction.

where Ao is the initial concentration of A.

Substitution of eq. (1.5) into eq. (1.2) gives,

d(A)_ _k.t

(1.5)

(1.6)

Plotting the rate of disappearance of A against time gives an exponential
curve as is shown in Figure 1.2.

Investigations of the acid-catalyzed hydrolysis of sucrose were consistent
with the hypothesis that the reaction followed first order kinetics. However,

d(A)
dt

time
Fig. 1.2. Plot of the rate of disappearance of substrate A as a function of time for
a first order reaction.
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d(A)
dt

(A)
Fig. 1.3. Plot of the rate of disappearance of substrate A as a function of the
concentration of A for a typical enzyme-catalyzed reaction.

investigations of the enzyme-catalyzed reaction led to observations which
were perplexing at that time. Data which were obtained in experiments at
low concentrations of substrate indicated first order kinetic behavior while
experiments at high substrate concentrations suggested zero order kinetic
behavior. That is, the reaction rate was a constant independent of substrate
concentration. A careful analysis of the various results indicated that a plot
of the rate of sucrose disappearance against sucrose concentration had the
appearance shown in Figure 1.3. Numerous hypotheses were advanced to
explain the kinetic behavior of enzyme-catalyzed processes1, but none
received widespread acceptance until the proposal suggested by Brown2.
Brown's hypothesis was influenced by observations made by others. Wirtz3

had reported that the proteolytic enzyme papain formed an insoluble
complex with the substrate fibrin. This indicated that enzymes could
combine with their substrates, but it did not provide evidence that the
resulting complex was an obligatory intermediate in the reaction sequence.
Additionally, O'Sullivan and Tompson4 observed that invertase could
tolerate a higher temperature in the presence of its substrate than in the
absence of substrate. This observation was consistent with the hypothesis
that sucrose could combine with invertase to form a complex which was
more resistant to heat inactivation than was the native enzyme. Once again,
this did not mandate that the enzyme-substrate complex was an obligatory
intermediate in the reaction sequence. Finally, Emil Fischer's5 "lock and
key" explanation for enzyme specificity was best interpreted, at that time, in
terms of an enzyme-substrate complex which is an obligatory intermediate
in the reaction sequence. Thus, Brown suggested the following model
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for enzyme-catalyzed reactions.

E + A ^ E A ^ E + P

In the foregoing reaction sequence, E represents the free enzyme while EA
represents the complex of enzyme with substrate A. In this model, and
throughout this text, the letters A, B, C, and D represent substrates while
the letters P, Q, R and S represent products of the enzymic reaction. The
forgoing model predicts that the reaction rate, i.e the increase of P with time
should be v = fc2(EA). Thus the rate of the reaction is proportional to the
concentration of the EA complex. If the concentration of the enzyme were
held constant and assays were run at increasing concentrations of substrate
A, one would expect the concentration of the EA complex to be propor-
tional to the concentration of A at low concentrations of A. Under those
conditions, the kinetic behavior of the reaction would approximate first
order kinetics. Inspection of Figure 1.3 shows that, at low concentrations of
substrate A, the rate of the reaction is approximately a linear function of
substrate concentration. On the other hand, if the concentration of the
substrate were so high that essentially all the enzyme was present in the
form of the EA complex, the rate of the reaction would be determined by the
rate of decomposition of the EA complex to form a free enzyme and the
product. At that point, increasing the concentration of the substrate would
have no further effect on the rate of the reaction, and the reaction would
exhibit zero order kinetic behavior with respect to substrate concentration.
Inspection of Figure 1.3 shows that, at the highest concentrations of
substrate, the plot of reaction rate versus the concentration of substrate is
approximately a straight line with slope equal to zero. At intermediate
concentrations of substrate, the curve represents a transition from first
order to zero order kinetic behavior. The complete plot of reaction rate
versus substrate concentration (substrate-saturation curve) is that of a rec-
tangular hyperbola.

1.2 The basic assumptions on which derivation of an equation is based
The model which Brown proposed for enzymic reactions has withstood the
test of time, but it is strictly intuitive and lacks a mathematical foundation.
A mathematical treatment of this model was advanced first by a brilliant
French scientist, Victor Henri6. It was Henri who derived the equation
which is often attributed to Michaelis and Menten. Indeed, Michaelis and
Menten7 acknowledged that the purpose of their work was to provide
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experimental affirmation of the mathematical formulation published by
Henri. Based on the model proposed by Brown, one can write differential
equations for the change in concentrations of each of the two enzyme
species with respect to time.

= - ME)(A) + (*-i + *2)(EA) (1.7)

(1.8)

As pointed out earlier,

(1.9)

One might think that a mathematical expression for the rate of an enzymic
reaction could be obtained by an analytical solution of the system of
differential equations expressed in eqs. (1.7) and (1.8) and substitution of the
expression for (EA) into eq. (1.9). Unfortunately, there is no analytical
solution of eqs. (1.7) and (1.8). However, Henri reasoned that within a few
milliseconds after the mixing of the enzyme with its substrate the concentra-
tions of free enzyme and enzyme-substrate complex would become time-
invariant. That is, for a given concentration of enzyme the relative amount
of free enzyme and enzyme-substrate complex would be a function of
substrate concentration, but the actual amount of each enzyme species
would remain constant after the first few milliseconds. This assumption
allows the differential equations of eqs. (1.7) and (1.8) to be replaced by the
following linear algebraic equations.

0 (1.10)

fc1(E)(A)-(k_1-ffc2)(EA) = 0 (1.11)

The foregoing two equations contain two unknown quantities, namely (E)
and (EA), but it is not possible to solve the unknown quantities because the
equations are not independent; in fact for the model under consideration
they are identical. In order to derive an equation for the rate of an enzyme-
catalyzed reaction, it is necessary to make a number of assumptions. These
are,

E, = (E) + (EA) (1.12)

A , » E , (1.13)
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(P) = 0 (1.15)

In eq. (1.13), Af is the total substrate concentration. The first three of these
assumptions are essential for the derivation of the rate equation, the fourth
assumption is made at this point as a matter of convenience and in
chapter 4 the restriction imposed by eq. (1.15) will be removed. It is
imperative that the reason for and the implications and validity of the
assumptions expressed in eqs. (1.12) through (1.14) be understood. The
logic behind the assumption expressed in eq. (1.12) is obvious. One could
not conduct a valid assay if the total activity of the enzyme were changing
during the assay. This assumption is often termed the enzyme conservation
expression. However, this equation is indispensable mathematically for
it provides a third equation and, therefore, a total of two independent
equations which can be solved for the two unknown quantities. The reason
for the remaining assumptions will be discussed in subsequent chapters.

1.3 The Briggs-Haldane steady state treatment of enzyme
kinetic behavior
The derivation which will be presented is neither that of Henri nor that of
Michaelis and Menten, but rather, the derivation of Briggs and Haldane8'9.
The reason for following the Briggs-Haldane derivation is that it is a more
general treatment. As noted earlier, the rate of the enzyme-catalyzed
reaction for the model under consideration is v = fc2(EA). The concentra-
tion of the free enzyme can be obtained from either eq. (1.10) or eq. (1.11).

(1-16)

Equation (1.16) can be substituted into eq. (1.12) and rearranged as

ffU (U7)
The rate of the reaction is obtained by multiplying eq. (1.17) by k2.
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Equation (1.18) is identified as the Briggs-Haldane equation, the Michaelis-
Menten equation and the Henri equation. Traditionally it is called the
Michaelis equation and, reluctantly, that tradition will be followed in this
book.

Equation (1.18) expresses the rate equation in terms of rate constants for
the individual reactions. Throughout this book an enzymic rate equation
expressed in terms of rate constants will be called the rate equation in the
coefficient form. While the rate equation is usually derived in this form, it is
not a useful form of the rate equation because most of the rate constants are
generally inaccessible in investigations of the steady state behavior of
enzymes. For this reason it is necessary to reformulate eq. (1.18) such that it
is expressed in terms of parameters which can be determined in steady state
studies. Throughout this book, these reformulations will be conducted in
a similar manner. Equation (1.18) can be re-written as

num. 1(A)
constant + coef. A( A)'

where num. l=k1k2Et, constant = k _ l + k2, and coef. A = k x. The equa-
tion is reformulated by dividing both the numerator and denominator of
the right hand side of eq. (1.19) by coef. A. The result is,

numJ.

The coefficient of the numerator term in eq. (1.20) is a constant, and the first
term in the denominator of eq. (1.20) is also a constant. The equation is
reformulated as,

where Vmax = fc2Et and Km = (fc_ x + k2)/kv The Michaelis constant is Km,
and Vmax is the maximal velocity. More precisely, Vmax is the velocity of the
reaction when the enzyme is saturated with the substrate. Throughout this
book an enzymic rate equation expressed in terms of the steady state
parameters will be called a rate equation in the kinetic form. Later in this
chapter methods which provide for estimation of the steady state para-
meters, Vmax and Km will be discussed. Equations (1.18) and (1.21) both
describe a rectangular hyperbola. Stated in more descriptive terms, they
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are 1:1 order rational polynomials. A rational polynomial is a ratio of
polynomials. A 1:1 order rational polynomial contains the independent
variable, (A) in this case, to the first power in both the numerator and
denominator.

It is informative to divide both the numerator and denominator of the
right hand side of eq. (1.21) by the concentration of A,

1+
(A)

If the concentration of A were much less than Km, such that 1 « Km/(A),
eq. (1.22) would become

(1.23)

This equation describes a reaction which exhibits first order kinetic behav-
ior, and the apparent first order rate constant is Vmax/Km. However, if the
concentration of substrate were so great that KOT/(A) ~ 0, eq. (1.22) would
become

^ V m a i . (1.24)

At this point the rate of the reaction would be independent of (A) and the
reaction would exhibit zero order kinetic behavior with respect to substrate
concentration. The mathematical definition of saturation of the enzyme
with substrate A is, Km/(A) ~ 0. Finally, if Km = (A), v = l/2(Vmax). Thus the
Km is the concentration of the substrate which results in half maximal
velocity, and the Michaelis constant is expressed in molarity.

The derivation presented here is that of Briggs and Haldane, and it differs
from that developed by Henri and also that employed by Michaelis and
Menten. In the case of the model under consideration, k2 is the rate
constant which includes the step which usually involves either the cleavage
or formation of a covalent bond. If this step were very much slower than the
other steps in the model, an equilibrium would be established between the
free enzyme and the substrate and the enzyme-substrate complex. If such
were the case, k2 would be much smaller than k_x and the Michaelis
constant would be Km c^k.Jk^^. Thus, in the Briggs-Haldane treatment the
Michaelis constant is a kinetic constant while in the Henri treatment it is
a dissociation constant and, therefore, a thermodynamic constant. The
matter of whether or not the reaction involving the cleavage of formation of
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a covalent bond is very much slower than other steps in the reaction
sequence will be discussed in chapter 9 of this book.

1.4 Estimation of steady state parameters
If one were to measure the velocity of an enzyme-catalyzed reaction in
a series of assays in which the substrate concentration in each assay varied
from one which was sufficiently small to result in a low rate relative to
Vmax to one where the substrate concentration were large enough to result
in maximal velocity, one could plot the data and estimate both Vmax and
Km. However, if, for example, the solubility of the substrate were limited in
an aqueous solution, it might be impossible to estimate Vmax and therefore
Km could also not be estimated. For this reason, efforts were made to
rearrange eq. (1.18) in a linear form so that Vmax could be obtained by
extrapolation. Haldane and Stern10, following the suggestions of B. Woolf,
rearranged eq. (1.21) by dividing both sides of the equation by (A) and then
inverting both sides of the equation to obtain

M+ ( 1 2 5 )

Equation (1.25) describes a linear relationship if (A)/v were plotted against
(A). The slope of the line is the reciprocal of Vmax and the intercept of the
(A)/v axis is Km/Vmax. This same rearrangement was proposed by Hanes11.
Haldane and Stern also noted that multiplying both sides of eq. (1.21) by
[KOT + (A)] and the rearrangement gives,

(1.26)

Equation (1.26) is a linear relationship whose slope is —  Km and whose
intercept of the v axis is Vmax. Lineweaver and Burk12 utilized yet another
rearrangement to obtain a linear form of eq. (1.21). This was accomplished
by simply inverting both sides of eq. (1.21).

+ { 1 27)
v Vmai(A) + Vmas

 ( Z )

The resulting equation is that of a straight line whose slope is Km/V max and
whose intercept of the l/v axis is 1/Vmax. The point of intersection of the
l/(A)axisis - 1/Km.
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There are additional linear forms of eq. (1.21), for example, the direct
linear plot of Eisenthal and Cornish-Bowden13, but the foregoing are the
most widely used. It is important to recognize that these equations do
not give rise to estimates of the steady state kinetic parameters with
equal degrees of precision. Note that 1/v, the dependent variable in the
Lineweaver-Burk equation [eq. (1.27)] approaches infinity as 1/(A), the
independent variable, approaches infinity. Hence, the Lineweaver-Burk
plot places maximum weight on those observations which are made at low
concentrations of the substrate, and those are the values which are asso-
ciated normally with the largest experimental error. The converse is true of
eq. (1.25) while eq. (1.26) places uniform weight on observations throughout
the substrate-saturation curve. The significance is that the Lineweaver-
Burk plot is the least desirable method for obtaining quantitative estimates
of the steady state parameters. The objection to the use of the Lineweaver-
Burk plot can be alleviated to some degree by utilizing a statistical program
which employs weighting factors, but this necessitates the selection of an
appropriate weighting factor. It is important to realize that the foregoing
objection applies to the use of the Lineweaver-Burk plot as a means of
obtaining quantitative estimates of Km and Vmax only, it does not argue
against plotting data as a double reciprocal plot utilizing the estimates of
the parameters which have been obtained by a more satisfactory method.
Probably the most feasible method of obtaining quantitative estimates of
the steady state parameters is the nonlinear regression method of Wilkin-
son14. The original publication outlines the method clearly for use with
a calculator, but the procedure was outlined so well in Wilkinson's publica-
tion that it is easy to adapt it to a computer program to be run on a personal
computer or even a programmable hand held calculator. This procedure is
so elegant that there is little reason to obtain estimates of Vmax and Km by
any other method provided the substrate-saturation curve is a rectangular
hyperbola and the procedure is outlined in section 1.A.3 of the appendix to
this chapter.

1.5 Problems for chapter 1
1.1 Derive expressions for the fraction of the total enzyme present as the

free enzyme and for the fraction of the total enzyme present as the EA
complex for the enzyme model considered in this chapter.

1.2 On the same sheet of graph paper, plot the (E)/Ef and (EA)/Ef as
a function of (A)/Km. Vary (A)/Km = 0.1 to 10.

1.3 The following data were obtained in a substrate-saturation experi-
ment.
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(A)
mM
0.075
0.100
0.150
0.200
0.250

V

JX moles/minute
0.0120
0.0152
0.0205
0.0245
0.0280

Estimate Km and Vmax from a plot of l/v versus 1/(A), and from a plot of
(A)/f versus (A), and finally from a plot of v versus v/(A).

Appendix: A brief look at statistical analysis
7.̂ 4.7 Definition of a few statistical terms
It is the purpose of this appendix to provide a brief account of the simpler statistical
analyses employed in enzyme kinetics. The first statistic is the arithmetic mean
or average. If one were to measure the change in absorbance at 340 m|i in a cuvette
in a given time interval after a dehydrogenase had been added to a reaction medium
containing NAD+ and the appropriate oxidizable substrate several times, one
would record a number of slightly different values. If the several values were
designated £ Yt

 a nd n were the number of observations, the average change in
absorbance would be

(l.A.l)
n

The arithmetic mean does not give any indication of the amount of scatter in
the observations. A measure of the accuracy of the mean should be related to
the deviations about the mean, but, in theory, the sum of the deviations greater
than the mean should be offset by the deviations less than the mean. Hence the
sum of the deviations should be equal to zero. For this reason, and for theoretical
reasons that will not be discussed here15, the deviations about the mean are squared.
The variance is defined as the sum of the squares of the deviations divided by
the degrees of freedom. If there is one parameter measured, the degrees of freedom
is given by n — 1. Therefore the expression for the variance is,

Y(Y — Y)2

variance = s2 = ^ - (1. A.2)
n — 1

The squared term in the numerator can be expanded as

- + f
n

The variance can be expressed as follows:

- 1 - (1.A.3)
n — 1
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The standard deviation is defined as the square root of the variance.

(1.A.4)n —  1

Standard deviation and standard error are similar terms. They may be used
interchangeably if the statistic to which they apply is specified. The coefficient
of variation is defined as follows:

The symbol s2 is defined as the variance of a given sample while a2 is defined as
the variance of the population from which the sample is taken. The former is
estimated from the data, but the statistician is usually interested in the variance
of the population rather than that of the sample of the population. In the
same manner, the arithmetic mean of the sample is defined as Ywhile the arithmetic
mean of the population is \i.

1.A.2 Linear regression
A procedure which is employed extensively in the analysis of enzyme kinetic
data, as well as in all of biochemistry, is linear regression. Linear relationships
are well understood in mathematical terms. Three linear transformations of the
Michaelis equation have been presented in this chapter. In general terms, the
assumption of a linear relationship implies that a dependent variable, Y, is a linear
function of an independent variable X. In the case of the Lineweaver-Burk plot,
l/v is the dependent variable while 1/(A) is the independent variable. In the case
of the (A)/v versus (A) plot, (A)/v is the dependent and (A) is the independent
variable. However, the linear regression, as here presented, is based on four
assumptions. These assumptions are,

1) It is assumed that the independent variable, X, is measured without error.
2) The expected value of the dependent variable for a given value of the,

independent variable is,

X (1.A.6)
3) For any given value of X, the observed Y values are distributed

independently and normally. This is represented by,

where ^i is the error in the estimate.
4) It is assumed that the variance around the regression line is constant and,

therefore, independent of the magnitude of X or Y.
The aim in the linear regression is to calculate the values of A and B in eq. (1.A.7)

such that Y can be estimated for any given value of X. Thus, the difference between
the observed values of Y( and the value estimated from the regression line would be
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where ri is the residual and % is the estimated value of Y,. As with variance, the
residuals are squared.

Irf = £ ( ? , - Yt)2 = £(A + BXt - Y,)2 (1.A.9)
The problem is to find the values for A and B which minimize £rf. This is
accomplished by setting the following derivatives equal to zero.

'dA dB
An expansion of the squared numerator and differentiation gives the following
expressions.
JVH2

dA

dB
= 0

The following equations arise from the foregoing

(1.A.10)
(1.A.11)

Equations (1.A.10) and (l.A.l 1) can be solved for A and B. Note that A is the
point of intersection of the regression line with the Y axis and B is the slope of
the regression line, but the latter is more often referred to as the regression
coefficient.

A variety of computer-based library programs which provide for numerical
solution of eqs. (1.A.10) and (l.A.l 1) as well as providing estimates of the standard
error for both parameters are available. There are also books which contain the
source code for such programs16. Nevertheless, it seems appropriate to provide
a brief account here of how such computations are conducted17. Equations (1.A.10)
and (l.A.l 1) can be generalized as,

a21xl+a22x2 = b2

These equations can be written in matrix form

«12 «22

An augmented matrix which consists of the A matrix, the B vector from the
foregoing and an identity matrix can be constructed

|A B I| = u 0

a7

al2 bt 1

After the equations have been solved, the resultant augmented matrix will be

1 0 x, c c.
II A " 1 ! - M - u

0 1
- 1 2

L22

In the foregoing, the elements c(j are the elements in matrix A l. The inversion
of matrix A is accomplished by two types of operations. The first of these is
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normalization in which all of the elements in a row of the original augmented
matrix are divided by the first non-zero element of the row. By a repetition of
this operation, the diagonal elements of A are converted to ones. The second
operation is reduction in which the non-diagonal elements of A are converted to
zeros. Normalization of the first row of the original augmented matrix gives

axl alx

a2l a22 b2

L
0

Reduction is performed by multiplying each element of the normalized first row
by a2! and subtracting the product from the corresponding element in row 2.
The result of this reduction is

—  — — 0
011 011 011

011022-012021 011^2-021^1 021 1

Normalization of the second row gives

hI i ^ l

0 1
aiib2-a2lb1

011022-012021

a2l

alla22-al2a21 alla22- a12a2l

The final reduction is accomplished by multiplying each element of the normalized
second row by a12/al 1 and subtracting the product from the corresponding element
of row 1. The result is the final augmented matrix.

1 0

0 1

022^1-021^2 0 21

>-al2a2l axla22-a12a21

allb2-a21b1 a21
-a12a21

011022-012021

011

1022-012021 011022-012021

The symbols from eqs. (l.A.lO) and (l.A.l 1) can be substituted into the foregoing
matrix to give

IX2

Y.X

1 0

0 1

It can be seen from the foregoing that A in eqs. (l.A.lO) and (l.A.l 1) is equal to
the first element in the third column of resultant augmented matrix, and B is equal
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to the second element in the third column of the matrix. Thus,

n

The variance about the regression line is estimated by

S 2 = ^ >_ = La ^ ^ (1.A.14)
n—2  n—2

The degree of freedom in eq. (1.A.14) is n — 2  because both A and B are estimated
from the observed data. Without providing a derivation, the standard error on
the estimate of A is

It should be noted that the standard error for A is equal to the square root of
the variance times the first element of the fourth column of the augmented matrix.
In like manner, the standard error for the estimation of B, the regression coefficient,

The standard error of the regression coefficient is equal to the square root of the
variance times the second element of the last column in the augmented matrix.
Thus the diagonal elements in the inverse matrix A "1 are factors used in estimation
of the standard errors. The variables which are required for estimation of A and
B and their standard errors are n,£ Y,£ Y2

9^lXf^X2
9^XY. The equations

presented in this text may appear to differ from those found in reference books
on statistical analysis15, but they are equivalent. Statisticians rearrange the
equations to improve the computational efficiency. The purpose here has been
to outline the derivations in a fairly straightforward manner.

LA.3 Non-linear regression in enzyme kinetic analysis
The non-linear regression method proposed by Wilkinson for estimation of the
steady state enzyme kinetic parameters will be outlined here in essentially the
manner it has been presented in the original publication14. Non-linear regression
requires a preliminary estimate of the parameters, and these are obtained by
linear regression similar to that described in the previous discussion. However,
Wilkinson employed a weighted linear regression of (A)/v versus (A). The following
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expressions provide for the preliminary estimates of the parameters.

| d.A.19)

The non-linear aspect of the Wilkinson method is based on the assumption
that if a function is non-linear in a parameter, c, the following linear approximation
may be used.

/,,c = /,,co + (c-c°)/; , co (1.A.20)

where c° is a provisional estimate of c and / ' is the first derivative of / with respect
to c. In terms of enzyme kinetics, eq. (1.A.20) becomes

V°
' m a

To initiate the calculations, the preliminary estimates of Km and Vmax from linear
regression are used as the provisional estimates of the parameters. The following
calculations lead to updated estimates of the parameters.

d-A.24)

(1.A.25)

(1.A.26)

1 ^ = ^ + ^ (1.A.27)

V^Vixt, (1.A.28)

The updated estimate of Km is tested against the provisional estimate. If the two
are sufficiently close, for example, if abs(Km —  K ^ ) / K £ - < 0.001, the updated
parameters are accepted as the best estimates. If on the other hand, the updated
Km does not pass the test, the provisional estimates of the parameters are replaced
by the updated estimates and the calculations embodied in eqs. (1.A.22) through
(1.A.28) are repeated. It should be understood that, as K° approaches the best
estimate, the value of bx approaches unity and b2 approaches zero. After the best
estimates have been obtained, the variance can be calculated as

^I'-w-w (1.A.29)
n —  2
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The standard error for Km is

( 1 A 3 0 )

while the standard error for Vmax is

A word of caution should be introduced at this point. The Wilkinson procedure
is based on the assumption that eq. (1.21) describes the kinetic behavior of the
enzyme accurately. In some of the subsequent chapters of this book, enzyme
models which give rise to rate equations which are not consistent with eq. (1.21)
will be considered. The Wilkinson procedure cannot be employed to obtain
meaningful estimates of parameters in the case of those enzymes. The Wilkinson
procedure converges rapidly on the best estimate of Km if eq. (1.21) is appropriate.
If a computer program is written to execute the Wilkinson procedure, it is
recommended that a counter be included to record the total iterations required
for convergence. If more than 3 or 4 iterations are required, one would be well
advised to question whether eq. (1.21) is appropriate for the enzyme involved.
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2
A closer look at the basic assumptions

The derivation of the Michaelis equation in the previous chapter was based
on four assumptions. It was stated that an understanding of these assump-
tions is essential to an understanding of steady state enzyme kinetics. The
requirement for the first assumption, eq. (1.12), was discussed in chapter 1.
In this chapter the significance of the second and third assumptions will be
investigated.

2.1 Why must the substrate concentration greatly exceed
that of the enzyme?
The second assumption is given in eq. (1.13), but it is re-stated here, A t » Er
Of the four assumptions, this one is most widely misinterpreted. The
presumption is not that the enzyme must be saturated with substrate! The
purpose of this assumption is to guarantee that there is not a significant
fraction of the substrate bound to the enzyme during the assay. Equa-
tion (1.12) is an enzyme conservation equation, but a conservation equation
was not included for the substrate. A substrate conservation equation for
the model considered in chapter 1 is

(P). (2.1)

The implicit assumption in the derivation presented in chapter 1 is that
Ar = (A). Equation (1.15) stipulates that (P) = 0, but even so, Ar, the total
substrate, will be equal to the free substrate, (A), only if (EA) does not
represent a significant fraction of the total substrate. In the case of most
enzymes in vitro, this condition is satisfied easily. The following calculation
illustrates this contention. Suppose the enzyme being studied has a turn-
over number of 10,000, that is, l|amole of enzyme, when saturated with the
substrate, would catalyze the conversion of 10,000 ̂ imoles of substrate to

22
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product per minute. This is actually a low turnover number. Furthermore,
suppose the substrate concentration were equal to one tenth of the
Michaelis constant and that sufficient enzyme were present in the assay
medium to catalyze the turnover of 1 percent of the substrate per minute.
When these values are substituted into eq. (1.21), one has

_ , A 10,000 ̂ imoles minute ^ x O . l K x E ,0.01 |imoles minutes xA( = 1.1 x Km

In this example Af/Ef = 90,000, so the assumption would be satisfied easily.

2.2 What if the substrate concentration does not greatly exceed
that of the enzyme?
If the substrate of the enzymic reaction were a large molecule, such as is the
case for protein kinases or protein phosphatases, the assumption might be
difficult to achieve. In such cases, a substrate conservation equation must be
included in the derivation of the rate equation. Substitution of a substrate
conservation expression into the equation for the concentration of (EA), eq.
(1.17) gives,

E,[A,-(EA)

Rearrangement of eq. (2.3) results in the following polynomial,

(EA)2 - (Kw + At + E,)(EA) + Er A, = 0. (2.4)

Equation (2.4) can be solved for the concentration of the EA complex and
multiplication by k2 gives the equation for the rate of the reaction.

v = y [(Km + A, + E,) ± >/(Km + Al + E,)2-4E,Ar] (2.5)

Equation (2.5) can be simplified somewhat by recognizing that the velocity
of the enzyme-catalyzed reaction must be equal to zero if the concentration
of either the substrate or the enzyme were equal to zero. Inspection of
eq. (2.5) shows that the velocity would be equal to zero only in the case of
the negative sign before the radical sign.

v = y [(Km + Ar + Ef) - V/(Km + Ar + Er)2~4ErAJ (2.6)

However, even with this simplification, eq. (2.6) differs sufficiently from the
form of the Michaelis equation that one might well question its validity.
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Since the second term under the radical sign is negative, one might question
if the conditions might exist where the value of the radicand could be
negative. If such were the case the equation would give rise to an imaginary
root. Reiner examined this possibility in his excellent book1. The expansion
of the terms in the radicand gives

K* + 2KmA, + 2KmE, + A? - 2E,A, + E,2

This would be equal to (Km + Ar —  Er) if the expression contained —  2KmE,
rather than 2KmEr This can be accomplished by adding both -4K m E r

and +4KmEr to the foregoing expansion. The result is
(Km + A, —  E,)2 4- 4KmEr Since the first term in the resulting expression is
squared, it is always positive, and the second term is also positive. There-
fore, eq. (2.6) cannot give rise to an imaginary root. Equation (2.6) should be
subjected to one additional test. If the substrate concentration were in-
creased until it became infinitely large, eq. (2.6) should give the same result
as eq. (1.18). This can be investigated by rearranging eq. (2.6).

(2.7)

The radicand can be expanded by the binomial theorem for fractional
powers as yj\ +x =14- (l/2)x 4- higher powers of x. Since the second term
under the radical sign in eq. (2.7) approaches zero as Ar approaches infinity,
the terms in higher powers of x can be ignored. Under these conditions,
eq. (2.7) becomes

(2.8)

Thus, eq. (2.8) predicts that the rate of the reaction will equal Vmax at high
concentrations of the substrate. Equation (2.6) is an appropriate expression
for the rate of the reaction when the assumption At» Et is not satisfied, but
it is not a convenient equation with which to work.

If a valid estimate of maximal velocity can be obtained, an equation for
the Michaelis constant can be derived by a somewhat different algebraic
manipulation. Substitution of the substrate conservation equation into the
rate equation in the kinetic form, eq. (1.21), gives,

Km + At-(EA) K1"]
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Equation (2.9) can be rearranged,

(2.10)

Substitution of eq. (1.17) in the kinetic form into eq. (2.10) for (EA) and
substitution of eq. (1.21) for v in the denominator of the second term on the
right hand side of eq. (2.10) gives,

W (2.11)Vmax

An estimate of the Michaelis constant can be obtained from eq. (2.11) only if
an appropriate estimate of maximal velocity is available. Otherwise, it is
necessary to use the rather unwieldy eq. (2.6) if the assumption A,/E, cannot
be satisfied.

2.3 Examination of the entire time-course of an enzymic reaction
It was stated in chapter 1 that it is not possible to obtain analytical solutions
to the differential equations for the various enzyme species in an enzyme
model. It is possible to obtain an analytical solution to the approximate
differential equation for the enzyme-substrate complex for the model
considered in chapter 1. The differential is approximate because it will be
assumed that the concentration of substrate is constant and the concentra-
tion of the product will be assumed to be equal to zero. The approximate
equation is,

(2.12)

It is important to note that, in the derivation that follows, the assumptions
expressed in eqs. (1.12), (1.13) and (1.15) are presumed to be satisfied. That
is, only the steady state assumption, eq. (1.14) is ignored. Rearrangement of
eq. (2.12) gives,

^ ^ /c2 + /c1A,) = fciEA (2.13)
at

Equation (2.13) is a homogeneous linear differential equation, and its solu-
tion is given by,

Tf ] (2.14)
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' ' +Ce~(k-1+k2+klAt)t (2.15)

In the foregoing equations, C is an integration constant. The boundary
conditions are that at t = 0, (EA) = 0, and thus,

C=~i *1
|
E>A'> A (2.16)

Therefore,

fc,£,A( .(1 _<;-<*-.+*> + *.*>») (2.17)

The equation for the rate of the reaction is obtained by multiplying eq. (2.17)
by k2. The rate of the reaction is equal to d(P)/df, and the expression can be
integrated to obtain an expression for the concentration of P as a function
of time. That is, by carrying out this integration an equation is derived
which describes the time-course curve of the reaction.

d(p>=% i ; i i ! A (l-e-<*-+fa+*-
JO K-l "•" K2 "+" * l A f JO

A'>')dt (2.18)

k1k2EtAt -(fc-^fca + fciAt)! n ^ 1 Q ^

The exponential term in eq. (2.19) can be expanded as the following series.

e x = fJ^=l+x + ^-x2 + ^x3 + ••• (2.20)

The exponent x in eq. (2.20) is equal to -(k_x +k2 + kx At)t from eq. (2.19).
When time is measured in small increments, as is true in the millisecond
region, the series can be terminated after the third term of eq. (2.20). Thus, in
the millisecond region, the time course curve is described by the following
equation.

(PJ-i^EA)'2 (2.21)
The time-course curve in this region is described by one branch of a para-
bola whose vertex is at the origin. This is shown in the Figure 2.1.

As time increases into the second and minute range, the exponential term
in eq. (2.20) becomes negligible compared to —  1, and the equation becomes

fcife2E,A,
(k+k+kA)2
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millisecond second-minute minute-hour

second-minute

Fig. 2.1. Time-course curve of an enzyme-catalyzed reaction. The observed
curve. The linear relationship predicted from eq. (2.22).

Equation (2.22) defines product concentration as a linear function of time in
this portion of the time course curve. This is shown in Figure 2.1 as the
dashed line. The reader should recognize that the slope of this straight line is
eq. (1.18), the Michaelis equation in the coefficient form. The difficulty is
that eq. (2.22) predicts that the rate of the reaction will remain constant
forever! This certainly does not happen. The problem lies in the fact that
eq. (2.13) is the approximate differential equation for the EA complex. It was
based on the assumption that the substrate concentration, Ar, would
remain constant and that the product concentration would remain equal to
zero. Neither of these assumptions apply to an actual experiment. In an
actual experiment, the concentration of the substrate deceases and the
concentration of the product increases until equilibrium is reached. At that
point the net rate of the reaction is zero. For these latter reasons the
time-course curve does not remain linear, but rather bends downward with
increasing time.

2.4 A precise definition of steady-state velocity
The actual time course curve is represented in Figure 2.1 as the solid line.
The slope of the curve decreases in the minute to hour region. Since the
initial portion of the time course curve is concave upward and the later
portion of the curve is concave downward, the curve obviously passes
through an inflection point. The rate of the reaction is maximal at the
inflection point of the time course curve. The rate of the reaction at that
point is expressed precisely in eq. (1.18). This is the reaction rate predicted
by the Michaelis equation which is based on the steady state assumption.
Hence, the estimate of the rate of the reaction based on the steady state
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approximation is precise for only an instant, at the inflection point of the
time course curve. However, it should be recalled that the second derivative
of any curve is equal to zero in only two instances. The second derivative is
equal to zero at any inflection point that the curve might pass through, and
the second derivative is also equal to zero through any linear section of the
curve. The significance of this fact is that the steady state approximation, as
expressed in the Michaelis equation, is an acceptable estimate of the rate of
the enzymic reaction any time the second derivative of the time course curve
is indistinguishable from zero. Walter2'3 has developed a numerical method
by which the slope of the time course curve is determined at a point where
the second derivative is indistinguishable from zero within the experimental
error. This represents the most satisfactory method of estimating the steady
state velocity of the enzyme-catalyzed reaction.

When an enzyme assay is conducted and the time course of the reaction is
plotted in the second to minute range, the plot will usually exhibit the
product concentration to be a linear function of time which passes through
the origin. The reason for this is that the rate observed is steady state rate.
The amount of product formed during the pre-steady state rate is too small
to show a deviation from linearity. It is of utmost importance to recognize
that the rate observed during this period of apparent linearity is a measure
of the steady state rate of the reaction only if the conditions mandated by
eqs. (1.12) and (1.13) are satisfied.

2.5 Problems for chapter 2
2.1 Show how estimates of the rate constants kl,k_1 and k2 might be

obtained for the enzyme model under consideration in this chapter by
using a combination of steady state and pre-steady state kinetics.

2.2 Calculate the percentage of total substrate that would be converted to
product per minute if the Ar/Er ratio were 75,000 for an enzyme with
a turnover number of 100,000/minute if the substrate concentration
were 0.05 x Km.

2.3 Calculate the percentage of total substrate that would be converted to
product per minute for the situation described in problem 2.2 if the
A,/E, ratio were 25,000.
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3
Enzyme inhibition

The significance and implications of the assumptions stated in eqs. (1.12),
(1.13) and (1.14) have been treated in chapters 1 and 2. It would be
reasonable to consider the fourth assumption at this point. However, the
product of an enzyme-catalyzed reaction functions as an inhibitor, and
since there is some variation in the terminology applied to enzyme inhibi-
tion, this chapter will be devoted to a general treatment of inhibition and
will establish the terminology that will be employed in this text. Enzyme
inhibition is a reversible process, and therefore does not include enzyme
inactivation, for inactivation is essentially an irreversible process.

A general model of inhibition will be developed in this chapter. However,
it must be borne in mind that terms such as competitive and uncompetitive
inhibition refer to a particular kinetic behavior of the enzyme and not to
any specific mechanism. A given mechanism may be consistent with a par-
ticular kinetic behavior, but there may be other mechanisms which are also
consistent with the kinetic behavior.

3.1 A general model of enzyme inhibition
The following will serve as a model of enzyme inhibition.

The catalytic cycle in Figure 3.1 consists of the reactions whose rate
constants are kx, k_x and k2 and involves two enzyme species, namely
E and EA. The model also includes two dead end complexes. The dead end
complexes are El and EAI. In order to derive a rate equation for the model
in Figure 3.1, the following assumptions will be made.

E, = (E) + (EA) + (El) + (EAI) (3.1)

A,»Er (3.2)

30
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k-3 Ml) k.4

El EAI
Fig. 3.1. A general model of enzyme inhibition. The free enzyme is E, EA is a binary
enzyme-substrate complex, El is the enzyme-inhibitor complex, and EAI is the
ternary enzyme-substrate-inhibitor complex.

I ,»E r

d(E) d(EA) d(EI) d(EAI)
dr dr dr dr

= 0

(3.3)

(3.4)

(3.5)

In addition to the foregoing assumptions, it will be assumed that inhibition
is complete. This does not imply that inhibition is total so that there is no
reaction rather, it implies that if the free enzyme combines with the inhibitor
to form the El complex, the El complex cannot combine with the substrate
to form the EAI complex. Furthermore, it will be assumed that the EAI
complex cannot decompose to form the product. These latter assumptions
are made at this time for convenience. They are not mandatory, in fact, in
chapter l l a similar model will be considered in which these assumptions
will not be imposed. Equation (3.3) implies that the total inhibitor concen-
tration is essentially equal to the free inhibitor concentration because only
a negligible portion of the inhibitor is assumed to be bound to the enzyme.
The rate of the enzyme-catalyzed reaction is v = fc2(EA).

The steady state equations for the model are,

d(E) =

dr

d(EA)
dr

d(EI)

= k, (E)(A) + (k - ! + k2 )(EA) - MEA)(I) + * - *(EAI) = 0

dr

d(EAI)
dr

= ME)(I)-MEI) = 0

= MEA)(I) - MEAI) = 0

(3.6)

(3.7)

(3.8)

(3.9)
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The equation for the concentration of the El complex is obtained easily,

(3.10)

In like manner, the equation for the concentration of the EAI complex is,

(3.11)

Equation (3.8) can be combined with eq. (3.6) to give the expression for the
free enzyme complex.

(kl+k2)(EA) Km(EA)
( E ) = = ( 1 1 2 )

Equations (3.10), (3.11) and (3.12) can be substituted into eq. (3.1) to give,

( 3 1 3 )

Equation (3.13) can be solved for (EA), and multiplication by k2 gives the
rate equation for the enzymic reaction under consideration.

It was stated earlier that the Lineweaver-Burk plot is not the most
satisfactory method for obtaining quantitative estimates of steady state
kinetic parameters but, when such estimates have been obtained by a more
suitable method, there is nothing wrong with employing Lineweaver-Burk
plots in the further analysis of the data. The Lineweaver-Burk equation for
the enzymic reaction is

Substrate-saturation experiments should be conducted at each of several
concentrations of the inhibitor. One of the inhibitor concentrations may
be equal to zero. The experiments at each inhibitor concentration will
provide an apparent Michaelis constant and an apparent maximal velocity.
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(A)
Fig. 3.2. Lineweaver-Burk plots of mixed type inhibition when the free enzyme
and the EA complex have equal affinity for the inhibitor. Each line represents a
substrate-saturation curve at a different inhibitor concentration.

These apparent constants will be

= Kn

• + B 1

1+;
(3.16)

yapp _
m a x

K4

(3.17)

The plots shown in Figure 3.2 show the results of such a series of experi-
ments for the reaction model under consideration. The inhibitor in the
foregoing figure affects both the slopes and the intercepts of the
Lineweaver-Burk plots. Any time an inhibitor affects both the slope and the
intercept of the Lineweaver-Burk plot, that inhibitor will be classified as
a mixed type inhibitor throughout this book. Mixed type inhibition is often
referred to as noncompetitive inhibition, but some authors1 employ a more
restricted definition for noncompetitive inhibition. It is important to
recognize that the term mixed type inhibition does not imply that this
type of inhibition is a mixture of different types of inhibition. Mixed
type inhibition is a distinct type of inhibition which is characterized by
the affect of the inhibitor on the slope and intercept of the Lineweaver-Burk
plot.
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3.2 Quantitative estimates of steady state parameters in
enzyme inhibition
An inspection of eq. (3.15) reveals that the slopes of the Lineweaver-Burk
plots are linear functions of inhibitor concentration.

slopes - m- (I) + ^ - (3.18)
max 3 max

The intercepts of the primary Lineweaver-Burk plots are also linear
functions of inhibitor concentration.

intercepts = - — - - (I) + - — (3.19)
max 4 max

Secondary plots of slopes and intercepts versus inhibitor concentration
appear as shown in Figure 3.3. An analysis of the secondary plots shown in
Figure 3.3 permits quantitative estimates of K3 and K4 as well as estimates
of the true Michaelis constant and true maximal velocity. The primary data
from the substrate-saturation experiments are used to obtain estimates of
the apparent Michaelis constants and apparent maximal velocities as well
as the slopes and intercepts of the primary lines in the primary plot,
Figure 3.2. The true Michaelis constant and true maximal velocity are
designated as Km and Vmax.

It is apparent from eq. (3.15) and Figure 3.2 that the family of lines which
constitute the Lineweaver-Burk plots from a series of experiments at dif-
ferent inhibitor concentrations all intersect at some point. The coordinates
of the point of intersection can be calculated by setting the Lineweaver-
Burk equations for any two of the lines equal. For convenience, we may
choose the Lineweaver-Burk equation in the absence of an inhibitor and
that of any other line.

Km 1 1 Km 1 , Km(I) 1 , 1 , (I)
"7TT + :Vmax(A) Vmax VmaI(A) VmaxK3(A) Vmax VmaxK4

( A ) " K m K 4
 ( 1 2 0 )

This coordinate of the point of intersection on the 1/(A) axis can be sub-
stituted into the Lineweaver-Burk equation in the absence of an inhibitor.

K4y

This is the coordinate on the l/v axis of the intersection of the family of lines
on the primary plot.
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slopes intercepts

(I) (I)
Fig. 3.3. Secondary plots of slopes and intercepts of the primary Lineweaver-
Burk plots as functions of inhibitor concentration.

3.3 Competitive inhibition: A limiting case of inhibition
If K3 = K4, eqs. (3.20) and (3.21) show that the Lineweaver-Burk lines will
intersect on the 1/(A) axis at a coordinate of - 1/Km. This is the situation
portrayed in Figure 3.2. However, if the EA complex were to have a lower
affinity for the inhibitor than the free enzyme, K4 would be larger than K3,
and the point of intersection of the lines would be above the 1/(A) axis and
closer to the l/v axis. This is portrayed in Figure 3.4. The inhibitor in Figure 3.4
affects both the slopes and the intercepts of the Lineweaver-Burk plots, and
so this is classified as mixed type inhibition even though the slopes and inter-
cepts are not affected to the same extent by the presence of the inhibitor.

Suppose that the EA complex not only had less affinity for the inhibitor
than the free enzyme, but suppose the EA complex had no affinity for the
inhibitor. In that case, K4, the dissociation constant of the EAI complex

Fig. 3.4. Lineweaver-Burk plots of mixed type inhibition when the EA complex has
less affinity for the inhibitor than does the free enzyme.
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(A)
Fig. 3.5 Lineweaver-Burk plots when the EA complex has no affinity for the
inhibitor, and therefore, the inhibitor is competitive with the substrate.

would be equal to infinity. The rate equation for the reaction would be,

(3.22)v =
Vmai(A)

The Lineweaver-Burk equation is,

1
K3J(A) Vn

(3.23)

This type of inhibition is called competitive. It is called competitive because
the inhibitor reacts with only the same species of the enzyme as does the
variable substrate. It is a limiting case of the general model shown in
Figure 3.1. Figure 3.5 shows the type of Lineweaver-Burk plots that one
observes with competitive inhibition. The lines in Figure 3.5 intersect on the
1/v axis at a coordinate of 1/Vm. The inhibitor does not affect the intercept
of the Lineweaver-Burk plots. The equation for the apparent Michaelis
constant in the case of competitive inhibition is,

(3.24)

Thus, the concentration of substrate required to saturate the enzyme will be
greater in the presence of a competitive inhibitor, but once the enzyme is
saturated with the substrate, the inhibitor no longer exerts an affect on the
kinetic behavior of the reaction.
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3.4 Uncompetitive inhibition: A different limiting case
The situation where the affinity of the free enzyme for the inhibitor is less
than that of the EA complex must be considered. In this case, K3 is greater
than K4, and eqs. (3.20) and (3.21) show that the point of intersection of the
Lineweaver-Burk lines will shift to more negative values on both axes. This
will still be referred to as mixed type inhibition. However, if the free enzyme
had no affinity for the inhibitor, K3 would be equal to infinity, and the point
of intersection of the Lineweaver-Burk lines would be - infinity. Lines
which intersect at infinity are parallel lines. This is shown in Figure. 3.6
Laidler and Bunting2 referred to this type of inhibition as anticompetitive
and their terminology is more appropriate, but most texts refer to this as
uncompetitive and this less desirable term will be perpetuated in this text.
Competitive and uncompetitive inhibition are the two extreme limits of the
general model of inhibition shown in Figure 3.1. The rate equation for
uncompetitive inhibition is given in eq. (3.25).

V =
x(A)

(3.25)

The Lineweaver-Burk equation for uncompetitive inhibition is,

1 Km 1 11
H

(A)
H

Vmax(A) V
(I)

1 + -=-K
(3.26)

(A)
Fig. 3.6. Lineweaver-Burk plots of uncompetitive inhibition. The free enzyme has
no affinity for the inhibitor.
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An uncompetitive inhibitor affects the intercept, but not the slope, of
a Lineweaver-Burk line. The apparent Michaelis constant in this type of
inhibition is,

( 3 ' 2 7 )

The apparent maximal velocity is,

V
y a p p _ max

1 max / T \

An uncompetitive inhibitor decreases the Michaelis constant and the
maximal velocity by the same amount and for this reason the slope of the
Lineweaver-Burk plot is not affected.

3.5 Substrate inhibition
One additional type of inhibition should be discussed before leaving the
general topic of enzyme inhibition. There are numerous types of substrate
inhibition, only one of which will be considered at this point. Other types of
substrate inhibition will be discussed in subsequent sections of this book.
The type of substrate inhibition which is considered here can be visualized
as an enzyme which has multiple sites of attachment for the substrate. If the
concentration of the substrate is sufficiently high, more than one substrate
molecule may occupy the active site at one time which would result in the
formation of an unproductive ternary complex. This situation can be
visualized in the following model.

The following equations can be written for each enzyme species,

(3.29)

^ ^ = k l (E)(A) - (k _, + k2) (EA) - fc((EA) (A) + fc_, (AEA) = 0 (3.30)

d(AEA)
At

- fc_;(AEA) = 0 (3.31)
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MA)

AEA
Fig. 3.7. Model of substrate inhibition when two molecules of substrate bind to the
active site to form an unproductive AEA complex.

Equations (3.29) and (3.31) can be rearranged.

(AEA) =

(3.32)

(3.33)

In the foregoing equations K, = k _ Jkf. The enzyme conservation equation
for the model in Figure 3.7 is,

(3.34)E, = (E) + (EA) + (AEA) = (EA) | 1 + - = + y

Since the rate of the reaction is v = /c2(EA), the equation for the velocity of
the reaction is obtained by solving eq. (3.34) for the concentration of the EA
complex and multiplying the result by k2.

Vmai(A)

W K.
(3.35)

The previous rate equations, which were derived in this chapter and in
chapter 1, were rational polynomials of order 1:1, that is, they described
a rectangular hyperbola. While eq. (3.35) is a rational polynomial it is a 1:2
function. The numerator contains a substrate concentration to the first
power while the denominator contains a substrate concentration to the
second power. The rate of the reaction in eq. (3.35) is not a hyperbolic
function of the substrate concentration. The substrate-saturation curve will
appear as in Figure 3.8. In many actual experiments, the substrate inhibi-
tion may not be as acute as portrayed in Figure 3.8, and it may not be
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(A)
Fig. 3.8. Substrate-saturation curve for the model of substrate inhibition portrayed
in Figure 3.7.

possible to extend the experiment to include as broad a substrate concen-
tration range. Nevertheless, it should be noted that eq. (3.35) predicts that
the rate of the reaction will approach a value of zero in an asymptotic
manner as (A) approaches infinity.

The Lineweaver-Burk equation for the model shown in Figure 3.7 is
given in eq. (3.36).

(3.36)

The Lineweaver-Burk plot would have the appearance of Figure 3.9. The
distinctive feature about the Lineweaver-Burk plot, in the case of substrate
inhibition, is that the curve bends upward sharply as it approaches the l/v
axis. The curve approaches a straight line in an asymptotic manner as the

(A)
Fig. 3.9. Lineweaver-Burk plot of the substrate-saturation curve for the model
in Figure 3.7. Extrapolation of the linear portion of the curve at high values
of 1/(A) .
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values of 1/(A) become large. It is customary to extrapolate this line to the
l/v axis and interpret this intercept as 1/Vmax and to interpret the slope as

x. However, eq. (3.35) can be rearranged as,

( 3 3 7 )

A Lineweaver-Burk plot is a good qualitative indicator of substrate inhibi-
tion, but if there is good reason to believe that Figure 3.7 is an appropriate
model for the enzymic reaction, then eq. (3.37) provides a better means of
obtaining quantitative estimates of the kinetic parameters because eq. (3.37)
is a simple second order polynomial when (A)/v is plotted against (A). The
appendix to this chapter contains a brief description of the regression
analysis of a second order polynomial.

As mentioned previously, Figure 3.7 is one model which will provide for
substrate inhibition. Other models of substrate inhibition will be discussed
in subsequent chapters.

3.6 Problems for chapter 3
3.1 The following data were obtained in a series of substrate-saturation

experiments conducted with various concentrations of an inhibitor.
Plot these and obtain estimates of the apparent Michaelis constants
and maximum velocities for each concentration of the inhibitor, and
obtain estimates of the true Michaelis constant, the true maximum
velocity and estimates of the inhibition constants from the secondary
plots. In the following data, the velocities are expressed as //moles per
minute.

(A)
mM
0.05
0.10
0.15
0.20
0.25
0.30
0.40

(I)
mM
0.000
V

2.62
4.54
5.72
6.67
7.43
7.90
9.04

(I)
mM
1.393
V

1.77
3.00
3.84
4.77
5.00
5.42
6.07

(I)
mM
2.790
V

1.40
2.32
3.00
3.50
4.06
4.48
4.80

(I)
mM
4.180
V

1.29
2.10
2.66
3.11
3.55
3.74
4.17

(I)
mM
5.570
V

2.50
2.79
3.19
3.53
3.83
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3.2 Rearrange eq. (3.14) such that (/) can be plotted as a function of
(v0 — vt)/vi9 where v0 is the velocity of the enzymic reaction in the
absence of the inhibitor and vt is the velocity in the presence of the
inhibitor. Note that in this relationship, when the enzyme is subject to
50 percent inhibition, the value of (v0 —  t;,.)/t>,- is equal to unity.

3.3 Observe the appearance of the relationship derived in problem 3.2
when each of the following conditions apply;

(a) K3 = K4, (b) KJ(A) = 0, (c) K± = oo, (d) K4 = oo and (A)
= Km, (e) K3 = oo, and (f) K3 = oo and KJ(A) = 0.

Appendix: A brief discussion of polynomial regression
Polynomial regression analysis proceeds in a manner similar to linear regression3*4.
Second order polynomial regression serves as an example. The equation for
a second order polynomial is

The aim of regression is to obtain estimates of the parameters b0, bt and b2 which
describe a regression line which fits the experiment data best. The assumptions
listed in the appendix of chapter 1 will apply in this treatment of regression analysis
of a second order polynomial. For any value of the independent variable, the
observed value of the dependent variable will deviate from the regression line
by a residual equal to Y — %  where Y is the expected value from the regression
equation. The procedure is to obtain estimates of the parameters which will
minimize the sum of the squared residuals.

Yjr2 = YJ{Y-b0-blX-b2X2)2 (3.A.2)

The expansion of the right-hand side of eq. (3.A.2) followed by differentiation
with respect to each of the parameters gives,

dYr2

- £ —  = - 2^Y + 2nb0 + 2b1YdX + 2b2^X2 (3.A.3)
ab0

(3.A.4)

(3.A.5)
db2

Minimization of the sum of the squared residuals with respect to the parameters
is achieved by setting each of the foregoing three equations equal to zero and
solving the system of equations for the parameters. The resultant equations are,

(3.A.6)
(3.A.7)

2 (3.A.8)
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The following augmented matrix can be constructed for the system of equations.

n Yux Z * 2 Z y 1 0 0
o i o
o o I

The terms which must be obtained from the experimental data are

Matrix inversion can be conducted by the Gauss-Jordan elimination as outlined
in the appendix of chapter I5.

The resultant augmented matrix will be

0 0 l ) 0 c n cl2 c13

0 1 0 b1 c21 c22 c23

0 0 1 b2 c31 c32 c33

where ctj are the elements of the inverted matrix.
The values of the parameters for the regression equation of a second order

polynomial are the elements of the fourth column, or in more general terms, the
elements of the m + 2 column where m is the order of the polynomial. The variance
for a second order polynomial is given by

The standard error of the estimates of the parameters is given by the general
equation

(3.A.10)

Polynomial regression is applicable to a plot of -(A)/t? vs. (A) when substrate
inhibition gives rise to a rate equation which is a 1:2 function of substrate
concentration. In later chapters, enzyme models which result in rate equations
which are 2:2 functions will be considered. This present type of analysis is not
appropriate in those cases.
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4
Reversible enzyme-catalyzed reactions

The derivation of eq. (1.18), a rate equation for an enzyme-catalyzed reaction,
was possible because a number of assumptions were stipulated. These
assumptions were expressed in eqs. (1.12) through (1.15). The first three of
these assumptions are mandatory, and they have been discussed in some
detail in chapters 1 and 2. The fourth assumption, namely (P) = 0, was
imposed as a matter of convenience, and it is not an absolute requirement.
The thrust of the present chapter will be to investigate the kinetic behavior
of an enzyme-catalyzed reaction when the restriction (P) has been removed.

4.1 Derivation of a rate equation by matrix inversion
A model for such a reaction is shown in Figure 4.1. There is a logical
problem with the sequence shown in Figure 4.1. As the reaction proceeds
from left to right, the enzyme combines with the substrate to form an
enzyme-substrate complex which can either dissociate to enzyme plus
substrate or be converted to enzyme plus product. However, when the
reaction proceeds from right to left, the model shows that the enzyme
combines with the product to form an enzyme-substrate complex instan-
taneously. Figure 4.2 presents a sequence which seems more logical.
Whether or not the reaction sequences shown in Figure 4.1 and Figure 4.2
are distinct on the basis of steady state kinetics, the latter sequence is more
acceptable logically. Yet, the question still arises, "Might the reaction
sequence involve even more intermediate binary complexes?" If so, would
this affect the steady state behavior of the enzyme? One way to approach
this problem is to derive the steady state rate equation for the reaction
sequence in Figure 4.2, and then set the product concentration equal to zero
and see how that equation compares to eq. (1.21), which was obtained for
the reaction sequence in Figure 1.1.

44
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E + A
k-2

Fig. 4.1. Model of a reversible single substrate, single product enzyme-catalyzed
reaction with a single binary EA complex.

E +A E+ P
Fig. 4.2. Model of a reversible single substrate, single product enzyme-catalyzed
reaction which contains an EA and an EP complex.

The assumption will be made that the amount of substrate and product
bound to the enzyme is negligible so that A, = (A) and P, = (P). The enzyme
conservation equation is,

•(EA) + (EP) (4.1)

The steady state equations for the three enzyme complexes are,

dt l ~3 - 1 3

d(EA)
dt * - 1 2 - 2

d(EP)
dt ~3 2 - 2 3

Equations (4.2) through (4.4) can be written in matrix form as,

MA) k-

(E)
(EA)

(EP)

=

0

0

0

(4.5)

For those readers who are not familiar with matrix algebra, the book by
Magar1 contains a concise discussion of the basic rules of matrix algebra.
Equation (4.5) can be expressed simply as,

AB = C (4.6)

The element in the first row of C is the sum of the first element of the first
row of A times the element of the first row of B, plus the second element of
the first row of A times the element of the second row of B, plus the third
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element of the first row of A times the element of the third row of B.
Likewise, the element of the second row of C is the sum of the first element of
the second row of A times the element of the first row of B plus the second
element of the second row of A times the element of the second row of B,
plus the third element of the second row of A times the element of the third
row of B. The foregoing procedure is continued until all the equations are
obtained.

Unfortunately, the equations which comprise eq. (4.5) are not all inde-
pendent, but this can be resolved by replacing any one of the equations
with eq. (4.1), the enzyme conservation equation, and that will provide an
adequate number of independent equations. Stated otherwise, for an
enzyme sequence containing n enzyme species, there are n steady state
equations plus the enzyme conservation equation to give n + 1 equations
which will provide n independent equations which can be solved for the
n enzyme species. The procedure which will be followed in this text is to
replace the steady state equation for the enzyme species in question with the
enzyme conservation equation. For example, to derive the expression for
the concentration of the free enzyme, eq. (4.2) would be replaced by eq. (4.1).
The following system of equations could be solved to obtain an expression
for (E).

1 1

MA) - ( * - i
fc_3(P) k2

1

k-2

(E)

(EA)

(EP)
=

Er

0

0

(4.7)

The expression for the concentration of the free enzyme is a quotient, the
numerator of which is the 3 x 3 matrix of eq. (4.7) in which the first column
is replaced by the column vector on the right-hand side of eq. (4.7), and the
denominator is the 3 x 3 matrix of eq. (4.7). Thus, the concentration of the
free enzyme would be given by the following quotient.

A

k

E,

0

0

1

i(A)

1

k2

()

1

i + *

^2

2)

1

fe_2

- ( / c_ 2 +

1

k_

~(k-2

fc,)

2

+ fc3)

(4.8)
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Solving eq. (4.8) for (E) requires inversion of both the numerator and
denominator matrices. Stated in an analogous manner, it is necessary to
obtain the symbolic determinants of these two matrices. There are a number
of efficient methods for extracting numerical determinants, one of which
has been outlined in the appendix of Chapter 1. However, the procedures
for obtaining a numerical determinant are not convenient for obtaining
a symbolic determinant. Cramer's rule is probably the most feasible method
of obtaining a symbolic determinant, and Cramer's rule is not a particularly
efficient method of matrix inversion. Only a square matrix has a determi-
nant, and the determinant is the sum of all of the possible combinations of
elements, where each combination consists of only one element from each
row of the matrix and only one element from each column of the matrix.
Some of the combinations, or permutations, are positive while others are
negative. The actual sign of each permutation is determined by the sign
associated with each element and also by location of the element in the
matrix. It is obvious that the permutations and their sign must be deter-
mined in a systematic manner. Cramer's rule provides a systematic method
of accomplishing this goal. The method of matrix inversion which will be
described here, and used extensively in the last section of this text, is based
on Cramer's rule, but it utilizes an algorithm which can be incorporated
easily into a computer-based method2. The method consists of constructing
a secondary matrix from the matrix to be inverted. The secondary matrix is
called a Q matrix, and it consists of elements which identify the column
numbers of the non-zero elements in the corresponding row of the primary
matrix. Figure 4.3 shows the denominator matrix of eq. (4.8), which is
identified as |D|, and its associated Q matrix.

Each permutation is represented as a vector. The vector is constructed
such that each element of the vector is taken from a different row of Q, but
since the elements of Q represent columns of a primary matrix, there can be
no repetition of numbers in the vector. The allowable vectors which
represent each permutation for the matrices in Figure 4.3 are given in the
first column of Figure 4.4. The second column in Figure 4.4 is the sum of

MA) -
1

* - 2

" (*_ 2 + k3)
, Q =

l
l
l

2
2
2

3
3
3

Fig. 4.3. Denominator matrix for the model in Fig. 4.2. The Q matrix is the matrix
of non-zero elements in the denominator matrix.
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(1,2,3) 0 + 1 + k_xk_2 + k_lk2 + k2k_2 + k2k3
(1.3.2) 1+0 -k2k2-k2k_2
(2.1.3) 1 + 1 + /c1k_2(A) + fc1/c3(A)
(2.3.1) 2 + 0 +fc_2/c_3(P)
(3.1.2) 2 + 0 + klk2(A)
(3,2,1) 3 + 1 +k_1/c_3(P) + /c2k_3(P)

Fig. 4.4 Expansion of the denominator matrix shown in Fig. 4.3. The first column
presents the possible permutations in vector form. The second column consists of
the two integers the sum of which is equal to p. See text for further details of the
p value. The last column contains the terms of the symbolic determinant.

two integers. The first of these is the number of deviations from sequence in
the vector in column 1. Thus, in the sequence 1,2,3 there are no deviations
from sequence so the first integer in column two of row 1 is 0. On the other
hand, the sequence 3,2,1 in row six has three deviations from sequence
because the 3 precedes 2 and 1, and 2 precedes 1. Therefore the first integer
in column 2 of row 6 is 3. The second integer in column 2 is a number
of negative terms in the permutation indicated by the vector in column 1.
This is obtained by reference to the matrix in Figure 4.3. The sum of
the integers in column 2 is termed p, and the sign of the permutation is
given by the multiplication of the terms in the permutation by (— l) p.
Column three in Figure 4.4 consists of the terms contained in the permu-
tation. It should be noted that all of the terms are positive except the term in
the second row. Thus, k2k_2 in the third column of row one is canceled by
— k2k_2 *n ̂ e third column of row two. The denominator determinant
in eq. (4.8) is

/ C _ ^ r C _ 2 i fC _ ^ r C 3 ~ r ^ 2 3

_1fe_3(P) (4.9)

The numerator matrix and its corresponding Q matrix are shown in
Figure 4.5. Figure 4.6 shows the permutations, p values and terms asso-
ciated with the numerator of eq. (4.8). The equation for the concentration of
the free enzyme is

(E) = ( M - i + fc-ifci + M a l E , ( 4 1 Q )
K _ j AC _ 2 i / C _ j K 3 ~ r » ^ 2 3
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E,
0
0

1

-(*-i+*2)

1

-(k_2 + k3)
, Q =

1
2
2

2
3
3

3
0
0

Fig. 4.5 Numerator matrix for the free enzyme for the model in Fig. 4.2. The
Q matrix is the matrix of non-zero elements in the numerator matrix.

Vector Terms
(1,2,3) 0 + 2 +(/c_1/c_2 + /c_1/c3 + /c2/c_2 + k2k3)Et
(1,3,2) 1 + 0 -k~k_2Et

Fig. 4.6 Expansion of the numerator matrix in Fig. 4.5.

If both sides of eq. (4.10) are divided by Er, the equation is an expression of
the fraction of the total enzyme that is present as free enzyme in the steady
state. That is, it is the distribution expression for the free enzyme. It should
also be noted that the numerator of this distribution expression is equal to
the first row of the denominator.

An expression for the concentration of the EA complex is obtained by
replacing eq. (4.3) with the enzyme conservation equation. The equation in
matrix form is

(EA) =

- CM A)

k_

-[fci(A)H

1

* - 3

1

3(P)

hfc_3

(P)

3(P)3

(P)]

0

E,

0

k-i

1

k2

k3

1

~(*-2 +

^3

1

~(*-2

-k3)

+ k3)

(4.11)

The denominator determinant in eq. (4.11) is exactly the same as that given
in eq. (4.9). The distribution expression for the EA complex is,

(EA) = k{k2(A) + /c1/c3(A) + /c_2/c_3(P)
(4.12)

The numerator of eq. (4.12) is equal to the second row of the denominator
determinant. In like manner, the expression for the EP complex is obtained
by replacing eq. (4.4) with the enzyme conservation equation.
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(EP) =

- [ M A ) + fc_3(P)
*i(A)

1

[fe1(A) + fc 3(P)]

MA)
1
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] *-i 0

1 E,
k j k3

(If A- Is \ If/̂V i |̂  rv 2 / 'v 2

1 1

(4.13)

Once again, the denominator determinant is identical to eq. (4.9), and the
equation for the distribution expression for the EP complex is given by
eq.(4.14).

(EP)
(4.14)

The numerator of eq. (4.14) is identical to the third row of the expression for
the denominator determinant, and this shows that the denominator deter-
minant is equal to Et in terms of rate constants and the concentration of the
reactants. The rate of the reaction of the enzymic reaction shown in
Figure 4.2 is

t? = MEP)-*_3(E)(A) (4.15)

The expression for (EP) from eq. (4.14) and the expression for (E) from
eq. (4.10) can be substituted into eq. (4.15).

v = -
[/c1/c2/c3(A)-fe_1/c_2/c_3(P)]Ef

_xk3 +k2k3 + kl(k2 + /c_2 + fc3)(A)
(4.16)

Equation (4.16) is the complete rate equation in the coefficient form for the
enzyme sequence shown in Figure 4.2.

4.2 Reformulation of the complete rate equation
If the concentration of the product is set equal to zero, eq. (4.16) becomes,

kxk2k3Et(A)
v = (4.17)

Equation (4.17) appears distinctly different from eq. (1.18), but it must be
recalled that steady state kinetic studies do not usually provide information
about individual rate constants. Steady state kinetic studies provide infor-
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mation about the steady state parameters. Equation (4.16) could be re-
written as

num.l(A)-num.2(P)
constant + coef. A(A) + coef. P(P) '

If (P) is set equal to zero in eq. (4.18), the equation is identical to that
obtained in chapter 1. This emphasizes that one does not know the
composition of steady state parameters on the basis of experimental
observations; rather, this is known only after derivation of the rate equation
for a particular enzyme model. If (P) = 0, the maximal velocity in the
forward direction and the Michaelis constant for A are expressed as follows.

v = n u m . l = k2k3Et
f coef.A /c2 + /c_2 + /c3

 v ' ;

= constant = fc_1/c_2 + /c_ 1k2 + k2k3
a coef.A kx(k2 + k_2 + k3) l * '

In like manner, if (A) = 0, the maximal velocity in the reverse direction and
the Michaelis constant for P are defined as,

n u m ^ L , L 2 E ,
r coef.P k_, + k2 + fc3

 l '

^ constant = fe_tfe_2 + k^1k2 + k2k3

" coef.P k_3(k^+k2 + k_2) l " '

The equilibrium constant is defined as,

num.l fc^E,

Equation (4.23) indicates what is already known, namely, that an enzyme
does not affect the equilibrium of the catalyzed reaction. The task of reformu-
lating the complete rate equation from the coefficient form into the more
useful kinetic form stills remains. This is accomplished in the same manner
as outlined in chapter 1. Each term in the numerator and denominator of
eq. (4.18) is divided by the coefficient of the denominator term in the
variable substrate. The variable substrate for the reaction in the forward
direction is A. The reformulation process is illustrated in Figure 4.7.
Substitution of eqs. (4.19) through (4.23) into the expression in the foregoing
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num. 1 num. 2 num. 1
coef. A coef. A num. 1

v = -constant coef. A coef. P constant
+ (A) + (P)

coef. A coef. A coef. A constant

Fig. 4.7. Reformulation of the rate equation for the model in Figure 4.2 from the
coefficient form to the kinetic form.

figure provides the complete rate equation in the kinetic form.

(P)_

v = *= T^^ = —X. r- - ' J j (4.24)

An equation identical to eq. (4.24) would have been derived for the
reaction sequence portrayed in Figure 4.1. While the rate equation in the
coefficient form derived for the model in Figure 4.1 would differ from
eq. (4.16), it is the equation in the kinetic form that is relevant to steady state
kinetic studies. A principle which emerges from this is that if the inter-
conversion of two enzyme species does not involve the interaction of the
enzyme with a reactant, there is nothing gained by including both of the
enzyme species in the reaction sequence for the purpose of deriving the
steady state rate equation. It will suffice to include only one of the species.
Thus, while Figure 4.2 presents a more logical reaction sequence, the steady
state rate equations for the two models are identical in the kinetic form.

4.3 The effect of product inhibition
It is apparent from eq. (4.24) that the product of the reaction will decrease
the rate of the reaction for two reasons. The second term in the numerator is
negative and contains the concentration of the product. The extent to which
the rate is decreased by this term is dependent on how close the reaction is
to equilibrium. When the reaction is at equilibrium, the numerator of
eq. (4.24) is equal to zero. The product will also inhibit the reaction because
the third term in the denominator contains the concentration of product.
The extent to which the reaction rate is decreased by this term is indepen-
dent of classical thermodynamic considerations, but rather it is determined
by kinetic factors. It is proportional to KJKp. The product of the reaction
can inhibit an enzyme-catalyzed reaction even when the reaction is infinite-
ly far from equilibrium. For example, if k _ 2 were equal to zero in the
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reaction sequence portrayed in Figure 4.2, the reaction would be irrevers-
ible thermodynamically. Reference to eq. (4.23) shows that the equilibrium
constant would be equal to infinity if k _ 2 were equal to 0. The steady state
parameters would be somewhat affected; of particular significance, the
Michaelis constants would be

a

Kp = ^ (4.26)

Under this condition, the Michaelis constant for P becomes a dissociation
constant, that is, it is a thermodynamic rather than a kinetic parameter.
Unlike the equilibrium constant, it is not necessarily equal to infinity. If
k_2 = 0, the rate of the reaction would be,

In the light of the discussion of enzyme inhibitors in the previous chapter, it
is apparent that, in the case of the model portrayed in Figure 4.2, the
product P would function as a competitive inhibitor. That should not be
surprising, for it can be seen by reference to Figure 4.2 that both A and
P react with the same species of the enzyme. Thus, even when the reaction is
infinitely far from equilibrium, the product can serve as an inhibitor. In
some cases the Michaelis or inhibition constant of the product may be so
large that the ratio of product concentration to that of the constant may be
insignificantly small, but that condition must be established experimen-
tally. The assumption that product inhibition is negligible should never be
made arbitrarily.

4.4 Use of the King-Altman method to derive the rate equation
The rate equation for an enzyme-catalyzed reaction can always be derived
by matrix inversion. However, if, for example the enzyme model contained
six enzyme species, then the derivation would require the repeated inver-
sion of a 6 x 6 matrix. This is not an easy task if it is to be done manually.
King and Altman3 applied the graph theory and developed a graphical
method which greatly simplifies the derivation. In order to facilitate this
treatment, the enzyme model shown in Figure 4.2 can be shown in a cyclic
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k2

Fig. 4.8 Cyclic representation of the enzymic model in Figure 4.2.

rather than a linear sequence. Figure 4.8 can be looked upon as a graph in
which each enzyme species is a vertex (node) and the vertices are connected
by lines (edges). The edges have arrows to indicate direction, thus Figure 4.8
is a directed graph (digraph). The rate constants of the reactions times the
concentration of any reactant that interacts with the enzyme are weighting
factors associated with the appropriate edge. In graph theory, a digraph as
shown in Figure 4.8 can represent a system of equations4. Furthermore,
a spanning tree is a non-cyclic path which connects all the graph vertices to
one of the vertices. The significance of the stipulation, non-cyclic, is that no
vertex can be encountered more than once in each path. King and Altman
showed that the equation for the distribution of any enzyme species in an
enzymic reaction is equal to the sum of all of the spanning trees leading to
that enzyme species divided by the sum of all of the spanning trees in the
digraph. The spanning trees for (E) are shown in Figure 4.9. Figure 4.9 gives
the numerator of the distribution expression for the free enzyme. The
denominator is the sum of all of the spanning trees, and this is identical to
eq. (4.9). It should be noted that any path that contains a sequence of rate
constants that contain kik_i will certainly constitute a cyclic path and
therefore will not be a valid spanning tree. These paths always cancel out
during the matrix inversion operation shown earlier in this chapter. The
spanning trees shown in Figure 4.10 are those for the distribution expression
for (EA), and they are identical to the numerator of eq. (4.12). The spanning
trees in Figure 4.11 are those for the enzyme-product complex.

E E E

y **•
EP ^ -EA EP EA EP.— : EA

k-ik-2

Fig. 4.9. The spanning trees which constitute the King-Altman solution for the free
enzyme in Figure 4.8.
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EP. r EA EP K 1 EA EP.—= EA
K2 K2

kik2(A) + k.ik-3(P) + k2k.3(P)
Fig. 4.10. The spanning trees which constitute the King-Altman solution for the EA
complex in Figure 4.8.

^(A) v.y \ki(A)
EP——  -EA EP EA E P — ^ -EA

kik.2(A) + kik3(A) + k-2k.3(P)
Fig. 4.11. The spanning trees which constitute the King-Altman solution for the EP
complex in Figure 4.8.

The King-Altman graphical approach to derivation of the rate equation
for an enzyme-catalyzed reaction is far simpler than the matrix inversion
procedure discussed earlier in this chapter. This demonstrates the power of
graph theory for this derivation. The difference between the King-Altman
method and actual matrix inversion would be even more dramatic in the
case of more complex reaction sequences. The reader who is interested in
other applications of the King-Altman method is referred to an excellent
series of publications by Terrell Hill5"9 and also papers by Poland10 and
Chou11. However, the matrix inversion procedure is more general, and it
will be employed extensively in the section on multi-enzyme systems.

4.5 Problems for chapter 4
4.1 Derive the rate equation for the following enzyme model (Fig. 4.12)

and reformulate it to the kinetic form.
4.2 Derive the rate equation for the following enzyme reaction sequence

(Fig. 4.13) in the coefficient form using the King-Altman method.

E + A

Fig. 4.12. Reversible one substrate, one product model with one binary inter-
mediate.
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Fig. 4.13. Cyclic representation of a single substrate, two product enzyme-
catalyzed reaction.
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Part Two
Enzyme reaction sequence





5
Multi-reactant enzymic reactions

The enzymic reactions which were considered in the previous section
provided for an understanding of the basic mathematical concepts of steady
state kinetics. However, there are very few enzymes which catalyze reac-
tions with only one substrate and only one product. The following is a much
more representative enzymic reaction,

enzyme
A + B < P + Q.

The foregoing enzyme-catalyzed reaction is termed a bi-bi reaction. That is,
there are two substrates and two products. Most of the pyridine nucleotide
dehydrogenases, most of the kinases and most of the aminotransferases are
reactions of this type. One way of studying the steady state kinetic behavior
of this type of enzymic reaction is to saturate the enzyme with one substrate
in the absence of either product and then conduct a substrate-saturation
experiment with the other substrate. This procedure could be repeated by
switching the roles of the substrates, and if the reaction were reversible,
a similar series could be conducted using the products as substrates for the
reverse reaction.

5.1 Three distinct two substrate, two product reaction sequences
The kinetic behavior of any enzyme-catalyzed reaction is always simplified
by saturation. The difficulty is that much information is lost by such
a procedure. Figure 5.1 shows three of many reaction sequences that might
be involved in a bi-bi enzymic reaction.

The rate constants in Figure 5.1 contain a double subscript. This is
a more explicit symbolism than was employed in the previous section. The
enzyme species in the digraphs are numbered in a clockwise manner

59
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A. E

EAB
3

B- E

4EQ
k34(B)%

c.

Fig. 5.1. Three models of ordered, two substrate, two product enzyme-catalyzed
reactions. A) An ordered, bi-bi, sequential model. B) An ordered, bi-bi, ping-pong
model. C) An ordered, bi-bi, iso-sequential model.

starting with the free enzyme. The first subscript identifies the source species
and the second subscript of the rate constant identifies the destination
species. Figure 5.1 A represents an ordered, sequential bi-bi reaction se-
quence. It is ordered because the binding of the substrates to, and the
dissociation of the products from, the enzyme is ordered rather than
random. That is, substrate A must bind to the enzyme before substrate
B can bind and product P must dissociate before Q. It is a sequential
reaction because all of the substrates bind to the enzyme before any of the
products dissociate. Logically, the reaction sequence should include an
EPQ complex, but the inter-conversion of the EAB and EPQ complexes
would not involve the interaction of the enzyme with a reactant, and so, as
noted in chapter 4, the omission of the EPQ complex does not affect the rate
equation when it is expressed in the kinetic form. Pyridine nucleotide



5.2 The connection matrix method for deriving rate equations 61

dehydrogenases are examples of the ordered sequential mechanisms,
although some of these dehydrogenases are somewhat more complex in
that they involve some abortive complexes. The reaction sequence
in Figure 5.IB differs from that in Figure 5.1 A because the first product
dissociates from the enzyme before the binding of the second substrate.
This reaction is called an ordered ping-pong bi-bi reaction. Most
aminotransferases catalyze this type of reaction sequence. In the case of an
amino acid transferase, the enzyme species E would represent the enzyme in
the pyridoxal phosphate form and F would represent the enzyme in the
pyridoxamine form. Substrate A would be an amino acid while product
P would be the corresponding a-keto acid. Substrate B would be the second
a-keto acid and Q would be the corresponding amino acid. The reaction
sequence portrayed in Figure 5.1C is called an ordered, iso-sequential bi-bi
mechanism. This sequence can be envisioned as one in which the enzyme
retains the conformation which characterized the EQ complex for a finite
period of time after product Q had dissociated. Thus, the free enzyme could
exist in either the E or G conformation, and substrate A would bind only to
the E species and the product Q would bind only to the G species. If the
G species were extremely unstable in an aqueous solution, the conversion of
G to E would be essentially irreversible. This is one possible explanation
for the kinetic irreversibility of some enzyme-catalyzed reactions when
the reaction would be expected to be reversible from thermodynamic
considerations.

5.2 The connection matrix method for deriving rate equations
The reader should be apprised of a number of papers which were instru-
mental in development of a satisfactory treatment of the steady state kinetic
behavior of multi-reactant enzymes1"3. Graphical implementation of the
King-Altman4 method is widely employed in the derivation of the complete
rate equations for multi-reactant enzymic reactions. The graphical method
is a great improvement over the repeated inversion of a 5 x 5 matrix, as
would be required in the case of the sequence in Figure 5.1C. However, in
the case of highly random reaction sequences, the graphical method also
becomes unwieldy. Digraphs such as those shown in Figure 5.1 can be
represented as connection matrices. The connection matrix representation
of a reaction sequence is more concise than the graphical representation,
the analysis of the connection matrix is systematic, and it has the enormous
advantage that the algorithm for analysis of the connection matrix can
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be incorporated easily into a computer program5'6. The connection
method is based exactly on the same graph theory principles on which the
graphical King-Altman method is based. While the connection matrix
method was developed for computer-based derivation of rate equations
for enzyme-catalyzed reactions, it can be employed easily for manual
derivation as well.

The connection matrix associated with the reaction sequence shown in
Figure 5.1 A is

0 A 0 Q
1 0 B 0
0 1 0 1
1 0 P 0

The source vertices (species) of the digraph are represented by the rows
of the connection matrix, while the destination vertices (species) are re-
presented by the columns of the connection matrix. If there is a directed
edge in the digraph from the source vertex to the destination vertex, the
element in the row corresponding to the source vertex and the column
corresponding to the destination vertex is 1, or if the directed edge is
associated with the reaction of the enzyme with a reactant, then the
element is that of the reactant. If there is no directed edge in the digraph
from the source vertex to the destination vertex, the element is 0. For
example, there is no directed edge in Figure 5.1 A from node 1 to node 1;
therefore the first element in the first row is 0. There is an edge from vertex
1 to vertex 2 and this is associated with the binding of substrate A; therefore
the second element in row 1 is A. There is no edge from vertex 1 to vertex 3;
therefore the third element in row 1 is 0. There is an edge from vertex 1 to
vertex 4 and this is associated with the binding of Q so the fourth element in
row 1 is Q. In like manner, there is an edge from vertex 2 to vertex 1 so that
the first element in row 2 is 1. There is no edge from vertex 2 to vertex 2 so
that the second element in row 2 is 0. The edge from vertex 2 to vertex 3 is
associated with the binding of B so that the third element in row 2 is B. The
fourth element in row 2 is 0 because there is no edge from vertex 2 to vertex
4. This procedure is continued until the connection matrix has been
completed.

The enzyme distribution expression for each enzyme species is obtained
by first replacing all of the elements in the row corresponding to the enzyme
species in question equal to zero. This provides a means of searching for the
spanning trees which terminate at the enzyme node in question. The
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distribution expression for the free enzyme is obtained as follows.

63

0
1
0
1

0
0
1
0

0
B
0
p

0
0
1
0

. v =

0
1
2
1

0
3
4
3

The connection matrix is U and Q is a secondary matrix which is pre-
pared from U. The Q matrix identifies the non-zero elements in the
corresponding row of U. The spanning trees are obtained by an analysis
of Q except that the reactants associated with the spanning tree are
obtained by reference to U. Each path terminating at the free enzyme is
represented as a vector which is constructed by taking one element from
each row of Q. One starts with the left-most elements of Q beginning with
the first row. As each element is added to the vector, a test is made to
determine if a cyclic path is being formed. The test consists of the following
rationale.

The position of the element in the vector corresponds to the row of
Q from which the element is taken. An index is set to the position of the
element in the vector, and this corresponds to the row of Q from which the
element has been taken. The test for validity of the path to that point is
complete if the value of the element is equal to zero, or if the value of
the element is greater than the index, or if the value of the element is
equal to the index. If either of the first two conditions is true, then the
path is a valid spanning tree to that point, and the index is incre-
mented by one and an element is selected from the next row down in the
Q matrix. If the element is equal to the index, then the path is cyclic,
and the path is abandoned because it is cyclic. However, if the value of the
element is non-zero and less than that of the index, the value of the element
is used as a pointer to a previous element in the vector. The element pointed
to is subjected to the test described, and this procedure is continued until
the path is rejected as a cyclic path or until the path is complete. The
path is complete when the vector contains an element from each row of Q.
The foregoing procedure is followed until all of the possible paths have
been tested and found to be either spanning tress or rejected as cyclic
paths.

The algorithm outlined in the previous paragraph can be followed to
obtain the enzyme distribution expression for the free enzyme by referring
to the previous Q and U matrices. The first element in the vector is taken
from the first row of Q and is 0. The partially constructed vector is (0,) and
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the index is incremented from 1 to 2. The left-most element in the second
row of Q is 1. The partially constructed vector is (0,1,). Since 1 is less than
the index, the first element in the vector is pointed to and, since that value
is zero, the path is valid to this point and the index is incremented to 3.
The left-most element in the third row of Q is 2 and the vector becomes
(0,1,2,). The third element in the vector is 2 and this points to the
second element in the vector which points to the first element which is 0.
The path to this point is valid and the index is incremented to 4. The
first element in the last row of Q is 1, and that points to 0 so the
complete vector is (0,1,2,1). This vector represents a spanning tree.
The non-zero elements in the vector can be expressed as rate constants.
The first subscript of the rate constant is the source node of the rate
constant and that is given by position of the non-zero element in the vector.
The second subscript is the element itself. Thus, the vector (0,1,2,1) is
equivalent to fc21/e32/c41. Following the same procedure, the second par-
tially constructed vector is (0,1,2,), but instead of taking the first element of
the last of Q, the second element of the last row is taken. The complete
vector is (0,1,2,3). Since the edge from vertex 4 to vertex 3 is associated
with the binding of P to the enzyme, the complete spanning tree is
(0,1,2,3)(P) which is equivalent to k21/c32/c43(P). Since the two ele-
ments from the last row of Q were employed in the first two spanning trees,
the third spanning tree will include the second element of the third row of
Q and the first element of the last row of matrix Q. The vector which
represents that spanning tree is (0,1,4,1) and it is equivalent to k21k34.k41.
The next possible path is represented by the vector (0,1,4,3). In this
vector the index for the last element is 4 which is greater than the value of
the element. The last element is a pointer to the third element of the vector
and the value of that element is 4 which is equal to the index, so the vector
represents a cyclic path and it is rejected. The next path contains the second
element of the third row of Q, and the following partial vector is obtained,
(0,3,2,). The index for the third element is 3 and the element points to the
second element whose value is 3. Therefore this vector represents a cyclic
path and is rejected. It is obvious that any vector consisting of the second
element of the second row and the first element of the third row of
Q constitutes a cyclic path. The next vector to be tested consists of (0,3,4,1),
and this is a spanning tree which also contains the concentration of
B because the edge from node 2 to node 3 of Figure 5.1 A involves the
binding of B to the enzyme. The vector (0,3,4,1)(B) is equivalent to
/c23/c34/c41(B). The last possible path is represented by (0,3,4,3), and
this is a cyclic path. The numerator of the distribution expression for the
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free enzyme is summarized as,

(0,1,2, l)=fc21fc32fc41

= /c21fc32/c43(P)

= fc23fc34fc41(B)
The denominator of the distribution expression is the sum of all of the
spanning trees for all of the distribution expressions. The foregoing algo-
rithm for obtaining the possible vectors and testing them for validity can be
incorporated into a computer program easily.

The following are the U and Q matrices for the distribution expression of
the EA complex.

0
0
0
1

A
0
1
0

0
0
0
p

Q
0
1
0

. Q =

2
0
2
1

4
0
4
3

U =

The numerator of the distribution expression comprises the following
spanning trees.

(2,0,2, l)(A) = fc12/c32fc41(A)
(2,0,2,3)(A)(P)=/c12/c32fc43(A)(P)

(2,0,4, l)(A)=/c12fc34/c41(A)
(4,0,2,3)(P)(Q) =/c14/c34/c43(P)(Q)

The matrices required to obtain the numerator of the distribution expres-
sion for the EAB complex are the following.

U =

The spanning trees which constitute the numerator of the distribution
expression for the EAB complex are summarized as,

(2,3,0, 1 ) ( A ) ( B ) = / C 1 2 / C 2 3 / C 4 1 ( A ) ( B )

(2,3,0,3)(A)(B)(P)=/c12/c23/c43(A)(B)(P)
(4,l,0,3)(P)(Q)=/c14/c21/c43(P)(Q)

(4,3,0,3)(B)(P)(Q)=/c14/c23/c43(B)(P)(Q)

0
1
0
1

A
0
0
0

0
B
0
p

Q
0
0
0

» Q =

2
1
0
1

4
3
0
3
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The following are the matrices associated with the EQ complex.

U =

The numerator of the enzyme distribution expression for the EQ complex is
equal to the following spanning trees.

0
1
0
0

A
0
1
0

0
B
0
0

Q
0
1
0

» Q =

2
1
2
0

4
3
4
0

(4,l,2,0)(Q)=fe14fe21/c32(Q)
(4,l,4,0)(Q)=/c14fc21/c34(Q)

(4,3,4,0)(B)(Q)=fc14fc23fc34(B)(Q)

The rate equation for the reaction sequence shown in Fig. 5.1 A is

(5.1)

The arithmetic indicated in eq. (5.1) is accomplished simply by replacing the
zeros in the last elements of the vectors which represent the distribution
expression for the EQ complex with ones and replacing the zeros which the
first elements in the vectors which represent the distribution expression for
E with fours and multiplying these latter vectors by — 1  x (Q). This process
is performed as follows.

The complete rate equation expressed in the convenient vector form is,

[(2,3,4,l)(A)(B)-(4,l,2,3)(P)(Q)]Er
v =

(0,1,2,1)
(0,1,4,1)
(2,0,2,1) (A)
(2,0,4,1) (A)

(2,3,4,0) (A) (B)
(2,3,0,1)(A)(B)

(2,0,2,3) (A) (P)

(4,3,4,0)(B)(Q)
(5.2)

(4,0,2,3)(P)(Q)
(2,3,O,3)(A)(B)(P)

(4,3,0,3)(B)(P)(Q)
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The same equation would be obtained if the rate of the reaction were
expressed in any of the following terms.

v = /c34(EAB) - *43(EQ)(P) =

v = fc23(EA)(B) - fc32(EAB) =

If the steady state approximation is valid, the four expressions are equival-
ent. Equation (5.2) is a concise and handy manner in which to write the rate
equation in the coefficient form. However, eq. (5.2) can be converted easily
to its more conventional form.

r_[/c12/c23/c34/c41(A)(B)-fc14/c21/c32fc43(P)(Q)]Ef
]r IT \\f I IT I I IT IT i IT I IT \ I A \

21 41 V 3 2 ""̂  34/ "^ 1 2 4 1 \ 3 2 "^ 34/ V^̂ /

T ^23^34^41 VD>̂  * K2\ ^3 2^431^^ "̂  ̂  14*211*32 ' / t 3 4 / v V /
+ kl2k23(k34 + k4i)(A)(B) + Zc12/c32/c43(A)(P) (5.3)
+ fci^^BMQ) + ^14*43^21 + *32)(P)(Q)
+ /c12/c23/c43(A)(B)(P) + /c14/c23/c43(B)(P)(Q)

It should be noted that the numerator of the rate equation contains two
terms, the first of which is positive and is the product of all the rate constants
in the forward direction times the concentration of all of the reactants which
bind to the enzyme when the reaction proceeds in the forward direction.
The second term is negative and is the product of all of the rate constants in
the reverse direction times all the reactants which bind to the enzyme in the
reverse direction. This is true of all ordered, reversible reaction sequences. If
the reaction sequence is random and reversible, the numerator will contain
more than two terms, half of which will be positive and half will be negative.
The numerator of the rate equation of an irreversible sequence will contain
only positive terms. The denominator of the rate equation contains a total
of 16 terms, but these terms are combined to form 11 terms.

Rather than reformulate eqs. (5.2) or (5.3) into the kinetic form at this
time, the coefficient form of the rate equations for the sequences in
Figure 5.1B and Figure 5.1C will be derived at this point. The rate of the
reaction for the sequence in Figure 5.1B is identical to eq. (5.1). The
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following is the connection matrix for the sequence in Figure 5.IB.

U =

The enzyme distribution expressions for this sequence are shown in
Figure 5.2.

The rate equation in the coefficient vector form is

v = -

0
1
0
1

A
0
p
0

0
1
0
1

Q
0
B
0

, Q =

2
1
2
1

4
3
4
3

(2,3,0,1) (A)
(2,3,0,3) (B)

(2,3,4,0) (A) (B)
(2,3,0,1) (A) (B)
(2,0,2,1) (A) (P)
(2,0,2,3) (A) (P)

(5.4)
(4,3,4,0)(B)(Q)

(4,1,0,3) (Q) (4,l,2,0)(P)(Q)
(4,3,0,3) (Q) (4,0,2,3)(P)(Q)

The rate of the reaction shown in Fig. 5.1C is

51( 15(
r, (G) (E)i

= k51 — -k 15— E t
(5.5)

The following is the connection matrix for this reaction sequence.

U =

0 A
1 0
0 1
0 0
1 0

0
B
0
p
0

0
0
1
0
Q

(EA)/E,

1
0
0
1
0

, Q =

2
1
2
3
1

5
3
4
5
4

(EQ)/E,
(2,0,2,1)(A)(P)
(2,0,2,3)(A)(P)
(2,0,4,1)(A)(B)
(4,0,2,3)(P)(Q)

(2,3,0,3)(A)
(4,l,0,3)(Q)
(4,3,0,3)(Q)

(2,3,4,0)(A)(B)

(4,3,4,0)(Q)(B)
Fig. 5.2. Enzyme distribution expressions in vector form for the ping-pong model
shown in Fig. 5.IB.
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( E A ) / E , ( E A B ) / E ,
(O,1,2,3,1)(P) (2,O,2,3,1)(A)(P) (2,3,0,2,1)(A)(B)(P)
(0,l,2,3,4)(P)(Q) (2,0,2,3,4)(A)(P)(Q) (2,3,0,3,4)(A)(B)(P)(Q)
(0,1,2,5,1) (2,0,2,5,1)(A) (2,3,0,5,1)(A)(B)
(0,1,4,5,1) (2,0,4,5,1)(A) (5, l,0,3,4)(P)(Q)
(0,3,4,5,l)(B) (5,0,l,2,4)(P)(Q) (5,3,O,3,4)(B)(P)(Q)

(EQ)/E,
(2,3,4,0,1)(A)(B) (2,3,4,5,0)(A)(B)
(2,3,4,0,4)(A)(B)(Q) (5, l,2,3,0)(P)
(5,l,2,0,4)(Q) (5,1,2,5,0)
(5,l,4,0,4)(Q) (5,1,4,5,0)
(5,3,4,0,4)(B)(Q) (5,3,4,5,0)(B)

Fig. 5.3. Enzyme distribution expressions in vector form for the iso-sequential
model shown in Fig. 5.1C.

The enzyme distribution expressions for the reaction sequence portrayed in
Figure 5.1C are presented in Figure 5.3.

The rate equation for this reaction sequence in the coefficient form in
terms of the vectors is

[(2,3,4,5,1)(A)(B)-(5,1,2,3,4)(P)(Q)]E,

(0,1,2,5,1)
(0,1,4,5,1)
[r'H's'oJ (2,3,4,5,0) (A) (B)
(5,1,4,5,0) (2,3,4,0,1) (A) (B) (2,3,0,3,1) (A) (B) (P)
( 2 0 2 5 1 ) (A) (2 '3 ' 0 ' 5 ' 1 ) <A) (B> (5.6)
o n ^ i A (2,3,4,0,4) (A) (B) (Q)

(2,0,4,5,1) (A) (2,0,2,3,1) (A) (P)
(2,0,2,3,4) (A) (P) (Q)

(5,3,4,5,0) (B) (5,3,4,0,4) (B) (Q)
(0,3,4,5,1) (B) (5,3,0,3,4) (B) (P) (Q)

(5,1,0,3,4) (P) (Q)
(5,1,2,3,0) (P) (5,0,2,3,4) (P) (Q) (2,3,0,3,4) (A) (B) (P) (Q)
(0,1,2,3,1) (P) (0,1,2,3,4) (P) (Q)
(5,1,2,0,4) (Q)
(5,1,4,0,4) (Q)

5.3 Reformulation of the rate equations for multi-reactant enzymes
Equations (5.2), (5.4) and (5.6) are the rate equations in the coefficient form.
The task remains to reformulate these equations into the kinetic form such
that the equations are expressed in terms of parameters which can be
determined in studies of the steady state kinetic behavior of the enzymes.
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This task is accomplished by a procedure analogous to that employed in
chapter 1. However, the enzymic reactions under consideration contain
two substrates and two products. Therefore, each term in the numerator
and denominator of the rate equations will be divided by the coefficient of
the denominator term which contains all of the substrate concentrations to
the highest equal power. This is actually the procedure that was employed
in chapter 1. The equation for the maximal velocity in the forward direction
in the case of the ordered sequential reaction in Figure 5.1 A is

num.1 _(2,3,4,1)E,_ £34/c41E,
coef.AB" (2,3,4,0)

(2,3,0,1)

_ i m m . x _ \ ^ , ^,-r, M.fM^t _ r v 3 4 r v 4 1 ^ r

r ~coefAB~ (2340 ) ~/c + /c l * j

The maximal velocity in the reverse direction for the sequential model is the
second numerator term divided by the coefficient of the denominator term
which contains all of the product concentrations to the highest equal power.

num.2 = (4,1,2,3)E, /c21/c32E,
r coef.PQ (4,1,0,3) fc21+/e32

 l ' j

(4,0,2,3)
The Michaelis constants for the substrates are defined as a quotient, the
denominator of which is the coefficient of the denominator term which
contains the concentrations of all of the substrates to the highest equal
power. The numerator of the quotient is the coefficient of the denominator
term which contains the concentrations of all the substrates to the highest
equal power except the variable substrate which it contains to one lower
power. For the reaction sequence under consideration, the Michaelis
constant for substrate A is the denominator coefficient of (B) divided by the
coefficient of the (A)(B) term.

= coef.B = (0 ,3 ,4 , l ) = /c34/c41
a coef.AB (2,3,4,0) /c12(fc34 +/c41) K ' }

(2,3,0,1)
This definition of the Michaelis constant corresponds exactly with the
definition employed in Chapter 1. Only one substrate was involved in the
reaction considered in Chapter 1, so the numerator of the Michaelis
constant was the constant term since that was the term which contained the
concentration of the substrate to the zero power. If the reaction involved
three substrates, the Michaelis constant for substrate A would be the
coefficient of the denominator term containing BC divided by the coeffi-
cient of the denominator term containing (A)(B)(C). Thus, the Michaelis
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constant for substrate B is,
(2,0,2,1)

coef.A = (2,0,4,
coef.AB (2,3,4,0)

(2,3,0,1)

= coef.A = (2,0,4,1) = kA1(k32 + k3J
b coefAB ( 2 3 4 0 ) fc(fc + fc) K' ]

The Michaelis constants for the products are denned in an analogous
manner.

(4,1,2,0)
v coef.Q (4,1,4,0) k21(k32 + /c34) , C ] 1 1

coef.PQ~(4,l,0,3)~/c43(/c21+/c32)
(4,0,2,3)

_ coef.P = (0,l,2,3) = k2lk32
q coef.PQ (4,1,0,3) k14(k21+k32) l " j

(4,0,2,3)
The equilibrium constant is defined,

num. 1 = (2,3,4, l)Ef = Zc12/c23/c34/c41

num.2 (4,l,2,3)Er k14k21k32k43

If one considers eqs. (5.2), (5.4) and (5.6), it is apparent that the
16 denominator terms of eq. (5.2) are combined into 11 terms, while the 16
denominator terms of eq. (5.4) are combined into 8 terms and the 25 deno-
minator terms of eq. (5.6) are combined into 14 terms. Since the maximal
velocities and Michaelis constants are defined rigidly, it is apparent that
some flexibility is going to have to be introduced in the definition of the
remaining steady state parameters. Furthermore, it is obvious that the
definitions of maximal velocity in the forward direction and the Michaelis
constants for the substrates do not acknowledge the existence of products
and the definitions of maximal velocity in the reverse direction and the
Michaelis constants for the products do not acknowledge the existence of
substrates. There are terms in the denominator of all three rate equations
which contain the concentrations of both substrates and products. To
accommodate this situation, a new class of steady state parameters is
defined and, in accordance with the terminology proposed by Cleland3,
these will be called inhibition constants. Inhibition constants can be defined
in terms of both substrates and products. Like the Michaelis constants, the
inhibition constants are defined as quotients of terms from the denominator
of the rate equation. The numerator of the quotient will consist of a term
which contains the concentration of the variable reactant to one lower
power than does the denominator of the quotient. However, there are two
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terms in the denominator of the rate equation which are never used as the
denominator of the quotient which defines the inhibition constant. These
terms are the coefficient of the term which contains all of the substrates to
the highest equal power and the term which contains all of the products to
the highest equal power. These two latter terms can be used as the
numerator of the quotient, but not as the denominator. To illustrate, an
inhibition constant for substrate A could be defined as in eq. (5.12) for the
reaction whose rate equation is eq. (5.2).

(0,1,2,1)
constant (0,1,4,1) fc21

ia coef.A (2,0,2,1) k12
 l '

(2,0,4,1)
However, for the same rate equation, an inhibition constant for A could
also be defined as,

coef.P (0,1,2,3) k21
ia coef.AP (2,0,2,3) k12

 [ '

The foregoing definitions of Kia are equal, but this will not always be the
case. An inhibition constant could be defined for substrate B as the constant
term in the denominator of eq. (5.2) divided by the coefficient B. To do so
would be correct, but it is advantageous to reserve the use of the constant
term to define inhibition constants of those reactants which bind to the free
enzyme. Thus, for the reaction sequence portrayed in Figure 5.1 A, the
constant term will be used in the definition of inhibition constants for
substrate A and product Q.

constant coef. B fc
4 1 ( 5 1 6 )

In the case of eq. (5.2), there are two definitions of inhibition constants for
A and also Q which are equal. However, not all multiple definitions of
inhibition constants are equal. The following inhibition constants for P can
be defined for eq. (5.2).

(2,0,2,1)
_ coef.A = (2,0,4, l) = fc41(fc32 + fc41)

"• coef.AP (2,0,2,3) fc32fc43
 V ' '

(2,3,4,0)
_ coef.AB _(2 ,3 ,0 , l )_ ( fc 3 4 + fc41)

"" coef.ABP (2,3,0,3) k43
 [ ' '
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/ num. 1 \ /
(A)(B) -V / V

num.1 num.2
Vcoef.AB/ Vcoef.AB num.1

.
/constant coef.A \ / coef.A \ / coef.B \
I ^ I I I If A) 4-1 MB)
V coef.A coef.AB/ Vcoef.AB/ Vcoef.AB/

/coef.AB\ / coef.P coef.AP coef.A \
+ Vcoef.AB/ + Vcoef.AP X coef.A) X coef.AB/

( coef.Q constant coef.A \
—  x x (Q)

constant coef.A coef.AB/
coef.AP coef.A \ /coef.BQ coef.B

x ——  (A)(P) + -— xcoef.A coef.AB/ \ coef.B coef.AB
/coef. PQ coef. Q constant coef. A \

+ -1 x — x x  (P)(Q)
V coef. Q constant coef. A coef. AB/

coef.AB
/coef. BPQ coef. BQ coef. B \

-f —  x x (B)(P)(Q)
V coef.BQ coef.B coef.AB/ n n V ;

Fig. 5.4 Reformulation of the rate equation for an ordered, bi-bi, sequential enzyme
model from the coefficient to the kinetic form.

_ coef.BQ _(4,3,4,0)^/c 3 4
ip3 coef. BPQ (4,3,0,3) /c43

 { ' '

With the foregoing definitions of steady state parameters, eq. (5.2) can be
reformulated into the kinetic form. The process is shown in Figure 5.4. The
rate equation for the ordered sequential reaction shown in Figure 5.1 A is

B)
(5.20)

The maximal velocities and Michaelis constants are defined in a rigid
manner, but there is flexibility in the definition of the inhibition constants.
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For this reason, different individuals may reformulate the rate equation
somewhat differently. It is desirable for the reformulated equation to
appear as tidy as possible. The denominator of eq. (5.20) contains terms
which include a product concentration divided by an inhibition constant
for that product. This is analogous to the equations derived in chapter 3 for
inhibition. This is in contrast to K/fl, the inhibition constant for substrate A.
In the latter case, the inhibition constant functions in a manner similar to
a Michaelis constant. That is, it is multiplied by the concentration of B.
However, if the rate equation were derived for the reverse reaction, A and
B would be the products and the denominator of the rate equation would
include terms in which the concentration of A would be divided by K.fl. This
is the logic behind the terminology used.

Equation (5.4) can be reformulated into the kinetic form by following the
procedure detailed for eq. (5.20).

v =

In like manner the complete rate equation in the kinetic form can be
obtained for the iso-sequential reaction sequence portrayed in Figure 5.1C.

v =

( 5 2 2 )
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The complete rate equations in the kinetic form for the reaction sequences
portrayed in Figure 5.1 contain a great deal of useful information which
can be deduced from studies of the steady state kinetic behavior of the
enzymes. The analysis of this information will be discussed in the following
chapter.

5.4 Problems for chapter 5
5.1 An enzyme catalyzes the following reaction

The reaction sequence for the enzyme-catalyzed reaction is shown in
Figure 5.5.
a) Derive the enzyme distribution expressions for the foregoing reac-
tion sequence and write the complete rate equation in the vector
coefficient form.
b) Write the expressions for the steady state parameters for the
reaction sequence.
c) Reformulate the rate equation into the kinetic form. (Note: retain
the rate equation in the kinetic form for it will be required to solve
problems in chapter 6.)

5.2 An enzyme catalyzes the following reaction

A + B — P + Q + R.

The reaction sequence of the enzyme-catalyzed reaction is shown in
Figure 5.6
a) Derive the enzyme distribution expressions for the foregoing reac-
tion sequence and write the complete rate equation in the vector
coefficient form.
b) Write the expressions for the steady state parameters for the
reaction sequence.

EA2

4 k34(B)

Fig. 5.5. Model of an ordered, ter-bi, ping-pong enzyme-catalyzed reaction.



76 Multi-react ant enzymic reactions

3

Fig. 5.6 Model of an ordered, bi-ter, sequential enzyme-catalyzed reaction.

c) Reformulate the rate equation into the kinetic form. (Note: retain
the rate equation in the kinetic form for it will be required to solve
problems in chapter 6.)
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6
Analysis of multi-reactant enzyme kinetics

The rate equations for an ordered sequential, an ordered ping-pong and an
ordered iso-sequential reactions sequences were derived in chapter 5. These
equations contain much information, and in this chapter the analysis of this
information will be analysed. The reader should be aware of a number of
excellent references to this type of analysis1"4.

6.1 Analysis of the kinetic behavior of an enzymic reaction
in the absence of products
The ordered sequential reaction sequence will be considered first, and for
this purpose it is convenient to rearrange eq. (5.18) by dividing each term on
the right-hand side of the equation by the concentrations of the substrates.

V =

(A) (B) " '"~
K t (P) K,.nKfc(P) Ka(Q)

Kfpi(B) K,,,(A)(B) Kia(A)
K,aKfr(Q) K.(P)(Q) KiaK6(P)(Q)
Kifl(A)(B) Kip3K,.a(A)+ KpKia(A)(B)

In eq. (6.1), T is the mass action ratio, that is, it is the ratio (P)(Q)/(A)(B). If
the concentrations of both products are set equal to zero, eq. (6.1) becomes

» = K K" K K (6-2)

(A) (B)

77
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Fig. 6.1. Lineweaver-Burk plots of an ordered, bi-bi, sequential enzyme reaction
sequence when A is the variable substrate and B is the non-varied substrate. Each
line represents a substrate-saturation curve at a different concentration of B. As the
concentration of B increases, the slope and the intercepts of the plot decrease until
the enzyme is saturated with B.

The following is the Lineweaver-Burk equation under the condition that
(P) = (Q) = 0 where A is the variable substrate and B is held constant, that
is, B is the non-varied substrate.

va Vr|_ Ka(B)J(A) VrL (B)J (6.3)

It is obvious that if a series of substrate saturation experiments were
conducted at different concentrations of B, that both the slope and inter-
cepts of the Lineweaver-Burk plots would decrease with increasing concen-
trations of B until the enzyme was saturated with B. When the enzyme is
saturated with B, Kb/(B) = 0. Figure 6.1 portrays the Lineweaver-Burk
plots of such a series of experiments. The apparent maximal velocity for any
of the lines of Figure 6.1 is given by eq. (6.4).

VJ.PP = . (6.4)

The apparent maximal velocity will increase with increasing concen-
trations of the non-varied substrate until the enzyme is saturated with the
non-varied substrate. The situation with the apparent Michaelis constant
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slopes intercepts

1
(B) (B)

Fig. 6.2. Secondary plots of the slopes and intercepts of the Lineweaver-Burk plots
in Figure 6.1 as functions of the reciprocal concentrations of B.

is not as predictable as shown by eq. (6.5).

K!»=K,
1 +

Kfl(B) (6.5)

Thus, the apparent Michaelis constant may increase, decrease or remain
constant with increasing concentrations of B. Estimates of Vf9Ka9 Kia and
Kb can obtained from the following linear relationships between the slopes
and intercepts of the Lineweaver-Burk plots and 1/(B).

s iopes=^7(5)+v;
intercepts = ^ + ^

(6.6)

(6.7)

The two secondary plots provide for the estimation of the parameters. The
secondary plots shown in Figure 6.2 are subject to the same criticism that
was made in Chapter 1 of the use of the Lineweaver-Burk plots to obtain
quantitative estimates of steady state parameters. This can be improved by
simply multiplying both sides of eqs. (6.6) and (6.7) by the concentration of
B and plotting slope x (B) and intercept x (B) against the concentration of B.

Rather than continue with the analysis of eq. (6.1) at this point, an
analysis of the equations for the ping-pong and iso-sequential equations
will be considered for the condition where the concentrations of both
products are equal to zero. Rearrangement of eq. (5.19) by dividing all of
the terms in the numerator and denominator by the concentrations
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of A and B gives,

V =
K Kb Kft(P)
(A) (B) K ( B )

Analysis of multi-reactant enzyme kinetics

(6.8)

(A) (B) Kip(B) Kip(A)(B)
Ka(Q) KaK,fc(Q) KflK,,,(P)(Q)
K ( A ) K(A)(B) KpK1(((A)(B)

If (P) = (Q) = 0, eq. (6.8) becomes,

(6.9)

Equation (6.10) is the Lineweaver-Burk equation for the ping-pong model if
A is the variable substrate and B is the non-varied substrate.

V7(A) (B) (6.10)

It is obvious that the non-varied substrate does not affect the slope of the
Lineweaver-Burk plots of a ping-pong mechanism, but that the intercepts
decrease with increasing concentrations of the non-varied substrate. Thus,
it is possible to distinguish between the sequential and ping-pong reaction
sequences by conducting a series of substrate-saturation experiments at

(A)
Fig. 6.3. Lineweaver-Burk plots of an ordered, ping-pong enzyme reaction se-
quence when A is the variable substrate and B is the non-varied substrate. As the
concentration of B increases the intercepts of the plots decrease until the enzyme is
saturated with B.
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different concentrations of the non-varied substrate. This distinction is not
apparent if a single substrate-saturation experiment is conducted at a satu-
rating concentration of the non-varied substrate because, in that case, the
Michaelis and/or inhibition constant divided by the concentration of the
non-varied substrate is equal to zero, and eqs. (6.2) and (6.9) both degrade to

(6.11)

The apparent maximal velocity in the forward direction for the ping-pong
reaction sequence is

The apparent Michaelis constant for the variable substrate is,

1+
(B)

Both the apparent maximal velocity and the Michaelis constants increase
to the same extent with increasing concentrations of the non-varied sub-
strate until the enzyme is saturated with the non-varied substrate. This is in
contrast to the behavior of the ordered sequential reaction sequence.

Equation (5.20) for the iso-sequential model can be rearranged as
eq.(6.14).

v =
V , | l - ^

K Kb KfaK» (P)
(A) (B) (A)(B) KI>2

K»(P) KiaKfc(P) (Q) ( 6 1 4 )

Kipi(B) Kipi(A)(B) K,.^
Ka(Q) K,aKfe(Q) (P)(Q)
Kiai(A) K^iAUBy K,,,^

Ka(P)(Q) Kt(P)(Q) KiaKft(P)(Q)

If the concentrations of both products are set to zero, the resulting equation
for the rate of the reaction is identical to eq. (6.2). This means that while one
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can distinguish between the ping-pong reaction sequence, on the one hand,
and the sequential or the iso-sequential on the other, one cannot distinguish
between the sequential and the iso-sequential reaction sequences under the
condition that the concentrations of both products are equal to zero. The
problem lies in the fact that, if the concentrations of both products are equal
to zero, only 4 of the 11 denominator terms in eq. (6.1) and only four of the
14 denominator terms in eq. (6.14) exert an effect on the kinetic behavior of
the reaction. Conditions must be sought whereby additional denominator
terms exert an effect on the kinetic behavior of the reaction if one is to
distinguish between these two mechanisms.

6.2 Product inhibition as a tool in the analysis of reaction sequences
Product inhibition provides a means by which more of the denominator
terms in these equations exert an influence on the kinetic behavior of the
reaction. If either of the product concentrations were not equal to zero,
while the concentration of the other product were equal to zero, the second
numerator term would remain equal to zero. That is, the reaction would
remain infinitely far from equilibrium, but additional denominator terms
would influence the kinetics of the reaction. Product inhibition is distinct
from the general type of inhibition discussed in chapter 3 because a product
of an enzymic reaction is a normal reactant in the catalytic cycle. The power
of product inhibition resides in this fact.

In the case of the sequential reactions sequence, if the reaction were
conducted under conditions where P were present initially, but Q were
absent, eq. (6.1) would become

V =
Kb K-flKb

+ (6.15)

(P) K»(P) KtoK»(P)
K/pi(B) Kipi(A)(B)

Equation (6.15) contains seven denominator terms in contrast to eq. (6.2)
which contains only four denominator terms. When A is the variable
substrate, the Lineweaver-Burk equation is

K1PJJ(A)
(6.16)
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An inspection of eq. (6.16) shows that P will affect the slope of the
Lineweaver-Burk plot provided the concentration of B, the non-varied
substrate, is less than saturating. The presence of P will also affect the
intercept of the Lineweaver-Burk plot. The effect of P on the slope will
probably differ from its effect on the intercept, but both will be affected and
thus, under these conditions, P will serve as a mixedtype inhibitor. However,
if the enzyme were saturated with B such that Kfc/(B) = 0, the slope would
no longer be affected by P. The effect of P on the intercept would decrease,
but the intercept would still be affected by the term (P)/Kl>2. Under these
conditions, the product P would function as an uncompetitive inhibitor.
The experiments which are necessary are that, when A is the variable
substrate, a series of substrate-saturation experiments be conducted each at
one of several concentrations of P and this series of experiments should be
conducted where the concentration of B is less than saturating, and
a second series of experiments where the concentration of B is sufficient to
saturate the enzyme. Thus, if five different concentrations of P were
employed, this would require a total of ten substrate-saturation experi-
ments.

Equation (6.17) is the Lineweaver-Burk equation for the situation where
(P) = 0 and (Q) = 0 and B is the variable substrate.

At a sub-saturating concentration of A, the non-varied substrate, P affects
the slope of the Lineweaver-Burk plot and it also affects the intercept. Once
again, the effect is not the same on the slope and the intercept, but both are
affected and thus P is a mixed type inhibitor. If the enzyme were saturated
with A, the effect of P on the slope would be diminished because KIfl/(A) = 0,
but P would still affect the slope and the intercept, and so P would continue
to function as a mixed type inhibitor. Thus, the effect of P on kinetic
behavior is different when A is the variable substrate than when B is the
variable substrate.

Additional information can be obtained when Q, rather than P, is
employed as the product inhibitor. Under this condition, the rate of the
reaction is given by eq. (6.18).

v • K « , K » • K *- K * K ° ( Q )

(A) (B) (A)(B) K(A)
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When A is the variable substrate and B is the non-varied substrate, the
Lineweaver-Burk equation is

It is obvious that Q affects the slope but not the intercept of the Lineweaver-
Burk plot and this is true whether or not the enzyme is saturated with the
non-varied substrate. Thus, Q is a competitive inhibitor of substrate A.
Equation (6.20) is the Lineweaver-Burk equation for the sequential mech-
anism when Q is the inhibitor and B is the variable substrate.

At a sub-saturating concentration of A, the product Q affects both the slope
and the intercept of the Lineweaver-Burk plot and, therefore, is a mixed
type inhibitor. However, saturation of the enzyme with A eliminates the
effect on both the slope and the intercept of the plot. Hence, when the
enzyme is saturated with A, the product Q has no inhibitory effect. The
concentration of A required to saturate the enzyme in the presence of Q will
be greater than that required to saturate the enzyme in the absence of Q, but
for any given concentration of Q, once the enzyme is saturated with A, Q is
no longer an inhibitor. This observation should be anticipated by inspec-
tion of the reaction sequence for the ordered, sequential model portrayed in
Figure 5.1 A. In that model both A and Q interact with the same species of
the enzyme, namely, the free enzyme. This can also be predicted by an
inspection of the enzyme distribution expressions for the sequential enzyme
model listed in chapter 5. Of the distribution expressions for the sequential
reaction sequence, the concentration of A is completely absent only from
the distribution expression for the free enzyme. Thus, when the concentra-
tion of A approaches infinity, the fraction of enzyme present as E ap-
proaches zero.

On the basis of the foregoing discussion, it is possible to construct
a product inhibition pattern for the ordered, sequential enzyme model
portrayed in Figure 5.1 A. The product inhibition pattern for this model is
shown in Figure 6.4.

A similar analysis of the product inhibition pattern can be made for the
iso-sequential enzyme model shown in Figure 5.1C. The rate equation for
this reaction sequence, when P is the product inhibitor but the concentra-
tion of Q is equal to zero, is identical to eq. (6.15). Hence, the product
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(A) (B) Inhibitor Type of inhibition

Variable
Variable
Subsaturate
Saturate
Variable
Variable
Subsaturate
Saturate

Subsaturate
Saturate
Variable
Variable

Subsaturate
Saturate
Variable
Variable

P
P
P
P
Q
Q
Q
Q

Mixed type
Uncompetitive

Mixed type
Mixed type
Competitive
Competitive
Mixed type

No inhibition

Fig. 6.4. Product inhibition pattern for the sequential enzyme reaction sequence
portrayed in Figure 5.1 A.

inhibition pattern for this reaction sequence is identical to the ordered,
sequential sequence when P is the product inhibitor. Equation (6.21) is the
rate equation for the ordered, iso-sequential sequence when Q is the
product inhibitor.

y
V= K Kb K,.aKft (Q) Ka(Q) KiKfc(Q"y ( 6 < 2 1 )

(A) (B) + (A)(B) K K ( A )(A) (B) + (A)(B) K,.fl2 Kjfli(A) Kjai(A)(B)

The Lineweaver-Burk equation for this situation where A is the variable
substrate is

It can be seen that, when A is the variable substrate, Q will function as
a mixed type inhibitor regardless of whether or not the enzyme is saturated
with the non-varied substrate. This is in sharp contrast to the sequential
reaction sequence where Q functioned as a competitive inhibitor. The
distinction between the sequential and the iso-sequential is also seen in the
Lineweaver-Burk equation when B is the variable substrate.

When B is the variable substrate, Q affects both the slope and the intercept
of the Lineweaver-Burk plot when A, the non-varied substrate, is present at
a subsaturating concentration. Thus, it is a mixed type inhibitor. However,
when the enzyme is saturated with A, Q does not affect the slope and,
therefore, Q is an uncompetitive inhibitor. The product inhibition pattern
for the iso-sequential reaction sequence is summarized in Figure 6.5.
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(A)

Variable
Variable
Subsaturate
Saturate
Variable
Variable
Subsaturate
Saturate

(B)

Subsaturate
Saturate
Variable
Variable

Subsaturate
Saturate
Variable
Variable

Analysis of

Inhibitor

P
P
P
P

Q
Q
Q
Q

multi-reactant enzyme

Type of inhibition

Mixed type
Uncompetitive

Mixed type
Mixed type
Mixed type
Mixed type
Mixed type

Uncompetitive

Fig. 6.5. Product inhibition pattern for the iso-sequential enzyme reaction se-
quence shown in Figure 5.1C.

Product inhibition provides a means of distinguishing between the
sequential and the iso-sequential reaction sequences by exploiting the
differences in the complete rate equations.

While it is possible to distinguish between the ping-pong sequence of
Figure 5.IB and either of the other two sequences in Figure 5.1 without
resorting to product inhibition, it is possible to envision reaction sequences
which would not be distinct from the ping-pong model without employing
product inhibition. For this reason, the product inhibition pattern for the
model in Figure 5.IB will be developed. Equation (6.24) is a rearranged
form of the rate equation for this model in which the terms containing
(P)(Q) are omitted

V= K Kb K,(P) KfaK»(P) Kfl(Q) KflKt7>(Q) {624)

+ (A) + (B) + K£p(B) Klp(A)(B)+ K^A) ^ K^(A)(B)

The following is the Lineweaver-Burk equation when A is the variable
substrate and P is the product inhibitor.

1 K T KiaKh(P)1 1 1 1 " . , K»/ ( P ) \ 1

[ 1 J L 1 + 1 1 + J J (625)

At a subsaturating concentration of B, the product P serves as a mixed type
inhibitor, but when the enzyme is saturated with B, the product P affects
neither the slope nor the intercept and no inhibition would be observed,
The Lineweaver-Burk equation when B is the variable substrate and P is
the product inhibitor is given by eq. (6.26).

M (6.26)_L+_Lri + M
(B) + V /L (A)J
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(A) (B) Inhibitor Type of inhibition

Variable
Variable
Subsaturate
Saturate
Variable
Variable
Subsaturate
Saturate

Subsaturate
Saturate
Variable
Variable

Subsaturate
Saturate
Variable
Variable

P
P
P
P
Q
Q
Q
Q

Mixed type
No inhibition
Competitive
Competitive
Competitive
Competitive
Mixed type

No inhibition

Fig. 6.6. Product inhibition pattern for the ping-pong enzyme reaction sequence
portrayed in Figure 5.IB.

It is obvious that P affects only the slope of eq. (6.26), and this is true
regardless of whether or not the enzyme is saturated with the non-varied
substrate. Thus, P is a competitive inhibitor when B is the variable
substrate. When A is the variable substrate and Q is the product inhibitor,
the Lineweaver-Burk equation is

It can be determined readily from eq. (6.27) that product Q is a competitive
inhibitor when A is the variable substrate regardless of the concentration of
the non-varied substrate. Equation (6.28) is the Lineweaver-Burk equation
when B is the variable substrate and Q is the product inhibitor.

1 Kfcr K.Ktt(Q)1 1 1 [ K / (Q)\1
L 1 + J + L 1 + 1 1 + J (628)

At a subsaturating concentration of the non-varied substrate, Q is a mixed
type inhibitor when B is the variable substrate. If the enzyme is saturated
with A, Q exerts no inhibitory effect. The product inhibition pattern of the
ping-pong reaction sequence is presented in Figure 6.6. Product inhibition
is not required to distinguish the ping-pong reaction sequence from the
other two models in Figure 5.1, but there are reaction sequences which
exhibit the same kinetic behavior as the ping-pong in the absence of
products. One of these will be considered in the following chapter.

6.3 A reaction sequence with abortive complexes
The reaction sequences which have been considered up to this point have
consisted of a catalytic cycle without the formation of abortive complexes.
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This is a common phenomenon among pyridine nucleotide-linked
dehydrogenases. In the case of these enzymes, the oxidized or reduced
nucleotide is usually the first substrate to bind to, and the last product to
dissociate from, the enzyme. To illustrate, after NADH has bound to the
dehydrogenase, the oxidized second substrate binds in the normal reaction
sequence. This is followed by the transfer of electrons to the second
substrate followed by dissociation of the reduced second substrate and then
dissociation of the NAD + from the dehydrogenase. However, if the reduced
second substrate (product) is present in the assay medium, it may bind to
the E-NADH complex to form an unproductive (abortive) E-NADH-
reduced substrate complex. In like manner, the oxidized second substrate
may bind to the E-NAD+ complex to form an unproductive E-NAD + -
oxidized substrate complex.

The reaction sequence for this enzyme with two abortive complexes is
portrayed in Figure 6.7. The connection matrix and the Q matrix for this
reaction sequence are presented in Figure 6.8. The enzyme distribution
expressions for this reaction sequence are given in Figure 6.9. The reader
should note that there are a total of six elements in the vector for each term
in the distribution expressions. This reflects the fact that there are six
enzymes species in the reaction sequence. However, there are a total of only
four terms in the distribution expression for each enzyme species, and this is
a reflection of the fact that there are only four enzyme species in the actual
catalytic cycle. The enzyme species which constitute the catalytic cycle are
E, EA, EAB, and EQ. Equation (6.29) is the complete rate equation in the
coefficient vector form for the reaction sequence presented in Figure 6.7.

The enzyme distribution expressions for the reaction sequence are given
in Fig. 6.9. Equation (6.29) is the complete rate equation in the coefficient
form.

_ [(2,3,4,1,2,4)(A)(B) - (4,1,2,3,2,4)(P)(Q)
V ( 0 1 2 124) (2,3,4,0,2,4) (A) (B)

( o ' l V l ' 2 4) (2,3,0,1,2,4) (A) (B) (2,3,4,6,2,0) (A) (B)2

' ' ' (2,5,2,1,0,4) (A) (P) (2,3,0,3,2,4) (A) (B) (P)2

^ 4 , 1 , 0 , 4 ) (A) (P)
(2,0,2,3,2,4) (A) (P) (2,5,2,3,0,4) (A) (P)2

(0,3,4,1,2,4) (B) (4,1,2,6,2,0) (B) (Q) (4,3,4,6,2,0) (B)2(Q)
(0,1,2,3,2,4) ( P ) (4,1,4,6,2,0) (B)(Q)

(4,3,4,0,2,4) (B) (Q) (4,3,0,3,2,4) (B) (P) (Q)
(4,1,2,0,2,4) (Q) (4,1,0,3,2,4) (P) (Q) (4,5,2,3,0,4) (P)2(Q)
(4,1,4,0,2,4) (Q) (4,1,2,3,2,4) (P) (Q) (6-29)

A
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k46(B)
EQB * = = ? EQ

6 k64 4

^ A k25(P) . .
EAT-T *EAP

2 k52 5

EAB
3

Fig. 6.7. Reaction sequence of an ordered, bi-bi, sequential model with two abortive
complexes.

0 A 0 Q 0 0

U =

1 0 B 0
0 1
1 0

0
P

1
P 0
0 0

0 0 B Q =

2
1
2
1
2
4

4
3
4
3
0
0

0
5
0
6
0
0

0 1 0 0 0 0
0 0 0 0 0 0

Fig. 6.8. Connection matrix and matrix of non-zero elements for the model in
Figure 6.7.

Reformulation of eq. (6.29) into the kinetic form gives,

v =
VJ 1 - :

Ka Kb KiaiKfe (B) (P) Ka(P) Kia2Kfc(P)
+ (A) + (B) + (A)(B) Ka, K(p2

 + Ki p i (B)+ Kipi(A)(B)
Ka(P)2 Kfl(Q) Kfl(B)(Q)

K,.piK,.pj(B) K^^A) Kiai(A)(B) K ^ K ^ A )
Ka(P)(Q) KfaiKt(P)(Q) KiaiKfc(P)2(Q)

K^K^CA) KpKj(!i(A)(B) KpKip5Kiai(A)(B)

(6.30)

A couple of features become apparent upon inspection of eq. (6.30). Firstly,
substrate B will give rise to substrate inhibition. This is due to the fifth
denominator term and also because of the twelfth denominator term,
although, in the case of the latter term, inhibition requires the presence of
product Q in the assay medium. This is distinct from the explanation of
substrate inhibition discussed in Chapter 3. Secondly, product inhibition
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(E)/E (EA)/E

Analysis of multi-reactant enzyme kinetics

(EAB)/E

(0,1,2,1,2,4)
(0,l,2,3,2,4)(P)
(0,1,4,1,2,4)

(EQ)/E(

(2,0,2,l,2,4)(A)
(2,0,2,3,2,4)(A)(P)
(2,0,4,1,2,4)(A)
(EAP)/Er

(2,3,0,1,2,4)(A)(B)
(2,3,0,3,2,4)(A)(B)(P)
(4, l,0,3,2,4)(P)(Q)

(EQB)/Er

(2,3,4,0,2,4)(A)(B)
(4,l,2,0,2,4)(Q)
(4,l,4,0,2,4)(Q)
(4,3,4,0,2,4)(B)(Q)

(2,5,2,1,0,4)(A)(P) (2,3,4,6,2,0)(A)(B)2

(2,5,2,3,0,4)(A)(P)2 (4,l,2,6,2,0)(B)(Q)
(2,5,4,l,0,4)(A)(P) (4, l,4,6,2,0)(B)(Q)
(4,5,2,3,0,4)(P)2 (Q) (4,3,4,6,2,0)(B)2 (Q)

Fig. 6.9. Enzymes distribution expressions for the enzyme reaction sequence in
Figure 6.7.

by product P is a second order function of the concentration of P. The
Lineweaver-Burk equations in the absence of the products are the follow-
ing.

1 Kfl J 1 K,
( 6 J 1 )

Substrate inhibition by the second substrate is manifested by an increase in
the intercept of the Lineweaver-Burk plot regardless of which substrate is
the variable substrate. When P is the product inhibitor, the following
Lineweaver-Burk equations are obtained.

Ka(B) KiaKip (A)

(A) K,.piK1>J(B)

Inspection of eqs. (6.33) and (6.34) provides some valuable information
about the location of the abortive complex EAP in the reaction sequence.
The term which contains (P)2 is associated with the EAP complex. This
term affects the intercept of eq. (6.33) where A is the variable substrate.
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Thus, the EAP complex is analogous to the EAI complex in uncompetitive
inhibition. Therefore, the reaction which gives rise to the EAP complex
occurs after the binding of substrate A to the enzyme. The secondary plot of
the intercepts versus (P) when A is the variable substrate and B is present at
a sub-saturating concentration will not be linear, but rather, parabolic.
With respect to saturation with B, it should be noted that for the enzyme
sequence under consideration it is not possible to saturate the enzyme with
B. Equation (6.34) shows that, when B is the variable substrate, the term
(P)2 term is in the slope component of the Lineweaver-Burk equation. Thus,
the reaction which gives rise to the EAP complex is competitive with the
interaction of B with the enzyme during the normal reaction sequence. The
secondary plot of the slopes of the Lineweaver-Burk plots as a function of
the concentration of P will be parabolic regardless of the concentration of
A. The non-linearity of the secondary plots are evidence that abortive
complexes are formed during the reaction sequence.

6.4 Problems for Chapter 6
6.1 Utilizing the equation derived in problem 5.1 of chapter 5, write the

Lineweaver-Burk equations for each of the substrates with respect to
each of the products.

6.2 Prepare a product inhibition pattern for the enzyme model presented
in problem 5.1 of chapter 5.

6.3 Utilizing the equation derived in problem 5.2 of chapter 5, write the
Lineweaver-Burk equations for each of the substrates with respect to
each of the products.

6.4 Prepare a product inhibition pattern for the enzyme model portrayed
in problem 5.2 of chapter 5.

References
1. Cleland, W. W. (1963). The kinetics of enzyme-catalyzed reactions with two

of more substrates or products. II. Inhibition: Nomenclature and theory.
Biochim. Biopys. Ada 67: 173-87.

2. Cleland, W. W. (1967). Enzyme kinetics. Ann. Rev. Biochem. 36: 77-112.
3. Segel, I. H. (1975). Enzyme Kinetics, pp. 506-845, New York, John Wiley

& Sons.
4. Dixon, M. and Webb, E. C. (1979). Enzymes, 3rd. Ed., pp. 47-137, New York,

Academic Press.



7
Prediction of reaction sequence

The methods discussed in previous chapters provide for the derivation of
rate equations of even complex enzyme-catalyzed reactions. It is true that, if
the reaction sequence of the enzymic reaction is highly random, a com-
puter-based derivation is the only feasible alternative, but the algorithm
described in chapter 5 can be incorporated into a computer-based pro-
cedure. However, there is a problem with the approach that has been
followed to this point. The underlying presumption for each enzymic
reaction has been that there is a known reaction sequence. If the reaction
sequence is known, regardless of how complex that sequence may be, it is
possible to derive an appropriate rate equation. Herein lies the problem!
When one initiates an investigation of the kinetic behavior of an enzyme,
the reaction sequence is not known, and the presumption of a plausible
reaction sequence is the worst of the possible approaches to the investiga-
tion.

7.1 The enzyme kineticist and the mystery novel
The unravelling of the reaction sequence of an enzymic reaction is com-
pletely analogous to the unravelling of a crime in a mystery novel. The
study of the kinetic behavior of an enzyme has all the challenge and intrigue
of a well-written mystery novel! While instinct may be of some small value
to the detective who would determine the kinetic behavior of an enzyme or
solve a murder mystery, instinct can prove to be a fickle ally. Precise
investigative work requires the combination of asking the proper questions
at the proper time and a sagacious interpretation of the answers received.
The enzyme kineticist has only one "witness" to whom the questions can be
addressed, and that is the enzyme itself. This both simplifies and compli-
cates the problem. It is simplified because it "narrows the field," but it

92
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complicates the problem because it lessens, but does not eliminate, the
possibility of obtaining corroborating evidence.

The questions which the enzyme kineticist must address to the enzyme
relate to the kinetic behavior of the enzyme. More often than not, this
consists of conducting substrate-saturation experiments under carefully
defined conditions. The enzyme provides the answers in the form of the
substrate-saturation curves. These curves must be analyzed and interpreted
meticulously. In chapter 4 and again in chapter 6, it was noted that, under
certain conditions, a product might serve as a competitive inhibitor of
a given substrate. In each case, it was implied that this was an expected
result because "the substrate and product interact with the same species of
the enzyme." This means that, if it can be shown that two reactants interact
with the enzyme in a competitive manner, it can be concluded that the
reaction sequence is such that it provides for those two reactants to react
with the same species of the enzyme in a mutually exclusive manner. The
discussion of the ordered, sequential reaction sequence with the formation
of abortive complexes in the latter part of the previous chapter provides
additional examples of interpretations that can be made on the basis of
studies of the kinetic behavior of the enzyme.

Cleland1 has proposed rules which are extremely valuable in the interpre-
tation of enzyme kinetic data. These rules will be stated here as follows.

1) If a reactant affects the intercept of the Lineweaver-Burk plot of the
variable substrate, that reactant reacts with a different species of the enzyme
than does the variable substrate. Thus, if the reactant reacts with a species
other than that species with which the variable substrate reacts, the reactant
will affect the maximum velocity.

2) If a reactant affects the slope of the Lineweaver-Burk plot, that
reactant either reacts with the same species of the enzyme as does the
variable substrate or it reacts with a species of the enzyme which is
connected to the species of the enzyme with which the variable substrate
reacts by a reversible path. If the latter criterion is met, the reactant will
affect V*pp/K*pp, the efficiency of the enzyme. With regard to the second
rule, it is important to recognize that the term "reversible" does not
imply equilibrium. Furthermore, it must be understood that there are three
conditions which could result in the irreversibility of an individual step in
the reaction sequence. The most obvious is that a given step might be
essentially irreversible because of thermodynamic considerations. Second-
ly, a step which involves the interaction of the enzyme with a reactant would
be irreversible if the concentration of that reactant were equal to zero. Thus,
in the absence of a product, the step in which that product reacts with the
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enzyme is irreversible. Finally, saturation of the enzyme with a substrate
renders the step at which that substrate reacts with the enzyme irreversible
due to mass action considerations. The latter two conditions constitute
kinetic irreversibility rather than thermodynamic irreversibility.

7.2 Product inhibition patterns: The clues with which
the enzyme kineticist works
In the light of the foregoing considerations, the product inhibition pattern
of the ordered, sequential enzyme model can be considered, and it will be
seen that if an enzyme of an unknown reaction sequence were to exhibit that
kinetic behavior it would be possible to state that the kinetic behavior of the
enzyme is consistent with that of an ordered, sequential sequence. Before
the product inhibition pattern of Figure 7.1 is considered, it is advantage-
ous to remember that, in the absence of either product, the non-varied
substrate affected both the slope and intercept of the Lineweaver-Burk
plots, in the case of the ordered, sequential reaction sequence. The fact that
the intercept was affected showed that the non-varied substrate interacted
with a different species of the enzyme than did the variable substrate. The
fact that the slope was affected indicated that the species of the enzyme with
which the two substrates interact were connected by a reversible path. The
simplest interpretation of this information is either of the sequences shown
in Figure 7.2. The first row in the product inhibition pattern portrayed in
Figure 7.1 shows that, when P was the product inhibitor and the non-
varied substrate was present at a subsaturating concentration, the product
affected both the slope and the intercept of the Lineweaver-Burk plot. Since
the intercept is affected, P interacts with a different species of the enzyme

(A) (B) Inhibitor Type of inhibition

Variable
Variable
Subsaturate
Saturate
Variable
Variable
Subsaturate
Saturate

Subsaturate
Saturate
Variable
Variable

Subsaturate
Saturate
Variable
Variable

P
P
P
P
Q
Q
Q
Q

Mixed type
Uncompetitive

Mixed type
Mixed type
Competitive
Competitive
Mixed type

No inhibition

Fig. 7.1. Product inhibition pattern for the enzyme reaction sequence in
Figure 5.1 A.
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EAB3 EAB3
Fig. 7.2. Two possible partial reaction sequences based on observations of a se-
quential reaction sequence in the absence of products.

than does substrate A. The fact that the slope was affected indicated that,
at a subsaturating concentration of the non-varied substrate, the path
between the species with which A and P react was reversible. Saturation of
the enzyme with B changes the type of inhibition by P such that the slopes of
the Lineweaver-Burk plots are not affected. This suggests that B interacts
with the enzyme after the variable substrate since a reversible path between
the interaction of A and P with the enzyme is no longer there. When B was
the variable substrate, the product P was a mixed type inhibitor regardless
of whether or not the enzyme was saturated with A. Thus, P reacted with
a different species of the enzyme than did B, and the path between the
species with which B and P react was reversible regardless of the concen-
tration of A. These results are consistent with the sequence shown in
Figure 7.3. The fourth enzyme species is called EX because, at this point
in the analysis, there is not sufficient information available to determine
the nature of this species. However, when A was the variable substrate, the
product Q was a competitive inhibitor. That is, Q affected the slope of the
Lineweaver-Burk plots but it had no affect on the intercepts. Thus, substra-

1
E

4EX EA2

EAB
3

Fig. 7.3. Reaction sequence consistent with the product inhibition pattern in
Figure 7.1 when the product inhibitor is P and Q is absent.
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4EQ EA2

EAB
3

Fig. 7.4. Reaction sequence consistent with the product inhibition pattern in
Figure 7.1.

te A and product Q interacted with the same species of the enzyme. When
B was the variable substrate and A was present at a sub-saturating
concentration, Q affected both the slopes and the intercepts of the
Lineweaver-Burk plots. Hence, substrate B and product Q interacted with
different species of the enzyme but these species were connected by a revers-
ible path even when product P was absent. However, when the enzyme was
saturated with A, there was no enzyme with which Q could interact. The
concentration of A required to saturate the enzyme in the presence of
Q would be greater than in the absence of Q because, as shown in Chapter 3,
a competitive inhibitor increases the apparent Michaelis constant of the
variable substrate, but if the enzyme is saturated with A there is no enzyme
with which Q can interact. Figure 7.4 shows the simplest reaction sequence
which is consistent with the observed results. The choice of the words,
"consistent with the observed results," is significant. The results obtained in
studies of the kinetic behavior of a system are not unique, that is, they can
usually be interpreted in more than one way. Actually, this is true of many
facets of science. It is very difficult to prove beyond question that any
hypothesis is correct. In most cases, a more precise claim is that all the
available evidence is consistent with a given hypothesis. This is true of an
astute detective in a mystery novel as well as for the astute enzyme
kineticist!

Cleland's rules can be utilized to predict a reaction sequence on the basis
of the product inhibition pattern of the ordered, ping-pong model presented
in Figure 5IB. Before the product inhibition pattern shown in Figure 7.5 is
considered, it should be recalled that, in the case of the ping-pong model, in
the absence of either product, the non-varied substrate affected the inter-
cept but not the slope of the Lineweaver-Burk plots. In accordance with
Cleland's rules, this indicates that the non-varied substrate reacted with
a different species of the enzyme than did the variable substrate and that
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(A) (B) Inhibitor Type of inhibition

Variable
Variable
Subsaturate
Saturate
Variable
Variable
Subsaturate
Saturate

Subsaturate
Variable
Variable
Variable

Subsaturate
Saturate
Variable
Variable

P
P
P
P
Q
Q
Q
Q

Mixed type
No inhibition
Competitive
Competitive
Competitive
Competitive
Mixed type

No inhibition

Fig. 7.5. Product inhibition pattern for the enzyme reaction sequence in
Figure 5.IB.

there was not a reversible path between these two enzyme species in the
absence of products. When A was the variable substrate and B was present
at a subsaturating concentration, P affected both the slope and the
intercept of the Lineweaver-Burk plots. This indicates that A and P reacted
with different species of the enzyme and that there was a reversible path
between these species, under the conditions specified. Because saturation of
the enzyme with the non-varied substrate eliminated inhibition by P, one
would predict that substrate B and product P reacted with the same species
of the enzyme, and this is confirmed by the fact that P inhibited the enzyme
competitively when B was the variable substrate. These observations
suggest the following reaction sequence. The product Q was a competitive
inhibitor when A was the variable substrate, and therefore, these reactants
interacted with the same species of the enzyme. When B was the variable
substrate, Q was a mixed type inhibitor if A was present at a subsaturating
concentration, and this indicates that, under these conditions, the path
between the enzyme species with which B and Q react was reversible.

1
E

4 EX u / m EA2

3

Fig. 7.6. Reaction sequence consistent with the product inhibition pattern in
Figure 7.5 when P is the product inhibitor and Q is absent.
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4EQ

3
Fig. 7.7. Reaction sequence consistent with the entire product inhibition pattern in
Figure 7.5.

5 EQ EA 2

Fig. 7.8. Model of an ordered, bi-bi, sequential reaction sequence in which an
irreversible step intervenes between the addition of the two substrates. EA and GA
are different forms of the enzyme-substrate complex.

Saturation with A, of course, eliminated inhibition by Q. These findings
support the reaction sequence presented in Figure 7.7.

The observations with the ping-pong model illustrate an important
point. In the absence of products, there is no reversible path between the
enzyme species with which substrates A and B react. However, in the
presence of a subsaturating concentration of either product, the path
between the species with which the two substrates interact is reversible. This
means that if a series of substrate-saturation experiments were conducted
each in the presence of a subsaturating concentration of either product, the
non-varied substrate would affect both the slope and the intercept of the
Lineweaver-Burk plots. Furthermore, there are sequential models which
will mimic the behavior of a ping-pong model in the absence of products.
Consider the following sequential reaction in Figure 7.8. The reaction
sequence is irreversible. This might be due to the fact that the EA species is
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(A) (B) Inhibitor Type of inhibition

Variable
Variable
Subsaturate
Saturate
Variable
Variable
Subsaturate
Saturate

Subsaturate
Saturate
Variable
Variable

Subsaturate
Saturate
Variable
Variable

P
P
P
P
Q
Q
Q
Q

Uncompetitive
Uncompetitive

Mixed type
Mixed type
Competitive
Competitive

Uncompetitive
No inhibition

Fig. 7.9. Product inhibition pattern for the reaction sequence in Figure 7.8

unstable in the assay medium and is irreversibly converted to GA. If a series
of substrate-saturation experiments were conducted at different concentra-
tions of the non-varied substrate in the absence of products, it would be
found that the non-varied substrate would affect the intercept but not the
slope of the Lineweaver-Burk plots. On the basis of this observation, one
might conclude erroneously that the reaction sequence is a ping-pong
mechanism in which the first product dissociates from the enzyme before
the second substrate binds. However the predicted product inhibition
pattern illustrated in Figure 7.9 is distinct from the pattern shown in
Figure 7.9 for the ping-pong model. The foregoing illustrates both the
danger of drawing conclusions on the basis of insufficient evidence and the
power of product inhibition to distinguish between reaction sequences.

The ordered, sequential reaction sequence and the ordered, iso-sequen-
tial sequence in the previous chapter were found to differ only with respect
to the product inhibition pattern with respect to product Q. The product
inhibition pattern for the iso-sequential model when Q is the product
inhibitor is shown in Figure 7.10. When A was the variable substrate, Q was
a mixed type inhibitor regardless of the concentration of the non-varied
substrate. This is a reflection of the fact that A and Q reacted with different
species of the enzyme and that the path between these species in the model

(A) (B) Inhibitor Type of inhibition

Q Mixed type
Q Mixed type
Q Mixed type
Q Uncompetitive

Fig. 7.10. Product inhibition pattern for the reaction sequence in Figure 5.1C when
Q is the product inhibitor and P is absent.

Variable
Variable
Subsaturate
Saturate

Subsaturate
Saturate
Variable
Variable
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was reversible. It is clear from Figure 7.10 that substrate B reacted with
a different species of the enzyme than product Q, and that the path between
these species was reversible if A was present at a subsaturating concentra-
tion, but irreversible if the enzyme were saturated with A. This indicates
that A interacts with the enzyme at a point in the reaction sequence between
the dissociation of Q from the enzyme and the binding of B. When these
observations are combined with the appropriate evidence summarized in
Figure 7.5, the reaction sequence portrayed in Figure 5.1C can be
predicted.

It was pointed out at the beginning of this chapter that the task facing
the enzyme kineticist is analogous to that of a detective who would
solve a crime. In both cases, it is important that the investigator initiate
the investigation free from the bias of a preconceived hypothesis. In
both cases the investigator must ask incisive questions and must evaluate
the evidence obtained by this procedure in a judicious and meticulous
manner. In the case of enzyme kinetics, this requires that at each step
in the procedure the investigator consider all of the reaction models
that his imagination can envision. The rate equation for all of these
reaction models should be derived, because the terms present in each of
these equations will provide the kineticist with the questions which must be
addressed to the enzyme. Discrimination between two reaction sequences
may depend on the utilization of the information available in only one of
numerous denominator terms. Finally, the enzyme kineticist must always
be cognizant of the fact that there are no absolute conclusions; one can only
demonstrate that the observed results are consistent with a given reaction
sequence. Thus the kineticist obtains only circumstantial evidence.
It should also be realized that Cleland's rules apply to the catalytic re-
action sequence and not to abortive complexes. However, the existence of
abortive complexes can usually be detected by nonlinear secondary plots,
and evidence concerning the location of an abortive complex can often
be discerned by careful analysis2. Segel3 has discussed many additional
reaction sequences.

7.3 Problems for chapter 7
7.1 The following product inhibition pattern was obtained in a series

of substrate-saturation experiments involving an enzyme which
catalyzes the following reaction
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(A)

Variable
Variable
Subsaturated
Variable
Variable
Subsaturated
Variable
Subsaturated
Saturated

(B)

Subsaturated
Saturated
Variable
Subsaturated
Saturated
Variable
Subsaturated
Variable
Variable

Inhibitor

P
P
P
Q
Q
Q
R
R
R

Type of
inhibition

Uncompetitive
No inhibition
Competitive
Mixed type
Mixed type
Uncompetitive
Competitive
Mixed type
No inhibition

Propose a reaction sequence which is consistent with the foregoing
observations.

7.2 An enzyme which catalyzes the following reaction

A + B + C — P + Q

gave rise to the following product inhibition pattern.

(A)

Variable
Variable
Variable
Subsat
Sat.
Subsat.
Subsat.
Sat.
Subsat.
Variable
Variable
Variable
Subsat.
Sat.
Subsat.
Subsat.
Sat.
Subsat.

(B)

Subsat.
Sat.
Subsat.
Variable
Variable
Variable
Subsat.
Subsat.
Sat.
Subsat.
Sat.
Subsat.
Variable
Variable
Variable
Subsat.
Subsat.
Sat.

(C)

Subsat.
Subsat.
Sat.
Subsat.
Subsat.
Sat.
Variable
Variable
Variable
Subsat.
Subsat.
Sat.
Subsat.
Subsat
Sat.
Variable
Variable
Variable

Inhibitor

P
P
P
P
P
P
P
P
P
Q
Q
Q
Q
Q
Q
Q
Q
Q

Type of
inhibition

Mixed type
Mixed type
Mixed type
Mixed type
Uncompetitive
Mixed type
Mixed type
Uncompetitive
Uncompetitive
Mixed type
Uncompetitive
Uncompetitive
Mixed type
Mixed type
Uncompetitive
Mixed type
Mixed type
Mixed type

Propose a reaction sequence which is consistent with the foregoing
observations.
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8
Enzyme-catalyzed isotopic exchange

Isotopes have been used extensively in enzymology to obtain answers to
a number of different types of questions. Thus, isotopes have been used to
gain insight into the mechanism of the catalytic reaction1. Isotopes have
also been used to locate the amino acids which constitute the active site2 or
the allosteric site3 of enzymes. The following chapter will contain a dis-
cussion of how the isotope effect can be utilized to obtain information
concerning the location of rate limiting steps in an enzyme sequence. The
present chapter will be concerned with the study of the kinetics of isotopic
exchange as a means of 'fine tuning' the understanding of the reaction
sequence of an enzyme. It will be assumed in the discussion in this chapter
that there is no significant isotope effect. That is, that the mass of the label
isotope does not differ from the normal isotope significantly. Furthermore,
it will be assumed that the concentration of the isotope is very small
compared to the concentration of the normal isotope.

Isotopic exchange provides a means of obtaining an insight into the
reaction sequence of an enzymic reaction which, in some instances, would
be difficult or impossible to obtain by the methods described in the previous
chapters. While the information available from analysis of isotopic ex-
change data can be very useful, the belief that these data are directly related
to observations obtained in initial rate studies can be erroneous. This fact
was pointed out by Boyer1 in his classic paper on isotopic exchange under
equilibrium conditions. Most isotopic exchange experiments are conducted
under equilibrium conditions, and most of the formal treatments have dealt
with the equilibrium1"3. However, some treatments have dealt with steady
state isotopic exchange4"6.

103



104 Enzyme-catalyzed isotopic exchange

k£

2ER
il

k56(C) k65
w

5F

1
^^. E ̂ >

=^16(R)

k54(Q)

^ ^ F Q <
4

:%:%ki2(A)
klT^j

EA2
k32 U23(B)

IK
EAB3

Fig. 8.1. Reaction sequence of an ordered, bi-bi, sequential, uni-uni, ping-pong
enzyme reaction.

(EA)/E, (EAB)/E,
(0,1,2,3,4,1)(P)(Q)
(0,l,2,3,4,5)(P)(Q)
(0,1,2,3,6,1)(C)(P)
(0,1,2,5,6,1)(C)(Q)
(0,1,4,5,6,1)(C)
(0,3,4,5,6,1)(B)(C)

(FQ)/E,

(2,0,2,3,4,1)(A)(P)(Q)
(2,O,2,3,4,5)(A)(P)(Q)
(2,0,2,3,6,l)(A)(C)(Q)
(2,0,2,5,6,l)(A)(C)
(2,0,4,5,6,l)(A)(C)
(6,O,2,3,4,5)(P)(Q)(R)

(2,3,0,3,4,1)(A)(B)(P)(Q)
(2,3,0,3,4,5)(A)(B)(P)(Q)
(2,3,0,3,6,1)(A)(B)(C)(P)
(2,3,0,5,6,l)(A)(B)(C)
(6,l,0,3,4,5)(P)(Q)(R)
(6,3,0,3,4,5)(B)(P)(Q)(R)

(ER)/E,
(2,3,4,0,4,1)(A)(B)(Q)
(2,3,4,0,4,5)(A)(B)(Q)
(2,3,4,0,6,1)(A)(B)(C)
(6,1,2,0,4,5)(Q)(R)
(6,1,4,0,4,5)(Q)(R)
(6,3,4,0,4,5)(B)(Q)(R)

(2,3,4,5,0,1)(A)(B)
(2,3,4,5,0,5)(A)(B)
(6,l,2,3,0,5)(P)(R)
(6, l,2,5,0,5)(R)
(6,l,4,5,0,5)(R)
(6,3,4,5,0,5)(B)(R)

(2,3,4,5,6,0)(A)(B)(C)
(6,l,2,3,4,0)(P)(Q)(R)
(6,l,2,3,6,0)(C)(P)(R)
(6,l,2,5,6,0)(C)(R)
(6, l,4,5,6,0)(C)(R)
(6,3,4,5,6,0)(B)(C)(R)

Fig. 8.2. Enzyme distribution expressions for the enzyme reaction in Figure 8.1.

8.1 Isotopic exchange in an ordered reaction sequence
The enzymic reaction sequence which will be employed for this discussion is
the sequence considered by Cleland5. The following are the distribution
expressions for this enzyme-catalyzed reaction.

The treatment of isotopic exchange which will be presented in this text is
the steady state treatment56. This is, in fact, a bit misleading because it is
necessary to measure the rate of isotopic exchange under conditions where
the rate of exchange is measured in the absence of a net reaction. Since the
reaction sequence portrayed in Figure 8.1 includes a ping-pong sequence, it
is possible to measure an exchange between labelled A and unlabelled Q, for
example, in the absence of a net reaction by simply excluding substrate
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\
EA

EAB

EA

EAB

FQ FQ

EA

EAB

EA

EAB

FQ

N, = k2lk45[ki2 + k»] + k2iki4k4>(B) + k2XknkAi(?)

Fig. 8.3. Paths involved in A -• Q and Q -> A exchange for the reaction sequence in
Fig. 8.1. Only those enzyme species which become labelled with isotope are shown.

C and product R from the reaction medium. However, in this case, there will
be an equilibrium established between the enzyme species involved prior to
the binding of C to the enzyme. The steady state treatment will be presented
here because it follows a progression which is more consistent with the
treatment given previously in this text. The derivation of an expression for
the rate of isotopic exchange can be illustrated by considering the rate of
exchange between A and Q where A indicates that A is labelled initially. The
rate of isotopic exchange is given by eq. (8.1).

* ^ , = — — (8.1)

where Nr is the total number of paths which can be followed by isotopically
labelled enzyme species and Nfq is the path which connects all the labelled
species of the enzyme directly with FQ, which is the labelled species which
dissociates to form labelled Q. The paths which lead to the exchange
between the species of the enzyme which become labelled are shown in
Figure 8.3.
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If the rate of exchange between A and Q is to be investigated, it is certain
that both A and Q must be present in the initial reaction medium. Equation
8.1 contains the concentration of A, and Nfq contains the concentration of
B since N/<? = /c23/c34fc45(B). The distribution expression for (E)/Er, as
shown in Figure 8.2 contains two terms which contain (Q), but they also
contain (P). The remaining terms in (E)/E, contain (C), and the concentra-
tion of C must be set to zero to prevent a net synthesis of Q. Thus, when the
appropriate terms for N / (?/N, and (E)/E, are substituted into eq. (8.1), the
numerator will contain the concentrations of A, B, P, and Q, but C and
R are not required. A substitution of these terms into eq. (8.1) gives

. =fcl2(fe23fe34fc45)(fc2lfc32fe43fe54(fe61+fe65))(A)(B)(P)(Q)Et

"-« [ / C / C ( / C + / C ) + / C / C / C ( B ) + / C / C / C ( P ) ] D l ' j

The symbol D in eq. (8.2) is the sum of the distribution expressions shown in
Figure 8.3 excluding those terms which contain either (C) or (R). Therefore,
D can be represented as

D = coef. AB (A)(B) + coef. PQ (P)(Q) + coef. ABQ (A)(B)(Q)
(8.3)

+ coef. APQ (A)(P)(Q) + coef. ABPQ (A)(B)(P)(Q)

Furthermore, the three terms in the denominator of eq. (8.2) which consti-
tute Nf can be expressed as constant + coef. B(B) + coef. P(P). Multipli-
cation of the numerator and denominator of eq. (8.2) by the factor k56k61/
coef. ABC allows for the following expression for the rate of isotopic
exchange.

V/(A)(B)(P)(Q)Ef
a~*q constant + coef. B(B) + coef. P(P) . v ' }

coef. PQ x coef. ABC

The relevant steady state kinetic parameters are the following.

num.1 Zc34/c45/c61Er

w t i . r\.D\s ^34^45 ' 34 61 ' 45 61

prvpf A R L' \r (If _1_ If \

K,,=

coef. ABC fc56(/c34fc45 + fc34/c61+/c45/c

coef.C _ coef.CP _ coef.PQ _k2l

coef. AC " coef. ACP ~ coef. APQ ~ k~

coef. APQ coef. ACP k32
Kibl coef. ABPQ coef.ABCP k23
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If

K

Y

coef. C
coef. BC

coef. R
coef. BR

coef. ABQ coef.

coef. CR
coef. BCR

BQR /c34

coef.ABPQ coef.BPQR /c43

coef. C
coef.CP

coef. R

coef. R
coef. PR

coef. AB

coef. AC
coef.ACP

coef. BR

coef. QR
coef. BQR

coef. CR
coef.CPR

* 4 5

^211*32 ' K34/

/c23/c34

(/c32 + /c34)/c45

k32k43

iq = coef. QR = coef. ABQ = coef. BQR

In addition to the foregoing steady state parameters, reformulation of
eq. (8.4) into a kinetic form requires a definition of the following para-
meters which will be designated as exchange constants.

. _ coef.B /c^/c^
coef. AB kl2(k61 +^65)

constant /c91(/c.7 + k^A)
r.B /c23+/c34

constant (fc32 + k3A)k
^ _.

p coef.P k23+k34 "iPl

^ = coef.P = k56k61
p coef.PQ k54(k61+k65)

Each term in the denominator of eq. (8.4) can be reformulated to the kinetic
form by using the forgoing definitions. For example, the first term which
involves a multiplication of coefficient AB by constant is reformulated in
the following manner.

constant x coef. AB _ coef. AB constant coef. P _ .
coef.ABC x coef.PQ = coef.ABC coef.P coef .PQ = c I>2 Q

The steady state equation for the rate of the A -• Q exchange in the
kinetic form is given in eq. (8.5).

V/(A)(B)(P)(Q)/KCD (8.5)
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where

D = K.p2Kq(A)(B) + *%^(A)(B) 2 + K,(A)(B)(P)

+ KaK,b2(P)(Q) + Kfl(B)(P)(Q)

1 ^ | ^ (A)(P)2(Q)

+ I T T " (A)(B)2(P)(Q)

Equation (8.5) contains information which may not be obvious intuitively.
The maximum velocity of the exchange is not equal to the maximum
velocity of the overall reaction, but rather, it is equal to Wf/Kc. Further-
more, the rate of exchange is a 1:2 function of the concentrations of both
B and P. While both B and P are required for the exchange to take place,
a high concentration of either B or P will inhibit the exchange. If a sufficient-
ly high concentration of either of these reactants is present, the exchange
can be inhibited completely. The maximum rate of the exchange is also
a 1:2 function of B and P. If the enzyme is saturated with A and Q, the
expression for the velocity is

KaKtb Ka(B)
K(B) K K

( 8 6 )
Kib2Kiq(P)

The reason for the requirement for B and P in the A -»Q exchange as well as
the reason why these reactants inhibit the exchange at high concentrations
is apparent by considering the pathway shown in Figure 8.3. The inter-
conversion of the labelled enzyme species must take place if isotopic
exchange is to occur. The rapid inter-conversion of the EA and EAB
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complexes requires the presence of substrate B and yet is inhibited by high
concentrations of B. Likewise, the rapid inter-conversion of EAB and FQ
requires the presence of product P and yet is inhibited by high concentra-
tions of P. For this reason, reactants which interact with the enzyme
between the binding and dissociation of the exchangeable reactants are
both required and inhibitory at high concentrations. Thus, isotopic ex-
change is a useful technique for determining binding orders.

Equation (8.7) is the rate equation for the Q -• A exchange.

N ^ ( F ) (8.7)

The Nea path is the path which connects all the labelled species of the
enzyme to the EA complex and also results in the dissociation of A from the
enzyme. Thus it consists of k21k32k43(P). If the Q -> A exchange is to take
place, both Q and A must be present in the reaction medium initially.
Equation (8.7) contains the concentration of Q, and by reference to Fig. 8.2,
it can be seen that only the first two terms of (F)/E, contain the concentra-
tion of A, and these terms contain (A) (B). When proper substitutions are
made in eq. (8.7), it is seen that the equations for the A -» Q and Q -• A
exchanges are identical.

If there is an exchange between A and P, the equation for the A -• P
exchange is

Jk ( (8.8)

EA

EAB

EA

EAB

EA

EAB

Nt = klx[kn + k34] + k2jcjfi)

Fig. 8.4. Paths involved in A -• P and P -* A exchange for the reaction sequence in
Fig. 8.1. Only those enzyme species which become labelled with isotope are shown.
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The paths between isotopically labelled enzyme species are shown in
Figure 8.4. The first three terms in the distribution expression for the free
enzyme contain the concentration of P, but the third term contains the
concentrations of C and P. Since Ncab contains (B), the presence of C in the
reaction medium will result in the net synthesis of P. Hence, only those
terms in (E)/Er which contain (P) (Q) will assure isotopic exchange rather
than isotopic exchange plus net synthesis. It might seem surprising that Q is
required for the A -• P exchange since Q does not interact with a species of
the enzyme which becomes labelled during the A -* P exchange, but refer-
ence to Figure 8.1 shows the reason for the requirement for Q. In the
absence of C, the reaction sequence will not proceed beyond the F species.
Hence, in the absence of both C and Q, there would be no way of converting
the enzyme in the form of F back to those species of the enzyme which
participate in the exchange. Eventually, all the enzyme would exist as F and
the exchange process would stop.

Multiplication of the numerator and denominator of eq. (8.8) by the
factor fc45/c56/c61/coef. ABC gives rise to the following equation.

= V/(A)(B)(P)(Q)
a^p constant + coef. B(B) v ;

coef. ABC x coef. PQ

The term D is identical to eq. (8.3). The rate equation for the A-»P
exchange will be a 1:2 function in (B), but not in the concentration of any
other reactant. Thus, while B is required for the exchange to take place, high
concentrations of B will be inhibitory, and this is apparent by an inspection
of Figure 8.1.

8.2 Isotopic exchange in a random enzyme sequence
Isotopic exchange studies are particularly useful as a means of distinguish-
ing between ordered and random reaction sequences. To demonstrate this
fact, consider a reaction sequence similar to Figure 8.1, but in which either
product P or Q may dissociate first from the enzyme.

The equation for the rate of the A -• Q exchange is,

(110.

The paths which the labelled enzyme species may follow are the following:
Equation (8.10) contains the distribution expression for the free enzyme.
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6ER EA2

EAB3

Fig. 8.5. Reaction sequence similar to Figure 8.1 except the dissociation of products
is random rather than ordered.

FQ

EA
k32

F
k4

EA

EAB
5 \ /k34 k4!

EA
Nj<37

EAB

EA
yl

k32

EAB
k43(P)/

FQ FQ FGK

EA

EAB

FQ

EA
k23(B)

EAB

FQ

EA
|k23(B)

EAB

EA
^ |k23(B)

EAB

FQ FQ

Nt k34+ k37) + k23k45(k32 + k3 4 + k37)(B)
k 2 3k 4 5 (k 3 2 + k37)(P) + k23k37k43(B)(P)

Fig. 8.6. Paths involved in the A -• Q and Q -• A exchange for the reaction sequence
in Figure 8.1. Only those enzyme species which become labelled with isotope are
shown.
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This expression contains 20 terms, and in vector form they are the follow-
ing:

(0,1,2,5,6,1,5) (C)
(0,1,4,5,6,1,5) (C)
(0,1,7,3,6,1,5) (C)

(0,3,7,3,6,l,5)(B)(C)(P)
(0,3,4,5,6,1,5) (B)(C)
(0,3,7,5,6,1,5) (B) (C) (0,3,4,5,6,1,3) (B) (C) (Q)
(0,1,2,3,6,1,5) (0,l,2,3,6,l,3)(C)(P)(Q) (8.11)
(0,l,7,3,6,l,5)(C)(P)

(0,l,2,3,7,l,3)(P)2(Q)
(0,1,2,5,6,1,3) (C) (Q) (0,1,2,3,7,5,3) (P)2 (Q)
(0,1,4,5,6,1,3) (C)(Q)

(0,l,2,3,4,l,3)(P)(Q)2

(0,1,2,3,4,1,5) (P) (Q) (0,1,2,3,4,5,3) (P) (Q)2

(0,l,2,3,4,5,5)(P)(Q)

(0,l,2,5,7,5,3)(P)(Q)

The reactants C and R are not required for the A—>Q exchange and
therefore the terms which contain either (C) or (R) can be ignored. When the
proper terms are substituted into eq. (8.11), the expression will be complex,
but it can be seen that the numerator of the equation will consist of terms
which contain (P)2 and (Q)2. Hence, in contrast to eq. (8.5) for the ordered
reaction sequence, the equation for the random reaction sequence will be
a 2:2 function in the concentrations of P and Q. The possible shapes of
a 2:2 rational polynomial are discussed in Chapter 12, but it is not difficult
to visualize that neither product P nor Q is certain to inhibit the exchange.
If one of the alternate paths is preferred kinetically, there may be some
inhibition, but this will not be as drastic as that observed with a rate
equation which is a 1:2 function. The reason is that if the concentration of
P is sufficiently high to inhibit the conversion of the EAB complex to the FQ
complex, the exchange can take place by conversion of the EAB complex to
the FP species. Thus, isotopic exchange can be employed to obtain informa-
tion which might be difficult or impossible to obtain by initial velocity and
product inhibition studies. It should be recognized that high concentrations
of B will inhibit the A -• Q exchange in the sequence portrayed in Figure 8.5
because the binding of substrates is not random in the reaction sequence.
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The equations derived here assume steady state, but chemical equili-
brium is not required. Equations have been derived for isotopic exchange
under equilibrium conditions1"3. The treatments which were developed for
equilibrium conditions lead to conclusions which are identical to those
developed by the steady state treatment. An advantage to the steady state
treatment is that the variables can be varied independently. In the case of
equilibrium, substrates and products have to be varied in pairs such that
equilibrium is maintained.

8.3 Problems for Chapter 8
8.1) The following observations have been made in isotopic exchange

experiments involving an enzyme which catalyzes the following reac-
tion

The reaction has been shown to exhibit the kinetic behavior of a ping-
pong mechanism. It has been found that an isotopic exchange will
occur between substrate A and either product P or Q in the absence of
B. In the absence of B, the A -• P exchange has been shown to require
the presence of Q. The A —• Q exchange requires the presence of P, but
high concentrations of P severely inhibit the A -» Q exchange.
a) What is the most likely reaction sequence of this enzymic reaction?
b) Why is Q required for the A -• P exchange?
c) Why is a random mechanism not likely?
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Kinetic isotope effect on steady
state parameters

In the previous chapter, the enzyme-catalyzed isotopic exchange was
considered as a means of obtaining information concerning the reaction
sequence of an enzymic reaction. In the present chapter, the effect of isotope
mass on the rate constants of those steps which involve the formation or
cleavage of a covalent bond will be considered with respect to its effect on
the steady state parameters. The basis for an isotope effect on the rate
constants in which covalent bonds are formed or broken is discussed in
detail elsewhere1'2, and those discussions go beyond the scope of this book.

9.1 The basis for the kinetic isotope effect on rate constants
For the purpose of this treatment, it is sufficient to state that substitution of
the normal atom in a covalent bond with an atom of greater mass will
always favor formation of a stronger bond, and that will result in a decrease
in the rate constants involved in the formation or rupture of that bond. For
example, the rate constant for the non-enzymic formation or rupture of
a R—H bond is approximately 15 times greater than the rate constant for
the formation or rupture of a R—D bond. In the foregoing, H represents
a hydrogen atom while D represents a deuterium atom. In like manner, the
rate constant for the formation or rupture of a R—H bond  is approximate-
ly 50 times greater than that for a R—T  bond. If the step in which a covalent
bond is formed or ruptured were very much the rate limiting step in an
enzymic reaction, one might expect the difference in rate constant to be
reflected in a comparable difference in maximal velocity. Hence, the V*/V^
ratio should be 15, where V* is the maximal velocity for the substrate with

114
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a R—H bond and V* is the maximal velocity for the substrate with a R—D
bond. The ratios observed with many enzymes are much less than the
predicted value3"5. As a matter of fact, ratios in the range of 4 to 8 are not
uncommon. Northrop3 developed the following treatment to explain this
phenomenon.

9.2 Use of the kinetic isotope effect in steady state enzyme
kinetic studies
Consider Figure 9.1 as a model for an ordered, sequential bi-bi enzymic
reaction in the absence of the products. The sequence includes both an EAB
and an EPQ ternary complex. The steps which involve the formation and
rupture of a covalent bond intervene between these complexes, and the
relative rate of these steps is of interest in this treatment. For the purpose
of this discussion the concentrations of the products will be assumed to
be equal to zero, and therefore, the steps at which the products dissociate
are visualized as irreversible. Figure 9.2 shows the enzyme distribution

EA2

EAB
Fig. 9.1. Enzyme reaction sequence of and ordered, bi-bi, sequential reaction which
contains two ternary complexes. The concentration of both products is assumed to
be equal to zero.

(EA)/Et (EAB)/E, (EPQ)/E, (EQ)/E,
(0,1,2,3,1) (2,0,2,3,1)(A) (2,3,0,3,1)(A)(B) (2,3,4,0,1)(A)(B) (2,3,4,5,0)(A)(B)
(0,1,2,5,1) (2,0,2,5,1)(A) (2,3,0,5,1)(A)(B)
(0,1,4,5,1) (2,0,4,5,1)(A)
(0,3,4,5,l)(B)

Fig. 9.2. Enzyme distribution expressions for the reaction sequence in Fig. 9.1.
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expressions for the reaction under consideration. The relevant steady
state parameters are,

(2,3,4,5,0)
(2,3,4,0,1)
(2,3,0,3,1)
(2,3,0,5,1)

= (0,3,4,5,1)
* (2,3,4,5,0)'

(2,3,4,0,1)
(2,3,0,3,1)
(2,3,0,5,1)

(2,0,2,3,1)
(2,0,2,5,1)

_
^^b

(2,0,4,5,1) = k51(k32k43 + fc32/c4S

(2,3,4,5,0) /c23(/c34/c45-h/c34/c51+/c4

(2,3,4,0,1)
(2,3,0,3,1)
(2,3,0,5,1)

(9.4)

K ] \
b ^32^32 ' ^32^43 ' K34/C45

The rate constants for the steps in Fig. 9.1 which involve the formation and
rupture of a covalent bond are /c34 and /c43. These are the only rate
constants which would be expected to exhibit an isotope effect. If the
covalent bond involved were of the nature R—H in the treatment to
follow, the rate constants will be identified as /c34,/c43 if the experiment
were conducted with a substrate with a hydrogen atom. In like manner, the
rate constants will be identified as fc34, /c43 if the experiments were conduct-
ed with the substrate containing a deuterium atom.

In order to compare the maximal velocity of the reaction in the presence
of the hydrogen-substrate with that of the deuterium-substrate, it is con-
venient to divide the numerator and denominator of the right-hand side of
eq. (9.1) by the denominator term which does not contain a rate constant for
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the catalytic step. The equation becomes

117

l 3 4 V 4 3

V 4 5

&3
(9.6)

•+i

The ratio of maximal velocity in the presence of the hydrogen-substrate to
that of the deuterium-substrate is given by eq. (9.7).

ud i ud ud
^34 "r ^43 . K34 ,

fc45 fc51
•

^ 4 5 ^ 5
,

(9.7)

If the steps at which the covalent bond is formed or ruptured were very
much slower than the other steps represented in eq. (9.7), that is, if /c34 and
^43 « &45 and fc51, eq. (9.7) would become

(9.8)

The predicted ratio is observed under this condition. However, if the
relevant rate constants were essentially equal, that is, if /c34 = k43 = /c45 =
/c51, the following ratio would be observed:

2 + 1
= 4.5 (9.9)

This ratio is closer to that observed with several of the enzymes which have
been investigated in this manner. This provides direct evidence that the
Briggs-Haldane treatment is more appropriate than the assumption on
which the Henri and Michaelis-Menten treatment were based.

Information about the relative magnitude of additional rate constants in
the reaction sequence portrayed in Figure 9.1 can be obtained. Division of
the numerator and denominator of the right-hand side of eq. (9.5) by k
gives

32^45

(9.10)

V 4 5
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Equation (9.11) is an expression of the ratio of this parameter for the
hydrogen-substrate compared to the deuterium-substrate.

(Vf/Kb)h
 = k"3t 32 ^45 (9.11)

If /c34 and /c43 « k32 and fc45, it can be easily calculated that the ratio will be
approximately 15. However, if these four rate constants were equal

Once again, the ratio is much less than the expected value, but closer to the
value obtained for several enzymes that have been investigated in this
manner. If the enzyme-catalyzed reaction is reversible, similar experiments
could be conducted using products P and Q as substrates and in this
manner estimates of the relative magnitude of the values of /c34 and /c43

compared to /c21, k23 and /c54 could be obtained.
As stated earlier, studies of the steady state kinetic behavior of enzymes

usually do not provide information about the magnitude of individual rate
constants. However, the kinetic isotope effect provides a means by which
studies of the kinetic isotope effect can be exploited to provide information
about the relative magnitude of the rate constants associated with the
formation or rupture of a covalent bond compared to the other rate
constants in the sequence. This procedure is most useful if the covalent
bond involved is a R—H bond because the difference in atomic mass of the
hydrogen atom and its isotopes is much greater than other atoms.

9.3 Problems for Chapter 9
9.1 Calculate the VJ./VJ. ratio for the reaction sequence in Figure 9.1 if

^45 = ^51 = 10 x /c34 and /c34 = /c43 and /c34//c34 = 15.
9.2 Calculate the V^/V^ ratio for the reaction sequence in Figure 9.1 if

/c45 = k5l = 10 x /c34 and /c43 = 0 and /c34//c*4 = 15.
9.3 Derive the expressions for Vh

f/Vd
f and (Vf/Ka)h/(Vf/Ka)d for the

reaction sequence in Figure 9.3.
Assume that the concentrations of both products are equal to zero.
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1

4EQ

Fig. 9.3. Reactions sequence of an ordered uni-bi, sequential enzymic reaction. The
concentration of both products is assumed to be equal to zero.
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10
The effect of pH on enzyme kinetics

One of the many aspects of biochemistry to which L. Michaelis made
a significant contribution was the effect of pH on the dissociation of
polyvalent acids and of proteins1. It was noted early in the study of enzyme
action that enzymes generally exhibited a bell-shape curve if enzymic
activity was plotted against pH. An analogous plot is observed if one plots
the concentration of the zwitterion species of a monoamino, monocar-
boxylic acid against pH. Because of the simplicity of the amino acid, the
discussion of the effect of pH will start with this model.

10.1 Michaelis pH functions of a simple amino acid
In an aqueous solution, a monoamino, monocarboxylic acid is distributed
between three species, namely the fully protonated acid, the zwitterion and
the fully dissociated base are shown in eq. 10.1 and Figure 10.1.

Ar = (H2A + ) + (HA°) + (A") (10.1)

The superscript in eq. (10.1) indicates the net charge of each species of the
acid. The protons dissociate from the acidic groups according to the
following:

HflA+^HA° + H + , K , = * " " " ' (10.2)
l n

2 A )

(HA°)

The following relationships follow:

(HA°)(H + ) (A"

(10.3)

(H2A + ) = " ; ^ v " ; (10.4)
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© ©
NH3 NH3 NH2
I I © I

R-CH-COOH R-CH- COO R-CH-COC
H2A+ HA°

Fig. 10.1. Ionic species of a monoamino, monocarboxylic acid.

(H ) K2

K2(HA°) K t K 2 (H 2

(H + ) WT2) = m ^ = 777T^ (10-6)

Equation (10.1) can be expressed in terms of A, and any one of the species.

A+)r (10.7)

/ 0 (10.8)

W <ia9)
The expression in brackets in the preceding equations is abbreviated / , and
is called the Michaelis pH function. It is readily recognized that the
reciprocal of the Michaelis pH function is the fraction of the acid present as
any given species of the acid. If alanine is taken as a typical monoamino,
monocarboxylic acid, the dissociation constant of the carboxyl group, K1?

is 4.49 x 10"3 and the dissociation constant of the protonated amino
group, K2, is 1.36 x 10~10. The fraction of the total acid present as each
species acid as a function of pH is shown in Figure 10.2.

It is convenient to express the Michaelis pH function for the zwitterion in
the logarithmic form.

| ^ ^ p ^ J (10.10)
At a pH of 1, ((H + )/K1) » 1 + (K2/(H + )) and eq. (10.10) becomes

p / ° = — log——- = pH —pKx (10.11)
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1.0-1

0.5- V

0 2 4 6 8 10 12 14
PH

Fig. 10.2. Plots of the fraction of a monoamino, monocarboxylic acid as the fully
protonated acid , as the neutral zwitterion _._._, and as the free base .

pf 0

- 1 -

-2-
PH

Fig. 10.3. Plot of p/° of the zwitterion form of a monoamino, monocarboxylic acid
as a function of pH. The negative logarithm of the dissociation constant of the
carboxyl group is pKx while pK2 is the negative logarithm of the dissociation
constant of the amino group.

where pKx = —  logK^. Thus in this region a plot of p /° versus pH is
a straight line with slope equal to 1. When (H+) = Kx, K2/(H+) is still very
small so p /° £ - log (2) = - 0.301. The peak value of l / /° in Figure 10.1 is
1. The value of p /° at that point is zero. At a still higher pH where
pH = pK2, (H+)/K1 is negligible so p /° £ - log(2) = - 0.301. Finally, at
a pH of 11 or above, eq. (10.10) becomes

(10.12)

The foregoing is portrayed in Figure 10.3. The point at which the extrapo-
lated straight line intersects the pH axis is equal to the pK values because
the slope of these lines is either 1 or — 1  and the points at which these lines
intersect the p/axis is - pKx and pK2.

In the foregoing discussion, it has been assumed that the two dissociation
constants are sufficiently different so that the more basic group never
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dissociates before the more acidic group. The situation where the dissocia-
tion constants are close to one another has been discussed elsewhere3'4.

10.2 Michaelis pH functions of an enzyme
The bell-shaped curve which shows the fraction of amino acid present as the
zwitterion is similar to the curves obtained when the velocity of an enzyme-
catalyzed reaction is plotted against pH. This led to the conclusion that
intermediate ionized species of an enzyme reaction sequence are involved in
the reaction sequence1"3'5"8. This is portrayed in Figure 10.4. The assump-
tion that the dissociation and association of a proton is very rapid as
compared to any of the steps in the catalytic cycle will be made such that the
acid-base reactions are at equilibrium. This assumption is not mandatory
to the derivation of an equation, but simplifies the derivation considerably
and the conclusions are consistent with those in which this assumption has
not been made5.

For any rate constant, if k is the observed pH dependent rate constant,
then k = kfn where k is the pH independent rate constant and / " i s
the appropriate Michaelis pH function5. The foregoing follows from eqs.
(10.7)-(10.9), for the pH dependent rate constant applies to the total
concentration of the species involved in the reaction. Figure 10.5 presents
the enzyme distribution expressions for the reaction model in Fig. 10.4, but
they are expressed in terms of pH independent steady state parameters and
Michaelis pH functions. As has been done throughout this textbook, all the

En

EAn + 1

F O n c/vn v '
v n L^i t̂ s. (P) ^ ^sAn ^

EABn

EABn1

Fig. 10.4. The ionic species of an ordered, bi-bi, sequential enzyme reaction se-
quence. The active species are those with charge equal to n. The actual charge on any
species is not specified.
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(E)/Ef (EA)/E, (EAB)/E, (EQ)/Er

KiaKJl Kbf»JA) /;flb(A)(B) fn
eq(A)(B)

pKiq

Fig. 10.5. Enzyme distribution expressions for the reaction sequence in Fig. 10.4.
The distribution expressions are stated in terms of pH independent kinetic par-
ameters and the Michaelis pH functions of the enzyme species.

terms in the numerator and denominator of the rate equation are divided
by the coefficient of the denominator term which contains the concentra-
tions of the substrates to the highest equal power. The complete rate
equation for the model shown in Figure 10.4 is

v = J-Z±-
f'

i a 6 / ; (P) / reab
(A)(B)\f+f-J \(A)(B)\feab+f-J Kip\reab+f

, K.(Q)/ f% \
/ n -\- fn

eab ' J eq

| K.(P)(Q) / f"eab \ t KfaKt(P)(Q)/7j,+/;rt

10.3 The effect of pH on steady state enzymic parameters
Acomparison ofeq. (10.13) with the equation expressed in terms of pH dependent
parameters, namely eq. (6.1), shows the following relationships.

eab • J eq
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(10.15)
eab 'J eq

f"eq (10.16)fn j _ f
J eab ' J eq/

(10.17)

(10.18)

(10.19)ip*\ fn
\ J eab

eab

(10.21)

(10.22)

(10.23)

(10.24)

For the reaction sequence under consideration, Kipi is independent of pH.
However, the remaining steady state parameters defined in eqs. (10.14)
through (10.20) are rather complex relationships of Michaelis pH functions.
In contrast, the relationships expressed in eqs. (10.21) through (10.24) are
each a function of a single Michaelis pH function, and this fact was
recognized by Laidler8. By a judicious choice of the parameter plotted
against pH, it is possible to analyze the effect of pH on each enzyme species
in the catalytic sequence. For example, eqs. (10.21) and (10.22) could be
re-written as
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log Kia

PH

Fig. 10.6. Hypothetical plots of logarithmic parameters as a function of pH for the
enzymic sequence in Fig. 10.3. The plot of log Vy\ Ka versus. pH shows the pK
values for the free enzyme. The plot of log Vy/K6 versus pH shows the pK values for
the EA complex. The plot of log Kia versus pH is a composite of the pK values for the
free enzyme and the EA complex.

Dependent on the hydrogen ion concentration, the term in brackets
in eqs. (10.25) and (10.26), that is, the Michaelis pH functions, could
be expressed as eqs. (10.11) or (10.12) and the following plots might
be obtained. Figure 10.6 portrays a situation where Kei < Keai and
Kez > Kea2. The plot of log Kia versus pH is the plot of log Vy/Kb versus
pH minus the plot of log Vy/Kfl versus pH. Since all the foregoing figures
represent hypothetical plots, the stability of the enzyme as a function of pH
presents no problem. In any actual experiment, it would be rare for any
enzyme to exhibit this degree of stability. A more common observation is
that only one portion of the foregoing plots can be evaluated.

10.4 Effect of substrate ionization on steady state parameters
The treatment of the effect of pH on the kinetic behavior of enzymes to this
point has ignored any effect that pH might exert on the substrate. However,
a substrate may contain one or more acidic groups, and if such is the case,
the enzyme might be specific for one of the ionic species or, all the ionic
species may serve as the substrate. For example, in the enzyme model under
consideration, substrate A might be a monoamino-monocarboxylic acid.
The enzyme distribution expressions given in Figure 10.4 express the
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PH
Fig. 10.7. Hypothetical plot of the log Vy/Kfl versus pH for the reaction sequence in
Figure 10.3 when substrate A is an amino acid and the enzyme is specific for the
neutral zwitterion.

substrate concentrations in terms of the total substrate, that is (A) = A r If
the enzyme were to exhibit no preference with regard to the ionic species of
substrate A, the concentration of the actual substrate would be equal to the
total substrate concentration. On the other hand, if the enzyme were
specific for one ionic species of substrate A, Ar would have to be expressed in
terms of eqs. (10.7), (10.8) or (10.9). Thus, if the enzyme were specific for the
zwitterion, then eq. (10.21) would become

(10.27)

A plot of log Vy-/Kfl versus pH would appear as in Figure 10.7 if the
substrate concentration were A,. As predicted by eq. (10.27), the initial slope
of the extrapolated line in Figure 10.7 is 2. The second linear segment has
a slope of 1. If substrate concentrations were calculated in terms of the
zwitterion concentration, that is, the ionic species which would be recog-
nized by the enzyme, the Michaelis constant for substrate A would be
decreased and the plot of log V//Kfl versus pH would exhibit the ionizations
of the free enzyme only.

The presence of an ionizable group on a substrate somewhat complicates
the analysis of the effect of pH. However, it is a complication which can be
circumvented rather simply. The treatment presented in this chapter is
based on the assumption that the various species of the enzyme exist in one
of three states of dissociation with the intermediate species being the active
species. This is an assumption which has been made in all treatments of the
effect of pH on enzyme activity. Therefore, a slope in excess of 1 indicates
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that the dissociation of a group on the substrate is involved. The ionization
constant(s) for a substrate should be known, and therefore, it is easy to
calculate the concentration of each ionic species. Thus, it is usually possible
to determine which form of the substrate is the true substrate for the
enzyme. Once again, it is necessary for the enzyme kineticist to consider all
the information available, to "ask" the enzyme the proper questions and
then to interpret the information in a judicious manner in order to solve the
mystery of the kinetic behavior of the enzyme.

10.5 Problems for chapter 10
10.1 The following data were obtained when substrate- saturation experi-

ments were conducted using the same substrate with two different
pH values.

(A)
\iM

1.43
1.67
2.00
2.50
3.33
5.00

10.00

velocity at pH 8.2
^moles/minute

0.0093
0.0115
0.0150
0.0214
0.0366

velocity at pH 8.7
limoles/minute
0.0168
0.0194
0.0227
0.0275
0.0375
0.0476
0.0740

Plot the data from both experiments on the same sheet of graph
paper using any one of the linear plots. Determine the apparent
maximum velocities and the apparent Michaelis constants for each
experiment.

10.2 Substrate A in the experiments described in problem 10.1 is an acid
which has a pKfl value of 9.37. With this information and the
Henderson-Hasselbach equation, calculate the concentration of the
basic form of substrate A in each experiment and plot the data from
both experiments on a second sheet of graph paper. On the basis of
these experiments, what is the effect of pH on the enzymic reaction
under these conditions?

10.3 Derive the complete rate equation in the kinetic form in terms
of pH-independent steady state parameters of the appropriate
Michaelis pH functions for the model shown in Figure 10.8. Assume
that the substrates and products do not contain acidic groups.
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En

> V ( ^ HH+
1 (B)% <T E

^ H+ )
EQn + 1 (B)% <T EA n 1

Fn

rn+1
• i

Fig. 10.8. The ionic species of a ping-pong enzyme reaction sequence.
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Part Three
Non-hyperbolic enzyme kinetics





11
The causes of non-hyperbolic enzyme kinetics

Most of the enzymic reaction sequences which have been considered to this
point have given rise to rate equations which describe rectangular hyper-
bolas. That is, the rate equations fall into a class of mathematical expres-
sions called rational polynomials of the order 1:1. However, those reaction
sequences which were characterized by substrate inhibition gave rise to rate
equations which did not describe rectangular hyperbolas, but which were
rational polynomials of order 1:2. Thus, in the latter cases, the rate equation
consisted of a numerator which contained the concentration of the substrate
to the first power while the denominator contained the concentration
of the substrate to the second power. A slight modification of reaction
sequences which have already been discussed can give rise to rate equations
which are rational polynomials of even higher powers. The majority of the
enzymes which exhibit non-hyperbolic kinetic behavior are allosteric en-
zymes or polymeric enzymes in which the subunit interactions exhibit
either positive or negative cooperativity. Subunit interactions will be
discussed in chapter 13. In the case of allosteric enzymes, the enzyme
contains an allosteric site which is distinct from the active site. It must be
understood that kinetic studies do not offer proof of allosterism. Conclusive
evidence of a separate allosteric site must be obtained in studies of the
physical structure of the enzyme.

11.1 Random enzyme reaction sequences
One explanation for an ordered binding of substrates to an enzyme is that
the binding of the first substrate to the enzyme induces a conformational
change in the enzyme such that the active site of the enzyme is in a proper
configuration to allow the second substrate to bind properly1. As men-
tioned in chapter 1, there is evidence that the binding of a substrate to an
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EA2

Fig. 11.1. Reaction sequence of a bi-bi, sequential model which is random with
respect to substrates but ordered with respect to products. The concentration of
both products is assumed to be zero.

enzyme induces a conformational change in the enzyme. While this expla-
nation can provide an explanation for a preferred binding order, if a given
conformation of the enzyme is possible in the presence of the substrate,
from thermodynamic considerations that conformation should also be
possible in the absence of the substrate, and for that reason a random
binding should be possible. It may be that the required conformation which
would allow the binding of the second substrate in the absence of the first
substrate is so unlikely that the conformation required for the binding of the
second substrate essentially never exists. Hence, if the substrate induced
conformational change is the proposed explanation for an ordered se-
quence, a random binding order is possible, but perhaps not probable.
There are, of course, other explanations for an ordered reaction sequence.
For example, the first substrate to bind to the enzyme may provide
a portion of the binding site for the second substrate. Glutamate
dehydrogenase is an example of the latter mechanism2.

A reaction sequence with a random binding is presented in Figure 11.1.
The enzyme model portrayed in Figure 11.1 is a random substrate, ordered
product, sequential, bi-bi mechanism. For convenience, both products are
assumed to be absent so that the steps at which the products dissociate from
the enzyme are irreversible. The following are the connection matrix and
the Q matrix for the reaction sequence.

U =

0 A B 0 0
1 0 0 B 0
1 0 0 A 0
0 1 1 0 1
1 0 0 0 0

, Q =

2
1
1
2
1

3
4
4
3
0

4
0
0
5
0
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(EB)/E,

(0,1,1,2,1)
(0,1,1,3,1)
(0,1,1,5,1)

(0,1,4,2,1)(A)
(0,1,4,5,1)(A)

(2,4,0,3,l)(A)(B)
(2,4,0,5,l)(A)(B)

(0,4,4,5,1)(A)(B)

(EAB)/Er

(2,0,4,2,1)(A)2 (3,1,0,
(2,0,4,2,1)(A)2 (3,1,O,5,1)(B)

(3,0,4,2,1)(A)(B) (3,4,0,3,1 )(B)2

(3,0,4,5,l)(A)(B) (3,4,0,5,1)(B)2

(EQ)/E,

(2,4,1,0,1)
(3,1,4,0,1)

(2,4,4,0,1)(A)2(B)
(3,4,4,0,1)(A)(B)2

(2,4,l,5,0)(A)(B)
(3,l,4,5,0)(A)(B)
(2,4,4,5,0)(A)2(B)
(3,4,4,5,0)(A)(B)2

Fig. 11.2. Enzyme distribution expressions for the reaction sequence in Fig. 11.1.

The enzyme distribution expressions for the reaction sequence are given in
Figure 11.2. Under the conditions specified, the rate of the enzymic reaction

is

(EQ) (11.1)

The rate equation in coefficient form is as follows:

(3,1,4,5,1)(A)(B) + (3,4,4,5,1)(A)(B)2 +(2,4,4,5,1)(A)2(B)
v = •

(0,
(0,
(0,

(3,
(3,
(3,
(0,
(0,
(3,
(3,

,1,2,1)
,1,3,1)
,1,5,1)

(
(2,0,1,3,1)(A)

(0,1,4,2,1)(A)
(0,1,4,5,1)(A)
(2,4,l,5,0)(A)(B)
(3,l,4,5,0)(A)(B)

(2,4,0,3,l)(A)(B)
(2,4,0,5,1)(A)(B)
(3,0,4,2,1)(A)(B)
(3,0,4,5,1)(A)(B)
(0,4,4,5,l)(A)(B)
(3,4,4,5,0)(A)(B)2

(3,4,4,0,l)(A)(B)2

(2,0,4,2,1)(A)2

(2,0,4,5,1)(A)2

(2,4,4,5,0)(A)2(B)
(2,4,4,0,1)(A)2(B)

4,0,3,l)(B)2

4,0,5,l)(B)2 (11.2)

The first three numerator terms in eq. (11.2) contain (A) to the first power,
while the last numerator term contains (A)2. The terms in the first column of
the denominator of eq. (11.2) consist of terms which contain (A) to the zero



136 The causes of non-hyperbolic enzyme kinetics

(A)
Fig. 11.3. Substrate-saturation curve described by a 2:2 rational polynomial when
the enzyme is subject to substrate inhibition.

power, while the second and third columns of the denominator contain (A) to
the first power and the last denominator column consists of terms which
contain (A)2. Thus, if A were the variable substrate, eq. (11.2) could be
restated as

Equation (11.3) is a 2:2 rational polynomial. When the general form of
eq. (11.3) is applied to the reaction sequence shown in Figure 11.1, a x consists
of two terms which contain (B) to the first power and one term which contains
(B)2. Furthermore, fi0 consists of terms which contain the concentration of
the non-varied substrate to the zero, first and second powers. The latter is
also true of jSx. The denominator coefficient jS2 contains (B) to the zero and
first power. Equation (11.3) can describe curves of a variety of shapes,
including a hyperbolic curve. That is, eq. (11.3) can, in essence, degrade into
a 1:1 rational polynomial. One should not look at an equation such as
eqs. (11.2) or (11.3) and attempt to predict what the shape of the curve should
be. The actual shape of the curve described by such equations can be
determined only by an analysis of the data obtained in experiments. Pro-
cedures for the analysis of the experimental data will be discussed in the
following chapter. However, with regard to the reaction sequence portrayed
in Figure 11.1, if /c34 were very much smaller than the remaining rate
constants, saturation of the enzyme with substrate B would force the reaction
to follow the path leading to the slow step. If such were the case, the enzyme
would be subject to substrate inhibition by B. This is yet another basis for
substrate inhibition. It differs from those discussed earlier in that the earlier
examples were described by 1:2 rational polynomials. In this case, the
equation is a 2:2 rational function, and the substrate-saturation curve would
appear as in Figure. 11.3.
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11.2 The kinetic behavior of allosteric enzymes
The model for general enzyme inhibition portrayed in Figure. 3.1 was
developed with the assumption that inhibition was total. That is, it was
assumed that if the inhibitor combined with the enzyme to form an El
complex, the substrate could not combine with the El complex to form an
EAI complex. Further, it was assumed that when the inhibitor combined
with the EA complex to form the EAI complex, this complex could not
undergo the catalytic reaction to form the product. At this point, a model will
be considered where inhibition is not total. However, the model will be
modified to accommodate the interaction of the enzyme with an activator as
well as an inhibitor. The letter M will identify the modifier regardless of
whether M is a positive or negative modifier.

The concentration of the product in the reaction sequence shown in
Figure 11.4 is assumed to be equal to zero so that the reaction is irreversible.
The rate of the reaction is

I" (EP) (MEP)-|

The connection matrix and Q matrix are

U =

0 A 0 M 0 0
1 0 1 0 M 0

0 0
A 0
0 1
0 0

1 0 0 0
1 0 0 0
0 1 0 1
0 0 0 1

, Q =

2
1
1
1
2
4

4
3
0
5
4
0

0
5
0
0
6
0

(11.4)

Fig. 11.4. A simple reaction sequence of an allosteric enzyme. Reactant M is an
allosteric modifier which may be either an activator or an inhibitor.
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The rate equation in coefficient form will not be presented here, but it can be
anticipated that the general form of the equation will be identical to that of
eq. (11.3). The coefficients in the equation will be zero, first or second order
functions of the concentration of the modifier. The substrate-saturation
curve might exhibit any of the shapes allowable in a 2:2 rational polynomial.
The reaction sequence portrayed in Figure 11.4 is a rather good preliminary
model of an allosteric enzyme. In many cases, these enzymes exhibit a sig-
moidal substrate-saturation curve as this is one of the shapes which can be
described by a 2:2 rational function.

11.3 Multiple enzymes catalyzing the conversion of a single substrate
A final example of an enzyme model which gives rise to a rate equation which
is a 2:2 rational polynomial is exemplified by a mixture of two isozymes
catalyzing the conversion of the same substrate at the same time. The rate
equation for such a situation is given by eq. (11.5).

l

In eq. (11.5), V\ and V2 are the maximal velocities of isozymes 1 and 2,
respectively, and Kx and K2 are their Michaelis constants. Equation (11.5)
can be rearranged as follows

Once again, the rate equation for this model is that of a 2:2 rational
polynomial. The models presented here are three of many models which
might be presented as examples of enzyme reaction sequences which give rise
to rate equations which are higher order rational polynomials and which, for
this reason may describe non-hyperbolic substrate-saturation curves.

Problems for Chapter 11
11.1 What would be the appearance of the equation to describe the

relationship between the velocity and the concentration of the effector
M for the reaction mechanism shown in Figure 11.4?

11.2 Derive the rate equation for the conversion of a single substrate to
a product if the reaction were catalyzed by a mixture of three isozymes.
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12
Analysis of non-hyperbolic enzyme kinetics

The rate equation for an enzyme-catalyzed reaction derived in chapter 1
was a 1:1 rational polynomial. In chapter 3, the equation derived for
substrate inhibition was a 1:2 rational polynomial, and in chapter 11 a 2:2
rational polynomial was derived for three separate enzyme models. The
term "non-Michaelian" is sometimes applied to enzymes whose steady state
kinetic behavior is described by rational functions of a order higher than
1:1. This is a misnomer. There was nothing "non-Michaelian" about the
manner in which the equations were derived for the enzyme models
considered in chapter 11. The fact is, that the general rate equation for an
enzyme-catalyzed reaction is the following:

v = 1-^ , m:<n,aI.>:O,j8I.>:O, where all ft # 0. (12.1)
Z ft(A)1

i = 0

The stipulation m < n is required to provide for saturation. Equation (12.1)
can describe a variety of shapes which can vary from that of a rectangular
hyperbola to a sigmoidal curve with multiple turning points. Thus, the
substrate-saturation curve for an enzymic reaction may be hyperbolic or
non-hyperbolic. The actual shape of the substrate-saturation curve is
determined by an analysis of the data obtained from experiments. The
purpose of the discussion in this chapter is to examine the restrictions
which the various shapes of the substrate-saturation curve place on the
parameters of eq. (12.1). Because the rate equations of most enzyme-
catalyzed reactions which exhibit non-hyperbolic kinetic behavior can be
defined by a 2:2 rational polynomial, emphasis will be placed on eq. (12.2).

«l(A) + «2(A)2

0 + /MA) + /*(A)2

140
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12.1 The use of analytical geometry to analyze a
substrate-saturation curve
The basis for the analysis to be followed in this chapter was proposed by
a very good enzyme kineticist, Jean Botts1, and her treatment has been
expanded upon by the publications of Bardsley and Childs26. The pro-
cedure which will be employed involves the basic principles of analytical
geometry. There are two points on the curve which define the relationship
between an independent variable and its dependent variable which can
usually be identified. These points are where the value of the independent
variable approaches zero and where it approaches infinity. One can deter-
mine the value of the dependent variable as these points are approached.
Additional information can be obtained from the first derivative of the
function, for this will provide information concerning the slope of the curve
as these points are approached, but it will also provide information about
any turning points that might occur between these points. Finally, the
second derivative of the function provides information concerning the
curvature of the curve as these points are approached. The second deriva-
tive will provide information about linear portions of the curve and about
any inflection points which lie between these two points. This type of
analysis will be performed on the rate equation and on the Lineweaver-
Burk plot and one other linear form of the equation.

12.2 Analysis of the rate equation which is a 2:2 rational function
Reference to eq. (12.2) shows that the limiting values of v are ^lim(A)^0 = 0,
vum(A)^ao = v-ilfii- Thus the substrate-saturation curve passes through the
origin and approaches a final value as (A) approaches infinity. It is
significant that this final value is not necessarily a maximum value. Indeed,
the final value could be equal to zero if oe2 = 0 as is the case where the rate
equation is a 1:2 rational function. The expression for the first derivative of
eq. (12.2) is given by eq. (12.3).

d N D - N - d D

_*L = d(A) d(A)
d(A) D2 ( ]

where D is the denominator of eq. (12.2) and N is the numerator of
eq. (12.2). Thus,

N = at(A) + a2(A)2 (12.4)
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dN
d(A)

d2N

= a1+2a2(A) (12.5)

a2 (12.6)
d(A)2 " '

D = Po + Pi(&) + P2(A)2 (12.7)

dD „
d ( A ) " '

d 2 ° 2*

Substitution of eqs. (12.4), (12.5), (12.7) and (12.8) into eq. (12.3) gives

dv ai t

(12.8)

(12.9)

d(A)
(12.10)

It is immediately apparent from eq. (12.10) that the slope of the substrate-
saturation curve will always be positive at low concentrations of the
variable substrate. However, at high concentrations of substrate A, the
slope may be positive or negative. The condition that must exist if the slope
is to be negative at high concentrations of A is oLiP2>ot2Pi- This condition
must exist if substrate inhibition is observed, and it is obvious that this
condition is always met if the rate equation is a 1:2 rational function. As
pointed out in chapter 11, a reaction sequence which gives rise to a rate
equation which is a 2:2 rational polynomial may also exhibit substrate
inhibition. The limiting values of the first derivative of eq. (12.2) are
dlVd(A)iim(AHo = aJPo, d*>/d(A)lim(AHoo = 0. Thus, GCJP0 is an apparent first
order rate constant and this is the definition given to this apparent first
order rate constant in chapter 1. If a sufficiently high concentration of the
variable substrate can be attained, the substrate-saturation curve will
approach a straight line asymptotically, and this line will be parallel to the
(A) axis. This will be true regardless of whether the final portion of the
substrate-saturation curve is a maximum value.

The expression for the second derivative of a rational polynomial is,

d2N d2D
d2 d P

d(A)2 D 3 (UAl)
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Substitution of eqs. (12.4) through (12.9) into eq. (12.11) gives,

"Ld2v
d(A)2 (P0 + pi(A) + P2(A)2f

The limiting values of the second derivative of eq. (12.3) are

d2v 2(a20o-<x1p1) d2v
d(A)2

l i m ( A ) . o
= 0.

From these limiting values, it is obvious that the initial portion of the curve
may be concave upward or concave downward. At intermediate concentra-
tions of the variable substrate, the curve is concave downward. The
condition which must be met if the initial portion of the curve is to be
concave upward is cc2P0 >- ocipi, and therefore, this is the condition that is
met if the substrate-saturation curve is sigmoidal. The second derivative
approaches a value of zero in an asymptotic manner as the concentration of
substrate A approaches infinity. It should be recalled that the second
derivative of a curve is equal to zero under two conditions. These conditions
are when the curve passes through an inflection point and when the
relationship is linear. Before the substrate-saturation curve becomes linear
and parallel to the (A) axis at high concentrations of A, the second
derivative may be positive or negative. The condition which must be met if
it is to be positive in this region is CL1P2>OL2P1. This is the condition
necessary for substrate inhibition. Since the substrate-saturation curve is
always concave downward at intermediate concentrations of the variable
substrate, the curve passes through an inflection point at relatively low
concentrations of A if the curve is sigmoidal, and it will pass through an
inflection point at relatively high concentrations of A if the enzyme is
subject to substrate inhibition.

12.3 Analysis of the Lineweaver-Burk plot of a 2:2 rational polynomial
The Lineweaver-Burk equation of an enzymic reaction whose rate equation
is a 2:2 rational polynomial is given in eq. (12.13).

l (12.13)

11 (A)
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Equation (12.13) would appear to describe a nonlinear plot, but it will be
noted later in this discussion that conditions can be met in which the plot is
linear, that is, conditions under which the substrate-saturation curve is
hyperbolic. The limiting values of eq.(12.13) are l/vUml/{A)^0 = p2/ai2,
l/tfiimi/(A)->oo = °°- The following relationships are used to obtain the
equations for the first and second derivatives of eq. (12.13).

(AjJ ( m 4 )

dN „ _ 1
•(A) < 1 1 1 5 )

d 2 N
(12.16)

> = a2 + Otl(AJ (1Z17)

dD
(12.18)

The expression for the first derivative of eq. (12.13) is obtained by substitu-
ting eqs. (12.14), (12.15), (12.17) and (12.18) into eq. (12.3).

The limiting values of the first derivative of the Lineweaver-Burk equation
are

The initial slope of the Lineweaver-Burk plot may be positive or nega-
tive. The condition which must be satisfied if the initial slope is to be
negative is a1j52 >- a2 jSl5 and it has been established previously that this is
the condition required for substrate inhibition. At higher values of 1/(A), the
Lineweaver-Burk equation becomes linear and the slope of the linear
portion is P0/oc1.
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The expression for the second derivative of the Lineweaver-Burk equa-
tion is obtained by substitution of eqs. (12.14) through (12.19) into
eq. (12.11).

d2(l/t>)

a, +a
(12.21)

'(A)

The limiting values of the second derivative are

d(l/(A))2
ml/(A>_o

= 0
d(l/(A))2

mi/(A,-,oo

The Lineweaver-Burk plot becomes linear at high values of 1/(A) as
indicated by the fact that the second derivative is equal to zero in that
region. The striking feature about eq. (12.21) is that while the numerator
contains both positive and negative terms, the independent variable does
not appear in any of the numerator terms. Therefore, there are no inflection
points in the Lineweaver-Burk plot of a 2:2 rational function. However, at
lower values of 1/(A), the second derivative can be positive or negative or
equal to zero. The second derivative will be equal to zero in this region if
Pi =(a2/ai)jS0 + (ai/a2)^2- ^ ^ s condition is satisfied, the Lineweaver-
Burk plot is linear, and the substrate-saturation curve is hyperbolic. If such
is the case, in essence, the equation degrades into a 1:1 rational polynomial.
Figure 12.1a shows the substrate-saturation curve and Figure 12.1b shows
the Lineweaver-Burk plot for this situation.

There are conditions under which the second derivative of the
Lineweaver-Burk plot will be positive and the curve will, therefore, be

(A) 1
(A)

(A)

Fig. 12.1. Plots which characterize an enzyme-catalyzed reaction described by
a hyperbolic substrate-saturation curve (1:1 rational polynomial), a) Substrate-
saturation curve, b) Lineweaver-Burk plot, c) Hanes plot.
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a)
(A)

b)
(A)

c)
Fig. 12.2. Plots which characterize a 2:2 rational polynomial with substrate inhibi-
tion, a) Substrate-saturation curve, b) Lineweaver-Burk plot, c) Hanes plot. The
broken lines are extensions of the tangent to the plots at the y axis and extensions of
the linear asymptote.

concave upward prior to the linear segment at high values of 1/(A). One of
these conditions can be visualized easily by re-arranging the numerator
terms of eq. (12.21) as a1((xlf}2 — ot2Pi) + ^iPo- The difference between the
first two terms in the foregoing expression will be positive if (x1fi2 > oc2Pl

and this is the condition for substrate inhibition. The third term will always
be positive, and the Lineweaver-Burk plot will be concave upward in the
case of substrate inhibition until it finally becomes linear. This conclusion
has been reached previously, but the foregoing is a quantitative analysis of
the relative magnitude of the parameters of a 2:2 rational polynomial which
will give rise to this phenomenon. Figures 12.2a and 12.2b portray the
substrate-saturation curve and the Lineweaver-Burk plot for substrate
inhibition for a 2:2 rational function. Another set of conditions which will
result in the nonlinear region of the Lineweaver-Burk plot having a positive
second derivative can be visualized by rearranging the numerator terms of
eq. (12.21) as OL\P2 + ^li^iPo ~(XiPi)- This expression will be positive if
(X2/5O >otlpl, and this is the condition necessary if the substrate-saturation
curve is to be sigmoidal. This may arise if the enzyme contains an allosteric
site, or if the enzyme is polymeric and has multiple active subunits which
interact cooperatively. The kinetic behavior of enzymes with multiple
active subunits will be discussed in the following chapter. The appearance
of the substrate-saturation curve and the Lineweaver-Burk plot for an
enzyme exhibiting this behavior are shown in Figures 12.3a and 12.3b,
respectively.

The numerator of eq. (12.21) provides one further possibility: namely, the
second derivative of the curve prior to the linear portion could be negative if
PIX(X1/OL2)P2 + (a2/a1)j?0. Thus, the Lineweaver-Burk plot would be con-
cave downward initially. This behavior is characteristic of enzymes which
exhibit substrate activation or it may be exhibited by isozymes competing
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a)

(A) (A)

Fig. 12.3. Plots which characterize a 2:2 rational polynomial when the substrate-
saturation curve is sigmoidal.

for the same substrate, or it is exhibited by polymeric enzymes which are
subject to negative cooperativity. In the case of substrate activation, the
apparent maximal velocity increases as the substrate concentration in-
creases. Figures 12.4a and 12.4b show the substrate-saturation curve and
the Lineweaver-Burk plot for this type of kinetic behavior. At intermediate
concentrations of the variable substrate, there is a rather wide region where
the velocity is close to a linear function of (A).

In Figures. 12.2, 12.3 and 12.4, lines have been drawn tangent to the
Lineweaver-Burk plots at the point where the Lineweaver-Burk plot
intersects the l/v axis and also to the asymptote which is approached at
high concentrations of the variable substrate. It is easy to obtain the
equation for the line tangent to the curve at the intersection of the l/v axis.
The slope of the line is the first derivative of the Lineweaver- Burk plot when
1/(A) = 0. The intercept of the line is the point at which the Lineweaver-
Burk plot intersects the l/v axis. The equation of the line is,

(12.22)

(A) 1
(A)

(A)

Fig. 12.4. Plots of a 2:2 rational polynomial which are characteristic of substrate
activation, or negative cooperativity, or multiple enzymes catalyzing the conversion
of a common substrate.
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The slope of the line tangent to the asymptote is the limiting value of the first
derivative of the Lineweaver-Burk plot as 1/(A) approaches infinity, but the
intercept of this line is not immediately available. Fortunately, this inter-
cept can be obtained by a little simple mathematics. The point at which any
curve intersects the y axis is

where Yo is the point of intersection, Yt is the function at any point and, in
the present case, Y( can be replaced by eq. (12.13). The term X( can be
replaced by 1/(A) and dY/dX can be replaced by eq. (12.20).

vl • • - ( 1 1 2 4 )

v/o

Equation (12.24) is the point of intersection of the \jv axis of a line drawn
tangent at any point of the Lineweaver-Burk plot of a 2:2 rational function.
When the value of 1/(A) approaches infinity, the only significant terms in
eq. (12.24) are those which contain (1/(A))2, and the equation of the
asymptote is,

- . . ( « • «; ( 1 1 2 5 )

Thus, if the asymptote intersects the \jv axis below the 1/(A) axis, the
substrate-saturation curve must be sigmoidal.

Inspection of Figures. 12.2, 12.3 and 12.4 reveals that the line drawn at
a tangent to the Lineweaver-Burk plot at the intersection of the l/v axis
will intersect the asymptote at some point. The coordinates of this latter
point of intersection can be obtained by setting eq. (12.22) equal to
eq. (12.25). These coordinates are found to be a2/a1,j?1/a1. These par-
ameters, together with those already defined, give estimates of four par-
ameters, namely, /?0/ai>/*2/a2>a2/ai>/Vai- From the foregoing, it is
possible to obtain estimates of ratios of any of the parameters. The reader
may feel that these ratios do not provide a satisfactory analysis of the
curves, but it should be recalled that, in the case of the original rate equation
derived in chapter 1, Vm = OLJP19 Km = P0/Pv Hence, the 2:2 rational poly-
nomial can be analyzed in a manner comparable to a 1:1 rational poly-
nomial. There are statistical programs which provide for the analysis of
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higher order rational polynomials, but a discussion of these involves
statistical procedures that go beyond the scope of this book.

12.4 Analysis of the Hanes plot of a 2:2 rational polynomial
An alternative to the Lineweaver-Burk plot is the plot of (A)/v versus (A).
For convenience, this will be called the Hanes plot because C. S. Hanes was
one of the first to employ it7. Equation (12.26) is the primary equation for
this plot.

(A)_po + pl(A) + p2(A)2

v a + a(A)

The limiting values are (A)/viim (A)_0 = /?0/a 1, (A)/vUm (A)_ x = co. The follow-
ing relationships are useful in writing the first and second derivatives.

N = /?0 + /?1(A) + y?2(A)2 (12.27)

dN
d(A)

d2N

2j?2(A) (12.28)

(12.29)
d(A)2 ^

D = a i + a2(A) (12.30)

dD
d(A)

d 2 D

= a2 (12.31)

2 = 0 (12.32)
d(A)

The first derivative of the Hanes plot is

d(A) [ « i +

The limiting values of the first derivative are

J2

(12.33)
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The initial slope of the Hanes plot may be positive or negative. It will be
negative if the substrate-saturation curve is sigmoidal. This is shown in
Fig. 12.3c, and this is probably the most sensitive indicator of a sigmoidal
substrate-saturation curve. The second derivative of the Hanes plot is given
by eq. (12.34).

v J_2(*2
1p2-*1*2p1+*2

2p0)
d(A)2 " [ a 1 + a 2 (A)] 3 {UM)

The numerator of the second derivatives of the Lineweaver-Burk and the
Hanes equations, when the rate equation is a 2:2 rational polynomial, are
identical. Therefore the previous discussion of the second derivative of the
Lineweaver-Burk plot also applies to the Hanes plot.

It is well known that, when the rate equation is a 1:1 rational function, the
Michaelis constant is equal to the concentration of the variable substrate
which gives half maximal velocity. This was shown to be correct in
chapter 1, and is also shown by the following:

j80 + i8i (A)

The parameter 0o/0! is defined as Km. It is shown easily that, when the rate
equation is a 2:2 rational function, the substrate concentration which gives
half of the limiting velocity as the substrate concentration approaches
infinity is not a simple parameter which can be obtained in studies of the
steady state behavior of the enzyme. This is shown as follows:

Thus, if the substrate-saturation curve is sigmoidal, for example, the
substrate concentration which gives half maximal velocity is not equal to
a simple parameter such as a Michaelis constant. The treatment given
earlier in this chapter has shown how steady state parameters can be
obtained if the rate equation is a 2:2 rational polynomial, but the substrate
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concentration which gives half maximal velocity does not provide an
estimate of one of these parameters. This does not detract from the
significance that the concentration of substrate which gives half maximal
velocity might have in metabolic considerations.

12.5 The kinetic behavior of higher order rational polynomials
The rate equation may be a higher order than a 2:2 rational polynomial4. In
most of these cases, the equation degrades, in essence, into a 2:2 rational
function. For this reason, higher order functions will not be considered in
detail here. The distinguishing feature between a 2:2 rational function and
higher order functions is that a 2:2 function can exhibit only one turning
point. In contrast, a rate equation which is a 3:3 rational function can
exhibit two turning points. A rate equation which is a 4:4 rational function
can exhibit three turning points. However, it must be borne in mind that in
order to determine if a substrate-saturation curve has multiple turning
points, it is necessary to employ high concentrations of the variable
substrate. It is essential that the experiments be conducted under conditions
of constant ionic strength. It is also essential to establish that the multiple
turning points are real, and not merely the reflection of experimental
variations.

12.6 Problems for chapter 12
12.1 The equation derived in chapter 11 for two enzymes catalyzing the

conversion of a common substrate to a product was

K ^ + ^ + K ^ A )

Using the procedures described in this chapter, determine whether
this equation could describe a sigmoidal substrate-saturation curve.

12.2 Could the equation in problem 12.1 describe a hyperbolic substrate-
saturation curve, and if so, what condition must exit?

12.3 Could the equation in problem 12.1 describe a substrate-saturation
curve which would be characteristic of negative cooperativity or
substrate activation?

12.4 Could the equation in problem 12.1 describe substrate inhibition?



152 Analysis of non-hyperbolic enzyme kinetics

References
1. Botts, J. (1958). Typical behavior of some models of enzyme action. Trans.

Faraday Soc. 54: 593-604.
2. Bardsley, W. G. and Childs, R. E. (1975). Sigmoidal curves, non-linear

double-reciprocal plots and allosterism. Biochem. J. 149: 313-28
3. Childs, R. E. and Bardsley, W. G. (1976). An analysis of non-linear Eadie-

Hofstee-Scatchard representations of ligand-binding and initial rate for
allosteric and other complex enzyme mechanism. J. Theor. Biol. 63: 1-18.

4. Bardsley, W. G. (1977). The 3:3 function in enzyme kinetics. Possible shapes
of v/S and (l/u)(l/S) plots for third degree steady-state equations. J. Theor.
Biol. 65: 281-316.

5. Bardsley, W. G. and Waight, R. D. (1978). The determination of positive and
negative co-operativity with allosteric enzymes and the interpretation of
sigmoidal curves and non-linear double reciprocal plots for the MWC and
KNF models. J. Theor. Biol. 70: 135-56.

6. Bardsley, W. G., Leff, P., Kavanagh, J. and Waight, R. D. (1980). Deviations
from Michaelis-Menten kinetics. Biochem. J. 187: 739-65.

7. Hanes, C. S. (1932). The effect of starch concentration upon the velocity of
hydrolysis by amylase of germinated barley. Biochem. J. 26: 1406-21.



13
The effect of subunit interactions on enzyme
kinetics

In addition to the enzyme models discussed in chapter 11, subunit interac-
tions can also give rise to non-hyperbolic enzyme kinetics, and allosteric
enzymes often are polymeric proteins in which the regulatory site is present
on a separate regulatory subunit. The effect of subunit interactions on
substrate binding in polymeric proteins in which more than one subunit
contains an active site has been discussed in a number of classical publica-
tions1'2. Ricard and his colleagues have discussed the effect of subunit
interactions on the steady state kinetic behavior of enzymes3'4. The treat-
ment of Ricard, Mouttet and Nari will be presented here3.

13.1 The effect of subunit interactions on rate constants
For the purpose of this analysis, the free energy of activation, AG#, of any
reaction step catalyzed by a polymeric enzyme is split into four components
in the Ricard treatment. The free energy of activation is divided into the
following components as a matter of convenience.

1 The intrinsic free energy of activation of trans-conformational change,
AG#*.

2 The intrinsic free energy of activation due to non-transconformational
causes, AG#

n*.
3 The contribution of subunit interactions to transconformational free

energy of activation, £ AG*S.
4 The contribution of subunit interactions to non-transconformational

free energy of activation, SAG*5.

The symbolism employed here is slightly different from that employed by
Ricard. The non-transconformational processes include ligand binding and
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dissociation and also the catalytic steps. If the enzyme were monomeric,
AG# = AG#* + AG#

W*. On the other hand, for a completely rigid polymeric
enzyme, AG# = AG#

n*. 4- ZAG#
n

s. if the direct neighborhood of the active
site is not affected by subunit interactions, £AG*S

 = Q. This is usually
a valid assumption, and it allows for a less complicated insight into the
effect of subunit interaction on the steady state kinetic behavior of the
enzyme. Ricard and Noat4"6 have given a more general treatment of the
effect of subunit interactions which does not require this restriction.

For the purpose of introducing the basic concept, it will be assumed that
two conformations are accessible to the protomers of the polymeric en-
zyme. To maintain consistency with the symbolism employed in this text,
these conformations will be referred to as F and G. The total subunit
interactions within the polymer, at any given time, can involve IFF
interactions, m FG interactions and n GG interactions. The total contribu-
tion of subunit interaction to the free energy of activation is,

£ A G * = / A G £ + m A G*S
G + n A G *S

G (13.1)

The relationship of a rate constant to the free energy of activation is given
by eq. (13.2).

k = 'lMlQ-AG«/RT ( 1 3 2 )
h

where kB is the Boltzman constant, h is the Planck constant, T is absolute
temperature and R is the gas constant. Substitution of the expressions for
intrinsic free energy of activation and the sum of the free energies of
activation for subunit interactions into eq. (13.2) gives

k T
£ 2£l-(AG?*+(AGf )/«T-Z(AG )̂/UT

It is convenient to separate the right-hand side of eq. (13.3) into four
components. The first component is an intrinsic rate constant.

K — — e H-^-TJ

n

The remaining components can be defined as follows

*FF = e-AG#s/*T (13.5)

OLFG = Q-*G"<RT (13.6)

(13.7)
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Equation (13.4) can be expressed as

k = k**FF*F>GaTGG (13.8)

It is obvious that the a values cannot be equal to zero, and that when they
have a value of unity there is no subunit interaction. These are called the
coefficients of subunit interaction. The smaller the coefficient of subunit
interaction, the smaller is the free energy of subunit interaction, and
therefore the more probable will be the interaction between the subunits.

13.2 The effect of sequential subunit interactions
A dimeric enzyme will be considered throughout this discussion. This
allows presentation of the concepts in a simple manner, but it does not
provide the full range of types of subunit interactions that are available in
the case of proteins consisting of three or more subunits. Koshland, et al.
proposed a number of ways in which the subunits of a protein might
interact2. These include a linear, a square and a tetrahedral interaction
scheme. However, there is no distinction between these subunit interaction
schemes in the case of a dimeric protein, and the exponents in eq. (13.8) are
all equal to 1 in a dimeric protein.

In Figure 13.1 the left-hand sequence portrays the apparent, or phenom-
enological, process, while the right-hand sequence portrays the intrinsic
process in which subunit interaction is not involved. The F conformation is
depicted as a circle while the G conformation is depicted as a square. The
sequential scheme assumes that the change in conformation takes place as
the substrate binds to the subunit, and only the subunit to which the sub-
strate is bound undergoes a conformational change. The apparent, or phenom-
enological, rate constant for ligand binding, kl9 is multiplied by 2 because

2 ki(A)- m n M A )

(FF) (FGA) (G2A2)
Fig. 13.1. Model of a dimeric enzyme in which the subunits interact sequentially.
The addition of substrate converts the subunit to which it binds from the F confor-
mation to the G conformation. The model on the right of the figure represents the
intrinsic process.
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the substrate could bind to either subunit. Likewise, k2 and k'2 are multi-
plied by 2 because the substrate could dissociate or the product could be
formed and be dissociated from either subunit. The parameters obtained
from studies of the steady state behavior of the polymeric enzyme are
apparent parameters. It is desirable to express these in terms of the intrinsic
parameters, and this is accomplished through the relationship given in
eq.(13.8).

An apparent Michaelis constant can be written for the interaction of
substrate with each subunit.

k2
(13.10)

The intrinsic Michaelis constant applies to the right-hand sequence in
Figure 13.1.

K * = - ' t ' (13.11)
K

By reference to Figure 13.1 it is seen that in the absence of the substrate, the
free dimer contains only F protomers, and that, in the case of a dimeric
enzyme, there is only one FF interaction. The FGA species allows one FG
interaction and the G2 A2 species allows one GG interaction. Therefore, the
observed rate constants are

k1=(xFFk* (13.12)

fc-l=«FG^l (13.13)

k[=0LFGk[* (13.14)

k2 = <xFGk* (13.15)

* - 2 = «GG*±I (13.16)

k2 = xGGk'* (13.17)

Substitution of eqs. (13.12)—(13.14) into eq. (13.9) gives

2aFF
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Likewise, substitution of eqs. (13.15)—(13.17) into eq. (13.10) gives

(13.19)

The following relationships are recognized easily.

E( = (FF) + (FGA) + (G2A2) (13.20)

(13.21)

(13.22)

K*2E
(FF) = '—  (13.24)

The velocity of the reaction is

g = 2aFFfc;*Ef(A)[K*+(A)]
(

Equation (13.25) is the identical form of eq. (11.3) with the following
relationships between the parameters.

a2 = 2oiFFkf*ET9

If aFF = aFG = aGG, the velocity of the reaction becomes a 1:1 rational
polynomial. That is, the two subunits are completely independent of one
another and they behave as two separate enzymes with identical Michaelis
constants and maximal velocities.

It was shown in the previous chapter that the condition which must be
satisfied if the rate equation is to describe a sigmoidal curve is a2 fi0 >GC1P1.
If the values from eq. (13.25) are substituted into this expression, the
requirement for a sigmoidal curve is found to be 1/2 > aFF/aFG. Thus the
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coefficient of subunit interaction of the FG subunits must be greater than
twice that of the FF subunit interaction if positive cooperativity is to be
observed. Since the FF interaction is more probable than the FG interac-
tion, it is necessary to drive the reaction with increased substrate concentra-
tion. However, once the FGA species is formed, it readily decomposes to
give rise to the product and the more probable FF species.

The necessary condition, if substrate inhibition is to be observed, is
ociP2 > a2jS1. The substitution of values from eq. (13.25) into the foregoing
expression gives (l/2)>(agg/afg). Thus if substrate inhibition is to be
observed, the GG subunit interaction must be more than twice as probable
as the FG interaction. If such is the case, the G2 A2 species serves as a partial
"sink" for the enzyme. Finally, in chapter 12 it was concluded that the
substrate-saturation curve would be hyperbolic if px =(a2/a1)j30 +
(a1/a2)j52, and that negative cooperativity would be observed if pl were
greater than the right-hand side of the expression. Therefore, the curve will
be hyperbolic if 2 = (aFG/aFF) 4- (aFG/aGG). This will be observed if
aFF = aFG = aGG, but this conclusion was earlier reached intuitively. If 2 is
greater than the right-hand side of the expression, eq. (13.25) describes
negative cooperativity and this is promoted if the FG interaction is more
probable than the FF or GG interactions.

It is significant that, in the case of the sequential conformational transi-
tions, the shape of the substrate-saturation curve is determined by the
coefficients of subunit interaction. It will be seen that this is unique to the
mechanism of sequential conformational transitions.

13.3 The effect of partially concerted subunit interactions
A partially concerted model of subunit interaction is portrayed in Fig-
ure 13.2. In addition to the F and G conformations, this model contains
a K conformation. The binding of substrate to a subunit in the F conforma-
tion is associated with the conversion of the subunit to the G conformation,
and the binding to the active site of one subunit causes the transition of the
remaining subunit from the F to the K conformation. The binding of
a molecule of substrate to the subunit in the K conformation is associated
with the transition of the subunit to the G conformation. Thus, there are
two intrinsic processes. One intrinsic process is the binding of substrate to
the active site of one subunit in the F conformation and the transition of
that subunit to the G conformation. The second intrinsic process is the
binding of substrate to the active site of a subunit in the K conformation
and the transition of that subunit to the G conformation. The two apparent
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k2(A).

(FF)

" - " ^ '2k . 2 ' - 1 - 1

(KGA) (G2A2)

Fig. 13.2. Model of a dimeric enzyme in which the subunits interact in a partially
concerted manner. The two models on the right of the figure represent the intrinsic
processes.

Michaelis constants for the sequence in Figure 13.2 are

2k,

The intrinsic Michaelis constants are

^ 2 " k*
K2

The observed rate constants are related to the intrinsic as follows

= otKGk*

k' —  n k'*

(13.27)

(13.28)

(13.29)

(13.30)

(13.31)

(13.32)

(13.33)

(13.34)

(13.35)

(13.36)
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Thus,

^ (13.37)
2ccFF

K2 = ^ K * (13.38)

The following expressions are obtained from the previous relations.

E, = (FF) + (KGA) + (G2A2) (13.39)

(KGA) = ^ 4 ^ ( F F ) (13.40)

(G2A2)= " ' f f (FF) (13.41)

(FF) =

The rate of the reaction is

?(A)] ( 1 3 4 3 )

An analysis of the 2:2 rational polynomial expressed in eq. (13.43) shows
that the equation can describe all the shapes possible in the case of
sequential subunit interactions. In this model of partially concerted subunit
interaction, the intrinsic rate constants, the intrinsic Michaelis constants
and the coefficients of subunit interaction contribute to the parameters of
the rate equation. For example, if the substrate-saturation curve is to
be sigmoidal, indicating positive cooperativity, (1/2) >(ocFF/ocKG)'
(/c'1*//c2*)(Kf/K5t). This is in contrast to the sequential subunit interaction
model. While these two models differ in this regard, it is important to realize
that steady state kinetic studies do not provide a means for distinguishing
between the two models.

13.4 The effect of fully concerted subunit interactions
In a fully concerted subunit ineraction model, when the substrate binds to
the first subunit, the conformation of the first subunit changes from the F to
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Fig. 13.3. Model of a dimeric enzyme in which the subunits interact in a fully
concerted manner. The two intrinsic processes are represented on the right of the
figure.

the G conformation, but the subunits interact such that the subunits to
which the substrate is not bound also undergo a F to G conformational
change. This is illustrated in Figure 13.3. There are two intrinsic processes,
one concerned with the binding of the substrate to a subunit in the
F conformation and the transition of the subunit from the F to the
G conformation. The second intrinsic process is the binding of the substrate
to a subunit in the G conformation without transition to another confor-
mation. The relationship between the observed rate constants and the
intrinsic rate constants are

kl=ocFFk*

= ctGGk*

^ - 2

GG/C2

(13.44)

(13.45)

(13.46)

(13.47)

(13.48)

(13.49)

The following is the relationships between the observed Michaelis con-
stants and the intrinsic Michaelis constants.

AGG

KFF
(13.50)

(13.51)
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The rate equation for the model in Figure 13.3 can be derived by following
the procedure employed in the previous sections.

An analysis of eq. (13.52) shows that the fully concerted subunit interaction
model can accommodate all of the shapes that the two previous models can
exhibit. However, substrate inhibition is exhibited only if (1/2) > (k'f/k'f).

13.5 The effect of exclusive allosteric subunit interactions
The exclusive allosteric subunit interaction is analogous to the model
considered by Monod, Wyman and Changeaux1, but the symbols em-
ployed in this text differ from those employed by Monod, et al. In this
model, the free dimer exists in either the FF or GG conformation. The
substrate binds to the active site of only the G conformation, and the
binding of the substrate does not induce a conformational transition.
There are two intrinsic processes, one for the conformational transition of
the free dimer and the other for the binding of the substrate and the catalytic
reaction. The observed equilibrium constant for the conformational
transition is

(13.53)
i

This model is presented in Figure 13.4.

(FF) k 1 (GG) * * (G2A) ' 2 k " 3 (G2A2) k | (A) .

Fig. 13.4. Model of a dimeric enzyme which exhibits exclusive allosteric subunit
interaction.
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The following are the observed Michaelis constants.

2fc2

The following are the relationships between the observed rate constants
and the intrinsic rate constants.

kt=(xFFk*

k.l = aG6k*l

^2=^3 = aCG'C2

k_2 = k_3 = xGGk*_2

k'2 = k'3 = ocGGk'*

The total enzyme is

E( = (FF) + (GG) + (G2A) + (G2A2)

The expressions for the concentration of each enzyme species are

aGGK*
ocFF

(G A) 2 ( A ) (GG)

(A)2

2

•GO)- r
 KKE<

(13.56)

(13.57)

(13.58)

(13.59)

(13.60)

(13.61)

(13.62)

(13.63)

(13.64)

(13.65)
K*2 1 + ^ K * +2K*(A) + (A)2

L aFF J
The rate of the enzyme-catalyzed reaction is

v=

L ^ ' JK*2 1 + ^ K * +2K*(A)

An analysis of eq. (13.66) shows that the condition necessary for positive
cooperativity is (aGG/aFF)Kf > 1. However, the condition that would be
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necessary if substrate inhibition were to be observed is 1 > 2. Hence,
eq. (13.66) cannot describe substrate inhibition. In like manner, the neces-
sary condition if the substrate-saturation curve is to be hyperbolic is,
1 = 1 +(aGG/aFF)Kf and this is possible only if KJ =0. That is, the free
enzyme must exist entirely as the GG conformation. Furthermore, the
exclusive allosteric subunit interaction model cannot exhibit negative
cooperativity. These same conclusions were reported for the effect of
subunit interactions on substrate binding2.

The discussion in this chapter has been restricted to the effect of subunit
interaction on the kinetic behavior of a dimeric enzyme. This has been done
for conciseness in presentation. The treatment can be extended to higher
polymers with little additional difficulty. The study of the steady state
kinetic behavior of subunit interaction does not provide the kineticist the
opportunity to distinguish between the models studied. The distinction
between the models requires investigation of the conformation of the
polymer under varying conditions. The kinetic analysis described does
provide a basis for expressing a rate equation in terms of kinetic parameters
rather than binding constants.

13.6 Problems for chapter 13
13.1 Consider a trimeric enzyme in which the geometry of the subunits is

such that each subunit can interact with each other subunit. The
model in Figure 13.5 shows the mechanism if each subunit contains
an active site and the interaction of subunits is sequential. Derive the
rate equation for the foregoing mechanism assuming the concentra-
tion of P to be equal to zero.

13.2 What condition must exist if the equation derived in problem 13.1 is
to describe a hyperbolic substrate-saturation curve?

ki

2k-2
(F3) (F2GA) (FG2A2) (G3A3)
Fig. 13.5. Model of a trimeric enzyme in which the subunits interact in a sequential
manner.
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13.3 Using the procedure described in this chapter, it can be shown that
the condition necessary if a 3:3 rational function is to describe
a sigmoidal curve is a2j80>a1j51. What conditions must exist if
the equation derived in problem 13.1 is to describe a sigmoidal
substrate-saturation curve?

13.4 It can also be shown that the condition that must exist if a 3:3 rational
function is to describe a curve which shows substrate inhibition is
oc2/?3 > a3/?2. What conditions must exist in the equation derived in
problem 13.1 if the equation is to describe a substrate-saturation
curve with substrate inhibition?

13.5 Derive the rate equation for the trimer described in problem 13.1 if
the subunit interactions were fully concerted.

13.6 What conditions must exist if the equation derived in problem 13.5
were to describe a sigmoidal substrate-saturation curve?

13.7 What conditions would have to exist if the equation derived in
problem 13.5 were to describe substrate inhibition?
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14
Control of linear multi-enzyme systems

The previous sections of this text have discussed the kinetic behavior of
individual enzymes in a controlled environment. The need for careful
control of the reaction conditions has been stressed. An enormous amount
of useful information concerning the mode of action of enzymes has
been obtained during this century from these types of studies. Useful as
these studies have been, the concept of an enzyme catalyzing a reaction in
isolation runs counter to the purpose for which enzymes have been
provided in nature. The purpose of an enzyme in nature is to catalyze
a reaction in concert with the other enzymes in the metabolic pathway, and
the purpose of a metabolic pathway is to catalyze a series of reactions in
concert with the many other pathways with which it interacts. Anyone who
has given even cursory thought to this matter must have concluded that, in
the normal living organism, the action of myriad enzymes is a beautifully
coordinated process. On the other hand, if coordination of the action of
these enzymes becomes flawed, it is certain that the living organism is going
to encounter serious difficulty.

In the view of this author, the investigation of the coordination of multi-
enzyme systems is the most exciting challenge to the enzymologist. A multi-
tude of questions present themselves. However, it is essential that the
enzymologist follow the example of a judicious detective and ask purpose-
ful questions and interpret the answers obtained in an insightful manner.
For example, it is not sufficient to ask which enzyme catalyzes a rate-
limiting step in a pathway. A more appropriate question is what percent of
the control of a pathway does a given enzyme exert under a given set of
conditions. The latter question is more appropriate because it recognizes
that the control of multi-enzyme systems is a quantitative subject and must
be resolved by seeking quantitative answers.

169
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Mathematical treatments of the control of multi-enzyme systems have
developed during the past three decades. Higgins appears to have been the
first to report a systematic analysis of a sequence of enzymic reactions1.
Although the symbolism has changed, many of the principles established
by Higgins have been incorporated into what has come to be known as
metabolic control theory (MCT). The principles of biochemical systems
theory (BST) were first reported by Savageau2"4. Metabolic control theory
was developed by the pioneering work of Kacser and Burns5 and by Heinrich
and Rapoport6. Other treatments have been developed7"10, but the majority
of the discussion in this and subsequent chapters will deal with MCT and BST.

14.1 Definition of the parameters of metabolic control
The symbols, terminology and parameters employed in the analysis of
multi-enzyme systems differ from those employed in the earlier sections of
this text; therefore it is necessary to define the terms which will be utilized in
this section. The symbols and terminology will be those employed in MCT.
Chapter 16 will contain additional definitions which are employed in BST,
but for uniformity, the symbols employed in MCT will be utilized through-
out this book. Consider the following linear multi-enzyme pathway. The
letter Mf identifies both the intermediate metabolites in the pathway, and
the concentration of these metabolites. These are dependent variables. That
is, they vary in accordance with the independent variables. The enzymes are
denoted by the numerals above the arrows, and they are considered to be
parameters of the system. The direction of the arrows indicates the normal
direction of flux through the pathway. The direction of the arrow does not
imply that the reaction is irreversible. The letters Xo and Xf are external
independent variables and are assumed to be outside of the pathway. Thus,
Xo is assumed to be a source of constant size, but this does not imply that
enzyme 1 is saturated with Xo. It is further assumed that Xf is an infinitely
large "sink" so that its fractional concentration does not change significant-
ly. Thus, both the system parameters and the external independent vari-
ables are parameters of the conditions described here . In the discussion to
follow in this and the succeeding chapters, it will be assumed that only
enzymes are involved in the pathway, but in actuality, the pathway may

Xo — k Mi — * M 2 — k M3 —•* Xf

Fig. 14.1. Model of a simple linear multi-enzyme system. Xo is a source of constant
size and Xf is an infinitely large sink. M, are intermediate metabolites.
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consist of both enzymes and carriers which transport metabolites across
membranes. Carriers exhibit kinetic properties which are analogous to
those of enzymes.

The intermediate metabolites are assumed to be in steady state, and they
are presumed to be distributed uniformly in a single compartment. Some of
these restrictions have been removed in later treatments of MCT. The flux
through the pathway is denoted by the letter J. Since the intermediate
metabolites are assumed to be in steady state, it follows that J = vl = v2 =
v3 = i;4. A final assumption is that a fractional change in the activity of
enzyme i results in an identical fractional change in the velocity of the
reaction catalyzed by enzyme i. That is, dEf/E; = dvjv^

The following terms are defined in MCT. A fractional change in the flux
brought about by a fractional change in the activity of an enzyme is termed
the flux control coefficient.

Equation (14.1) gives three definitions of the flux control coefficient with
respect to enzyme i which are equivalent mathematically. Since there is only
one flux involved in the linear pathway portrayed in Fig. 14.1, the flux
control coefficient will abbreviated as Ct. The fractional change in the
concentration of an intermediate metabolite brought about by a fractional
change in the activity of an enzyme is termed as the concentration control
coefficient.

Once again, there are three expressions for the control coefficient which are
identical mathematically. Throughout this section, a concentration control
coefficient will be abbreviated as Cf .̂ The foregoing two control coeffi-
cients are properties of the pathway, that is, they are global properties
rather than a property of an individual enzyme. It is also important to
recognize that the changes must be very small and all the other variables
must be kept constant.

There is one more coefficient to be defined, and in the terminology of
MCT it is called an elasticity coefficient, or more simply, elasticity. It is the
fractional change in the velocity of an enzymic reaction brought about by
a fractional change in a reactant, regardless of whether that reactant be
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a substrate, or a product, or a modifier produced within the pathway.

The elasticity will be abbreviated e{. The elasticity of the enzyme toward
a reactant is distinct from the control coefficients because it is a local
property of the enzyme rather than a global property of the system. Hence,
it must be estimated in an investigation of the isolated enzyme, and it is the
link between the data obtained by the enzyme kineticist and the data
needed for quantitative analysis of the control of a multi-enzyme system. It
is useful to consider the elasticity of an enzyme toward its substrate and
toward its product in more detail. If Mf is the substrate of enzyme j and
Mj is the product of enzyme j , the velocity of the reaction catalyzed by
enzyme; is

„ y i - r/K.,]

M,

where T is the mass action ratio, Mj/Mi9 and, KlMj , KiMj2 are product
inhibition constants for Mj9 and KM is the Michaelis constant for Mt. The
elasticity of the enzyme toward the substrate is

'•- "•-1-r/K., + , ^ r i + M L l + M L

The right-hand side of eq. (14.5) contains two terms. The first of these is
exclusively thermodynamic. If the reaction were at equilibrium the value of
this term would be infinity. On the other hand, if the reaction were infinitely
far from equilibrium, the value of this thermodynamic term would be 0. The
second term on the right-hand side of eq. (14.5) is kinetic. More specifically,
it is a measure of the extent to which the enzyme is saturated by the
substrate. If the enzyme were saturated by the substrate, the value of this
kinetic term would be 0, but, if the enzyme were very far from saturation and
the rate equation were a 1:1 function as in eq. (14.4), the value of the kinetic
term would be 1. In the case where the rate equation is a higher power
rational polynomial, the differentiation necessary to expand the elasticity
coefficient would result in a rather complex thermodynamic term, but the
maximum value of the kinetic term would reflect the order of the numerator
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of the rational polynomial. Thus, if the reaction were at equilibrium, the
elasticity would be equal to infinity regardless of whether or not the enzyme
were saturated with its substrate. However, if the reaction were infinitely far
from saturation, the sensitivity of the enzyme to its substrate would depend
entirely on the degree to which the enzyme was saturated by the substrate.

The elasticity coefficient for the product can be expanded as follows:

M, r K *
j_Mjdvj_ T/Ke, K,M,,L '»» M,

Since eq. (14.4) defines the product M7- as an inhibitor, both the terms on the
right-hand side of eq. (14.6) are negative. The first term is a measure of the
extent to which the reaction has achieved equilibrium while the second term
is a measure of the sensitivity of the enzyme to its product.

14.2 Application of sensitivity theory to the control of linear
multi-enzyme systems
Cascanteet al.11 have applied the principles of the sensitivity theory to the
derivation of expressions for flux and concentration control coefficients in
terms of elasticities. These derivations were provided earlier in the develop-
ment of MCT5 '6 '12"15, but the Cascante method presents this derivation in
a particularly clear manner. The relationship between the Cascante method
and the earlier MCT treatment will be discussed later. The velocity of any
reaction in the metabolic pathway portrayed in Figure 14.1 is a function of
at least the following variables and parameters.

i7I. = / (M 1 ,M 2 ,M 3 ,E 1 ,E 2 ,E 3 ,E 4 )

The flux through the pathway is equal to the velocity of each reaction in the
pathway if the intermediate metabolites are in steady state, and, thus the
flux and velocity of any reaction are interchangeable. In sensitivity theory,
the velocity of each step in the pathway is evaluated for its sensitivity to all
the variables and parameters of which it is a function. Thus, the sensitivity
of flux to enzyme 1 is given by the following expression.

dJ ldEx (dvx IdMAfdM, IdEA % fdvx ldM2\/dM2 / 3E/
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(14.7)

Reference to Figure 14.1 indicates that neither M2 nor M3 has a direct
effect on vl9 therefore, (dvJvJ/idMJMJ and (dvl/vl)/(dMJM3) = 0.
Furthermore, an original assumption of MCT was that there were no
enzyme-enzyme interactions and therefore (3E2/E2)/(3E1/E1), (3E3/E3)/
(^Ej/E^ and (dE4EJdE1/El) = 0. The stipulation that there are no en-
zyme-enzyme interactions has been relaxed in later treatments of MCT 16,
and it has never been a required stipulation in BST. However, for simplicity
in presentation of the general principles, the assumption that there are no
enzyme-enzyme interactions will be employed in the treatment presented
in this text. It should be noted that, Cl = (d]/J)/(dEl/El), s\ =(dvl/vl)/
( d M ^ M J and C1?1 =(3M1/M1)/(3E1/E1). Since M t is the product of vl9

s\ is negative. To minimize negative signs, throughout this text, any
inhibitory elasticity will be defined as ej. = —  ej. It was mentioned previous-
ly that a basic assumption inherent in MCT is (dvl/v1)/(dEl/E1) = 1.
However, this assumption is not essential to the sensitivity theory, and so
the following definition can be employed n\ =(dvl/vl)/(dE1El). Thus eq.
(14.7) can be written as

C =—e 1 C M l + 7r1 (14.8)

The expressions for the effect of each enzyme on the flux are obtained in the
same manner.

dJ ldE7

M2 A M 2 / E

(t /3M3
l( / / ( ( I

\v2l M3AM3/ YL2r\v2\ Ej\Ej E2

5E3 V5E3 IdE
A /(d^ IdEA (d^ /

\ v2 I E J \v2 I E3 A E3 / E

+ (—  l^n-^l-^) (14-9)
(dv* /3M,

2
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(dv, /5Ei V5E, /dE^
\j A /

4 / E3
(14.10)

J / E 4 V »
dE±\ [dvA \dM2\fdM2 ldEA

M3

, / E4 J V '. I M, A M, / E.
dv4

/
E2 / E4 3 / E4

Equations (14.9)—(14.11) can be written in the following form.

(14.11)

(14.12)

(14.13)

(14.14)

Equations (14.8) and (14.12)—(14.14) constitute a system of equations which
can be written in matrix form.

, C2 C3 CJ =

-s\ 0 0
sj -el 0
0 e3

2 - e l
0 0 e*

n\ 0 0 0

2

0 0 0 TCJ
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These matrices can be rearranged to give

1
1
1
1

I C 1

A
0
0
0

c2

0
n\
0
0

0
0
n\
0

0
0
0

A

—  p 1

I

0
0

0

- p 3

fc2
0

0
0

—  £ 4

2
M,

Matrix algebra provides a means of transforming the rectangular matrices
on the left-hand side of the foregoing system of matrices into two square
matrices. This is accomplished simply by adding the three columns of the
4 x 3 matrix onto the column vector of ones, and by adding the vector of
flux control coefficients onto the 3 x 4 matrix of concentration control
coefficients. At the same time, the n\ elements of the right-hand side of the
foregoing matrices can be replaced by 1 because an assumption inherent in
MCT is that (^/^/(dE^/E,) = 1.

1
1
1
1

05
|

-l\
0
0

0
£ 2

- £ i
0

0
0
el
-4

CM,

Cf2

c2
l
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

^M2

These square matrices can be expressed as the following equation.

A x B = I. (14.15)

The product of matrices A and B is an identity matrix, and this has
important consequences, some of which will be discussed later in this
chapter. The significant consequence that will be discussed here is that since
an identity matrix is the equivalent of unity in matrix algebra, A is the
inverse of B, that is, A = B~ \ and B is the inverse of A, B = A~ *. That is
what is desired at this point. In chapter 5, the inversion of a matrix was
simplified by representing the system as a connection matrix. However, the
problem in this case is more complex than the derivation of equations for
steady state enzymic reactions. The differential equations for the change of
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each enzyme species with respect to time are such that all the terms in the
enzyme distribution expressions are positive. As a result, it was not
necessary to keep track of the sign of the term. In the problem at hand, the
terms can be either positive or negative, and thus, it is essential that the sign
of each term be evaluated properly. While graph theory has been applied to
the derivation of control coefficients1718, possibly a more feasible method
of derivation is the simplified algorithm for matrix inversion presented in
chapter 4 because this algorithm can be incorporated easily into a computer
program or it can be followed manually19.

Each flux and concentration control coefficient will be a quotient, the
denominator of which is the symbolic determinant of matrix A in eq. (14.15).
The numerator is the symbolic determinant of matrix A in which one of the
columns has been replaced by an appropriate column from the identity
matrix. Inversion of a matrix is facilitated by the construction of a matrix of
non-zero elements. This matrix is

1 2 0

1 2 3

1 3 4
1 4 0

To review the procedure briefly, each term in the determinant can be
represented by a vector whose elements are selected one from each row of
Q in order such that there is no repetition of numbers in the vector. The
value of the element is a pointer to the column of matrix A which contains
a non-zero element, and the position of the element in the vector indicates
the row of A which contains a non-zero element. The sign of the term is
(— \) p where p is the sum of the number of elements out of sequence in the
vector plus the number of negative elements selected from matrix A. The
vectors, p values as the sum of elements out of sequence plus negative
elements, and the actual terms for the denominator determinant for the
pathway under consideration are the following:

Vector p Term

(1,2,3,4) 0 + 3 -efefet
(2,1,3,4) 1+2 —ejeief
(2,3,1,4) 2 + 1 -s{s2

2e$
(2,3,4,1) 3+0 -s\s2

2sl
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The denominator determinant for all the control coefficients for the path-
way portrayed is

The numerator of the flux control coefficient for the first enzyme is
obtained by replacing the first column of matrix A of eq. (14.15) with the
first column of the identity matrix.

1 0
0 -e\2 x2

0
0

0 -e\ e3 c-3

o -4
Q =

l
2
3
4

2
3
4
0

The flux control coefficient for enzyme 1 is:

C1=e2
le3

2e$/\D\= 1 + 4
C2C3 (14.16)

Since the denominator determinant is preceded by a negative sign, it is
obvious that the numerator of eq. (14.16) is also negative because the
expression for Cx is positive.

The numerator of the expression for the flux control coefficient for
enzyme 2 is obtained by replacing the first column of matrix A with the
second column of the identity matrix. The first column of A is replaced by
the third column of the identity matrix to obtain the numerator of the flux
control coefficient for enzyme 3. In the case of enzyme 4, the first column of
A is replaced by the last column of the identity matrix. The following are the
flux control coefficients for enzymes 2, 3, and 4, respectively.

e e eC2=e{

fp2 3 p3

[_£1£2 £2

C4=£"}£^£^/|D| = M ^ | + ^ | + ^ + l

(14.17)

(14.18)

(14.19)

The concentration control coefficients for each enzyme with respect to
t are obtained by replacing the second column of matrix A with the
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respective columns of the identity matrix. The concentration control
coefficients with respect to M t are the following:

Cf1 = (£3
2s* + efe* + e | e | / | D | (14.20)

(14.21)

(14.22)

(14.23)

In like manner, the concentration control coefficients for each enzyme with
respect to M2 are obtained by replacing the third column of A by the
respective columns of the identity matrix.

(14.24)

(14.25)

(14.26)

(14.27)

Finally, the concentration control coefficient for each enzyme with respect
to M3 can be obtained by replacing the last column of A with each column
of the identity matrix.

(14.28)

(14.29)

(14.30)

C ^ = —  (ef e | -K e Jef -h eJef)/ |O| (14.31)

14.3 The relationship between sensitivity theory and
metabolic control theory
It was stated previously that eq. (14.15) held a number of important
consequences. One of these is that since the product of A times B is equal to
an identity matrix, the order of multiplication can be reversed. Hence,
A x B = B x A = I. Cascante et al.1 x have pointed out that when the order
of multiplication is reversed, the relationships which were basic to the
development of MCT are obtained. These basic relationships are called the
summation theorem for flux control coefficients, the summation theorems
for concentration control coefficients, the connectivity theorems for flux
control coefficients and the connectivity theorems for concentration con-
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trol coefficients. These relationships were essential to derivation of the
control coefficients in the original MCT treatments. While these relation-
ships can be obtained by reversing the order of multiplication of A and B in
the Cascante treatment, they are not essential to the derivation of expres-
sions for the control coefficients following the principles of sensitivity
theory. The multiplication implied is shown in the following:

M'

C--

M,

Cf
0
0

0

~«2

0

0
0

n
-si

l
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

By following the rules of matrix algebra20, the summation theorems for flux
and concentration control coefficients are obtained by pre-multiplication
of the rows of B by the first column of A. A brief outline of the rules of matrix
multiplication is presented in the appendix of this chapter.

C 1 +C 2

+ 2 + C™ 2 + = 0

(14.32)

(14.33)

(14.34)

(14.35)

Equation (14.32), the summation theorem for flux control coefficients,
states an important principle, namely, that all the enzymes in a pathway
contribute to the control of flux through the pathway. It does not mandate
that all the enzymes contribute to the same extent. Indeed, in some cases,
a flux control coefficient for may be negative, and if such is the case, the sum
of the remaining flux control coefficients will exceed unity. That is, there
would be amplification of the control exerted by the remaining enzymes.
There may be other instances where one enzyme may exert 99 percent of the
control of flux through the pathway while the remaining enzymes exert
a total of only 1 percent of the control. Whatever the case, the control
exerted by any enzyme on the flux through a pathway is a quantitative
property of the system and it should be expressed in quantitative terms. The
fact that the sum of the control exerted by all the enzymes in the pathway on
the concentration of each of the metabolites is equal to zero is a conclusion
that could be reached intuitively if the metabolites are in steady state.

The connectivity theorems for the flux control coefficients are obtained
by multiplying the first row of B by the second, third and fourth columns of
A. The connectivity theorems for the concentration control coefficients are
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obtained by multiplying each of the last three rows of B by each of the last
three columns of A. The resulting equations are required to provide
sufficient equations to obtain the relationships expressed in eqs. (14.16)-
(14.31) by the original MCT treatments. However, the connectivity theor-
ems are of no particular value to the treatment presented here.

There are some relationships which are of interest and are obtained by
carrying out the multiplication implied in eq. (14.15). These are similar to
those discussed in the previous paragraph, but they offer an alternative to
the repetitive matrix inversion for obtaining the concentration control
coefficients. The matrices are

1 s{
1 -el
1 0
1 0

0 0
0

£2 e3
0 -i

C4

Cff' Cf
M>

^ 3
CM3

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

Multiplication of the rows of A by the first column of B gives the following
relationships.

C i + e j C f ^ l (14.36)
Q _fi3(^Afi _|_g2^M2 _ Q (14.37)

c i - 4C?2 + ̂ !cf3 = ° (14-38)
C!-4Cf3=0 (14.39)

The value of the foregoing equations lies in the fact that after one has
obtained the equations for the flux control coefficient for enzyme 1, the
equations for the effect of enzyme 1 on the intermediate metabolites can be
obtained by simple algebra without additional matrix inversion. If the
expressions are obtained by a computer-based method, this is of little
significance. If the equations are derived manually, this can represent a very
significant simplification. The right-hand side of eq. (14.36) is 1, but it
should be recognized that the 1 can be replaced by the denominator
determinant. Relationships relative to enzyme 2 are obtained by multiply-
ing the rows of matrix A by the second column of matrix B.

= 0 (14.40)
+ £ | C f 2 = l (14.41)
+ £|C*f3 = 0 (14.42)
= 0 (14.43)
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Multiplying matrix A by the third column of B gives,

C3 + s{C%>=0 (14.44)

C3-e2
lC^' + elC^' = 0 (14.45)

C3-2iCS f ' + e|CSf' = l (14.46)

C 3 - £ 3 C ^ = 0 (14.47)

The final relationships are obtained by multiplying A with the last column
ofB.

C4 + e}Cf' = 0 (14.48)

C4-£fCf ' + £|Cf2 = 0 (14.49)

CA-slC%> + elC?' = 0 (14.50)

CA-4C%' = 1 (14.51)

Equations (14.36)—(14.51) can be summarized as

[ n m

j=lk=l

where n is the number of enzymes, m is the number of intermediate
metabolites, and the Kronecker delta, 8ij9 is equal to 1 when i =j and equal
to zero when i is not equal to j .

Equations (14.36) through (14.51) provide a simpler method of obtaining
the expressions for the concentration control coefficients, but they illustrate
some rather profound relationships which may not be apparent intuitively.

It is particularly informative to interpret the eqs. (14.16)—(14.19), the
equations for the flux control coefficients, in terms of the expanded expres-
sion for the elasticities, namely, eqs. (14.5) and (14.6). It is apparent immedi-
ately that if the first enzyme in the pathway is insensitive to inhibition by its
product, the first enzyme is the only enzyme which will exert control of the
flux through the pathway. A somewhat similar conclusion was expressed
years ago in an intuitive manner. That conclusion was often expressed as,
"The first committed step in a pathway is the rate controlling step."
However, this statement is not entirely accurate. The term "committed
step" implies that the step is irreversible, but eq. (14.6) shows that the
elasticity of the enzyme for its product may have a non-zero value even
though the reaction is infinitely far from equilibrium, for the enzyme
may be susceptible to product inhibition. It can be seen that no enzyme
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downstream from an enzyme which is completely insensitive to inhibition
by its product will exert any influence on the flux through the pathway. In
like manner, if the reactions in a pathway are all very far from equilibrium,
no enzyme upstream from an enzyme which is saturated by its substrate will
exert an influence on the flux. Another conclusion which has been expressed
often is "An enzymic reaction which is at equilibrium cannot exert any
influence on the flux through a pathway". Inspection of eqs. (14.16)—(14.19)
provides a mathematical basis for the accuracy of this conclusion. For
example, if the second step in the pathway portrayed in Figure 14.1 were at
equilibrium, &\ and £f would both be equal to infinity. Thus C2 would be
equal to zero.

14.4 The effect of feedback and feed forward loops on the
control of a linear pathway
Figure 14.2 portrays a pathway identical to that in Figure 14.1 except that
the last intermediate metabolite inhibits the first enzyme in the pathway.
Equations (14.12)-( 14.14) apply to the pathway in Figure 14.2, but the
expression for enzyme 1 is

— ^ ^ i (14.52)
The matrices which provide for the derivation of the control coefficients are
the following:

1 el 0 el
1 _ £ 2 _ £ -2 0

1 0 -e\ el
1 0 0 -e% C**3

c*
^ 4 *

^ 4 2

^ 4

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

The denominator determinant is

The flux control coefficients are

!]"

(14.53)

(14.54)

Xo
i '

Mi * M2 * M3 * Xf

Fig. 14.2. Model of a linear multi-enzyme system with feedback inhibition.
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Xo -»• M i •*• M 2 •*• M 3
4 |
©

Fig. 14.3. Model of a linear multi-enzyme system with feed forward activation.

C2 = eJfiie*/|D| = r 4 -
L£i

C3=e1
1£2

2£^/|D| = r ^
L£i*

— ^ I p 2 p 3 i p 2 o 3 p l \
4 — V I 2 3 ^^ 1 2 3 //

(14.55)

L

51£2£3 J

• + 1r (14.57)

It is obvious that feedback inhibition causes a different distribution of
control between the enzymes. Of particular interest is the fact that, in
contrast to the pathway in Figure 14.1, enzyme 1 does not exert all the
control if enzyme 1 is insensitive to product inhibition. If s { = 0, control of
the pathway would be shared between enzymes 1 and 4.

An additional linear pathway will be considered. Figure 14.3 shows
a linear pathway in which the first intermediate metabolite functions as an
activator of the last enzyme. The expressions for C1? C2 and C3 are as given
in eqs. (14.8), (14.12) and (14.13), but the expression for C4 is given in
eq. (14.58).

(14.58)

The following are the matrices from which the control coefficients can be
derived.

1 0
1 -el - f i f
1 0 - e |

o
0

P3

1 - < 0 -^ f M 3

Cf'

cf*

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

With a bit of practice, the foregoing matrices can be constructed directly
from the diagram of the pathway. The denominator determinant for the
system of equations represented by the foregoing matrices is

|D| = jcfef + e+ ejcfef + \e\4 + e}cff e + (14.59)
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The equations for the flux control coefficients are

•H
[ 2 4^2^:3

C3=e-I
1£2

2e*/|D| = [ $ 1 + ̂  + ̂ 1+ 1 + 4 ] ' (14-62)
L £ l £ 2 £1£3 £2 £3 J
I 2 3 4 4 3 4 4 I —  1

C4 = £je§£^/|D| = f l ! ^ +4i + 4§lf + ^f + 1 (14.63)
L £ l £ 2 £ 3 £1 £2£3 £3 J

As in the case of the feedback, the feed forward causes a change in the
distribution of the control of flux. It is of particular interest that if the third
enzyme is insensitive to inhibition by the product, the effect of feed forward
is largely abolished. Once again, it is seen that product inhibition can play
an important role in the regulation of a metabolic pathway. This possibility
was commented upon before the mathematical concepts of metabolic
control were developed20'21. However, it must be recognized that the
elasticity of an enzyme to its product is not due to product inhibition per se
only, but it also reflects the effect of equilibrium even though the reaction
conditions may be rather far from equilibrium.

14.5 The quantitative estimation of control coefficients
The elasticities are local properties of the enzymes, and must be estimated in
isolation from the remainder of the pathway. Thus, estimates of elasticities
may be obtained from investigations of the kinetic properties of the enzyme
provided these studies were conducted under conditions which were com-
parable to those experienced by the metabolic pathway in situ. The control
coefficients are global properties of the metabolic pathway, and they must
be estimated in the presence of the functioning pathway. Two general
techniques have been employed in these studies, and they involve either
titration of an enzyme with an inhibitor which binds tightly to the enzyme
or by genetic manipulation of enzyme activity. In these studies, flux or
metabolite concentration is plotted against enzyme activity22 26. A tangent
is drawn at some point in the curve, and the control coefficient at that point
is equal to the slope of the tangent times a weighting factor which is Ef/J in
the case of a flux control coefficient, or EJMj in the case of a concentration
control coefficient. A much more direct measurement of a control coeffi-
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Y
Xo 0

* Mi
!

Xf

Fig. 14.4. A linear multi-enzyme system with both feedback inhibition and feed
forward activation.

Xo

Fig. 14.5. A linear multi-enzyme system with two-fold feedback inhibition.

cient is a plot of flux or metabolite concentration against enzyme activity in
log-log space. In the latter case, the control coefficient is simply the slope of
the plot at any point. Considerable progress has been made in an attempt to
develop feasible methods for estimating control coefficients27"32.

14.6 Problems for chapter 14
14.1 Figure 14.4 presents a multi-enzyme pathway. Use the procedures

described in this chapter to obtain the matrices necessary to derive
the control coefficients. Assume that n\—\.

14.2 Multiply the A matrix obtained in problem 14.1 by the B matrix to
obtain the relationships between the flux control coefficients and the
concentration control coefficients, and then reverse the order of
multiplication of these matrices to obtain the summation and con-
nectivity relationships of MCT.

14.3 Derive expressions for the flux and concentration control coefficients
for the pathway portrayed in problem 14.1.

14.4 Figure 14.5 presents a multi-enzyme pathway. Derive the expres-
sions for the flux and concentration control coefficients for the
foregoing pathway.

Appendix
An important operation in matrix algebra is the multiplication of matrices.
Consider the following system of matrices.

0u

021

012

022

032

0 1 3

0 3 3
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The foregoing system can be abbreviated

A x B = C

The elements of C are each equal to the sum of the multiplication of each row
of A by a column of B according to the following procedure.

Cll=flll&ll+fll2&21+fll3&31

C21 = a2ibu + a22b2l + a23b31

l2 l l 1 2 l 2 2 2 l 3 3 2

c22 = a21b12 + a22b22 + a23b32

+ a32b22 + a33b32

C 2 3 =

C33 =

In general, a different value is obtained for the elements of C if the order of
multiplication of A and B is reversed. However, if C is an identity matrix, as is
the case in many of the instances covered in this book, the order of multiplication
of A and B can be reversed. The reason for this is that an identity matrix is the
equivalent of unity in matrix algebra, and in that case A = B~l and B = A"1.
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15
Control of branched multi-enzyme systems

The control of flux through linear pathways was discussed in the previous
chapter, but many, if not most, metabolic pathways contain points at which
other branches either converge or diverge from the pathway. La Porte
etal.1 wrote, "Perhaps the most pervasive type of cellular control is the
metering of flux between competing pathways." This point was stressed
earlier by Holzer2. In this chapter, it will be shown that flux through one
branch can amplify the control exerted by enzymes in another branch. This
phenomenon can be particularly striking in the case of substrate cycles where
one branch operates in direct opposition to the other branch of the pathway,
and it presents a function other than a futile cycle for substrate cycles.

15.1 Application of the sensitivity theory to branched pathways
Consider the following branched multi-enzyme pathway. The branch
diverges from metabolite 2 in the main pathway portrayed in Figure 15.1.
Enzyme 2.1 catalyzes the divergent branch. There are three fluxes involved
in the pathway. Flux ̂  is the flux prior to the branch point, flux J2 is the flux
through the divergent branch, and J3 is the flux through the main path after
the branch point. Cascante et al.3 extended the general sensitivity theory to
branched metabolic pathways, and their treatment will be presented here.

The following relationship between the three fluxes is obvious from
Figure 15.1.

J i = J 2 + J 3 (15.1)
Differentiation of eq. (15.1) with respect to any enzyme in the pathway when
all other variables are held constant gives
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2.1

Xo -* Mi -* M2 -* M3

Fig. 15.1. Model of a multi-enzyme system with a single divergent branch.

Equation (15.2) can be normalized and expressed as

J i C / ^ C f + J a C ? (15.3)

where C{ = CJ
E\. Thus,

c1 —  t c2 +1 c3 n^4)

where J£ = Ji/Ji- Hence, all the fluxes are considered relative to flux 1.
Actually, anyone of the three fluxes could be employed as the reference flux.
The equations arising from the sensitivity theory for the pathway in
Figure 15.1 are

\ ^ l —  ^ 2 1 ' ^ 3 1 —  ^ 1 1 * > T^i

: + *2:i
l=

(15.5)

(15.6)

(15.7)

(15.8)

(15.9)

Equations (15.5)—(15.9)  can be expressed in matrix form.

h
i
0
0

h
0
1
1

^2 Ql Ql
^3 r^3 r^3

^2 Ql
• 3̂ r^3

0
0
0

O 2 . 1

0
0
0

2 ^ 2 . 1
Af2 p M 2
2 ^ 2 . 1

n\ 0 0 0 0
0 7i2 0 0 0
0 0 7T2;! 0 0
0 0 0 7i3 0
0 0 0 0 Til
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Since the assumption n\ = (dvJv^Kd^J^) = 1 is inherent in the treatment
presented in this text, the previous matrices can be rearranged
J2 J3 e[

h h - « •
1 0 0
0 1 0
0 1 0

0

—  ef-'
~«2

0

0
0
0

— e'

C?

3 W

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

The above matrices represent the following equation:

A x B = I (15.10)
The summation theorems of MCT are obtained by pre-multiplying the first
two columns of matrix A by matrix B. The summation theorem for the flux
control coefficients are
J2C2 + J2C2 + C 2

1 = 1 (15.11)

C 2 = 0 (15.12)

= 0 (15.13)

J3C3 + J3C3 + C 3 + C 3 = 1 (15.14)

The complete summation theorem for flux 2 is given by the sum of
eqs. (15.11) and (15.12), and the sum of these equations is unity. Likewise,
the summation theorem for flux 3 is the sum of eqs. (15.13) and (15.14).
However, eqs. (15.12) and (15.13) impose additional constraints. It is obvi-
ous that either all the terms in the latter two expressions must be equal to
zero, or else one or more of the terms in each of the equations must be
negative. If the latter is true, there is amplification of the control exerted by
the non-negative terms. Thus, branching in the pathway can result in
amplification of the control exerted by some of the enzymes.

The denominator determinant for the control coefficients is obtained by
an inversion of matrix A of eq. (15.10). Since this is a larger matrix than
those dealt with in earlier chapters, the inversion will be presented here
using the Q matrix to facilitate the process.

A =

J2 J3 l\ 0
j 2 J3 -si i\
1 0 0 -82

2

0 1 0 - £ 3

0 1 0 0

0
0
0

-si

Q =

1
1
1
2
2

2
2
4
4
5

3
3
0
5
0

0
4
0
0
0
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The terms which comprise the denominator determinant are as follows: The
first column is the vector representation of the term, the second column is
the p value, and the last column actual term.

(1,3,4,2,5) 2 + 3 -hslsl'st
(1,3,4,5,2) 3 + 2 -J2£1£21£"3
(2,3,1,4,5) 2 + 3 -h444
(3,1,4,2,5) 3 + 2 -J2fiifi2'lfi3
(3,1,4,5,2) 4 + 1 -Jafije^ef
(3,2,1,4,5) 3 + 2 -hz{44
(3,4,1,2,5) 4 + 1 -fijfiffi^
( 3 4 1 5 ? ) 5 + 0 —p 1^2?3

Thus, the symbolic denominator determinant is

The flux control coefficients for flux 2 are given by the following

(15.18)

ef £;£(£ + £ ) [
el"1 ( e f + «! )e i - 1 « lJ

.

As shown in eq. (15.15), the denominator determinant is preceded by
a minus sign. Hence, the positive flux control coefficients have negative
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numerators while the negative flux control coefficients have positive
numerators.

A number of features are apparent from the foregoing equations for flux
control coefficients. If the enzyme 2.1, the first enzyme in branch 2, were
saturated by the branch point metabolite, the enzymes in the main pathway
would exert no control on the flux through branch 2. It should be recalled
that in a linear pathway without a feedback loop no enzyme 'downstream'
from an enzyme which was insensitive to product inhibition exerted any
control on the flux through the pathway. This is true of the branched
pathway shown in Figure 15.1 prior to the branch point, but it is not true
after the branch point.

The following are the flux control coefficients for flux 3

, n-1

J

•F | [^(ef + eDej+g}el](ef +61)1
c * c^ o^" I

.

Equations (15.21)—(15.25) demonstrate the same principle as those for the
control of flux through branch 2. If the enzyme at the branch point which
leads to the branch associated with flux 3 were saturated by the branch
point metabolite, none of the enzymes prior to the branch point, nor any of
the enzymes in the competing branch, would exert any effect on flux 3 unless
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one of the metabolites in those portions of the pathway functions as an
allosteric modifier of an enzyme in the portion of the pathway associated
with flux 3. On the other hand, if the competing branch point enzyme,
enzyme 2.1 in this case, were saturated by the branch point metabolite, the
control of flux 3 exerted by those enzymes prior to the branch point would
be increased while the control of those enzymes on the main pathway
'downstream', namely enzymes 3 and 4, is decreased.

It should be further noted that, as in the case of flux 2, if an enzyme prior
to the branch point is insensitive to product inhibition, no enzyme 'down-
stream' from the insensitive enzyme but 'upstream' from the branch point
will exert control of flux 3. In like manner, if an enzyme on either branch
'downstream' from the branch point were insensitive to product inhibition,
the enzymes 'upstream' from the branch point and the enzymes in the other
branch would be only slightly affected while the enzymes 'downstream'
from the insensitive enzyme would exert no control on the flux through the
branch involved. The significance of these observations is that the pathway
shown in Figure 15.1 can be viewed as four relatively independent compo-
nents. These are the enzymes associated with the three fluxes and the degree
to which the competing enzymes are saturated by the branch point
metabolite. These observations follow rather directly from the equations
for the flux control coefficients, but they are not so apparent intuitively.
This emphasizes the value of deriving the expressions for the control
coefficients to a proper understanding of the control of a branched
pathway.

The concentration control coefficients for the branched pathway in
Figure 15.1 are presented in the appendix to this chapter. The reader may
find it useful to derive these control coefficients.

15.2 Flux control in substrate cycles
There are numerous examples of substrate cycles in metabolism. At one
time these were termed as futile cycles because it was thought that their only
function was to dissipate the free energy of the hydrolysis of adenosine
triphosphate (ATP) as heat. While it is possible that these cycles do serve to
dissipate chemical energy as heat under certain conditions, it has become
obvious that they serve a function of amplifying flux control in one
direction or the other4. An example of such a cycle is the combination of
6-phosphofructokinase, which catalyzes the conversion of fructoses-phos-
phate and ATP to form fructose diphosphate and ADP, with fructose
diphosphatase, which catalyzes the hydrolysis of fructose diphosphate to
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2 . . . 3

195

Fig. 15.2. Model of a substrate cycle.

fructose-6-phosphate and inorganic phosphate. The futile aspect of this
cycle is
ATP + H2O -• ADP + inorganic phosphate

This cycle is portrayed in Figure 15.2. With reference to the previous
example, Xo is glucose-6-phosphate, Mx is fructose-6-phosphate, M2 is
fructose diphosphate and Xf would be dihydroxyacetone phosphate and
glyceraldehyde-3-phosphate. The convention which has been adopted
arbitrarily is that the fluxes along the main pathway are numbered with
uneven numbers and the fluxes associated with branches which converge or
diverage from the main pathways are numbered with even numbers. In this
case, branch 2 both converges on metabolite 1 and diverges from metabolite
2. It can be seen that the following relationships exist between the fluxes

J =J + j = J j + J. and J,=.L— J 2 =J S .

The equations obtained from the sensitivity theory are

1 —
1~

2 —

+

7-2-1

(15.26)

(15.27)

(15.28)

(15.29)

These equations give rise to the following matrix equation.

0 J5

J2

1
0

J5

0
1

-el
2 .1— 8

-ei

C? -2

-5

"2.1

"2.1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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The denominator determinant for the control coefficients for the path-
way portrayed in Figure 15.2 is

The flux control coefficients for this pathway are

Cf = - Us*2!14 + *\A*l - fif fif^/IDI (15.31)

(15.32)

(15.33)

(15.34)

(15.35)

(15.36)

(15.37)

(15.38)

The summation theorems for the pathway in Figure 15.2 are

hC22 + Cli = l (15.39)

J | | (15.40)

(15.41)

(15.42)

The condition essential for the amplification of flux 5 is presented clearly
in eq. (15.41), and with this equation and reference to eqs. (15.36) and (15.37)
it can be seen that amplification will not be observed if flux 2 were equal to
zero or if enzyme 1 were completely insensitive to product inhibition or
if enzyme 3 were saturated by metabolite 2. If either of the latter two
conditions were true, neither enzyme 2 nor enzyme 2.1 would exert control
on flux 5. However, if none of the three conditions-mentioned before were
true, the control exerted by enzyme 2 on flux 5 would be amplified. This
amplification is basically due to the effect of branching in the pathway. In
the case of a substrate cycle, the degree of amplification is dependent on the
flux in the opposite direction of the main pathway. It is significant that two
of the enzymes which have been reported to play a significant role in the
control of glycolysis are 6-phosphofructokinase and pyruvate kinase, and
both of these enzymes are constituent enzymes in substrate cycles4.
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The foregoing considerations provide a quantitative basis for the amplifi-
cation of control by enzymes involved in substrate cycles, although this
metabolic role of substrate cycles was not obvious by intuition. Another
feature which has been demonstrated clearly in this chapter is that the
degree of saturation of branch point enzymes and the sensitivity of enzymes
about the branch point play an important role in the metering of flux
through competing pathways in metabolism.

15.3 Problems for chapter 15
15.1 Figure 15.3 presents a multi-enzyme pathway. Using the procedures

described in this and the previous chapters, obtain the matrices
necessary for derivation of the control coefficients for the foregoing
pathway.

15.2 Multiply the A and B matrices of problem 15.1 to obtain the
relationships, the flux control coefficients and the concentration
control coefficients and then reverse the order of the multiplication of
matrices A and B to obtain the summation and connectivity the-
orems of MCT.

15.3 Derive the expressions for the flux control coefficients for both J2 and
J3 and the concentration control coefficients for the pathway por-
trayed in problem 15.1.

Fig. 15.3. Model of a multi-enzyme system with a single divergent branch where
a metabolite in one branch activates the competing branch.

Xo-

J21 2.1 J41
1

4.1

J1 J3 J5

Fig. 15.4. Model of a multi-enzyme system with two divergent branches.
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15.4 Figure 15.4 multi-enzyme presents a pathway. Derive the express-
ions for presents a flux control coefficients for J2, J4 and J5 and the
concentration control coefficients for the foregoing multi-enzyme
system.

Appendix
The following are the concentration control coefficients for the pathway portrayed
in Fig. 15.1. The denominator determinant is the same as for the flux control
coefficients.

Cf > = - [J2£2-l (fij + £3) + J3 £3£4] / | D |
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16
Biochemical systems theory

An approach to the mathematical analysis of multi-enzyme systems will be
presented in this chapter which may appear distinct from that presented in
chapters 14 and 15 but which is actually related to the previous treatment in
a fundamental manner. The biochemical systems theory (BST) has been
developed through the initiative of M. A. Savageau1"4. Biochemical sys-
tems theory is a more general treatment of metabolic control than the
metabolic control theory (MCT) which was presented in the previous
chapters5'6.

16.1 Power law formulation of control of a linear multi-enzyme system
The observation that the rate of most biological reactions can be described
by rational polynomial equations is basic to BST. A general form of
a rational polynomial is

v = ——  <*n~1
 H_1 ——— —  (16.1)

Equation (16.1) can be written in a factored form.

O(fl. + X)(fl i +X)'"(fli +X)
v = —- - (16.2)

The expression of eq. (16.2) in logarithmic form gives

fX)lni; ln
u

- ln(bn + X) - ln(bn_ x + X) l n ^ + X) (16.3)

In view of eq. (16.3), it is not surprising that rational polynomials give rise to
plots which consist of linear segments when they are plotted in log-log
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space. This is true when the rates of most biological reactions are plotted in
log-log space against the concentration of the independent variable. In fact,
in many instances, the relationship is linear over a number of orders of
magnitude of the independent variable3. This observation led Savageau to
develop a power law formalism based on Taylor's theorem when plotted in
logarithmic space.

Taylor's theorem is one of a number of mean value theorems which allow
one to relate the behavior of any continuous function with its derivatives in
a given interval. This, of course, necessitates that the function be continuous
and differentiable within the given interval. Taylor's theorem (series) is
one of the most useful and powerful of the mean value theorems. A full
derivation of Taylor's theorem is beyond the scope of this text, but for the
reader who is unfamiliar with the concept behind the mean value theorems,
the following brief discussion is included.

The first derivative of any function which is continuous and differentiable
in the interval (a, b) is given by eq. (16.4).

, where a<C<b. (16.4)
b — a

If the interval (a,b) is small, eq. (16.4) approximately becomes

- " ) (16.5)

The reader should recall that this procedure was employed in chapter 12 to
obtain the point of intersection of the y axis by an asymptote. The actual
expression for a Taylor series is

where R is the remainder. If the function is linear in the interval (a, /?), the
second and higher derivatives are equal to zero, and the Taylor series can be
truncated to the first two terms on the right-hand side of eq. (16.6) plus the
remainder.

If the truncated Taylor series is applied in logarithmic space to an
enzymic reactions whose rate is vj and whose substrate is Mf the following
equation is obtained:

In Vj = In vJo + ( ^ j ^ ) ( l n M, - In Mio) (16.7)

In eq. (16.7), the subscripts i0 and j 0 refer to Mt and v} about a specific
operating point. From the definition for elasticity given in chapter 14,
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£/ = (dlni;J)/(dlnMl) where the differential is evaluated at i0 andj 0 . In
chapter 14, the elasticity coefficient was defined as the fractional change in
velocity brought about by a fractional change in metabolite concentration
as a matter of rendering the term "change" non-dimensional. Equa-
tion (16.7) provides an explicit explanation for this definition. If the follow-
ing definition is made

ho (1 6 8)

Substitution of eq. (16.8) into eq. (16.7) gives

lntf—lno^.  + e/lnMi (16.9)

Vj = <XjMtf (6.10)

In BST terminology, a,, is called a rate constant. However, if more than one
metabolite in the pathway affects the rate of the reaction eq. (16.10)
becomes

vj = 0Ljf[Mf:i (16.11)

Consider once again the linear multi-enzyme pathway shown in Fig-
ure 14.1. The intermediate metabolites are assumed to be in steady state
and therefore if one considers any one of these metabolites

(16.12)
HI

Ifpj is employed as the symbol for the rate constant for the reaction(s) which
remove rather than synthesize the metabolite, and s\ = — aj;  substitution of
eq. (16.11) into eq. (16.12) results in the following differential equations for
the intermediate metabolites for the pathway in Figure 16.1.

d M , 2 3 - 3
—-^  = a2M£/M7£'-i32M^M-£3 = o (16.14)

d t 2 i 2 H2 2 y >

- V^V 2 - L v A . M A T - A . * 2 B^ J X V M. A V^

Xo »• Mi ^—^ M 2 —»• M3 ^— x Xf

Fig. 16.1. A linear multi-enzyme system.

(16.15)
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These foregoing equations can be rearranged as the following:

(16.16)

(16.18)

=lnM £ . These equations can bewhere b{; = ln(j54/af), y0 = lnX0, and
expressed in matrix form.

c-2 0

0

The solution of this system of equations provides a means by which it is
possible to estimate the logarithmic concentration of the intermediate
metabolites in a metabolic pathway. The denominator determinant of these
expressions is

| D | = - | (16.19)

It should be noted that eq. (16.19) is identical to the denominator determi-
nant for the control coefficients for the mechanism portrayed in both
Figure 14.1 and Figure 16.1. The following are the expressions for the
logarithmic concentrations:

= [££(£2£3 + £2£ £ (44 £2£3

(16.20)

(16.21)

(16.22)

The sign of the Y values are all positive because the numerators of the
expressions are negative as is the denominator. The ability to obtain an
estimate of the concentrations of the intermediate metabolites is a major
advantage. Among other practical benefits, this makes it possible to
conduct simulations such that the dynamic stability of the system can be
investigated3'7. It was believed previously, that MCT did not provide the
opportunity to estimate the concentration of intermediate metabolites.
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However, consider the expressions for the concentration control coeffi-
cients for the pathway in Figure 16.1, which were presented in chapter 14.

C»' = {e3
24 + e | 4 + efef )/|D| (16.23)

» (16.24)

(16.25)

(16.26)

(16.27)

(16.28)

(16.29)

(16.30)

(16.31)

(16.32)

(16.33)

(16.34)

When eq. (16.20) is compared with the expressions for the concentration
control coefficients for M l it is apparent that the equation for the logarith-
mic concentration of Mt can be expressed in terms of the concentration
control coefficients. That is, eq. (16.20) can be written as

+ cro&i + (Cf + cf)b2 + c^b3 (16.35)
In like manner, the expressions for y2 and y3 can be written as

y2 = ejC^yo + (C?' + C^^ + C^)b, + (C^ + C^)b2 + Cf'ftj (16.36)

J3 = 4C?'y0 + (C%> + Cf' + CJ1 •)*! + (C^3 + C%>)b2 + C%>b3 (16.37)
Equations (16.35)—(16.37) demonstrate  a relationship between BST and
MCT which was not recognized previously. For linear pathways, if expres-
sions have been obtained for the concentration control coefficients, the
equations for the logarithmic concentrations can be written without going
through the procedure outlined earlier in this chapter. The converse is
also true. A general equation for the logarithmic concentration of the
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intermediate metabolites in a linear pathway is

o+i t c?>bj\ (16.38)
j=lk=j+l Ji=l,2,...m

where m is the number of metabolites and n is the number of enzymes.
It must be pointed out that the variant of BST which has been presented

in this text is the generalized mass action (GMA) variant. Savageau et al.
prefer the S-system variant of BST4'8. The differences between these
variants is in the level of aggregation. Aggregation is effected at the level of
the individual reactions in the GMA variant. That is the procedure which
has been followed in this chapter. In contrast, in the S-system all the
reactions which result in synthesis of the metabolite are aggregated together
and all the reactions which result in removal of the metabolite are ag-
gregated together. It is acknowledged that Voit and Savageau have demon-
strated some advantages to the S-system8, but the GMA variant is not
invalid. This author prefers the GMA variant because the S-system tends to
conceal some of the synergism which can take place between the compo-
nents of the pathway.

The term metabolic control conjures thoughts of the control of flux
through a pathway. The control of flux is, indeed, an important consider-
ation in metabolic control. However, Savageau has emphasized that mini-
mization of intermediate metabolites is, no doubt, one driving force in the
process of evolution3. Others have emphasized the burden placed on the
cell by the necessity to solubilize metabolites and other cellular compo-
nents9 1 0 . There are many implications of this facet of metabolic control.
The loss of the ability to synthesize the indispensable amino acids by higher
animals is, no doubt, a means of reducing the number and magnitude of
metabolic pools. Metabolite channelling is another means of reducing the
size of metabolite pools11. Many other examples of this concept might be
cited. For this reason, it is informative to differentiate eqs. (16.35)—(16.37)
with respect to y0, for this provides a quantitative measure of the effect of
the independent variable on the concentration of the intermediate meta-
bolites. This is called the logarithmic gain, and it is defined in eq. (16.39).

Lf0 = ^ = £1Cf, i = l , 2 , . . . , HI (16.39)

The sensitivity of the intermediate metabolites to the rate constants can be
obtained by differentiating eq. (16.35)—(16.37) with respect to the bt values.

s(Mi,bJ) = ^= t Cf'l (16.40)
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16.2 Power law formulation of control of linear multi-enzyme
pathways when enzyme activities are variable
One of the advantages of BST is that it provides for the treatment of enzyme
activities as variables rather than as parameters of the system. This can be
demonstrated with the pathway portrayed in Figure 16.1. If all the enzyme
activities are taken as variables, the differential equations for metabolites
are as follows:

(16.41)

(16.42)

(16.43)

At

dM2

dM3

Once again, the reader should be aware that, for the sake of consistency, the
symbolism employed in this text is more consistent with MCT than BST.
Equations (16.41)—(16.43) can be expressed in logarithmic form.

- (4 ^

(16.44)

(16.45)

(16.46)

In the foregoing equations, ye. = InE,. These expressions give rise to the
following matrices:

11) 0
£3

0
0

0
0

- « 2 *3

0 - n |

The foregoing matrices can be abbreviated as follows:

|A||3?|IB = |B| |y| j + |fc| (16.47)

where |y|m is a vector of logarithms of metabolites and \y\t is a vec-
tor of logarithms of independent variables. A more convenient form of
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eq. (16.47) is
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HArM&l (16.48)

where | A | ~~1 is the matrix whose elements are the inverse of | A |. The inverse
of |A| can be defined as |A| - 1 =(|M|/|D|) where |M| is the adjoint of |A|,
and | D | is the symbolic determinant of A. The useful concept of the adjoint
of a matrix is presented in the appendix of this chapter. The previous system
of matrices can be written as

M n M
M21 M
M31 M

12

22

32

M
M
M

I 3

23

M n M
M21 M

12

22

33

M

0
0
0

0 - ;
0 -

23

M31 M32 M 33

The equations for the logarithmic concentration of the intermediate meta-
bolites are as follows:

(16.49)

M22b2

- A
-f M33b3]/|D|

(16.50)

(16.51)

Equations (16.49)—(16.51) are appropriate within the context of the GMA
variant of BST, but they apply to the treatment of MCT presented in this
text only if n\ = n\ = nl = n\ = 1 and if there are no interactions between
enzymes. However, later expansions of MCT provide for enzyme-enzyme
interactions12.

Inversion of matrix A provides the following values of the elements in
matrix M

M2 1/ |D|=-Cf% M 2 2 / | D | = C ^ + Cf% M23/|D|=Cf%

M3 1/ |D|=-Cf% M



16.3 Power law formulation for branched pathways 207

The equations for the logarithmic concentration of the intermediate meta-
bolites under the conditions where MCT treatment presented in this text
are valid, are

^ (16.52)

+ (Cf2 + Cf2 + Cf 2)b; + (Cf2 + Cf 2)fĉ  + Cf 26^ (16.53)

Cf 3

(16.54)

The significant point is that, if the assumptions of the original MCT
treatment are valid, then the equations for the logarithmic concentrations
of the intermediate metabolites can be written in terms of e£, concentration
control coefficients and rate constants in the case of linear pathways.

16.3 Power law formulation for branched pathways
The multi-enzyme pathway portrayed in Figure 15.1 will be used as the
model for power law formulation of a branched pathway.

The equation derived in chapter 15 to relate the three fluxes in the
pathway was

Cj=J2Cf + J3Cf (16.55)

where C{ = CJ
E\ and Jt = (Jf/Ji). Since aggregation is performed at the level

of the individual reaction in the GMA variant of BST employed in this text,
the P term at the branch point is separated into a /? term for each branch.
This rate constant is multiplied by the concentration of the branch point
metabolite raised to the power of the fractional flux flowing through the
branch times the elasticity of the branch enzyme for its substrate. This

2.1

Xo ^Mi »• M2 = ^ M 3
 : ^Xf

Ji J3

Fig. 16.2. A multi-enzyme system with one divergent branch.
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procedure is applicable provided there are no cross links between the
branches and it is illustrated by the following differential equations for the
intermediate metabolites in the pathway shown in Figure 16.2

d

dM
dr* = a2M?M2-«l- | e"»s) = 0

dM3

At
= 0

(16.56)

(16.57)

(16.58)

The logarithmic equations derived from eqs. (16.56)—(16.58) are the follow-
ing:

b i= £o> ;o-( e i+^i)3 ; i +^2^2 (16.59)

b2 + b2A =&\y1- (el + J2e21 + J3el)y2 + e |y3 (16.60)

fc3 = J3s\y2 — (s3 + sl)y3 (16.61)

The equations for the logarithmic concentrations of the metabolites are
derived by analysis of the following system of matrices:

~ Ivi ' ^1 / ^2

1 ~"~ V 2 •" 2 2 •" 3 2 / "̂

0 J3e! -(4 + H)
The denominator determinant is as follows:

2 1 1 2 3 3 3 1 1 2 3 1 2 3 3 ^ ^

It should be recognized that eq. (16.62) is identical to eq. (15.15). The
following are the equations for the logarithmic concentrations of the
metabolites.

- (ef + ej)(«3 + «l)*2 -(«? + c}

(16.63)

(16.64)

(16.65)
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The expressions for the concentration control coefficients for the bran-
ched pathway under consideration are listed in the appendix of chapter 15.
These expressions can be substituted into the foregoing equations for the
logarithmic concentrations of the intermediate metabolites.

y=s1C^y + K ^ ^ ± 2 b + L ± b
J2

b3 (16.66)

( 1 6 6 7 )

2 2 b + ^

fo3 (16.68)

As in the case of linear multi-enzyme pathways, the equations for the
logarithmic concentration of the intermediate metabolites can be written in
terms of the concentration control coefficients if simple rules are adhered to
with respect to the relative fluxes. These rules are the following:

1. If the metabolite for which the expression is being written is at the
branch point or lies 'upstream' from the branch point, the concentration
control coefficients for all of the enzymes 'downstream' from the branch
point are divided by the relative flux for the branch.

2. If the metabolite for which the expression is being written lies 'down-
stream' from the branch point, the concentration control coefficients of all
metabolites located on any other than that of the metabolite whose
logarithmic concentration is being expressed should be multiplied by the
relative flux appropriate for the metabolite in question.

These rules are illustrated in eqs. (16.66)—(16.68).

16.4 The future of metabolic control in biology
The present chapter together with the two previous chapters serves to
introduce quantitative analysis of control of multi-enzyme systems. Al-
though this facet of enzyme kinetics emerged two decades ago, it is still in
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the developmental stage. Nevertheless, it is possible to provide only a brief
overview in this text. Several recent books provide more detailed dis-
cussions413"15. In the opinion of this author, this aspect of biochemistry is
one of the most challenging and it holds the promise of great reward, for it
provides a direct entrance into the quintessence of living systems. The
enormous amount of information which has been accumulated in the past
half century concerning intermediary metabolism, the refinements and
extensions which have been defined in applied mathematics, and the develop-
ment of molecular engineering all combine to render this approach to
biology feasible at this time. Within the area of analysis of multi-enzyme
systems, efforts are being directed to extend this approach from in vitro
systems to organelles and tissues16. Although the temporal analysis of
multi-enzyme systems17~x 9 is not discussed in this textbook, treatments for
the integration of temporal analysis of multi-enzyme systems and metabolic
control theory have been published20"23.

Even such complex properties of the intact animals as growth24-25 and
the response to nutrients26 '27 are becoming amenable to this type of
analysis. The principles which have been developed in the analysis of multi-
enzyme systems provide a foundation for initiating probes into the bio-
chemical horizon.

16.5 Problems for chapter 16
16.1 Derive the expressions for the steady state logarithmic concentra-

tions of the intermediate metabolites in terms of elasticity coefficients
for the pathway portrayed in problem 14.1.

16.2 Express the equations derived in problem 16.1 in terms of concentra-
tion control coefficients.

16.3 Derive the expressions for the steady state logarithmic concentra-
tions of the intermediate metabolites in terms of elasticity coefficients
for the pathway shown in problem 14.4.

Appendix
There are occasions when it is convenient to express the inverse of a matrix in
an element by element manner. Consider the following square matrix:

22 023

32 033
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The symbolic determinant of A is

211

This symbolic determinant could be rearranged as
ail(fl22fl23-"23*32) - f l l 2 ( f l 2 i a 23- f l 23a 3l)

~ a2l(fl12fl33 ~ fl13fl32) = - fl22(flllfl33 ~ fl13fl3l) =

1 fl32 " fl22fl31>

11*32 " «12fl3l)

The foregoing could be expressed more concisely as
-a12M21 ax

= a 2 2 M 2 2 = - a 2

These equivalent expressions for the symbolic determinant can be expressed in
the following matrices:

— a 12

" 2 2

a i 3

- « 2 3
a 3 3

M n
M21

M31

M12
M22

M32

M13

M23

M33

=
|D |
0
0

0
|D|
0

0
0

ID
"21

The M matrix in the foregoing expression is called the adjoint of matrix A, that
is, M = (adj. A)28. The elements in the transpose of the adjoint of matrix A are
the cofactors of matrix A.

—

S2 S3

S2 S3
fl12 S 3

S2 S3

a22 a23

S2 S3

Si S3

Si S3

Si S3

Si S3

Si S3

Si S3

Si S2

Si S2

S i «12

Si S2

S i «12

Si S2

M n M2
M12 M2 M3

It has been pointed out previously that A A 1 = I. It is also true that
A(adj.A) = |D|I. Therefore it follows A((adj.A)/|D|) and
A~1 = ((adj. A)/|D|) = M/|D|. This provides an additional, but not a particularly
convenient, means of matrix inversion. However, it shows that each element in
M divided by the symbolic determinant of A is an element in the inverse matrix,
and this is very useful if one wishes to perform further matrix algebra on the
inverse matrix. This procedure was employed earlier in this chapter.
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Part Five
Solutions to problems





Chapter 1

1.1 ^ = /c1(E)(A)-(fe_1

(fc^ + ^HEA) Km(EA)
(A)

1.2

(EA) = ^ i

(E)

1.0-1

Km

f - I

(EA)
E, L (A)

r1.0

-0.5

5.0
(A)
Km

10.0

Fig. V.I.I. Plots of (E)/E, and (EA)/E, versus (A)/Km for a simple enzymic reaction.

1.3 Km = 0.323 mM Vmai = 0.0612 ^moles/minute

Chapter 2
2.1 Saturate the enzyme with substrate A.

u 'max
k

Follow the time-course of the enzyme-catalyzed reaction at a sub-
saturating concentration of A from the pre-steady state into the steady
phase of the reaction.

217
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(P)

time
pre-steady state steady state

Fig. V.2.1. Time-course curve for a simple enzymic reaction. The time-course curve
is shown through the pre-steady state and steady state phases. The steady state
segment is extrapolated to the time axis.

At
Fig. V.2.2. Plot of the reciprocal of the intersection of the time axis of Figure V.2.1
versus Ar

The coordinate of the point at which the extrapolated line intersects
the time axis is,

t =
1

Repeat the time-course study at various concentrations of A and plot
l/t versus A r

The slope of the plot is equal to fcl5 and the point of intersection of
the l/t axis is fc_ x + k2. Since k2 is known, k_ x can be calculated.

2.2 75,OOOX = ^ ° X O O 5 K ' »

X = 6.3%.
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X=19%.

Chapter 3
3.1 (I) = 0.000 mM

(I) = 1.393 mM
(I) - 2.790 mM
(I) = 4.180mM

Ka
m

pp = 0.204 mM
Ka

m
pp = 0.202 mM

Ka
m

pp = 0.207 mM
Ka

m
pp = 0.197 mM

/X = 13.50 |imoles/min.
/X = 9.144 ^moles/min.
/X = 7.706 jimoles/min.
/X = 6.221 nmoles/min.

(I) = 5.570 mM Ka
m

pp = 0.208 mM V£f/X = 5.844 jimoles/min.

trueKm = 0.210 mM true Vmax = 12.51 |imoles/min.
slope inhibition constant = K-s = 4.650 mM
intercept inhibition constant = K-. = 4.530 mM

3.2 ^ = -

1
K4J /

3.3a Note that when v; = 0.5 x vQ. ( ——- ) = 1.

--. ivo-vt

3.3b
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3.3d (I) = 2K31 v,

3.3f

Chapter 4
4.1 Et = (E) + (EA)

dt

d(EA)
dt

(EA)_ k^A)
~E^~ = k_1+k2 + i

(E) L, + t

L/c1/c2(A) /c_1/c_:
i? =

k_1+k2 k1k2

" - 2

t; = -
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4.2

221

(EA)
Et

(EP)
Et

EA EP * EA EA

EP EA EP EA EP EA

EP

k2k3

+k-ik3

+k-ik.2(P)

EA EP * EA EA

k-2k.3(P)(Q)
+kik3(A)

+k1k.2(A)(P)

k2k.3(Q)
+k.ik.3(Q)
+kik2(A)

Fig. V.4.1 King-Altman spanning trees for the enzymic reaction sequence in prob-
lem 4.2.

Chapter 5
5.1a The connection matrix for the mechanism is,

0 A 0 0 Q
1 0 1 0 0
0 P 0 B 0
0 0 1 0 C
1 0 0 1 0

0
1
2
3
1

0
3
4
5
4

(0,1,2,3,1) (P)
(0,1,2,3,4) (P)

= (0,1,2,5,1) (C) (P)
(0,1,4,5,1) (B) (C)
(0,3,4,5,1) (B) (C)

(E)

V
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Qea =

Q/ =

Qeb =

2
0
2
3
1

2
1
0
3
1

2
1
2
0
1

2
1
2
3
0

5
0
4
5
4

5
3
0
5
4

5
3
4
0
4

5
3
4
5
0

(2,0,2,3,1) (A) (P)
(2,0,2,3,4) (A) (P)

= (2,0,2,5,1) (A) (C) (P)
(2,0,4,5,1) (A) (B)(C)
(5,0,2,3,4) (P) (Q)

(2,3,0,3,1) (A)
(2,3,0,3,4) (A) ( F )

= (2,3,0,5,1) (A) ( C ) = y
(5,1,0,3,4) (Q) b«
(5,3,0,3,4) (Q)

(2,3,4,0,1) (A) (B)
(2,3,4,0,4) (A) (B)

= (5,1,2,0,4) (P) (Q)
(5,1,4,0,4) (B) (Q)
(5,3,4,0,4) (B) (Q)

(2,3,4,5,0) (A) (B) (C)
(5,1,2,3,0) (P)(Q)
(5,1,2,5,O)(C)(P)(Q)
(5,1,4,5,0) (B)(C)(Q)
(5,3,4,5,0) (B) (C) (Q)

v = -
[(2,3,4,5,1)(A)(B)(C) - (5,1,2,3,4)(P)(Q)] Er

(2,3,0,3,l)(A) (2,3,4,0,1)(A)(B) (5,l,4,0,4)(B)(Q) (2,3,4,5,0)(A)(B)(C)
(2,3,0,3,4)(A) (2,3,4,0,4)(A)(B) (5,3,4,0,4)(B)(Q) (2,0,4,5,1)(A)(B)(C)
(0,l,2,3,l)(P) (2,3,0,5,1)(A)(C) (0,l,2,5,l)(C)(P) (2,0,4,5,l)(A)(C)(P)
(0,l,2,3,4)(P) (2,0,2,3,1)(A)(P) (5,1,2,3,O)(P)(Q) (5,l,4,5,0)(B)(C)(Q)
(5,l,0,3,4)(Q) (2,0,2,3,4)(A)(P) (5,l,2,0,4)(P)(Q) (5,3,4,5,0)(B)(C)(Q)
(5,3,0,3,4)(Q) (0,1,4,5,1)(B)(C) (5,0,2,3,4)(P)(Q) (5,1,2,5,O)(C)(P)(Q)

(0,3,4,5,l)(B)(C)

5.1b V , =
num.1 _(2,3,4,5,l)E,_/c2 3/c5 1l

coef.ABC" (2,3,4,5,0) ~k~2

(2,0,4,5,1)
^51
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v num. 2
r coef.PQ

coef. BC
" coef. ABC

coef. AC
* coef. ABC

coef. AB
c coef. ABC

coef. Q
" coef. PQ

coef. P
" coef. PQ

coef. P
" coef.AP

v coef. A
'* coef.AB

(5,1,2,3,4) E,
(5,1,2,3,0)
(5,1,2,0,4)
(5,0,2,3,4)

(0,1,4,5,1)
(0,3,4,5,1)
(2,3,4,5,0)
(2,0,4,5,1)

(2,3,0,5,1)
(2,3,4,5,0)
(2,0,4,5,1)

(2,3,4,0,1)
(2,3,4,0,4)
(2,3,4,5,0)
(2,0,4,5,1)

(5,1,0,3,4)
(5,3,0,3,4)
(5,1,2,3,0)
(5,1,2,0,4)
(5,0,2,3,4)

(0,1,2,3,1)
(0,1,2,3,4)
(5,1,2,3,0)
(5,1,2,0,4)
(5,0,2,3,4)

(0,1,2,3,1)
(0,1,2,3,4)
(2,0,2,3,1)
(2,0,2,3,4)

(2,3,0,3,1)
(2,3,0,3,4)
(2.3.4.0.1)

k k k }/C21 / i43 /C54 J

AC21/C43 + ^21^54 "

k (k 4- k \H'Sly*21 ' * 2 3 /

k (k 4- k )
^121*23 "̂  ^51/

/c23/c51

fc34(/c23 + /c51)

fc23(fc51+^54)
/c45(/c23 + /c51)

fc43fc54(/c21-f

^32(^21^43 + ^21^f

^21^43v^51 "̂

Et

\~ ^43^54

-k23)
-4- k k )

14 ̂  ^43^54/

• ^ 5 4 )

^15(^21^43 + ^21^54 + ^43^54)

coef.CP (0,1,2,
coef. ACP (2,0,2,

(5,1,0,3.
coef.Q (5,3,0,3

coef. BO (5.1.4.0.

5,1) k2l

5,D k12

,4)
,4) /c43

.4) k,.
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(2,3,4,0,4) (5,3,4,0,4)
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K,=

(5,1,4,0,4)
coef.BQ _ (5,3,4,0,4)

coef.BCQ "(5,1,4,5,0) k
(5,3,4,5,0)

4 5

K, =
coef. A

(2,3,0,3,1)
(2,3,0,3,4) coef. AC (2,3,0,5,1) k

23
32•" coef.AP (2,0,2,3,1) coef.ACP (2,0,2,5,1) k

(2,0,2,3,4)

(0,1,4,5,1)
_ coef.BC = (0,3,4,5,1)^ coef.CP JO, 1,2,5, l) = /c51

i9 coef.BCQ (5,1,4,5,0) coef.CPQ (5,1,2,5,0) k 15

(5,3,4,5,0)

num. 1 (2,3,4,5,
eq

^12^23^34^4.5^51

num.2 (5, l,2,3,4)Er kl5k21k32k43k54

5.1c

V =

l
J

KttKe(A) + KC(A)(B) + K6(A)(C) + Ka(B)(C)

K,

ip K.,

Kip Kf,

5.2a The connection matrix for the mechanism is,

U =

0
1
0
0
1

A
0
1
0
0

0
B
0
p
0

0
0
1
0
Q

R
0
0
1
0

Q =

2
1
2
3
1

5
3
4
5
4
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(0,1,2,3,1) (P)
(E) (0,1,2,3,4) (P)(Q)
^=(0 ,1 ,2 ,5 ,1)
h' (0,1,4,5,1)

(0,3,4,5,1) (B)

(EA)
E,

225

(2,0,2,3,1) (A) (P)
(2,0,2,3,4) (A) (P) (Q)
(2,0,2,5,1) (A)
(2,0,4,5,1) (A)
(5,0,2,3,4) (P) (Q) (R)

fEABl
(2,3,0,3,1) (A) (B)(P)
(2 '3 ' 0 ' 3 ' 4) <A) (fi) (p) (Q)

=(2,3,0,5,1) (A) (B)
(5,1,0,3,4) (P)(Q)(R)
(5,3,0,3,4) (B) (P) (Q) (R)

5.2b

(2,3,4,0,1) (A) (B)
(EQR) (2>3'4'°>4:)(A)(B)(Q) ( E R )

E ' (5!l!w)(Q)(R) E'
(5,3,4,0,4)(B)(Q)(R)

v —
(0,1,2,5,1)
(0,1,4,5,1)

(2,0,2,5,1) (A)
(2,0,4,5,1) (A)
(0,3,4,5,1)(B)
(0,l,2,3,l)(P)
(5,l,2,5,0)(R)
(5,l,4,5,0)(R)

(2,3,4,5,1)E,
f (2,3,4,5,0)

(2,3,4,0,1)
(2,3,0,4,1)

(5,1,2,3,4) E,
r (5,1,0,3,4)

(5,0,2,3,4)

(2,3,4,5,0) (A) (B)
(2,3,4,0,1) (A) (B)
(2,3,0,5,1) (A) (B)

(2,0,2,3,1) (A) (P)
(5,3,4,5,0)(B)(R)
(0,l,2,3,4)(P)(Q)
(5,l,2,3,0)(P)(R)
(5,l,2,0,4)(Q)(R)
(5,l,4,0,4)(Q)(R)

K34fc45/c51E,
^34^45+^34^51+'

^2l'C32Et

k 4- k
K21 ^ ^32

(2,3,4,5,0) (A) (B)
(5,l,2,3,0)(P)(R)

(5,1,2,4,0) (R)
(5,3,4,5,0)(B)(R)

(2,3,0,3,1)(A)(B)(P)
(2,3,4,0,4)(A)(B)(Q)

(2,0,2,3,4)(A)(P)(Q)
(5,3,4,0,4)(B)(Q)(R)
(5,l,0,3,4)(P)(Q)(R)
(5,0,2,3,4)(P)(Q)(R)
(2,3,0,3,4)(A)(B)(P)(Q)
(5,3,O,3,4)(B)(P)(Q)(R)

c4 5fc5 1
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K =-
3,3,4,5,1) /c34/c45/

(2,3,4,5,0) /c12(/c34fe45 + fc34/c51

(2,3,4,0,1)
(2,3,0,5,1)

(2,0,2,5,1)
(2,0,4,5,1) /c45/c51(
^ , J, t , J, u; "^23^*34^45 ' ^34^51 ' ^45 ^51/

(2,3,4,0,1)
(2,3,0,5,1)

(5,1,2,0,4)
(5,l,4,0,4)_/c21(/c32

(5,1,0,3,4)
(5,0,2,3,4)

_(5,l,2,3,0)_ /c21 + /c32

" (5,1,0,3,4) /c54(/c21+/c32)
(5,0,2,3,4)

K =
(0,1,2,3,4) fc21fc32

(5,1,0,3,4) kls(k21+ki2)
(5,0,2,3,4)

K.,=

(0,1,2,5,1)
(0,1,4,5,1) (0,1,2,3,1) (0,1,2,3,4) k21

to (2,0,2,5,1) (2,0,2,3,1) (2,0,2,3,4) k,
(2,0,4,5,1)

K.P l =

(2,0,2,5,1) (5,1,2,5,0)
(2,0,4,5,1) (5,1,4,5,0) kA5(k32 + k34)
(2,0,2,3,

(2,3,4,5,
(2,3,4,0,
(2,3,0,5,

1)

0)
1)
1)

(5,1

(*34

,2,3

* 4 5

,0)

4- k k

/C 3 2 /C 4 3

+ k45k 5 l )
K f p j "(2,3,0,3,1) fc43fe51
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^(5,3,4,0,4) = /c34
ip> (5,3,0,3,4) fc43

(0,1,2,3,1) (2,0,32,3,1) (2,3,0,3,1) ksl

(0,

(2,
(2,
(2,

1,2,3,

3,4,5,
3,4,0,
3,0,5,

4)

0)
1)
1)

(2,0,2,3,4)

^34^45 + ^34*

(2,3,0,3,4)

51 + fc45fc51

=

(2,3,4,0,4) fc34fc54

(5,1,2,5,0)
(5,l,4,5,0) = (5,3,4,5,0) = fc45

= (5,1,2,0,4) (5,3,4,0,4) /c54

(5,1,4,0,4)

(0,1,2,5,1)
(0,1,4,5,1) (0,3,4,5,1) fc51

= ^
ir (5,1,2,5,0) (5,3,4,5,(

(5,1,4,5,0)
5.2c

v = •

K.flKb + Kfc(A) + Ka(B) + ^ ^ (P)

(B)(Q)(R) + J ^ \ (P)(Q)(R)
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Chapter 6

61 l ^ K X KtoKfe(P)/ KttK
• va Vl +KK(B)V *

1 + +
V /L (A) (C)

V [ K A (Q; i
i4 (B)(C)J(A)

KgK,/ K.Kfc(Q)
K(Q^ "l'KK(A)

1 = K T Ktt KflKk(Q)/ Ktt\-| 1
V l (B) KCK,.,(A)V (B)/J(C)

6.2 (A) (B) (C) Inhibitor Type of
Inhibition

Variable Subsaturate Subsaturate P Mixed type
Variable Saturate Subsaturate P No inhibition
Variable Subsaturate Saturate P Mixed type
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6.3

Subsaturate Variable Subsaturate
Saturate Variable Subsaturate
Subsaturate Variable Saturate
Subsaturate
Saturate
Subsaturate
Variable
Variable
Variable
Subsaturate
Saturate
Subsaturate
Subsaturate
Saturate
Subsaturate

Subsaturate
Subsaturate
Saturate
Subsaturate
Saturate
Subsaturate
Variable
Variable
Variable
Subsaturate
Subsaturate
Saturate

Variable
Variable
Variable
Subsaturate
Subsaturate
Saturate
Subsaturate
Subsaturate
Saturate
Variable
Variable
Variable

1 1 + J 9 . I I —
Kfl(B)V Kl7JJ(A)

P
P
P
P
P
P
Q
Q
Q
Q
Q
Q
Q
Q
Q

va \,l Ka(B)J(A) Vr|_ (B) K,.,J

Competitive
Competitive
Competitive
Mixed type
Mixed type
No inhibition
Competitive
Competitive
Competitive
Mixed type
No inhibition
Uncompetitive
Mixed type
No inhibition
Mixed type

1 + + i + +
vb Vfl (A)J(B) V ^ (A) K^
1_KT K.K,/ (R)\ (R)l 1 1 ri + K.l
,a-vA K ^ ^ + K J + KJCAJ + VA +(B)J
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6.4 (A)

Variable
Variable
Subsaturate
Saturate
Variable
Variable
Subsaturate
Saturate
Variable
Variable
Subsaturate
Saturate

(B)

Substrate
Saturate
Variable
Variable
Subsaturate
Saturate
Variable
Variable
Subsaturate
Saturate
Variable
Variable

Product

P
P
P
P

Q
Q
Q
Q
R
R
R
R

Solutions to problems

Type of
inhibition

Mixed type
Uncompetitive
Mixed type
Mixed type
Uncompetitive
Uncompetitive
Uncompetitive
Uncompetitive
Competitive
Competitive
Mixed type
No inhibition

Chapter 7
7.1 The product inhibition pattern is consistent with the following reaction

sequence.

Fig. V.7.1. Reaction sequence for a uni-bi, uni-uni, ping-pong reaction.

7.2 The product inhibition pattern is consistent with either of the following
reaction sequences in V. 7.2.

Chapter 8
8.1a The data are consistent with the following reaction sequence

Figure V. 8.1.
8.1b In the absence of substrate B, there would be no way to convert

enzyme species F to FQ if Q were not present. All of the enzyme would
accumulate as species F, and F does not participate in the A->P
exchange.
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(A)

EA

(P)

EP
(C)

(C)

(B)

EAB E

(Q)

EC

(B)

ECB

EABC ECBA
Fig. V.7.2. Two possible reaction sequences for a ter-bi enzymic reaction.

\ k 5 4
k 4 5 (B) \

k s ^ ^ E fS:s:ski2(A)

ERf^") *^EA
k32(P)/

/k23

' k34 F Q

Fig. V.8.1. Reaction sequence of a uni-bi, uni-uni, ping-pong reaction.

8.1c Higher concentrations of product P would not be expected to exert
a profound inhibitory effect if the dissociation of products were
random.

Chapter 9

V- 15(0.1+ 0.1

\<f

15r o.i+o.i + i51
° L 15(0.1 +0.1 + 1)J

(2,3,4,
(2,0,2,1)
(2,0,4,1)
(2,3,0,1)
(2,3,4,0)
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K =

(0,1,2,1)
(0,1,4,1)
(0,3,4,1)
(2,0,2,1)
(2,0,4,1)
(2,3,0,1)
(2,3,4,0)

l ( * 2 1 /c 3 2 + i

^12(^32^41

2lk34-

(Vf/Kaf k223
' kd

K23

V 3 4

V23A '34

V 3 4 V 2 1

Chapter 10
10.1 Apparent Km at pH 8.7 is 12.74 uM. Apparent Vmax at pH 8.7 is

0.1667 umoles per minute. The apparent Km at pH 8.2 is 33.84 uM
while the apparent Vmax at pH 8.2 is 0.1667 umoles per minute.

10.2 Both sets of data fall on the same line, the Km is 2.067 uM while the
Vmax is 0.1613 umoles per minute. This suggests that the true substrate
for the enzyme is the base.

(P) (EV) (FO (ECT)
E, E, E, E,

10.3 KO(B)/; (A)(B)/S, f

(We
K j . K,

f + f
J ea ' J ea

/ ;

(P)
Klp

ea ' J ea

fJ e

f I
H =- tt (Q) / f}
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Chapter 11

11.1 The equation would be a 2:2 rational function.

112 V = K x + (A) + K2 + (A) + K3 + (A)

v= + [ V 1 + V 2 +

K j K . K , + [KXK2 + K ^ j + K2K3](A)
+ [K1 + K2 + K3](A)2 + (A)3

Chapter 12

12.1 The condition which must be met if the substrate-saturation curve is to
be sigmoidal is a2Po > a i Pi •

(V 1 +V 2 )K 1 K 2 >(V 1 K 2 + V2K1)(K1 + K2)

Since all of the steady state parameters are positive, the foregoing
requirement cannot be met, and the equation cannot describe a sig-
moidal substrate-saturation curve.

12.2 The condition which must be met if the substrate-saturation curve is to
be hyperbolic is

This condition can be met only if Kx = K2.
12.3 From the foregoing, it can be seen that the substrate-saturation curve

will be characteristic of negative cooperativity if the Michaelis con-
stants of the two enzymes are not equal.

12.4 The condition which must met if substrate inhibition is to be observed
is

0 > V , K 1 + V 2 K 2

Therefore, the equation cannot describe substrate inhibition.
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Chapter 13

- l l vapp- x l
131

5 fc* '

rsapp _
2 ~

= *ffo$gk*9 k3 = ct2
fgotggk*,

lffClf9Kl

7/ °V/
A2)+(03A3)

K*3Ef

v = k\(f2gk) + 2k'2(fg2A2) + 3k'3(g3A3)

3x}fk\* E, [K*2(A) + 2K*(A)2 + (A)3]

«/»

13.2 «„««„««,

13.3 | :

13.4 ^>f
3 \«/
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HS K*-—=i-t^J* K * - ^ ~ 2 + ^2*
Kx /V2

b \b> b
-^±—Z± \CPP — —Zl

^ ' 2 ~

L — n$ b* b — /y3 / , * b — b*
IV j_ UCyy/V1? /V2

 {J"gg'K2'> ^ 1 ^ 2 '

j^ _ ^ 3 r,* /, _ « 3 u r, _
* v - l — ^ g f j f ^ - l ' ^ - 2 — ^ ^ ^ - 2 ' ^ - 3 —

235

v =
K*2(A) + 2k'* K*(A)

*K* + 3Kf(A) + 3K*(A)2 + (A)3

13.7 - > 1, therefore substrate inhibition is not possible.

Chapter 14
14.1

1 c}
1 e2

1 fiJ

pi
62
£ 2

p3
fc2

Ci
CMl

c2 c3
=

1
0
0

0
1
0

0
0
1

14.2

f =o
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Flux control coefficient summation theorem.

C 1 +C 2 + C3 = l

Concentration control summation theorem.

Flux control connectivity theorem.

e^C 1+£|C 2-e^C 3 = 0

Concentration control connectivity theorem.

a C

14.3 |D| = e^e| + E\E\ + ejef - E \ 1 \ + ejef

Flux control coefficients

C2=(eJel-e?ei)/|D|
C3=(£1

1£| + £?£l)/|D|

Concentration control coefficients.

C f = - ( £ ? + £})/| D |

14.4 |D| = - [ejefej + fijfi^ + e}efej + efef ef

Flux control coefficients.

C4 = [*}ef ef + ^(elef + ele]
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Concentration control coefficients.

el - el ~4 - (e3
2 + E2

2) E\\l\ D |

^M3 _ _ fo2p3 i p i c3 i p i o2 _i_ o2pl~\/\n\
^4 —  L^ 1 ^2 1 2 ' 1 2 ' 1 2 - 1 / 1 I
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Chapter 15
1 _ T f 2 i I r 3 — _  p l f W i

^ = = * ' 2 1
_ p 2 . 1 p M 1 , 2 . 1 P M , , 2 . 1

2 .1

15.2

J2

1
0
0

:\

h
0
l
l

- £ 2 1 <

- £ 2 C

- £ ? • '

0

C^+£
"' + £"l

0
- e l 1

El
-el

f^Mz f\

c2

c3

Cf1

I

c2

c3

CMJ

c3

C2

c3

^ 2 2

- £ ^ C
- £ 2 C ^

C3

c3

^3 *

1
0
0
0

Mi _ £ 2 . l £

i ~ i ~ £ ^
1.

1

0 0
1 0
0 1
0 0

1 = 0

0
0
0
1

Flux control summation theorem.
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Concentration control summation theorem.

Flux control connectivity theorem.

^ 1 1 ^1 2 1 ^1 ^ 2 ~^ ^2 ^ 2 1 2 2 £ 2 ^ 3

Concentration control connectivity theorem.
_ o2.b2

b2 2 ,
1 •

15.3

C|=-[J3ef1e|-e1
1el-1]/|D|

C| =

• = 0

15.4

J2e?/|D|
* = -(J2£|1+J3£!)/|D|

^3 _ '

"̂ 4 _

^5 _ ,
41' ^M2

C5 - p
5^2 — b

4.1
4.1

J2 J4 J5

1 0 0
0 J4 J5

0 1 0
0 0 1

0
0

0
0 ct •^4

ci,
C M l

^4 .1
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1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

: L = -J2e?e!/ |D|
: | = (j2£21+£-j)
" " ' . _ _ Wo? i ;

-<5 _ r i P2A(p2 I I , 4 . h , I / ,
^3 — L 2 1 V 2 ^̂  4 2 / ^̂  4- V

:fl = (e| + J^el1 + J5£|)/|D|

: -J 4 £ 2 / |D |

Cf» = e?/|D|

1)/! D|

Chapter 16

16.1 dM,
dt

dM2

~dT = 0
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(p2 _ p3\ _ i

= ef e| e i £ ! ~ e i £ 2 + £i£2e i £ ! £i£2

16.2

+ C*'*)*! +
16.3

At l °

dT

«iM-«« _ ^ M « ; M - ^ = 0

3 = 0

£

-(ef + ej) (ef-ej)

"(4
,-3
£ 3

,4 I o 3 ^

C 2 C 3 C 4 _i_ p i C 3 C 4 _i p i p2 C 4 _i_ p i p 2 p 3
I ^1 b2 3 "• 1 2 3 ' 1 2 3 "•" 1 2 3

1̂ 1 = ~ . .2 _.̂  =-1 . _2 + slels3

I \ D \
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